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Abstract—With the ageing and growth of the population, some
chronic diseases, such as Parkinson’s disease (PD), urge the
society to a health-conscious looking for better health system
designs. Some recent research endeavour has been supported by
solutions grounded in ubiquitous healthcare (u-Health) coupling
telemedicine, context awareness and decision support capabilities.
In this work, we propose a u-healthcare system to pre-diagnose
PD based on the speech signal of people under voice call. The
speech stream is sampled as well as processed to support the
pre-diagnose using machine learning (ML). Experiments were
conducted over a PD voice dataset composed of 40 individuals
by using five different ML algorithms. Based on a linear Support
Vector Machine (SVM) model, a false negative rate of 10% was
obtained when classifying the locution of number “three”.

Index Terms—Signal Processing, Ubiquitous Computing,
Health, Machine Learning, Speech

I. INTRODUCTION

Early diagnosis of Parkinson disease (PD) is an important

goal not only for clinical, pharmacology, and epidemiological

studies, but also for further prognostic and therapeutic reasons.

Rizzo et al. [1] reported a pooled diagnostic accuracy of

73.8% for clinical diagnosis of PD performed mainly by

nonexperts. Part of this misdiagnose is related to the overlap

of pathological characteristics with different diseases. Sakar

et al. in [2] described voice signals as a rich descriptor for

identifying PD. Moreover, from speech features, telediagnosis

and telemonitoring systems based on speech signals leverage

solutions with low cost and easy to self-use. In the same

direction, Tsanas et al. in [3] highlighted the need for the

development of accurate and objective tools in assessing PD,

since the current diagnosis is poor. The authors proposed a

solution of telemonitoring of PD using noninvasive speech

tests.

In this scenario, the Ubiquitous healthcare (u-Healthcare)

is an emerging option to support medical care, lightening the
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burden of frequent and often inconvenient visits to the clinic.

Furthermore, this reliable technology tackles the excessive

additional workload, reducing the costs with similar accuracy

to clinical evaluation. U-Healthcare systems also aid service

providers and practitioners to remotely track the patient’s

physiological data in real-time and provide feedback [4].

In a typical u-Healthcare system, sensors, such as Electro-

cardiography, Electroencephalography and Electromyography

forward their data via a wireless network interface to a base

station. Kim and Lee [5] emphasised that in a u-Healthcare,

physical life objects and space are coupled with numerous

sensors and devices to give them context awareness and deci-

sion support capabilities. Robust implementations of decision

support models addressing voice signal classification in health

solutions are grounded in machine learning (ML) algorithms

[6].

Considering the voice signal as a reliable descriptor for

PD diagnosis [2], [3], [7], we propose a general u-Healthcare

system for pre-diagnosing of PD based on ML to classify

speech signals gathered from voice calling. The model induc-

tion is based on supervised ML over voice signal features

with labels related to the Unified Parkinson’s Disease Rating

Scale (UPDRS). After the voice gathering step, the speech is

converted to known signals, that is 26 sustained phonations and

running speech, used to create the pre-diagnosis model. Base

on features extracted from the voice signal, the model classifies

the speaker as PD pre-diagnosed or without PD manifestation.

The result is stored in a repository and returned to the user.

Experiments were conducted on a real-life dataset composed

of 20 PD diagnosed patients and 20 healthy individuals. Five

different ML algorithms - Decision Tree (DT), Random Forest

(RF), Support Vector Machine (SVM), Gradient Boosting

Machine (GBM) and Extreme Gradient Boosting (XGBoost)

- were compared seeking for low false negative rates (FNR)

in PD diagnoses.
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II. PROPOSED APPROACH

Our u-Healthcare system comprehends to several capabil-

ities, but two key-points are imperative: the sensoring and

capacity to provide insights. Addressing these points, our

proposal presents a Web Service [8] for voice gathering and

pre-diagnosis modelling. More specifically, as shown in Fig. 1,

we propose a six-step solution, composed of Voice Gathering

(Step 1), Speech Parsing (Step 2), Speech Recognition (Step

3), Feature Extraction (Step 4), Classification (Step 5) and

Pre-diagnosis (Step 6). Afterwards, the classification report is

stored into a repository and returned to the user whose started

the voice call.
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Fig. 1. Proposed approach overview.

A. Voice Gathering

The proposed approach starts when a user makes a voice

call with an application allowed to monitor PD. During the

conversation, voice signals are sampled from the speech stream

by the Voice Gathering step. Several approaches to detect

speech have been developed in last years, including solutions

for challenging scenarios, such as hands-free communication

in noisy environments and dialog in background music [9].

In this step, Voice Activity Detection (VAD) algorithms are

employed to avoid forwarding silence or noisy streams to the

Speech Parsing step.

B. Speech Parsing

Once the voice data have been acquired, the components

of speech can be straightforwardly analysed and parsed [10].

There are several toolkits and frameworks widely employed

for speech parsing tasks, e.g., Stanford CoreNLP toolkit [11].

Considering that parser performance tends to deteriorate with

increasing length of string, we propose the usage of a restrict

list of short sentences, small words and sustained vowels to

support PD pre-diagnosis.

C. Speech Recognition

In this step, each parsed data is verified in a set of voiced

signals (locutions) for checking its capacity to describe PD.

The set of voiced signals that match the trained dataset are

used to induce the classification model. It is important to

highlight that additional filtering [12], normalisation [13] and

scaling [14] task are required to perform a suitable feature

extraction in the next step.

D. Feature Extraction

Some speech characteristics of PD subjects, e.g., reduced

loudness, breathiness, roughness and exaggerated vocal tremor

are extracted from voice data signal [2]. These time-frequency

features are grounded on parameters from frequency, pulse,

amplitude, voicing, harmonic and pitch [15]. All of them

have been wide explored in several studies on digital signal

processing [2], [3], [15]. The extracted features are forwarded

to the classification model for predicting task.

E. Classification

Supervised ML algorithms are able to induce classification

models during the training phase based on previously labelled

samples. There are several algorithms that lead to accurate

models, e.g., DT [16], RF [17], GBM [18], SVM [19] and

XGBoost [20]. More specifically, classification, a subarea of

problems from ML, consists of inducing a model capable of

predicting a target class y given a feature vector X . After

obtaining an accurate model built during the training phase,

a given new unlabelled sample is predicted. It is important

to highlight the focus on reducing the FNR since the disease

should not be undetected [21].

F. Pre-diagnosis

The proposed approach can offer a PD pre-diagnoses report,

considering the obtained outcome from a low FNR model.

Moreover, the result can be stored in a Health Repository

and triggered to a specialist for further medical actions. For

a more reliable pre-diagnose, the Web Service could gather

more speech data to reinforce the final decision.

III. MATERIALS AND METHODS

A. Parkinson’s Disease Dataset

To evaluate the proposed approach, a voice dataset with

health and diseased individuals was employed through our

Web Service. The PD database [2] consists of data extracted

from sound recordings from 20 individuals with Parkinson’s

disease and 20 healthy individuals whom appealed at the

Department of Neurology in Cerrahpasa Faculty of Medicine

of Istanbul University. Each individual has 26 voiced samples

which are divided into sustained vowels (“a”, “o” and “u”);

numbers from 1 to 10; short sentences; and words. We

extracted traditional signal features from each voiced sample

as in [22]. The features are: Jitter (local), Jitter (local, abso-

lute), Jitter (rap), Jitter (ppq5), Jitter (ddp), Shimmer (local),

Shimmer (local, dB), Shimmer (apq3), Shimmer (apq5), Shim-

mer (apq11), Shimmer (dda), Autocorrelation (AC), noise-

to-harmonic ratio (NTH), Harmonic-to-noise ratio (HTN),

median, mean, standard deviation, minimum and maximum

pitch, number of pulses, number of periods, mean and standard

deviation of periods, fraction of locally unvoiced frames,

number of voice breaks, and degree of voice breaks.
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B. Machine Learning

The ML algorithms chosen to be experimented in our

proposed approach are the most recent and accurate ones,

as described. The algorithm implementations from the scikit-

learn library [23] were used, except for the XGBoost. For that,

the library developed by [20] was used. All algorithms were

performed with default hyperparameters.

1) Decision Tree: DTs are a class of ML algorithms

which employ a divide-and-conquer procedure to group similar

instances [16]. It works by greedily selecting the best split

point considering current instances and dividing them into

subgroups. This process is repeated until instances from a

subgroup are from the same class or according to a stop

criteria. At test time, instances are sorted into their respective

leaves and assigned the majority class of those leaves.

2) Random Forest: RF [17] is a ML algorithm which

combines multiple DTs. In this sense, it is categorised as an

ensemble algorithm. Given a dataset of size n, this algorithm

builds t datasets of size n by sampling with repetition from the

original dataset. Then, each dataset is used to induce a different

DT. To further add statistical differences between DTs, each

tree can only consider m features at each split attempt. At

test time, the RFs use all trees in conjunction and output the

model of their predictions.

3) Gradient Boosting Machine: The GBM [18] is a frame-

work for function approximation. When used as a ML al-

gorithm, it consecutively fits new models with the goal of

providing a more accurate estimation. This is done by making

each model address the error of the previous models. It is

highly flexible since any function can be used as the loss

function, giving freedom to the researchers to choose, or even

create, a function that best fits any data-driven task. At test

time, trees are employed sequentially and their predictions are

combined.

4) Support Vector Machine: SVM [19] is a ML algorithm

which creates an optimal separation hyperplane that splits the

data into two groups. The boundaries of this hyperplane are

defined by points referred to as support vectors. At test time,

instances are assigned the class values of instances in the same

part of the divided hyperplane.

5) Extreme Gradient Boosting: XGBoost [20] is a variation

of the GBM algorithm. The two main differences between

them rely on modelling details and the speed-focus of the

XGBoost. When inducing trees, the XGBoost algorithm uses

a regularisation parameter, which makes it outperform the

traditional GBM. Testing procedures work in the same way

as GBM.

IV. RESULTS AND EVALUATION

In Table I the accuracy values per locution for each

algorithm are presented and the best accuracy values are

highlighted in bold. Due to differences in the nature of each

algorithm, there was no clear best locution. For the RF, the

best results were for locutions 7 and 15. SVM presented high

accuracy values for locutions 6 and 17. GBM had a peak

accuracy for locution 11. DT obtained the highest accuracy

values for locutions 5, 22 and 25. Lastly, XGBoost performed

better for locutions 6 and 17.

TABLE I
ACCURACY PER LOCUTION FOR EACH ALGORITHM.

Locution RF SVM-linear GBM DT XGBoost
1 0.475 0.100 0.450 0.500 0.500
2 0.475 0.200 0.675 0.525 0.525
3 0.375 0.250 0.425 0.450 0.425
4 0.650 0.600 0.675 0.525 0.600
5 0.650 0.625 0.575 0.675 0.575
6 0.650 0.725 0.425 0.425 0.700
7 0.700 0.525 0.550 0.650 0.650
8 0.600 0.475 0.550 0.600 0.475
9 0.550 0.275 0.425 0.375 0.475

10 0.600 0.575 0.625 0.650 0.575
11 0.675 0.450 0.700 0.600 0.500
12 0.475 0.500 0.575 0.475 0.500
13 0.400 0.525 0.350 0.400 0.350
14 0.525 0.500 0.525 0.450 0.625
15 0.700 0.525 0.625 0.500 0.600
16 0.575 0.575 0.550 0.450 0.650
17 0.650 0.725 0.525 0.375 0.700
18 0.550 0.400 0.500 0.575 0.475
19 0.375 0.475 0.575 0.600 0.525
20 0.500 0.575 0.600 0.425 0.450
21 0.500 0.200 0.525 0.475 0.475
22 0.350 0.350 0.425 0.675 0.550
23 0.500 0.450 0.600 0.575 0.650
24 0.450 0.200 0.350 0.375 0.450
25 0.650 0.650 0.625 0.675 0.650
26 0.375 0.325 0.300 0.275 0.475

In Figure 2 a heatmap of the FNR per algorithm for each

locution is presented. This metric measures the percentage

of subjects with PD that the system falsely identifies as

healthy, which corresponds to the worst scenario. Smaller

values (denoted by colours close to white) represent better

performance, whereas larger values (denoted by red colours)

comprehend to worse results. First, it is possible to see that the

linear SVM presented the lowest FNR of 0.10 for Locution

6 (the subject speaking the number three) and also other low

FNR values for locutions 13, 15, 19, 20 and 25. GBM and

XGBoost also presented low FNR values for locution 2 and 6

for the first and latter, respectively.

To emphasise a possible superiority of an algorithm, Fried-

man’s statistical test and the Nemenyi post hoc test have

been applied to the averaged FNR values. Figure 3 shows the

Critical Difference (CD) diagram obtained from the statistical

test results. It was possible to observe that they are not

significantly different, since each performs better given a

different locution.

As stated in [1], recent results indicate that PD detection

is not highly precise when compared to tests as pathological

evidence at autopsies, e.g., vascular lesions, striatal plaques

and diffuse Lewy body disease. However, it is comparable

to other recent literature [2], [3]. In this way, the outcome

found is important mainly concerning a u-Healthcare system

and further advantages as strategic insights for promoting and

accelerating the realisation of PD pre-diagnoses in early stages.
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Fig. 3. Comparison of the averaged FNR values from algorithm according
to the Nemenyi test, all of them are not significantly different (at α = 0.05
and CD = 1.07)

V. CONCLUSION

In this paper, we proposed a u-Healthcare system that com-

bined voice data features and machine learning classification

for supporting Parkinson’s disease pre-diagnosis embedded in

a Web Service. Based on voice gathering, the user whose

started a voice call receives feedback about his health and, then

further information is stored for additional analysis. Our results

exposed an FNR of 10% using SVM over features extracted

from the word “three”. As future work, we will compute the

final classification using an ensemble of signals processed,

instead of a single pre-diagnosis per voice gathered.
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