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A B S T R A C T

We investigate the propagation of harmonic flexural waves in periodic two-phase phononic multi-supported
continuous beams whose elementary cells are designed according to the quasicrystalline standard Fibonacci
substitution rule. The resulting dynamic frequency spectra are studied with the aid of a trace-map formalism
which provides a geometrical interpretation of the recursive rule governing traces of the relevant transmission
matrices: the traces of three consecutive elementary cells can be represented as a point on the surface defined
by an invariant function of the square root of the circular frequency, and the recursivity implies the description
of a discrete orbit on the surface. In analogy with the companion axial problem, we show that, for specific
layouts of the elementary cell (the canonical configurations), the orbits are almost periodic. Likewise, for the
same layouts, the stop-/pass-band diagrams along the frequency domain are almost periodic. Several periodic
orbits exist and each corresponds to a self-similar portion of the dynamic spectra whose scaling law can be
investigated by linearising the trace map in the neighbourhood of the orbit. The obtained results provide a
new piece of theory to better understand the dynamic behaviour of two-phase flexural periodic waveguides
whose elementary cell is obtained from quasicrystalline generation rules.
1. Introduction

Wave propagation in mechanical metamaterials and their applica-
tions in several fields of engineering have attracted much attention
from the scientific community in the last twenty years. This was mainly
due to the discovery of new phenomena for controlling waves, such as
wave focussing (Yang et al., 2004; Tol et al., 2017), cloaking (Norris,
2008; Brun et al., 2009), negative refraction (Zhang and Liu, 2004;
Morvan et al., 2010; Srivastava, 2016; Morini et al., 2019a) and topo-
logical edge modes (Wang et al., 2015; Ma et al., 2018; Rosa et al.,
2019).

Recently, many researchers have focused on elastodynamics of com-
posite beams constructed following a quasiperiodic pattern (Gei, 2010;
Sorokin, 2019; Pal et al., 2019; Xia et al., 2020) (for recent develop-
ments on the dynamics of quasiperiodic media see, e.g. Chen et al.,
2020; Beli et al., 2022; Davies and Craster, 2022; Bacigalupo et al.,
2022; Davies et al., 2023). In particular, the non-standard disper-
sive properties of two-phase periodic structured rods whose unit cells
are generated according to the Fibonacci substitution rule have been
studied in detail (Gei, 2010; Morini and Gei, 2018; Morini et al.,
2019b). This substitution rule belongs to the subset of quasicrystalline
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one (Poddubny and Ivchenko, 2010; Zhang, 2017) and portions of
Floquet-Bloch frequency spectra of its members display self-similar pat-
terns which scale according to factors related to an invariant function,
the Kohmoto’s invariant (Kohmoto and Oono, 1984; Gei, 2010).

A step forward in the investigation was the determination of canoni-
cal elementary cells (Gei et al., 2020) that are constructed by following
rational ratii between mechanical and geometrical properties of the
phases. Frequency spectra of canonical configurations display periodic
properties and symmetries so that the arrangement of pass and stop
bands can be easily predicted. These features have found application
not only in 1D waveguides (Gei et al., 2020; Morini et al., 2019b; Farhat
et al., 2022), but also to predict the ranges of frequency for which shear
horizontal waves in laminates are refracted with a negative index (Chen
et al., 2022, 2023).

As an additional important feature, canonical layouts can take
advantage of the properties of a discrete map connecting traces of three
transmission matrices associated with elementary cells whose indices
are consecutive (Kolar and Ali, 1989). This with the aim to reveal that
said self-similarity can be linked to the periodic orbits described by the
map on the invariant surface associated with Kohmoto’s invariant (Gei
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Fig. 1. Flexural waves in multi-supported beams generated by standard Fibonacci sequences 3 (top) and 4 (bottom). Symbols 𝑟𝑖 and 𝑙𝑒 denote right and left-hand boundary of
the cells, respectively.
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et al., 2020). The scaling parameter governing the different self-similar
ranges of the spectra can then be calculated, which could be used
to predict, design and optimise the filtering properties of canonical
quasicrystalline-generated structures.

In this paper, we generalise these concepts to investigate the dy-
namic properties of infinite periodic multi-supported Euler–Bernoulli
beams based on elementary cells conceived by adopting a standard
Fibonacci substitution rule. The beam is homogeneous with constant
bending stiffness and density of mass per unit length so that the inner
structure of the cells is provided by the position of supports and their
relative distances. This problem is solved by building the transmission
matrices of elementary cells and applying the Floquet-Bloch technique,
yielding a set of eigenvalue problems in the circular frequency. Since
the beam is multi-supported, there are two degrees of freedom and
the transmission matrix is 2 × 2. Though the order of the system is
the same, the dispersion relation of a multi-supported beam is not
identical to that of the analogous axial wave problem (Gei et al.,
2020). Indeed, in the current study the expressions of traces involve
both periodic trigonometric and hyperbolic functions and the frequency
enters naturally with its square root. This is in contrast with the axial
wave problem, where traces depend only on sines and cosines whose
arguments are proportional to the frequency.

Our main results are that canonical configurations can be also found
for the bending problem and the corresponding dispersion spectra tend
to be periodic and symmetric because the hyperbolic functions that
appear in the dispersion relation can be approximated by periodic
functions at moderately high frequencies. In the final part of the
paper, we obtain analytical scaling factors governing the self-similarity
properties of stop and pass bands so that the theory developed for
the axial problem can be also profitably applied to multi-supported
homogeneous beams guiding flexural waves.

2. Analysing of flexural wave propagation

We introduce a particular class of infinite two-phase periodic multi-
supported beams whose elementary cells are generated by adopting
the standard Fibonacci sequence 𝑖 based on the recursion rule 𝑖 =
𝑖−1𝑖−2.1 The homogeneous basic constituents are 𝐴 and 𝐵 and the
nitial condition for the rule is 0 = 𝐵 and 1 = 𝐴 (see, e.g., Fig. 1).

Bending stiffness 𝐸𝐼 and mass density per unit length 𝜌 are kept
constant along the structure, therefore the distinction between the two
elements 𝐴 and 𝐵 lies only on the distance 𝑙𝑋 (𝑋 ∈ {𝐴,𝐵}) between
supports. The total length of cell 𝑖 is given by 𝐿𝑖 = 𝑛(𝐴)𝑖 𝑙𝐴 + 𝑛(𝐵)𝑖 𝑙𝐵 ,

here 𝑛(𝐴)𝑖 and 𝑛(𝐵)𝑖 are the number of spans 𝐴 and 𝐵 included in the
ell, respectively, and the total number of spans corresponds to the
ibonacci number 𝑛𝑖 = 𝑛(𝐴)𝑖 + 𝑛(𝐵)𝑖 .

By assuming the co-ordinate 𝑧 depicted in Fig. 1, the equation
overning harmonic vibrations of the transverse displacement 𝑣(𝑧) for
he Euler–Bernoulli beam is

𝐼 𝑑
4𝑣
𝑑𝑧4

− 𝜌𝜔2𝑣 = 0. (1)

1 The natural number 𝑖 is the index of the element  .
𝑖 r

2 
Its solution can be sought in the form 𝑣(𝑧) = 𝐵exp(i𝑘𝑧) where 𝐵 is
onstant and i is the imaginary unit. Eq. (1) yields the characteristic
quation

𝑘𝑟)4 −𝐷𝜔2 = 0, (2)

here 𝑟 is the radius of inertia of the cross section (𝑟2 = 𝐼∕, where 
s the beam cross-section area and 𝐼 denotes its second-order moment)
nd 𝐷 = 𝜌𝑟4∕𝐸𝐼 . Eq. (2) provides four solutions in 𝑘, namely

1,2(𝜔) = ±1
𝑟

√

𝜔
√

𝐷, 𝑘3,4(𝜔) = ±1
𝑟

√

−𝜔
√

𝐷, (3)

where the first index in both expressions corresponds to the sign ‘+ ’.
We can now obtain the dispersion relation following the same pro-

cedure adopted in analysing the companion axial wave problem (Gei
et al., 2020; Morini et al., 2019b; Farhat et al., 2022). As the beam is
multi-supported, the state vector is determined by the rotation 𝜑(𝑧) and
its derivative 𝜑′(𝑧) (alternatively, bending moment 𝑀(𝑧) = −𝐸𝐼𝜑′(𝑧))
at each supported point. This also means that the fourth-order differen-
tial system (1) has only two degrees of freedom under these constraints,
as investigated by Gei (2010). The state vector on the right-hand side
of cell 𝑖 is then given by 𝑉𝑖 = [𝜑𝑖 , 𝜑

′
𝑖
]𝑇 and is related to that on the

left-hand side, say 𝑉0 = [𝜑0, 𝜑′
0]
𝑇 , via the relationship

𝑉𝑖 =𝑀𝑖𝑉0, (4)

where, 𝑀𝑖 is the global transmission matrix for cell 𝑖. The matrix is
the result of the product

𝑀𝑖 =
𝑛𝑖
∏

𝑝=1
[𝑀𝑋 ]𝑝 (𝑋 ∈ {𝐴,𝐵}). (5)

For this system, the transmission matrix 𝑀𝑋 (𝜔)(𝑋 ∈ {𝐴,𝐵}) associ-
ated with each constituent unit is

𝑀𝑋 =

⎡

⎢

⎢

⎢

⎣

𝜓𝑋𝑏𝑏(𝜔)

𝜓𝑋𝑎𝑏(𝜔)
𝜓𝑋𝑏𝑎(𝜔) −

𝜓𝑋𝑏𝑏(𝜔)𝜓
𝑋
𝑎𝑎(𝜔)

𝜓𝑋𝑎𝑏(𝜔)
1

𝜓𝑋𝑎𝑏(𝜔)
− 𝜓𝑋𝑎𝑎(𝜔)
𝜓𝑋𝑎𝑏(𝜔)

⎤

⎥

⎥

⎥

⎦

, (6)

where

𝜓𝑋𝑎𝑎(𝜔) =
𝑘1(𝜔) cot(𝑘1(𝜔)𝑙𝑋 ) − 𝑘3(𝜔) cot(𝑘3(𝜔)𝑙𝑋 )

𝑘23(𝜔) − 𝑘
2
1(𝜔)

, 𝜓𝑋𝑏𝑏(𝜔) = −𝜓𝑋𝑎𝑎(𝜔),

(7)

𝑋
𝑎𝑏(𝜔) =

𝑘1(𝜔) csc(𝑘1(𝜔)𝑙𝑋 ) − 𝑘3(𝜔) csc(𝑘3(𝜔)𝑙𝑋 )
𝑘23(𝜔) − 𝑘

2
1(𝜔)

, 𝜓𝑋𝑏𝑎(𝜔) = −𝜓𝑋𝑎𝑏(𝜔).

(8)

unctions 𝜓𝑋𝑎𝑎(𝜔) and 𝜓𝑋𝑎𝑏(𝜔) both take real values as 𝑘23, 𝑘3 cot(𝑘3𝑙𝑋 ),
3 csc(𝑘3𝑙𝑋 ) are real and despite the fact that 𝑘3(𝜔) is always an imagi-
ary number. Further, matrix 𝑀𝑖 possesses two relevant properties: (i)
t is unimodular, i.e. det(𝑀𝑖) = 1; (ii) as a consequence of the recursion
ule valid for the Fibonacci sequence, it can be generated through the
ecursive relationship 𝑀 = 𝑀 𝑀 (𝑖 ≥ 2). As a consequence, using
𝑖 𝑖−2 𝑖−1
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the Floquet-Bloch condition 𝑉𝑖 = exp(i𝐾𝐿𝑖)𝑉0 in Eq. (4), the dispersion
equation takes the form

|𝑀𝑖 − exp(i𝐾𝐿𝑖)𝐸| = 0, (9)

where 𝐸 is the identity matrix. Bloch wavenumber 𝐾𝐿𝑖 is expressed by
the trace of matrix 𝑀𝑖

𝐾𝐿𝑖 = arccos
(

𝑡𝑟𝑀𝑖
2

)

. (10)

The solution to Eq. (10) provides the complete Floquet-Bloch spec-
trum and allows to obtain the mentioned stop-/pass-band pattern of
the waveguides at varying index 𝑖. In particular, waves propagate
when |𝑡𝑟𝑀𝑖| < 2 and 𝐾𝐿𝑖 is a real number, stop bands correspond
to |𝑡𝑟𝑀𝑖| > 2 and 𝐾𝐿𝑖 is complex number associated with evanescent
waves, whereas |𝑡𝑟𝑀𝑖| = 2 is the condition for standing waves.

3. Canonical configurations of multi-supported beams

This section is devoted to the investigation of properties of traces
𝑡𝑟𝑀𝑖 and how these features affect the dispersion diagram of flexural
waves in multi-supported beams. A nonlinear recursive rule linking
traces for three consecutive fundamental cells is introduced. Moreover,
an invariant function defined by this maps that can be represented by
a surface in a 3D space. At any frequency, the evolution of the traces
corresponds to a discrete orbit on this surface (Kohmoto’s surface). By
means of this analysis, we introduce canonical configurations for these
structures, leading to dynamics spectra that are close to be periodic and
with some symmetries. The concept of canonical frequency is studied
and is associated with periodic orbits on the Kohmoto’s surface.

3.1. Nonlinear map and Kohmoto’s invariant

General recursive relations for the traces of unimodular 2 × 2
transmission matrix of generalised Fibonacci chains have been derived
in terms of Chebyshev polynomials of first and second kind (Kolar and
Ali, 1989). According to the theory, three adjacent traces satisfy the
recursive rule

𝑥𝑖+1 = 𝑥𝑖−1𝑥𝑖 − 𝑥𝑖−2 (𝑖 > 2), (11)

where 𝑥𝑖 = 𝑡𝑟𝑀𝑖, with initial conditions

𝑥0 = 2
cosh 𝜉𝐵 sin 𝜉𝐵 − cos 𝜉𝐵 sinh 𝜉𝐵

sin 𝜉𝐵 − sinh 𝜉𝐵
, 𝑥1 = 2

cosh 𝜉𝐴 sin 𝜉𝐴 − cos 𝜉𝐴 sinh 𝜉𝐴
sin 𝜉𝐴 − sinh 𝜉𝐴

,

2 = 2
cosh(𝜉𝐴 + 𝜉𝐵) sin 𝜉𝐴 sin 𝜉𝐵 + cos(𝜉𝐴 + 𝜉𝐵) sinh 𝜉𝐴 sinh 𝜉𝐵

(sin 𝜉𝐴 − sinh 𝜉𝐴)(sin 𝜉𝐵 − sinh 𝜉𝐵)

+ 2
sin 𝜉𝐵 sinh 𝜉𝐵 + sin 𝜉𝐴 sinh 𝜉𝐴 − sin(𝜉𝐴 + 𝜉𝐵) sinh(𝜉𝐴 + 𝜉𝐵)

(sin 𝜉𝐴 − sinh 𝜉𝐴)(sin 𝜉𝐵 − sinh 𝜉𝐵)
, (12)

where normalised variables 𝜉𝑋 = 𝑘1𝑙𝑋 =
√

𝜔
√

𝐷𝑙𝑋∕𝑟 are introduced,
imilar to those adopted as coordinates on the representation based on
he universal torus (Shmuel and Band, 2016; Morini et al., 2019b).

A new set of variables, namely

�̃�𝑖 = 𝑥𝑖+2, �̃�𝑖 = 𝑥𝑖+1, �̃�𝑖 = 𝑥𝑖, (13)

an be defined singling out the triplet 𝑅𝑖 = (�̃�𝑖, �̃�𝑖, �̃�𝑖) and its substitution
nto Eq. (12) leads to the following nonlinear map  which determines
he evolution of the point 𝑅𝑖:

𝑖+1 =  (𝑅𝑖) = (�̃�𝑖�̃�𝑖 − �̃�𝑖, �̃�𝑖, �̃�𝑖). (14)

The jacobian of map (14), namely

=
𝜕(𝑥𝑖+1, 𝑦𝑖+1, 𝑧𝑖+1)

𝜕(𝑥𝑖, 𝑦𝑖, 𝑧𝑖)
=
⎡

⎢

⎢

𝑦𝑖 𝑥𝑖 −1
1 0 0

⎤

⎥

⎥

, (15)

⎣0 1 0 ⎦

c

3 
an be evaluated, showing that det 𝑱 = −1. Through a little algebra we
can also show that the following invariant quantity does exist (Morini
and Gei, 2018; Gei et al., 2020)

𝐼(𝜔) = �̃�2𝑖 + �̃�
2
𝑖 + �̃�

2
𝑖 − �̃�𝑖�̃�𝑖�̃�𝑖 − 4. (16)

This means that, at a determined circular frequency 𝜔, the value
𝐼(𝜔) is independent of the order 𝑖 of the sequence 𝑖. In the three-
imensional space spanned by the cartesian coordinate system 𝑂�̃��̃��̃�,
q. (16) is the equation of a two-dimensional manifold, the Kohmoto’s
urface. Points 𝑅𝑖 obtained by iterating map  belong to this surface
or any given frequency 𝜔. The set of points generated through the
teration defines a discrete orbit on the surface. Also, the position of
𝑖 can reveal if, at a given frequency 𝜔, structures represented by cells
𝑖, 𝑖+1, 𝑖+2 are/are not in a pass band; in particular, the frequency

is in a pass band for the three cells if {|𝑥𝑖|, |𝑥𝑖+1|, |𝑥𝑖+2|} < 2; in a stop
band if {|𝑥𝑖|, |𝑥𝑖+1|, |𝑥𝑖+2|} > 2.

3.2. Periodic orbits on Kohmoto’s surface and traces of transmission matrix

To ease the representation of orbits on Kohmoto’s surface and
pattern for traces of transmission matrix, the four plots in Fig. 2 refer to
a prototype multi-supported beam whose geometry is such that 𝑙𝐵∕𝑙𝐴 =
5 (𝜉𝐵 = 5𝜉𝐴).

In Fig. 2(a), the Kohmoto’s surface for the invariant 𝐼 = 0 in the
three-dimensional space 𝑂�̃��̃��̃� (Eq. (16)) is represented. Note that this
is just an example as the invariant can take different values depending
on frequency; however the case 𝐼 = 0 is relevant. Some representative
points are sketched, namely, the saddle points (six in total, three of
them are visible, in black, the other three are hidden) and three points
(in blue and green) that will be considered later while introducing the
concept of periodic orbit.

In Figs. 2(b) (c) (d) the Kohmoto’s surface is sketched in the sub-
space 𝑂�̃��̃�, where the white squares in the centre of the three panels
match the pass-band interval. Therefore, a point �̂�𝑖(𝜔) = (�̃�, �̃�) =
(𝑥𝑖+1, 𝑥𝑖) belonging to these squares means that that frequency 𝜔 for
both 𝑖 and 𝑖+1 lies in a pass band.

The curved, continuous trajectories sketched in the same three
plots have parametric equations (𝑥2(𝜔), 𝑥1(𝜔)), (𝑥3(𝜔), 𝑥2(𝜔)), (𝑥4(𝜔),
3(𝜔)) in (b), (c) and (d), respectively. All of them start from different
oordinates which corresponds always to 𝜉𝐴 = 𝜋 (the reason for which
he lines start at 𝜉𝐴 = 𝜋 and not at 𝜉𝐴 = 0 is explained in the
ext subsection); in particular, the red line covers the initial range
𝐴 ∈ [𝜋, 3𝜋∕2], after which the green line follows for the next range,
p to 𝜉𝐴 = 2𝜋. Then, the trajectories continue for increasing frequency
𝐴 ∈ [2𝜋, 3𝜋] with patterns that display a symmetry with those sketched
or which, in each panel, at 𝜉𝐴 = 3𝜋 the relevant points are almost
oincident with those at 𝜉𝐴 = 𝜋.

Finally, differently from the axial wave problem, 1 has a stop band
n the spectrum (note that the green line in (b) is fully in a stop band as
1 > 2 in that range). In addition, two stop bands of the path for 2 are
ndicated. Parts (c) and (d) of the figure can be similarity interpreted. In
articular, the complexity of the trend of the line increases at increasing
ndex 𝑖 of the sequence.

.3. Existence of canonical configurations

There are three significant kinds of orbits which can be followed
y points 𝑅𝑖 as a consequence of the iteration map (14): (i) periodic
rbits, (ii) non-periodic bounded orbits and (iii) escaping orbits. At any
requency 𝜔, the type of orbit is uniquely determined by the initial three
races 𝑅0 = (�̃�0, �̃�0, �̃�0) whose coordinates are given by expressions (12).

The dynamic governing equation for Euler–Bernoulli beams is a
ourth-order one whose integral involves non-periodic hyperbolic func-
ions sinh and cosh in the traces (12). It differs from that of the

ompanion problems of axial waves in rods and shear horizontal waves
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Fig. 2. (a) Kohmoto’s surface for a multi-supported beam with 𝑙𝐵∕𝑙𝐴 = 5. (a) Three-dimensional representation where three out of six saddle points are indicated with black
colour, points of the three-point periodic orbit are blue; in green the so-called fixed point; (b), (c), (d) sketches in the plane (�̃�, �̃�), where the reported trajectories have parametric
equations: (b) (𝑥2(𝜔), 𝑥1(𝜔)); (c) (𝑥3(𝜔), 𝑥2(𝜔)); (d) (𝑥4(𝜔), 𝑥3(𝜔)). In all plots of (b), (c), (d) the red line is for dimensionless frequency 𝜉𝐴 ∈ [𝜋, 3𝜋∕2], the green one is for
𝜉𝐴 ∈ [3𝜋∕2, 2𝜋]. In (b), two ‘stop bands’ (SB) are indicated for the function 𝑥2(𝜉𝐴).
Fig. 3. Behaviour of functions 𝑥0, 𝑥1 and 𝑥2 of the structure with 𝑙𝐵∕𝑙𝐴 = 5 plotted
against the dimensionless frequency 𝜉𝐴. Black, magenta and blue lines represent 𝑥0,
𝑥1 and 𝑥2, respectively; red-dashed lines are for ±2. The vertical, purple line marks
𝜉𝐴 = 𝜋.

in laminates because, there, the involved functions in the solution are
only periodic trigonometric ones. The first three traces of the structure
with 𝑙𝐵∕𝑙𝐴 = 5 are plotted against coordinate 𝜉𝐴 in Fig. 3 to explain the
reason for which a ‘periodic’ pattern can be recognised for 𝜉𝐴 > 𝜋.

The limits for the three functions as 𝜔 → 0 are

lim 𝑥0 = lim 𝑥1 = −4; lim 𝑥2 = 8 + 3
(

𝑙𝐵 +
𝑙𝐴

)

. (17)

𝜔→0 𝜔→0 𝜔→0 𝑙𝐴 𝑙𝐵

4 
The functions in Fig. 3 depart from the limits (17), start to oscillate, and
beyond 𝜉𝐴 = 𝜋 their behaviour becomes almost periodic; the reason is
that, taking for instance 𝑥0 and 𝑥1 as references, the difference in a
period 𝜋 of the functions is given by
cosh(𝜉 + 2𝜋) sin(𝜉 + 2𝜋) − cos(𝜉 + 2𝜋) sinh(𝜉 + 2𝜋)

sin(𝜉 + 2𝜋) − sinh(𝜉 + 2𝜋)
−

cosh 𝜉 sin 𝜉 − cos 𝜉 sinh 𝜉
sin 𝜉 − sinh 𝜉

=

2 sin 𝜉 sinh(𝜋)(cosh(𝜋) − cos 𝜉 cosh(𝜉 + 𝜋) + sin 𝜉 sinh(𝜉 + 𝜋))
(sin 𝜉 − sinh 𝜉)(sin 𝜉 − sinh(𝜉 + 2𝜋))

, (18)

that is an oscillating function tending to zero at increasing frequency
and with relatively small values yet at 𝜉 = 𝜋. Eq. (18) proves that the
traces 𝑥0 and 𝑥1 of the transmission matrices of 0 and 1 for multi-
supported beams are not periodic, but can be profitably approximated
to periodic. This conclusion is valid for all traces despite the fact that
the analogous of (18) for higher indices are much more complicated
expressions.

Now, as the traces are ‘almost’ periodic, we can check if the theory
of canonical structures developed by Gei et al. (2020) for axial wave
propagation is also valid for flexural waves in multi-supported beams
and is able to explain the scaling between parts of the frequency spectra
at increasing index 𝑖.

In particular, considering the shape of the Kohmoto’s surface
(Fig. 2(a)), we focus on its saddle points denoted by 𝑃𝑘 (𝑘 = 1,… , 6),
opposite in pairs, whose coordinates are 𝑃2,5 = (±𝛼1, 0, 0), 𝑃3,6 =
(0,∓𝛼2, 0), 𝑃1,4 = (0, 0,±𝛼3), where the top sign is associated with the
lowest index and coefficients 𝛼𝑞 (𝑞 = 1, 2, 3) depend on frequency and
value of the invariant. In the axial wave problem, those points are such
that  6(𝑃 ) = 𝑃 , ∀𝑘, i.e. a 6-point periodic orbit exists connecting
𝑘 𝑘
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Table 1
The characteristics of canonical multi-supported beams.
𝐶 = 1 + 2𝑗 𝑗 even 𝑗 odd 𝑗 odd

𝜔𝑐 (𝑛)
(

(5+4𝑛)𝑟𝜋
4𝐷1∕4

)2
, 𝑛 ∈ N

(

(5+4𝑛)𝑟𝜋
4𝐷1∕4

)2
, 𝑛 ∈ N

(

(7+4𝑛)𝑟𝜋
4𝐷1∕4

)2
, 𝑛 ∈ N

(�̃�0 , �̃�0 , �̃�0) ≈(±2, 0, 0) ≈(0, 0,±2
√

2) ≈(0,±2
√

2, 0)

all the points. Therefore, the question naturally arises: which type of
elementary cell can be represented by such a periodic orbit on the
surface (16)? The answer is that, at some frequencies, one of the
following three conditions must be satisfied (Gei et al., 2020):

(1) �̃�0 = �̃�0 = 0, (2) �̃�0 = �̃�0 = 0, (3) �̃�0 = �̃�0 = 0. (19)

These requirements can be obtained only for a special set of config-
urations, called canonical configurations, at particular frequency values,
the canonical frequencies. Conditions (19) imply that two out of the
three traces (12) vanish. They lead to the following requirements in
terms of lengths ratio (canonical ratio):

𝐶 =
𝑙𝐵
𝑙𝐴

= 1 + 2𝑗 or 𝐶 =
𝑙𝐵
𝑙𝐴

= 1
1 + 2𝑘

(𝑗, 𝑘 ∈ N). (20)

These expressions are particular cases of canonical configurations for
rods (Gei et al., 2020; Farhat et al., 2022) and laminates (Chen et al.,
2022, 2023); they can be written in a more general form

𝐶 =
𝑙𝐵
𝑙𝐴

=
1 + 2𝑗
1 + 2𝑘

(𝑗, 𝑘 ∈ N). (21)

In this paper, we only focus on cases where 𝑘 = 0, which let 𝜉𝐵 ≥ 𝜋
hen 𝜉𝐴 = 𝜋 (as 𝐶 = 𝜉𝐵∕𝜉𝐴). Other cases for 𝑗 = 0 (𝑘 ≠ 0) can be
nalysed in a similar fashion.

In the axial problem, conditions (19) can be satisfied exactly. In
he current one, due to the presence of the hyperbolic functions, it is
mpossible to achieve a strict zero in the equations. However, we will
ee that the satisfaction of (19) will provide an almost exact theory
hat is very useful to interpret effectively the dispersion properties of
uasicrystalline-generated multisupported flexural waveguides. Thus,
he characteristics of canonical multi-supported beams (canonical ratio,
requency and values of the first three traces) are shown in Table 1.
orevoer, for the problem currently investigated, the coordinates ap-

earing in the saddle point are 𝛼1 ≈ 2, 𝛼2 ≈ 𝛼3 ≈ 2
√

2, as shown in
Table 1. The three cases presented in the table are studied in detail in
the next subsections.

3.3.1. Index 𝑗 is even
When index 𝑗 is even, by substituting 𝜔𝑐 (0) =

(

5𝑟𝜋
4𝐷1∕4

)2
into traces

12), the variables 𝜉𝐴 and 𝜉𝐵 assume the values 𝜉𝐴 = 5𝜋∕4 and 𝜉𝐵 =
5(1 + 2𝑗)𝜋∕4, whereas 𝑥0, 𝑥1 and 𝑥2 take the form:

𝑥0 = 2
√

2
cosh(5(1 + 2𝑗)𝜋∕4) − sinh(5(1 + 2𝑗)𝜋∕4)

√

2 + 2 sinh(5(1 + 2𝑗)𝜋∕4)
, with 𝑗 = 4 𝑚, 𝑚 ∈ N,

𝑥0 = 2
√

2
cosh(5(1 + 2𝑗)𝜋∕4) − sinh(5(1 + 2𝑗)𝜋∕4)

√

2 − 2 sinh(5(1 + 2𝑗)𝜋∕4)
, with 𝑗 = 4𝑚 + 2, 𝑚 ∈ N,

𝑥1 = 2
√

2
cosh(5𝜋∕4) − sinh(5𝜋∕4)

√

2 + 2 sinh(5𝜋∕4)
,

2 = 2
cosh( 5(1+𝑗)𝜋2 ) − 2 sinh( 5(1+𝑗)𝜋2 ) −

√

2(sinh( 5𝜋4 ) + sinh( 5(1+2𝑗)𝜋4 ))

(1 +
√

2 sinh( 5𝜋4 ))(1 +
√

2 sinh( 5(1+2𝑗)𝜋4 ))
,

with 𝑗 = 4 𝑚, 𝑚 ∈ N,

𝑥2 = 2
cosh( 5(1+𝑗)𝜋2 ) − 2 sinh( 5(1+𝑗)𝜋2 ) −

√

2(sinh( 5𝜋4 ) − sinh( 5(1+2𝑗)𝜋4 ))

(1 +
√

2 sinh( 5𝜋4 ))(1 −
√

2 sinh( 5(1+2𝑗)𝜋4 ))
,

with 𝑗 = 4𝑚 + 2, 𝑚 ∈ N. (22)
5 
rom the expressions above, it can be deduced that at frequency 𝜔𝑐 (0),
𝑥0 ≈ 𝑥1 ≈ 0 and 𝑥2 can be approximated to ±2 depending on

hether parameter 𝑗 is 4𝑚 or 4𝑚 + 2. Then, the representative point
n the Kohmoto’s surface at frequency 𝜔𝑐 (0) is in the neighbourhood of
±2, 0, 0) (saddle points 𝑃2 and 𝑃5); in the companion axial problem, this
ccurrence corresponds to canonical configurations of family one. With a
imilar procedure, the case 𝜔𝑐 (1) can be studied, giving 𝜉𝐴 = 9𝜋∕4 and
𝐵 = 9(1+2𝑗)𝜋∕4; the point on the surface is again in the neighbourhood
f (±2, 0, 0). Therefore, as a conclusion, the canonical frequencies for 𝑗
ven are given by 𝜔𝑐 (𝑛) =

(

(5+4𝑛)𝑟𝜋
4𝐷1∕4

)2
(𝑛 ∈ N)2 .

3.3.2. Index 𝑗 is odd-1
As a second case, when 𝑗 is odd, by substituting 𝜔𝑐 (0) =

(

5𝑟𝜋
4𝐷1∕4

)2

into traces (12), it turns out that 𝜉𝐴 = 5𝜋∕4 and 𝜉𝐵 = 5(1 + 2𝑗)𝜋∕4, and
the functions 𝑥0, 𝑥1, 𝑥2 become

𝑥0 = 2
√

2
cosh(5(1 + 2𝑗)𝜋∕4) + sinh(5(1 + 2𝑗)𝜋∕4)

√

2 + 2 sinh(5(1 + 2𝑗)𝜋∕4)
, with 𝑗 = 4𝑚 + 1, 𝑚 ∈ N,

𝑥0 = 2
√

2
cosh(5(1 + 2𝑗)𝜋∕4) + sinh(5(1 + 2𝑗)𝜋∕4)

√

2 − 2 sinh(5(1 + 2𝑗)𝜋∕4)
, with 𝑗 = 4𝑚 + 3, 𝑚 ∈ N,

𝑥1 = 2
√

2
cosh(5𝜋∕4) − sinh(5𝜋∕4)

√

2 + 2 sinh(5𝜋∕4)
,

𝑥2 = 2
cosh( 5𝑗𝜋2 ) −

√

2(sinh( 5𝜋4 ) + sinh( 5(1+2𝑗)𝜋4 ))

(1 +
√

2 sinh( 5𝜋4 ))(1 +
√

2 sinh( 5(1+2𝑗)𝜋4 ))
, with 𝑗 = 4𝑚+1, 𝑚 ∈ N,

𝑥2 = 2
cosh( 5𝑗𝜋2 ) +

√

2(sinh( 5𝜋4 ) − sinh( 5(1+2𝑗)𝜋4 ))

(1 +
√

2 sinh( 5𝜋4 ))(1 −
√

2 sinh( 5(1+2𝑗)𝜋4 ))
, with 𝑗 = 4𝑚+3, 𝑚 ∈ N.

(23)

This time, 𝑥1 ≈ 𝑥2 ≈ 0 and 𝑥0 ≈ ±2
√

2, and the representative
point on Kohmoto’s surface is close to (0, 0,±2

√

2) (𝑃1 and 𝑃4; canonical
configuration of family three in the axial problem). The results for 𝜔𝑐 (1),
for which 𝜉𝐴 = 9𝜋∕4 and 𝜉𝐵 = 9(1 + 2𝑗)𝜋∕4, can be obtained by
following a similar procedure, leading again to canonical frequencies
𝜔𝑐 (𝑛) =

(

(5+4𝑛)𝑟𝜋
4𝐷1∕4

)2
(𝑛 ∈ N).

3.3.3. Index 𝑗 is odd-2
Furthermore, again for index 𝑗 odd, the substitution of 𝜔𝑐 (0) =

(

7𝑟𝜋
4𝐷1∕4

)2
into traces (12) results in 𝜉𝐴 = 7𝜋∕4 and 𝜉𝐵 = 7(1 + 2𝑗)𝜋∕4;

the first three traces become

𝑥0 = 2
√

2
cosh(7(1 + 2𝑗)𝜋∕4) − sinh(7(1 + 2𝑗)𝜋∕4)

√

2 + 2 sinh(7(1 + 2𝑗)𝜋∕4)
, with 𝑗 = 4𝑚 + 1, 𝑚 ∈ N,

𝑥0 = 2
√

2
cosh(7(1 + 2𝑗)𝜋∕4) − sinh(7(1 + 2𝑗)𝜋∕4)

√

2 − 2 sinh(7(1 + 2𝑗)𝜋∕4)
, with 𝑗 = 4𝑚 + 3, 𝑚 ∈ N,

𝑥1 = 2
√

2
cosh(7𝜋∕4) + sinh(7𝜋∕4)

√

2 + 2 sinh(7𝜋∕4)
,

𝑥2 = 2
cosh( 7𝑗𝜋2 ) −

√

2(sinh( 7𝜋4 ) + sinh( 7(1+2𝑗)𝜋4 ))

(1 +
√

2 sinh( 7𝜋4 ))(1 +
√

2 sinh( 7(1+2𝑗)𝜋4 ))
, with 𝑗 = 4𝑚+1, 𝑚 ∈ N,

2 To give an example of how the points of the orbits are in the neighbour-
oods of saddle points, consider the case 𝑗 = 2 (𝐶 = 3) reported in Fig. 4; at
𝜔𝑐 (0) (𝜉𝐴 = 5𝜋∕4), the representative point has coordinates (2.0007, 0.0011, 0),
ery close to 𝑃2, whereas after a period of six iterations, the point is now
2.0008, 0.0139,−0.0086), again close to 𝑃2. For 𝜔𝑐 (1) (𝜉𝐴 = 9𝜋∕4), the mismatch

in the values of coordinates w.r.t. those of the saddle point is in the order of
−6
10 .
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Fig. 4. Canonical multi-supported beam with 𝐶 = 5. (a) stop-/pass-band layout in the same interval for sequences 0 to 11; (b) sketch of the invariant 𝐼(𝜔): the frequencies at
which periodic orbits occur are indicated.
𝑥2 = 2
cosh( 7𝑗𝜋2 ) +

√

2(sinh( 7𝜋4 ) − sinh( 7(1+2𝑗)𝜋4 ))

(1 +
√

2 sinh( 7𝜋4 ))(1 −
√

2 sinh( 7(1+2𝑗)𝜋4 ))
, with 𝑗 = 4𝑚+3, 𝑚 ∈ N,

(24)

from which it can be deduced that 𝑥0 ≈ 𝑥2 ≈ 0 and 𝑥1 ≈ ±2
√

2. This
point is in the vicinity of (0,±2

√

2, 0) (𝑃3 and 𝑃6; canonical configuration
of family two in the axial problem). Following an analogous process,
the results from case 𝜔𝑐 (1), for which 𝜉𝐴 = 11𝜋∕4 (𝑛 = 1) and 𝜉𝐵 =
11(1 + 2𝑗)𝜋∕4, can be obtained. Hence, under these conditions, the
canonical frequencies are given by 𝜔𝑐 (𝑛) =

(

(7+4𝑛)𝑟𝜋
4𝐷1∕4

)2
(𝑛 ∈ N).

3.4. Stop-/pass-band layouts for canonical configurations

To illustrate the features of dispersion diagrams of canonical multi-
supported beams, the diagram of stop and pass bands for two examples,
i.e. 𝐶 = 5 (𝑗 = 2) and 𝐶 = 3 (𝑗 = 1), are displayed in Figs. 4 and 5,
respectively.

In Fig. 4(a), the layout is sketched for all cells of the range 0 to
11 in which the blue segment denotes a pass band whereas a blank
indicates a stop band. It can be noticed that beyond 𝜉𝐴 = 𝜋 the pattern
is almost symmetric and periodic. The canonical frequencies, indicated
with red arrows in both Figs. 4 and 5, set the axis of symmetry of the
pattern and indicate the occurrence of 6-point periodic orbits on the
Kohmoto’s surface. In the range displayed in Figs. 4(a) and 5(a), there
are two and four canonical frequencies, respectively, that satisfy our
theoretical analysis. In addition, the value of the invariant, as shown
in Figs. 4(b) and 5(b), decreases from a relatively large value reached
at the beginning of the domain and becomes almost periodic for 𝜉𝐴 > 𝜋,
as stated earlier in the section.

In addition to that singled out by the saddle points, a variety of pe-
riodic orbits on the invariant surface are present, located at frequencies
�̂� for which 𝐼(�̂�) = 0. By considering now the canonical ratio 𝐶 = 1+2𝑗
[Eq. (20)], when 𝜉𝐴 = 𝜋, and therefore 𝜉𝐵 = (1 + 2𝑗)𝜋, the first three
traces become:

𝑥 = −2, 𝑥 = −2, 𝑥 = 2, (25)
0 1 2

6 
that are the coordinates of a point 𝑄 on Kohmoto’s surface that is part
of a 3-point periodic orbit, i.e.  3(𝑄) = 𝑄 (see Fig. 2(a); the other two
points of the orbit have coordinates: 𝑥0 = 2, 𝑥1 = −2, 𝑥2 = −2, and
𝑥0 = −2, 𝑥1 = 2, 𝑥2 = −2).

When 𝜉𝐴 = 3𝜋∕2, then 𝜉𝐵 = 3(1+2𝑗)𝜋∕2, the three initial traces take
the values

𝑥0 = 2
cosh(3(1 + 2𝑗)𝜋∕2)

1 + sinh(3(1 + 2𝑗)𝜋∕2)
, with 𝑗 even, or

𝑥0 = 2
cosh(3(1 + 2𝑗)𝜋∕2)

1 − sinh(3(1 + 2𝑗)𝜋∕2)
, with 𝑗 odd,

𝑥1 = 2
cosh(3𝜋∕2)

1 + sinh(3𝜋∕2)
,

𝑥2 = 2
(cosh(3𝑗𝜋∕2) − sinh(3(1 + 2𝑗)𝜋∕2))2

(1 + sinh(3𝜋∕2))(1 + sinh(3(1 + 2𝑗)𝜋∕2))
, with 𝑗 even,

𝑥2 = −2
(sinh(3𝑗𝜋∕2) − cosh(3(1 + 2𝑗)𝜋∕2))2

(1 + sinh(3𝜋∕2))(−1 + sinh(3(1 + 2𝑗)𝜋∕2))
, with 𝑗 odd, (26)

from which it can be observed that 𝑥0 and 𝑥2 approximate to ±2 (the
sign depends whether index 𝑗 is even or odd) whereas 𝑥1 ≈ 2. Thus,
a point on Kohmoto’s surface with these initial three traces is in the
neighbourhood of one of the 3-point periodic orbit presented earlier.
The points of the orbit get closer and closer to the periodic one at an
increase of index 𝑗.

Analogously, when 𝜉𝐴 = 2𝜋, and then 𝜉𝐵 = 2(1 + 2𝑗)𝜋, the three
traces are equal, i.e.

𝑥0 = 𝑥1 = 𝑥2 = 2, (27)

a condition associated with a fixed point on the Kohmoto’s surface (see
Fig. 2(a); the point is transformed in itself by the map  ).

As an additional remark, the analysis of the traces reveal that, in the
variable 𝜉𝐴, the overall period is 𝛯𝑝 = 2𝜋 (the analysis of the period
from Figs. 4(a) and 5(a) could be misleading because the stop-/pass-
band pattern depends on the absolute values of traces), so that in terms
of square root of the circular frequency the period

√

𝛺𝑝 is equal to
√

𝛺 = 2𝜋𝑟∕(𝑙 𝐷1∕4).
𝑝 𝐴
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Fig. 5. Canonical multi-supported beam with 𝐶 = 3. (a) stop-/pass-band layout in the same interval for sequences 0 to 11; (b) sketch of the invariant 𝐼(𝜔): the frequencies at
which periodic point orbits occur are indicated.
Finally, a comment is needed regarding sensitivity to perturbations
of geometrical parameters of the stop-/pass-band structure just de-
scribed. On the one hand, we have altered by ±0.01% the value of 𝑙𝐵 in
ratio (20) for 𝐶 = 3 (Fig. 5) and observed that the relative maximum
change in the width of bands across the first canonical frequency (𝜉𝐴 =
5𝜋∕4) is ≈0.1% for cell 4. On the other hand, a perturbation of ±1% of
the same parameter resulted in a maximum change of ≈1% of the band
width for cell 3. Therefore, it is not possible to reach any definitive
conclusion regarding sensitivity to perturbations of the stop-/pass-band
diagram, but any specific case should be studied in detail.

4. Scaling and self-similarity of the dimensionless frequency spec-
tra of canonical beams

In this section, analytical scaling factors which govern the self-
similar pattern of stop-/pass-band layouts and traces of the trans-
mission matrix of the canonical multi-supported beam are obtained
through the linearisation of the map (14) about the associated periodic
orbits.

4.1. Linearisation of the trace map about periodic points

Consider a point 𝑃𝑗 as one of a 𝑝-periodic orbit. Let us assume, for a
‘small’ perturbation 𝛿

√

𝜔, that �̄�𝑖 = 𝑅𝑖(
√

𝜔+𝛿
√

𝜔), where 𝑅𝑖(
√

𝜔) = 𝑃𝑗 .
Then �̄�𝑖 is in the neighbourhood of the point 𝑃𝑗 and the modulus of the
vector 𝛿𝐫𝑖(𝛿

√

𝜔) = �̄�𝑖 −𝑃𝑗 is small with respect to the value of the non-
vanishing coordinate of 𝑃𝑗 . On the one hand, by applying 𝑝 times the
transformation  , the exact position of �̄�𝑖+𝑝 =  𝑝(�̄�𝑖) can be obtained.
On the other, due to the smallness of vector |𝛿𝐫𝑖|, a linearisation of the
nonlinear map can be performed such that the position of point �̄�𝑖+𝑝
can be approximated by 𝑃𝑗 + 𝛿�̂�𝑖+𝑝, where

𝛿�̂�𝑖+𝑝 = �̄�𝑝𝛿𝐫𝑖. (28)

The linear operator �̄�𝑝 depends on the orbit and the Jacobian (15), and
is given by

�̄� = 𝑱 (𝑃 )...𝑱 (𝑃 ).
𝑝 𝑗+𝑝−1 𝑗

7 
The 3 × 3 matrix �̄�𝑝 whose determinants are ±1 depending on whether
𝑝 is even or odd as det𝑱 = −1. One eigenvalue of �̄�𝑝 is 𝜅0 = 1, cor-
responding to the eigenvector 𝝍0, whereas the other two eigenvalues,
𝜅+ and 𝜅−, are reciprocal, i.e. 𝜅+ = 1∕𝜅− (the associated eigenvector
are 𝝍±). Thus, 𝛿𝐫𝑖 can be expressed as a linear combination of the
three eigenvectors 𝝍0, 𝝍+ and 𝝍− through coefficients 𝐶+, 𝐶− and 𝐶0,
respectively:

𝛿𝐫𝑖 = 𝐶+𝝍+ + 𝐶−𝝍− + 𝐶0𝝍0. (29)

Therefore, by applying Eq. (28), it turns out that 𝛿�̂�𝑖+𝑝 = �̄�𝑝𝛿𝐫𝑖 =
𝐶+𝜅+𝝍+ +𝐶−𝜅−𝝍− +𝐶0𝜅0𝝍0. One of the properties of the eigenvalues
is that 𝜅+ tend to be dominant w.r.t. the other two, then the following
approximation holds:

𝛿�̂�𝑖+𝑝 ≈ 𝐶+𝜅+𝝍+ ≈ (𝜅+)𝛿𝐫𝑖. (30)

It is worth noticing that, by inspection, the eigenvalues 𝜅± for 3-
and 6-periodic orbits are

𝜅±(𝜔) = 1
4
(
√

4 + (4 + 𝐼 (𝜔))2 ± (4 + 𝐼 (𝜔)))2. (31)

Note also that if we are analysing a saddle point, eigenvector
𝝍0 is orthogonal to the tangent plane at 𝑃𝑗 whereas the other two
eigenvectors span the tangent plane. Therefore, vector 𝐶+𝜅+𝝍+ belongs
to the tangent plane itself. However, for both 3-point periodic orbit and
fixed point, vector 𝐶+𝜅+𝝍+ does not belong to the tangent plane itself,
however the validity of the approximation (30) still holds (Gei et al.,
2020).

4.2. Scaling of the dimensionless frequency spectra

Examples of the interpretation of the linearisation of the trace map
as a method to explain scaling of the frequency spectra of canonical
multi-supported beam are reported in Figs. 6–8, which analyse self-
similar portions of the stop-/pass-band layouts at canonical frequencies
displayed in Fig. 5 (in Figs. 6, 7) and 3-point periodic orbit and
canonical frequency displayed in Fig. 4 (in Fig. 8).

Consider Figs. 6(a) and 7(a) where the traces in the vicinity of
the canonical frequency 𝜉 = 9𝜋∕4 (at which a 6-point periodic orbit
𝐴
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Fig. 6. Canonical multi-supported beam with 𝐶 = 3 (see Fig. 5). Plot of traces 𝑥2(
√

𝜔∕
√

𝜅), 𝑥5(
√

𝜔) (not scaled), 𝑥8(
√

𝜔
√

𝜅) and 𝑥11(
√

𝜔𝜅) in the neighbourhood of canonical
requencies (a) 𝜉𝐴 = 9𝜋∕4 (𝜅 = 65.985) and (b) 𝜉𝐴 = 11𝜋∕4 (𝜅 = 66.049) where 6-point periodic orbits occur.
Fig. 7. Canonical multi-supported beam with 𝐶 = 3 (see Fig. 5). (a) Plot of traces 𝑥0(
√

𝜔∕
√

𝜅), 𝑥3(
√

𝜔) (not scaled), 𝑥6(
√

𝜔
√

𝜅) and 𝑥9(
√

𝜔𝜅) in the neighbourhood of canonical
frequency 𝜉𝐴 = 9𝜋∕4 (𝜅 = 65.985) and (b) 𝑥1(

√

𝜔∕
√

𝜅), 𝑥4(
√

𝜔) (not scaled), 𝑥7(
√

𝜔
√

𝜅) and 𝑥10(
√

𝜔𝜅) in the neighbourhood of canonical frequency 𝜉𝐴 = 11𝜋∕4 (𝜅 = 66.049) where
6-point periodic orbits occur.
p
f

c
p
i
f

occurs) are plotted and let us focus on functions 𝑥5 (in the former
figure) and 𝑥3 (in the latter figure) that are not scaled; from their
values, it can be inferred that the point that they represent on the
surface is 𝑅3 = (0, 0, 2

√

2) that coincides with saddle point 𝑃1.
To the first order, vector 𝛿𝐫3(𝛿

√

𝜔) = �̄�3(
√

𝜔 + 𝛿
√

𝜔) − 𝑃1(
√

𝜔) can
be written as:

𝛿𝐫3(𝛿
√

𝜔) = 𝜸𝛿
√

𝜔, (32)

where 𝜸 = 𝗀𝗋𝖺𝖽√𝜔𝛿𝐫3. Approximations (32) lies in the tangent plane
spanned by coordinates 𝑥4 and 𝑥5. Therefore, we can say that, in the
neighbourhood of 𝜉𝐴 = 9𝜋∕4, 𝑥4 ≈ 𝛾4𝛿

√

𝜔 and 𝑥5 ≈ 𝛾5𝛿
√

𝜔, where 𝛾4,
5 are the projections of vector 𝜸 onto the axes 𝑥4 and 𝑥5, respectively.

With the completion of the cycle of six applications of the trace
ap, 𝑥11 ≈ 𝜅+𝛾5𝛿

√

𝜔 (henceforth, 𝜅+ will be substituted with 𝜅 for
implicity). This result is what is reported in Fig. 6(a), where the
unction 𝑥11 is scaled in the same domain of 𝑥5 with the factor 𝜅 =
65.985, calculated, in turn, through Eq. (31). The match between the
two functions, scaled accordingly, is very good. As shown in the plot,
the scaling between 𝑥 and 𝑥 is set by the same factor and their match
2 8 o

8 
is almost perfect about 𝜉𝐴. Similar considerations can be put forward for
art (b) of the same figure that is centred on dimensionless canonical
requency 𝜉𝐴 = 11𝜋∕4.

It is evident that about the canonical frequencies, the introduced
linear approximation of traces explains quantitatively very well their
behaviour. Consequently, there, the extent of pass bands centred at the
canonical frequency at increasing index 𝑖 can be predicted with good
accuracy within the limit of the linearisation presented above, as shown
at the top of Fig. 6.

An extension of the same line of reasoning leads to the conclusion
that also after three applications of the trace map (then at half of the
whole cycle) the scaling is valid, but governed by

√

𝜅. This is confirmed
by all plots in Fig. 6(a) where functions 𝑥2, 𝑥5, 𝑥8, 𝑥11 are displayed.

Due to the fact that traces appearing in Fig. 6 are null at the
anonical frequency, the scaling studied in said figure is pertinent to
ass bands. That for stop bands at the same frequency is represented
n Fig. 7 where traces whose absolute values are always larger than 2
or 𝜉𝐴 = 9𝜋∕4 and 𝜉𝐴 = 11𝜋∕4 are sketched. In particular, let us focus
n Fig. 7(a) in which 𝑥 is displayed in its natural domain whereas the
3
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others (i.e. 𝑥0, 𝑥6, 𝑥9) are scaled. We show now that, despite the fact
that the functions are not linear, the scaling factor is still 𝜅.

On the one hand, we have already shown that at 𝜉𝐴 = 9𝜋∕4, 𝑥4
nd 𝑥5 are linear, i.e. 𝑥4 ≈ 𝛾4𝛿

√

𝜔 and 𝑥5 ≈ 𝛾5𝛿
√

𝜔. On the other, at
he lowest order, 𝑥3 can be approximated with a quadratic function,
amely 𝑥3 ≈ 2

√

2 − 𝜁3(𝛿
√

𝜔)2, whereas the Taylor expansion of (16)
provides an approximation of the invariant to the second order, i.e.

𝛿𝐼 ≈ 𝐼
( 9𝜋

4

)

− 1
2

[

𝐼
( 9𝜋

4

)]2
(𝑙𝐴 − 𝑙𝐵)2

𝐷1∕2

𝑟2
(𝛿
√

𝜔)2,

where 𝐼(𝜉𝐴) = 𝐼(𝜔). The use of the above approximations still in (16)
ields, to the leading (second) order,

− 1
2

[

𝐼
( 9𝜋

4

)]2
(𝑙𝐴 − 𝑙𝐵)2

𝐷1∕2

𝑟2
(𝛿
√

𝜔)2

= (𝛾5𝛿
√

𝜔)2 + (𝛾4𝛿
√

𝜔)2 − 4
√

2𝜁3(𝛿
√

𝜔)2 + 2
√

2𝛾4𝛾5(𝛿
√

𝜔)2, (33)

from which

4
√

2𝜁3 = 𝛾25 + 𝛾24 − 2
√

2𝛾4𝛾5 +
1
2

[

𝐼
( 9𝜋

4

)]2
(𝑙𝐴 − 𝑙𝐵)2

𝐷1∕2

𝑟2
. (34)

Let us turn our attention now to the same saddle point (i.e. 𝑃1, see the
omment before Eq. (32)), but evaluated after a cycle of six applications
f the trace map, i.e. 𝑅9|𝜉𝐴=9𝜋∕4 ≈ (0, 0, 2

√

2). By repeating the same
rgument, we can write

11 ≈ 𝛾11𝛿
√

𝜔, 𝑥10 ≈ 𝛾10𝛿
√

𝜔, 𝑥9 ≈ 2
√

2 − 𝜁9(𝛿
√

𝜔)2, (35)

where, from the analysis performed on the functions in Fig. 6,

𝛾11 ≈ 𝜅𝛾5, 𝛾10 ≈ 𝜅𝛾4, (36)

and the overbar has been added to the perturbation because we need to
consider a scaled domain. Our goal is to find the connection between
𝜁3 and 𝜁9 through the factor 𝜅. In particular, note that in analogy to the
ase illustrated in Fig. 6(a), 𝑥11 matches 𝑥5 if 𝛿

√

𝜔 = 𝛿
√

𝜔∕𝜅. Therefore,
e can again consider Eq. (33) and substitute the terms of the r.h.s.
ith those expressed as a function of 𝛿

√

𝜔,

− 1
2

[

𝐼
( 9𝜋

4

)]2
(𝑙𝐴 − 𝑙𝐵)2

𝐷1∕2

𝑟2
(𝛿
√

𝜔)2

= (𝛾11𝛿
√

𝜔)2 + (𝛾10𝛿
√

𝜔)2 − 4
√

2𝜁9(𝛿
√

𝜔)2 + 2
√

2𝛾10𝛾11(𝛿
√

𝜔)2. (37)

he substitution of Eq. (36) into (37) yields
√

2𝜁9 = 𝜅2
(

𝛾25 + 𝛾24 − 2
√

2𝛾4𝛾5 +
1
2

[

𝐼
(9𝜋

4

)]2
(𝑙𝐴 − 𝑙𝐵)2

𝐷1∕2

𝑟2

)

, (38)

which leads to 𝜅2𝜁3 = 𝜁9 with the help of Eq. (34). Therefore, we have
proved our conjecture: the scaling factor 𝜅 enters quadratically in the
relationship between the coefficients of the second-order term of the
Taylor expansion of the traces.

Fig. 8 shows the scaling of traces at 𝜉𝐴 = 𝜋, where a 3-point periodic
orbit takes place. The scaling properties for this part of the spectrum
can be studied by expanding to the first order the functions under
investigation at 𝜉𝐴 = 𝜋, which yields:

𝑥𝑖 ≈ ±2 ∓ 2𝜂𝑖
𝐷1∕4𝑙𝐴
𝑟

𝛿
√

𝜔, (39)

where 𝜂𝑖 = ((𝑛(𝐴)𝑖 )2 + 𝐶(𝑛(𝐵)𝑖 )2). In addition, according to recursive rules
of the elementary cell, the limits of 𝑛(𝐴)𝑖+3∕𝑛

(𝐴)
𝑖 and 𝑛(𝐵)𝑖+3∕𝑛

(𝐵)
𝑖 for 𝑖 → ∞

re

lim
𝑖→∞

𝑛(𝐴)𝑖+3

𝑛(𝐴)𝑖

= lim
𝑖→∞

𝑛(𝐵)𝑖+3

𝑛(𝐵)𝑖

= 𝜙3, (40)

here 𝜙 is the golden ratio, and lim𝑖→∞ 𝑛(𝐴)𝑖 ∕𝑛(𝐵)𝑖 = 𝜙. Then, Eqs. (39)
nd (40) lead to the approximation 𝜂𝑖+3 ≈ 𝜙6𝜂𝑖. This explains the

fact that the scaling factor for 3-periodic periodic orbits at increasing
index 𝑖 is 𝜅 = 𝜙6 = 17.944, as highlighted in Fig. 8. We have focused
in the figure on the behaviour of the functions about the value of 2,
 p

9 
Fig. 8. Canonical multi-supported beam with 𝐶 = 5 (see Fig. 4). Plot of traces
𝑥2(

√

𝜔∕𝜅), 𝑥5(
√

𝜔) (not scaled), 𝑥8(
√

𝜔𝜅) and 𝑥11(
√

𝜔𝜅2) in the neighbourhood of
frequency 𝜉𝐴 = 𝜋 (𝜅 = 17.944) at a 3-point periodic orbit occurs.

owever the plots show that the same scaling factor describes well the
urvatures of traces and then the scaling of stop and pass bands in the
eighbourhood of 𝜉𝐴 = 𝜋, as depicted on the top part of the figure.
ith a similar procedure, the scaling factor 𝜅 = 𝜙2 = 2.618 at the ‘fixed

oint’ (𝜉𝐴 = 2𝜋 in both Figs. 4 and 5) can be determined.
By observing the trends in the last three figures, the scaling effect

ecomes more and more accurate with the increasing of index 𝑖. A way
o analyse this feature is to specialise Eq. (30) to the case where the
-periodic orbit is followed 𝑞 times; it turns out that

�̂�𝑖+𝑝𝑞 ≈ 𝐶+(𝜅+)𝑞𝝍+ ≈ (𝜅+)𝑞𝛿𝐫𝑖. (41)

ith 𝑞 increasing, the direction of vector 𝛿�̂�𝑖+𝑝𝑞 is better and better
pproximated to the direction of 𝝍+ because the dominance of the
igenvalue 𝜅+.

. Conclusions

Periodic quasicrystalline-based phononic waveguides generated by
he Fibonacci sequence can be investigated as a collection of ele-
entary cells whose dispersion spectra are linked by a function, the
ohmoto’s invariant, that is an invariant of the set and depends only
n the wave frequency. The manifestation of this close connection is
he self-similarity of the layout of stop and pass bands in the neigh-
ourhood of specific frequencies.

This paper aims at extending the notion of canonical configuration
efined for axial waves in bars to periodic multi-supported flexu-
al waveguides whose elementary cells are provided by the standard
ibonacci sequence. The outcomes can be summarised as follows:

(i) the dispersive properties of one of the waveguides under in-
estigation are entirely determined by the behaviour of the trace of
he transmission matrix as a function of circular frequency. For any
iven frequency, the traces corresponding to three arbitrary subsequent
ells are related through a recursive relationship which allows us to
epresent them geometrically as coordinates of points which describe
n orbit on the surface defined by the Kohmoto’s invariant;

(ii) unlike the companion problem of propagation of axial waves in
ars, canonical configurations for homogeneous multi-supported beams
an be defined with reference to a specific rational value of the ratio
etween the distances of the supports. Due to the presence of hyper-
olic functions in the dispersion relation, these structures display almost

eriodic frequency spectra for canonical configurations. We proved that
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departure from perfect periodicity is relatively small for frequencies for
which 𝜉𝐴 > 𝜋, therefore the theory of canonical structures can be also
applied in the current context;

(iii) a self-similar layout of the stop-/pass-band diagram is observed
for canonical multi-supported beams. Analytical factor governing the
caling of the self similarity are derived through the linearisation
f the trace map concerning the relevant periodic orbits. Depending
n the number of points 𝑝 composing the orbits, portions of spectra
orresponding to elementary cells for the order 𝑖, 𝑖 + 𝑝∕2 and 𝑖 + 𝑝 are
elated by employing these factors. A detailed analysis of the frequency
anges where the scaling is effective is performed.

The current investigation is preliminary to the analysis of propaga-
ion of flexural waves in free quasi-crystalline generated beams that is
n open problem in phononic meta-structures.
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