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Many white dwarf stars show signs of having accreted smaller bodies, implying that they
may host planetary systems. A small number of these systems contain gaseous debris
discs, visible through emission lines. We report a stable 123.4-minute periodic variation in
the strength and shape of the Ca II emission line profiles originating from the debris
disc around the white dwarf SDSS J122859.93+104032.9. We interpret this short-period
signal as the signature of a solid-body planetesimal held together by its internal strength.

M
ore than 3000 planet-hosting stars are
known (1), the vast majority of which
will end their lives as white dwarfs. The-
oretical models indicate that planetary
systems, including the Solar System, can

survive the evolution of their host star largely
intact (2–4). Remnants of planetary systems
have been indirectly detected in white dwarf
systems via (i) the contaminated atmospheres
of 25 to 50% of white dwarfs, arising from the
accretion of planetary material (5, 6); (ii) com-
pact dust discs (7, 8), formed from the rubble of
tidally disrupted planetesimals (9, 10); and (iii)
atomic emission lines from gaseous discs co-
located with the circumstellar dust (11, 12). The
most-direct evidence for remnant planetary sys-
tems around white dwarfs is provided by transit
features in the light-curve of WD 1145+017, which
are thought to be produced by dust clouds re-
leased from solid planetesimals orbiting the
white dwarf with a period of ≃4:5 hours (13, 14).
Searches for transiting debris around other
white dwarfs have been unsuccessful (15–17).
White dwarfs are intrinsically faint, so transit
searches are limited to a lower sky density than
that of main-sequence star systems. The prob-
ability of detecting transits is further limited
by the narrow range of suitable orbital inclina-

tions and the duration of a planetesimal disrup-
tion event (18).
The gaseous components of debris discs iden-

tified around a small number of white dwarfs
enable us to probe the underlying physical prop-
erties of the discs. Double-peaked emission pro-
files are observed in a number of ionic transitions,
such as the Ca II 850- to 866-nm triplet, indicat-
ing Keplerian rotation in a flat disc (19). Previous
repeat observations of the gaseous debris disc
at the white dwarf SDSS J122859.93+104032.9
(hereafter SDSS J1228+1040) have revealed long-
term variability—on a time scale of decades—in
the shape of the emission lines (20), indicating
ongoing dynamical activity in the system.
We performed short-cadence spectroscopy

(a cadence of 100 to 140 s) targeting the Ca II

triplet in SDSS J1228+1040 on 20 and 21 April
2017 and again on 19 March, 10 April, and 2 May
2018. Our observations were conducted with
the 10.4-m Gran Telescopio Canarias [(GTC) on
La Palma, Canary Islands], with the goal of search-
ing for additional variability on the Keplerian
orbital time scales within the disc, which are on
the order of hours (21). We detected coherent low-
amplitude ð≃3%Þ variability in the strength and
shape of the Ca II triplet with a period of 123.4 ±
0.3 min (Fig. 1), which is present in all three

components of the triplet after subtracting the
average emission line profile for the five nights
of observations (Fig. 1). Because the variability is
detected in observations separated by more than
a year, it has been present in the disc for≃4400
orbital cycles. Using Kepler’s third law and
adopting the mass, M, of SDSS J1228 + 1040 as
M ¼ 0:705 T 0:050 M⊙ (where 1 M⊙ , the mass
of the Sun, is 1.99 × 1030 kg) (6), the semimajor
axis, a, of the orbit corresponding to the addi-
tional Ca II emission isa ¼ 0:73 T 0:02 R⊙ (where
1 R⊙, the radius of the Sun, is 6.96 × 108 m).
The equivalent widths [(EWs), a measure of the

strength of the lines relative to the continuum]
of the Ca II triplet profiles are shown in Fig. 2
along with the ratios of blueshifted to redshifted
flux throughout the 123.4-min period. This il-
lustrates the variation in the overall brightness of
the emission lines and the strong asymmetry of
the velocity of the additional flux. The variable
emission shown in Fig. 1, C and F, alternates
(moves) from redshifted to blueshifted wave-
lengths as a function of phase. Assuming that
the additional, variable emission is generated by
gas in orbit around the white dwarf, this indicates
that we observe emission only when the additional
gas is on the far side of its orbit around the white
dwarf, with respect to our line of sight. This ad-
ditional emitting region is obscured, either by
the disc or the region itself, when the material
is traveling in front of the star, where we would
otherwise observe the blueshifted-to-redshifted
transition. We fitted sinusoids to both the EW
and blue-to-red ratio data, finding them to be off-
set in phase by 0.14 ± 0.01 cycles and 0.09 ± 0.01
cycles in 2017 and 2018, respectively. These phase
shifts imply that the maximum EW is observed
when the region emitting the additional flux is at
its maximum visibility and thus furthest from
us in its orbit around the white dwarf, whereas
the maximum blueshifted emission occurs up to
0.25 cycles afterward, once the region has orbited
into the visible blueshifted quadrant of the disc.
The smoothness of the EW and blue-to-red ratio
variations, along with the extent in orbital phase
ð≃0:4Þ of the variable emission in Fig. 1, indicates
that the emission region is extended in azimuth
around the disc, rather than originating from a
point source.
Several scenarios could plausibly explain

the short-term emission detected from SDSS
J1228+1040 (see supplementary text): (i) A
low-mass companion could be found, with Ca II
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emission originating from the inner hemisphere
irradiated by the white dwarf. This would nat-
urally match the observed phase dependence
(22). However, radial velocity measurements rule
out the presence of any companion with mass
greater than 7.3 MJ (where 1 MJ, the mass of
Jupiter, is 1.90 × 1027 kg) (21), and the nondetection

of hydrogen in the accretion disc excludes brown
dwarfs and Jupiter-mass planets. (ii) Vortices have
been invoked to explain nonaxisymmetric struc-
tures detected in submillimeter observations of
protoplanetary discs (23). The presence of a
weak magnetic field is expected to destroy any
vortex that forms within a few orbital cycles.

Although our observations place only an upper
limit on the magnetic field of the white dwarf
B < 10 to 15 kG (21), the field strength required
within the disc at SDSS J1228+1040 to render
vortices unstable is 10 mG to 50 mG. This field
strength can be reached rapidly, owing to the
exponential growth rate of the magnetic field in

Fig. 1. Phase-folded
trailed spectrogram
of the emission line
profiles in SDSS
J1228+1040. Five
hundred nineteen
spectra of SDSS
J1228+1040 were taken
over two nights in 2017
[(A) to (C)] and three
nights in 2018 [(D) to
(F)]; see table S1 for a log
of observations. (A and
D) Averaged, normalized
spectrum of the Ca II

triplet. (B and E) Phase-
folded trailed spectro-
grams using a 123.4-min
period (one cycle is
repeated for display). The
color map represents
the normalized flux. Sub-
tracting the coadded
spectrum from the
phase-folded trailed
spectrogram (done separately for each year) illustrates the variability in both flux and wavelength on the 123.4-min period in all three components of the Ca II

triplet (C and F).The dashed black curve is not fitted to the data but simply illustrates the typical S-wave trail for a point source on a circular orbit with a
semimajor axis of 0:73 R⊙ and an inclination of 73° (11). The velocity axes refer to the longest-wavelength Ca II triplet line profile.

Fig. 2. Variability of the Ca II

triplet emission of SDSS
J1228+1040. Equivalent width
(EW) (A and C) and blue-to-red
ratio (B and D), which is the
ratio of blueshifted to redshifted
flux centered on the air wave-
lengths of the Ca II triplet in the
rest frame of the white dwarf
at +19 km s−1, with the mean set
to 1.0. The data are phase-folded
on a 123.4-min period [one cycle
repeated for clarity (21)] for
the 2017 [(A) and (B)] and 2018
[(C) and (D)] datasets. The EWs
and blue-to-red ratios for the
8498-, 8542-, and 8662-Å com-
ponents of the Ca II triplet are
colored (marked) in black
(circles), magenta (squares), and
orange (triangles), respectively.
The data are averaged over
the three profiles and fitted with
a sinusoid (green curves). The
EW and the blue-to-red ratio
curves are offset in phase by
0.14 ± 0.01 cycles (49° ± 4°) and 0.09 ± 0.01 cycles (31° ± 5°) for the 2017 and 2018 profiles, respectively. Phase zero for both the 2017 and 2018 datasets
has been shifted such that the fit to the 2017 EW data passes through zero at zero phase, and the vertical dashed lines denote the phases 0.5, 1.0, and 1.5.
Error bars indicate the standard error of the data.
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the disc (21), and we therefore rule out the pres-
ence of long-lived vortices in the disc. (iii) The
photoelectric instability (24) can possibly produce
arc-shaped structureswithin a disc.However, these
structures vary in both radial location and shape
within the disc on the time scale of months, so
we reject this scenario. (iv) A planetesimal orbit-
ing in the disc and interacting with the dust
could generate the detected gas (Fig. 3). We ex-
clude (i) to (iii) as possible scenarios, and thus
argue that (iv) is the most plausible explanation
for the coherent short-term variation detected in
the Ca II triplet lines at SDSS J1228+1040.
The short period of the orbit around SDSS

J1228+1040 requires any planetesimal to have a
high density or sufficient internal strength to
avoid being tidally disrupted by the gravity of the
white dwarf. By contrast, the debris fragments
orbiting WD 1145+017 are detected on orbits con-
sistent with the tidal disruption radius of a rocky
asteroid (13). Assuming that the body in orbit
around SDSS J1228+1040 has no internal strength
and that its spin period is tidally locked to its
orbital period, we calculate the minimum density
needed to resist tidal disruption on a 123.4-min
period as 39 g cm−3 for a fluid body deformed
by the tidal forces (21). If the body has enough
internal strength to remain spherical, then the
minimumdensity required is reduced to 7.7 g cm−3,
which is approximately the density of iron at
8 g cm−3 (however, the internal strength could
be greater and the density lower). We therefore
conclude that the body in orbit around SDSS
J1228+1040 needs some internal strength to
avoid tidal disruption, and we calculate bounds
on theplanetesimal size, s, as 4 km < s < 600 km,
with an uncertainty of 10% (21).

What is the origin of the planetesimal? This
object may be the differentiated iron core of a
larger body that has been stripped of its crust
andmantle by the tidal forces of thewhite dwarf.
The outer layers of such a body would be less
dense and would disrupt at greater semimajor
axes and longer periods than those required for
core disruption (25). This disrupted material
would then form a disc of dusty debris around
SDSS J1228+1040, leaving a stripped corelike
planetesimal orbiting within it.
Whether the variable emission originates from

interactions with the dusty disc or from irradia-
tion of the surface of the planetesimal remains
unclear. Small bodies are known to interact with
discs and induce variability in spatially resolved
discs; one such object is themoonDaphnis, which
produces the Keeler gap in the rings around
Saturn (26, 27). Some debris discs around main-
sequence stars show evidence of gas generated
after the main phase of planet formation (28).
The origin of this nonprimordial gas is uncertain,
but it could be generated by collisional vaporiza-
tion of dust (29) or collisions between comets
(30). If the body is not interacting with the disc
to generate the additional gas, then the plane-
tesimal must be producing the gas. The semi-
major axis of the planetesimal, a ¼ 0:73 R⊙, is
close enough to the star that the surface of the
body may be sublimating (21), releasing gas that
contributes to the variable emission.
We hypothesize that gaseous components de-

tected in a small number of other white dwarf
debris discs (11, 31) may also be generated by
closely orbiting planetesimals. Although subli-
mation of the inner edges of debris discs (32)
and the breakdown of 1- to 100-km rocky bodies

(33) have been proposed to explain gaseous de-
bris discs at white dwarfs, not all metal-polluted
white dwarfs with high accretion rates and/or
large infrared excesses host a gaseous compo-
nent. The Ca II triplet emission profiles from the
gaseous debris disc around SDSS J1228+1040
have shown variability over 15 years of observa-
tions [(20), see also Fig. 1, A and D]. This emission
can be modeled as an intensity pattern, fixed in
the white dwarf rest frame, that precesses with a
period of≃27 years (20). Both the pattern and its
precession are stable for orders of magnitude
longer than the orbital time scale within the disc
(≃hours). Eight gaseous white dwarf debris discs
are currently known; prolonged monitoring of
three of these systemshas shown similar long-term
variability to that of SDSS J1228+1040 (31, 34, 35).
The gaseous disc has been present at SDSS

J1228+1040 for at least 15 years (20), implying
that the planetesimal has survived in its current
orbit for at least that long. A planetesimal on an
eccentric orbit that precesses owing to general
relativity could explain the observed precession
of a fixed intensity pattern. In this scenario, the
planetesimal would need an eccentricity e ≃ 0:54
(21) (fig. S8), bringing the periastron to 0:34 R⊙ .
An eccentric orbit is not unexpected, as the
planetesimal would initially enter the tidal dis-
ruption radius at high eccentricities (e > 0.98)
from farther out in the white dwarf system (10).
An eccentric orbit is supported by the observed
precession of an asymmetric intensity pattern in
the gaseous emission (20). Estimating the con-
straints on the size of a planetesimal with such a
periastron results in a range of 2 km < s < 200 km,
with an uncertainty of 10%, smaller than pre-
viously calculated for a circular orbit. Our results
show that planetesimals can survive in close orbits
around white dwarfs, and our method is not de-
pendent on the inclination of the disc.
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