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In 1983, Conley and Zehnder proved a remarkable theorem on the periodic 
problem associated with a general Hamiltonian system, giving a partial answer 
to a conjecture by Arnold. Their pioneering paper has been extended in different 
directions by several authors. In 2017, Fonda and Ureña established a deeper relation 
between the results by Conley and Zehnder and the Poincaré–Birkhoff Theorem. In 
2020, Fonda and Gidoni pursued along this path in order to treat systems whose 
Hamiltonian function includes a nonresonant quadratic term. It is the aim of this 
paper to further extend this fertile theory to Hamiltonian systems which, besides 
the periodicity-twist conditions always required in the Poincaré–Birkhoff Theorem, 
also include a term involving a pair of well-ordered lower and upper solutions. 
Phase-plane analysis techniques are used in order to recover a saddle-type dynamics 
permitting us to apply the above mentioned results.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY-NC-ND license (http://
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1. Introduction

In 1983, Conley and Zehnder [11] proved a remarkable result on the periodic problem associated with a 
general Hamiltonian system

Jż = ∇H(t, z) , (1)

giving a partial answer to a conjecture by Arnold [1,2]. Here, J =
( 0 −I
I 0

)
is the standard symplectic matrix, 

H : R × R2N → R is T -periodic in t, and ∇H(t, z) denotes its gradient with respect to z. Let us write 
z = (q, p), with q = (q1, . . . , qN ) and p = (p1, . . . , pN ), so that the system reads as
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q̇ = ∂pH(t, q, p) , ṗ = −∂qH(t, q, p) .

Their paper contains two main results.
In [11, Theorem 1], assuming the Hamiltonian function H(t, z) to be periodic in all variables q1, . . . , qN

and p1, . . . , pN , they prove that system (1) has at least 2N + 1 geometrically distinct T -periodic solutions. 
They also mention in [11, Theorem 2] that the expected number of solutions is 22N provided that all the 
T -periodic solutions are known to be nondegenerate.

In [11, Theorem 3], the function H is assumed to be periodic in q1, . . . , qN and to have a quadratic 
behaviour in p; namely, that there exist a constant R > 0 and a symmetric regular matrix A such that 
H(t, q, p) = 1

2〈Ap, p〉 + “lower order terms”, when |p| ≥ R. In this setting, they prove that system (1) has 
at least N + 1 geometrically distinct T -periodic solutions.

Conley and Zehnder [11] also mention a possible relation of this second result with the Poincaré–Birkhoff 
Theorem (the title of the paper is however a bit misleading). This theorem was first conjectured by 
Poincaré [46] in 1912, shortly before his death, and then proved by Birkhoff in [4,5]. Both of them were in-
terested in proving it because of its consequences in the existence of periodic solutions for some Hamiltonian 
systems originating from Celestial Mechanics. As mentioned by Zehnder in [50], Arnold called this theorem 
“the seed of symplectic topology” (cf. also [43]). See [24] for a brief historical account till the centennial 
anniversary of the theorem.

The pioneering results in [11] have been extended in different directions by several authors (see, e.g., [9,
15,23,33,37,38,40,41,47,49]).

More recently, a deeper relation between these results and the Poincaré–Birkhoff Theorem has been 
established in [30]. Taking, e.g., D = B(0, R), the closed ball with radius R, and assuming H to be periodic 
in q1, . . . , qN , the existence of N + 1 geometrically distinct T -periodic solutions was established under the 
following hypothesis: there exist a constant R > 0 and a symmetric regular matrix A such that the solutions 
z(t) = (q(t), p(t)) of (1) starting with p(0) ∈ D are defined on [0, T ] and satisfy a “twist condition” like〈

q(T ) − q(0) ,Ap(0)
〉
> 0 if p(0) ∈ ∂D .

It is easily checked that this result generalizes the second Conley–Zehnder Theorem described above. Vari-
ants of the twist condition were also proposed in [30,31].

The results in [30] have been extended in [17] in order to include both the above quoted Conley–Zehnder 
theorems, assuming H to be periodic in q1, . . . , qN and possibly also in p1, . . . , pL, for some L ∈ {1, . . . , N}, 
together with a very general twist condition, thus finding N + L + 1 periodic solutions. The same authors 
further extended the theory, in a second paper [18], to the case when the Hamiltonian function includes a 
nonresonant quadratic term. Possible resonance has also been investigated in [10], assuming some Ahmad–
Lazer–Paul conditions.

These general existence results have found so far several applications (see [7,16,18,25,26,28,30]), thus 
generalizing some previously established results for second order equations (cf. [8,13,14,22,27,35,36]). They 
have even been extended to the study of infinite-dimensional systems, cf. [6,19,21].

It is the aim of this paper to further extend this fertile theory to systems which, besides the periodicity-
twist conditions illustrated above, also present a pair of well-ordered lower and upper solutions. In order to 
better explain this situation, let the considered Hamiltonian system be of the type⎧⎨⎩q̇ = ∂pH(t, q, p, u, v) , ṗ = −∂qH(t, q, p, u, v) ,

u̇ = ∂vH(t, q, p, u, v) , v̇ = −∂uH(t, q, p, u, v) .
(2)

Here H : R × R4 → R is T -periodic in t, periodic in q, and has a twist involving the (q, p) variables; at 
the same time, we also assume that there exist some constant lower/upper solutions α ≤ β involving the 
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(u, v) variables. In this situation we are able to prove the existence of two geometrically distinct T -periodic 
solutions. The result will then be extended to higher dimensional systems.

The reader is surely familiar with the method of lower/upper solutions in the case of scalar equations 
like, e.g.,

ü = f(t, u) .

This method has a long history, dating back to the pioneering papers [44,45,48] (see the book [12] for a 
detailed exposition). We recall that the T -periodic functions α, β : R → R are said to be a lower solution 
and an upper solution, respectively, if

α̈(t) ≥ f(t, α(t)) , β̈(t) ≤ f(t, β(t)) ,

for every t ∈ [0, T ]. Recently the theory has been extended to periodic planar systems in [20,29]; this will be 
the approach adopted here, even if we will only be able to deal with the case of constant lower and upper 
solutions.

Let us briefly explain why we need to reduce to constant lower/upper solutions. The standard proof 
procedure in lower/upper solutions theorems is as follows: a) modify the problem below α(t) and above 
β(t), in the u component, by the use of a truncating function; b) show that the modified problem has 
a solution; c) prove that the u component of this solution stays between α(t) and β(t). The technical 
difficulty encountered in the present paper is that we need to maintain the Hamiltonian structure, hence 
the modification of the problem has to be made in the Hamiltonian function itself, being careful to preserve 
the differentiability of the new function. Once the modification has been made, we are allowed to apply 
the results in [18]. We believe that this technical difficulty could be overcome, but for now the case of 
nonconstant lower/upper solutions remains an open problem.

Another open problem arises in the case of non-well-ordered lower and upper solutions. Assuming some 
nonresonance conditions with respect to the higher part of the spectrum, this case is usually treated by 
topological degree methods. We do not know how to adapt this type of technique to our situation.

In order to maintain a friendly exposition we preferred writing this paper following an increasing order of 
complexity, first presenting the main ideas in the simplest situation, then extending them to more general 
systems. The paper is thus organized as follows.

In Section 2 we state our result in the simple case of system (2). The proof is provided in Section 3. Then 
in Section 4, we provide some variants of the first theorem. In particular, we state a version of the theorem 
involving a topological annulus, in the spirit of Poincaré’s original statement. In Section 5 we illustrate 
several examples of applications.

In Section 6 we extend the result to higher dimensions, thus generalizing both the Conley–Zehnder 
theorems presented above. The proof is provided in Section 7. In Section 8 we extend the higher dimensional 
result to systems whose Hamiltonian function further involves a quadratic term and some examples of 
possible applications are given in Section 9. In Section 10 we provide a further application to the study of 
periodic solutions to perturbations of completely integrable systems.

Finally, in Section 11 we establish the most general result of this paper, where the twist condition is 
stated as an “avoiding cones condition”.

2. Statement of the first result

In this section we consider the Hamiltonian system (2), where the Hamiltonian function H : R ×R4 → R

is assumed to be continuous, T -periodic in t, and continuously differentiable in the q, p, u, v variables.
Let us state our assumptions.
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Assumption 1 (Periodicity). The function H(t, q, p, u, v) is periodic in q.

To fix the ideas, we will assume the period in q to be equal to 2π. Under this setting, T -periodic solutions 
of (2) appear in equivalence classes made of those solutions whose components q(t) differ by an integer 
multiple of 2π. We say that two T -periodic solutions are geometrically distinct if they do not belong to the 
same equivalence class. In the sequel we will implicitly use the same notion in different contexts without 
further mention.

Assumption 2 (Lower and upper solutions). There exist some constants δ > 0 and α ≤ β such that

v ∂vH(t, q, p, u, v) > 0 if u ∈ [α− δ, α] ∪ [β, β + δ] and v 
= 0 , (3)

and

∂uH(t, q, p, u, 0) ≥ 0 if u ∈ [α− δ, α] ,

∂uH(t, q, p, u, 0) ≤ 0 if u ∈ [β, β + δ] .
(4)

The above assumption comes from the definition of lower and upper solutions given in [20,29]. We require 
here that these lower and upper solutions are constant. More precisely, all constants in [α− δ, α] are lower 
solutions, and all constants in [β, β + δ] are upper solutions. In the sequel, the constant δ > 0 provided by 
Assumption 2 will be used without further mention.

Assumption 3 (Nagumo condition). There exist d > 0 and two continuous functions f, ϕ : [d, +∞[→ ]0, +∞[
with

+∞∫
d

f(s)
ϕ(s) ds = +∞ ,

satisfying the following property. When u ∈ [α− δ, β + δ],

∂vH(t, q, p, u, v) ≥ f(v) if v ≥ d ,

∂vH(t, q, p, u, v) ≤ −f(−v) if v ≤ −d ,

and

|∂uH(t, q, p, u, v)| ≤ ϕ(|v|) if |v| ≥ d .

Assumption 4 (Linear growth). For every K > 0 there is a constant CK > 0 such that

|∂qH(t, q, p, u, v)| ≤ CK(|p| + 1) if u ∈ [α− δ, β + δ] and |v| ≤ K.

Remark 1. Notice that, under the above assumption, for any two continuous functions U, V : [0, T ] → R

with

α− δ ≤ U(t) ≤ β + δ for every t ∈ [0, T ] , (5)

the solutions of the system

q̇ = ∂pH(t, q, p, U(t), V (t)) , ṗ = −∂qH(t, q, p, U(t), V (t)) (6)
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are defined on [0, T ]. Indeed, let (q(t), p(t)) be a solution of system (6) starting at time t = 0 from some 
(q(0), p(0)) = (q0, p0). This solution is defined on a maximal interval of future existence [0, T ] ∩ [0, ω[ . Set 
K = ‖V ‖∞. By Assumption 4,

|ṗ(t)| ≤ CK(|p(t)| + 1) for every t ∈ [0, T ] ∩ [0, ω[ ,

which, combined with the Gronwall Lemma, yields

|p(t)| ≤ (|p0| + 1) eCKT for every t ∈ [0, T ] ∩ [0, ω[ .

Then since H is periodic in q, we have that there is a constant C > 0 depending only on U , V and |p0| such 
that

|q̇(t)| ≤ C for every t ∈ [0, T ] ∩ [0, ω[ .

Hence

|q(t)| ≤ |q0| + CT for every t ∈ [0, T ] ∩ [0, ω[ .

This implies that the solution (q(t), p(t)) is defined on [0, T ], i.e., that ω > T .

We are now ready to state our main result.

Theorem 2. Let Assumptions 1–4 hold. Assume that there exist a < b and ρ > 0 with the following property: 
For any two continuous functions U, V : [0, T ] → R satisfying (5), the solutions of system (6) are such that

q(T ) − q(0) < 0 if p(0) ∈ [a− ρ, a] ,

q(T ) − q(0) > 0 if p(0) ∈ [b, b + ρ] .
(7)

Then there exist at least two geometrically distinct T -periodic solutions of system (2) such that p(0) ∈ ]a, b[
and

α ≤ u(t) ≤ β for every t ∈ R . (8)

The same conclusion holds if (7) is replaced by

q(T ) − q(0) > 0 if p(0) ∈ [a− ρ, a] ,

q(T ) − q(0) < 0 if p(0) ∈ [b, b + ρ] .

3. The proof of Theorem 2

The proof is based on [18, Corollary 2.4], and will be divided in two steps. In the first step we analyze 
the dynamics focusing on the (u, v) variables. In the second one, we draw attention to the (q, p) variables.

3.1. Working with the coordinates (u, v)

Let us focus our attention on the couple of variables (u, v). At first, we are going to modify the original 
problem (2) outside some suitably chosen set V ⊆ R4. We will then prove that all the T -periodic solutions 
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of the modified system satisfy z(t) = (q(t), p(t), u(t), v(t)) ∈ V for every t ∈ [0, T ]; hence, such solutions will 
solve the original problem (2), as well.

Assumption 3 permits us to apply the reasoning in [29, Theorem 3.1] (see also [20, Lemma 15]) in order 
to find two continuously differentiable functions γ± : R → R satisfying

γ−(s) < −d < d < γ+(s) (9)

for every s ∈ [α− δ, β + δ] and

− ∂uH
(
t, q, p, u, γ+(u)

)
> ∂vH

(
t, q, p, u, γ+(u)

)
γ′
+(u) , (10)

− ∂uH
(
t, q, p, u, γ−(u)

)
< ∂vH

(
t, q, p, u, γ−(v)

)
γ′
−(u) (11)

for every (t, q, p, u) ∈ [0, T ] × [0, 2π] ×R × [α− δ, β + δ]. Correspondingly, we introduce the set

V = {z = (q, p, u, v) | α ≤ u ≤ β , γ−(u) < v < γ+(u)} .

Now we can choose a constant d̂ > d satisfying

−d̂ < γ−(s) < γ+(s) < d̂

for every s ∈ [α− δ, β + δ].
We consider a continuously differentiable function ζ : R → R such that

ζ(u) =

⎧⎪⎪⎨⎪⎪⎩
α− δ if u ≤ α− 2δ ,
u if α ≤ u ≤ β ,

β + δ if u ≥ β + 2δ
(12)

and

ζ ′(u) > 0 if u ∈ ]α− 2δ, β + 2δ[ . (13)

Notice that

α− δ ≤ ζ(u) ≤ β + δ for every u ∈ R .

Then we introduce a continuously differentiable function χ : [α− δ, β + δ] ×R → R satisfying the following 
properties:

χ(u, v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−d̂ if v < −d̂− 1 ,

v if γ−(u) ≤ v ≤ γ+(u) ,

d̂ if v > d̂ + 1 .

(14)

Moreover, we assume that

∂vχ(u, v) > 0 if |v| < d̂ + 1 . (15)

Let Ĥ : R ×R4 → R be defined as

Ĥ(t, q, p, u, v) = H
(
t, q, p, ζ(u), χ(ζ(u), v)

)
+ H (u, v) ,
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with

H (u, v) = 1
2

[[
(v − d̂ )+

]2
+

[
(v + d̂ )−

]2
−

[
(u− β)+

]2 − [
(u− α)−

]2]
,

where, as usual, ξ+ = max{ξ, 0} and ξ− = max{−ξ, 0}. We consider the modified Hamiltonian system⎧⎨⎩q̇ = ∂pĤ(t, q, p, u, v) , ṗ = −∂qĤ(t, q, p, u, v) ,

u̇ = ∂vĤ(t, q, p, u, v) , v̇ = −∂uĤ(t, q, p, u, v) .
(16)

Notice that Ĥ = H in the closure of the set V. Our aim is to prove the following a priori bound.

Lemma 3. If z = (q, p, u, v) is a T -periodic solution of (16), then z(t) ∈ V for every t ∈ [0, T ] and hence z
solves (2).

The proof of this lemma needs some preparation, hence it will be provided at the end of the section.
In what follows, for every z = (q, p, u, v) we introduce the notation

z̃ = (q, p, ζ(u), χ(ζ(u), v)) .

We can explicitly compute

∂qĤ(t, z) = ∂qH
(
t, z̃) , ∂pĤ(t, z) = ∂pH

(
t, z̃) , (17)

∂uĤ(t, z) = [∂uH
(
t, z̃) + ∂vH

(
t, z̃) ∂uχ(ζ(u), v)] ζ ′(u) + ∂uH (u, v) , (18)

∂vĤ(t, z) = ∂vH
(
t, z̃) ∂vχ(ζ(u), v) + ∂vH (u, v) . (19)

Proposition 4. Any solution of (16) satisfies, for every t0 ∈ R,

[u(t0) < α and v(t0) = 0] ⇒ v̇(t0) < 0 ,

[u(t0) > β and v(t0) = 0] ⇒ v̇(t0) > 0 .

Proof. We first note that, as an immediate consequence of (3), we have

∂vH(t, q, p, u, 0) = 0 if u ∈ [α− δ, α] ∪ [β, β + δ] . (20)

We prove the first implication, the second one being similar. Let t0 ∈ R be such that u(t0) < α and v(t0) = 0. 
Let z(t) be a solution of (16), with z(t0) = (q(t0), p(t0), u(t0), 0). Then z̃(t0) = (q(t0), p(t0), ζ(u(t0)), 0). 
By (18) and (20) we have that

v̇(t0) = −∂uĤ(t0, z(t0)) = −∂uH(t0, z̃(t0))ζ ′(u(t0)) − ∂uH (u(t0), 0)

= −∂uH(t0, z̃(t0))ζ ′(u(t0)) + u(t0) − α , (21)

so that

v̇(t0) < −∂uH(t0, z̃(t0))ζ ′(u(t0)) .

Then (4) and (13) give the negative sign if u(t0) ∈ ]α−2δ, α[ . On the other hand, ζ ′(u) vanishes if u ≤ α−2δ
and the conclusion easily follows from (21). �



8 A. Fonda et al. / J. Math. Anal. Appl. 528 (2023) 127599
Proposition 5. Any solution of (16) satisfies, for every t0 ∈ R,

[u(t0) ≤ α and v(t0) < 0] ⇒ u̇(t0) < 0 ,

[u(t0) ≤ α and v(t0) > 0] ⇒ u̇(t0) > 0 ,

[u(t0) ≥ β and v(t0) < 0] ⇒ u̇(t0) < 0 ,

[u(t0) ≥ β and v(t0) > 0] ⇒ u̇(t0) > 0 .

Proof. Let us prove the first assertion, the proof of the others being similar. Let t0 ∈ R be such that 
u(t0) ≤ α and v(t0) < 0. Since ζ(u) ∈ [α− δ, α] when u ≤ α and χ(u, v) < 0 when v < 0, recalling (3), (15), 
and (19), if −d̂− 1 < v(t0) < 0 we get

u̇(t0) = ∂vH(t0, z̃(t0))∂vχ(ζ(u(t0)), v(t0)) − (v(t0) + d̂ )−

≤ ∂vH(t0, z̃(t0))∂vχ(ζ(u(t0)), v(t0)) < 0 .

On the other hand, if v(t0) ≤ −d̂− 1, then ∂vχ(ζ(u(t0)), v(t0)) = 0, so that u̇(t0) = −(v(t0) + d̂ )− < 0. �
We define the open sets

ANW = {z ∈ R4 | u < α , v > 0} , ANE = {z ∈ R4 | u > β , v > 0} ,

ASW = {z ∈ R4 | u < α , v < 0} , ASE = {z ∈ R4 | u > β , v < 0} .

As a consequence of the previous propositions, the following can be easily proved.

Proposition 6. The sets ANE and ASW are positively invariant for system (16), while ASE and ANW are 
negatively invariant.

Proposition 7. Any solution of (16) satisfies, for every t0 ∈ R,

[α ≤ u(t0) ≤ β and v(t0) > d] ⇒ u̇(t0) > 0 ,

[α ≤ u(t0) ≤ β and v(t0) < −d] ⇒ u̇(t0) < 0 .

Proof. Let us prove the first implication. Since u(t0) ∈ [α, β] and v(t0) > d, we have that ζ(u(t0)) = u(t0)
and

u̇(t0) = ∂vH(t0, z̃(t0))∂vχ(u(t0), v(t0)) + (v(t0) − d̂ )+ .

If v(t0) ≥ d̂+1, then ∂vχ(u(t0), v(t0)) = 0 and (v(t0) −d̂ )+ > 0. On the other hand, if d < v(t0) < d̂+1, then 
∂vχ(u(t0), v(t0)) > 0 and (v(t0) − d̂ )+ ≥ 0; moreover, ∂vH(t0, ̃z(t0)) > 0 by Assumption 3, thus proving 
that u̇(t0) > 0 in both cases. �
Proof of Lemma 3. Let z be a T -periodic solution of (16). We begin proving that α ≤ u(t) ≤ β for every t. 
By contradiction, assume that there exists t0 ∈ R such that u(t0) > β. If z(t0) ∈ ANE , by Proposition 6, since 
the function is periodic, z(t) ∈ ANE for every t ∈ R. So, we get a contradiction using Proposition 5. Similarly 
we cannot have z(t0) ∈ ASE . Finally, if v(t0) = 0, Proposition 4 takes us to the previous contradicting 
situations. We have thus proved that u(t) ≤ β for every t ∈ R. A similar argument proves that u(t) ≥ α for 
every t ∈ R.
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Now we show that v(t) < γ+(u(t)) for every t ∈ R. Let us define the function G+(t) = v(t) − γ+(u(t)). 
By Proposition 7, it cannot be that G+(t) > 0 for every t ∈ [0, T ]. Assume by contradiction the existence 
of t0 ∈ R such that G+(t0) = 0. Then, since ∇H(t, z) = ∇Ĥ(t, z) for z in the closure of V, by (10) we have

G′
+(t0) = −∂uH(t0, z(t0)) − γ′

+(u(t0)) ∂vH(t0, z(t0)) > 0 ,

where z(t0) =
(
q(t0), p(t0), u(t0), γ+(u(t0))

)
. This implies that G+(t) > 0 for every t > t0, which is in 

contradiction with the periodicity of z. We have thus proved that G+(t) < 0 for every t ∈ [0, T ].
We can similarly prove that γ−(u(t)) < v(t) for every t ∈ R, using (11). �

3.2. Working with the coordinates (q, p)

Let us fix K > 0 such that

|χ(ζ(u), v)| < K for every (u, v) ∈ R2 .

Let z(t) = (q(t), p(t), u(t), v(t)) be a solution of system (16) starting at time t = 0 with p(0) ∈ [a − ρ, b + ρ]. 
This solution is defined on a maximal interval of future existence [0, ω[ . By Assumption 4, recalling (17),

|ṗ(t)| ≤ CK(|p(t)| + 1) for every t ∈ [0, ω[ , (22)

hence, setting

c = (max{|a|, |b|} + ρ + 1) eCKT , (23)

by the Gronwall Lemma we have that

|p(t)| ≤ c for every t ∈ [0, T ] ∩ [0, ω[ . (24)

Let η : R → R be a C∞-smooth nonincreasing function such that

η(s) =
{

1 if s ≤ c ,

0 if s ≥ c + 1 .
(25)

We can rewrite the Hamiltonian Ĥ as

Ĥ(t, q, p, u, v) = 1
2(v2 − u2) + ĥ(t, q, p, u, v) (26)

and define the new Hamiltonian function

H̃(t, q, p, u, v) = 1
2(v2 − u2) + h̃(t, q, p, u, v) , (27)

where

h̃(t, q, p, u, v) = η(|p|) ĥ(t, q, p, u, v) .

Notice that

if |p| ≥ c + 1 then h̃(t, q, p, u, v) = 0 for every (t, q, u, v) ∈ R×R3 .
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The Hamiltonian H̃ induces the system⎧⎨⎩q̇ = ∂ph̃(t, q, p, u, v) , ṗ = −∂qh̃(t, q, p, u, v) ,

u̇ = v + ∂vh̃(t, q, p, u, v) , v̇ = u− ∂uh̃(t, q, p, u, v) .
(28)

Since the Hamiltonian function is periodic in q and the functions ζ, ζ ′, χ, ∇χ, η and η′ are bounded, there 
exists a constant C̃ > 0 such that∣∣∂qh̃(t, z)

∣∣ +
∣∣∂ph̃(t, z)

∣∣ +
∣∣∂uh̃(t, z)

∣∣ +
∣∣∂vh̃(t, z)

∣∣ ≤ C̃

for every (t, z) ∈ R ×R4. Hence, the Hamiltonian function H̃ is the sum of a nonresonant quadratic term and 
a function with bounded gradient ∇h̃(t, z). In particular, all solutions of (28) are globally defined on [0, T ].

We now verify the twist condition for system (28). Let z = (q, p, u, v) be a solution of (28) such that 
p(0) ∈ [a − ρ, b + ρ]. As long as |p(t)| ≤ c, we have

|ṗ(t)| = |∂qH(t, q(t), p(t), ζ(u(t)), χ(ζ(u(t)), v(t)))| ≤ CK(|p(t)| + 1) .

Hence, by the Gronwall Lemma, we conclude that |p(t)| ≤ c for every t ∈ [0, T ]. So, z = (q, p, u, v) is a 
solution of (16). Then (q, p) is a solution of (6) with U(t) = ζ(u(t)) and V (t) = χ(ζ(u(t)), v(t)), condition (5)
holds and, by (7),

q(T ) < q(0) if p(0) ∈ [a− ρ, a] ,

q(T ) > q(0) if p(0) ∈ [b, b + ρ] .

Hence, we can apply [18, Corollary 2.4] so to find two T -periodic solutions z = (q, p, u, v) of (28) such that 
p(0) ∈ ]a, b[ . By the above estimates, these are indeed solutions of (16) and, recalling Lemma 3, we conclude 
that they are the T -periodic solutions of the original system (2) we were looking for. �
4. Some variants of Theorem 2

Let us start with two observations.

Remark 8. Assumption 2 can be generalized by asking that there further exist vα, vβ such that

(v − vα) ∂vH(t, q, p, u, v) > 0 if u ∈ [α− δ, α] and v 
= vα ,

(v − vβ) ∂vH(t, q, p, u, v) > 0 if u ∈ [β, β + δ] and v 
= vβ

and

∂uH(t, q, p, u, vα) ≥ 0 if u ∈ [α− δ, α] ,

∂uH(t, q, p, u, vβ) ≤ 0 if u ∈ [β, β + δ] .

Remark 9. Instead of a fixed interval [a, b], we could have a varying interval [a(q), b(q)], where a, b : R → R

are continuous 2π-periodic functions. Indeed, if a and b are continuously differentiable, this case can be 
reduced to the previous one by the symplectic change of variables

Ψ(q, p, u, v) =

⎛⎝ q∫
b(s) − a(s)

2 ds ,
2p− b(q) − a(q)

b(q) − a(q) , u, v

⎞⎠ ,
0
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cf. [43, Exercise 1, p. 132]. If a and b are just continuous, they can be replaced by smooth functions by the 
use of the Fejer Theorem. Notice that the new Hamiltonian H̃(t, q̃, p̃, u, v) = H(t, Ψ−1(q̃, p̃, u, v)) is periodic 
in q̃ with period τ := 1

2
∫ 2π
0 (b(s) − a(s)) ds.

We now propose a variant of our result which is more in the spirit of the Poincaré–Birkhoff Theo-
rem as originally stated by Poincaré [46]. We first recall the definition of rotation number. For t1 < t2, 
let η : [t1, t2] → R2 be a continuous curve such that η(t) 
= (0, 0) for every t ∈ [t1, t2]. Writing 
η(t) = ρ(t)(cos θ(t), sin θ(t)), with ρ : R → ]0, +∞[ and θ : R → R continuous, we define

Rot (η; [t1, t2]) = −θ(t2) − θ(t1)
2π .

We need to suitably modify Assumption 4.

Assumption 5 (Energy growth). For every K > 0, there is a constant CK > 0 such that

∣∣q ∂pH(t, q, p, u, v)− p ∂qH(t, q, p, u, v)
∣∣ ≤ CK(q2 + p2 + 1)

if u ∈ [α− δ, β + δ] and |v| ≤ K .

In the sequel, we denote by D(Γ) the open bounded region delimited by a planar Jordan curve Γ.

Theorem 10. Let Assumptions 2, 3, and 5 hold. Let k be an integer and assume that there exist ρ > 0, ρ̃ > 0
and two planar Jordan curves Γ1 and Γ2, strictly star-shaped with respect to the origin, with

0 ∈ D(Γ1) ⊆ D(Γ1) ⊆ D(Γ2) ,

such that, for any two continuous functions U, V : [0, T ] → R satisfying (5), the solutions of system (6) with 
dist

(
(q(0), p(0)), D(Γ2) \ D(Γ1)

)
≤ ρ which are defined on [0, T ] satisfy

q(t)2 + p(t)2 ≥ ρ̃ for every t ∈ [0, T ]

and, when (q(0), p(0)) /∈ D(Γ2) \ D(Γ1),

Rot ((q, p); [0, T ]) < k if dist
(
(q(0), p(0)),Γ1

)
≤ ρ ,

Rot ((q, p); [0, T ]) > k if dist
(
(q(0), p(0)),Γ2

)
≤ ρ .

(29)

Then the Hamiltonian system (2) has at least two T -periodic solutions zi(t), i = 1, 2, satisfying (8) with

(qi(0), pi(0)) ∈ D(Γ2) \ D(Γ1)

and

Rot ((qi, pi); [0, T ]) = k.

The same is true if (29) is replaced by

Rot ((q, p); [0, T ]) > k if dist
(
(q(0), p(0)),Γ1

)
≤ ρ ,

Rot ((q, p); [0, T ]) < k if dist
(
(q(0), p(0)),Γ

)
≤ ρ .
2
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Proof. At first, let R0 > 0 be such that

dist
(
(q(0), p(0)),D(Γ2)

)
≤ ρ ⇒ q(0)2 + p(0)2 ≤ R0 . (30)

We modify the Hamiltonian H introducing the function Ĥ, arguing as in Section 3.1, thus finding the a 
priori bound in Lemma 3. Let K > 0 be such that

|χ(ζ(u), v)| < K for every (u, v) ∈ R2 .

Let z(t) = (q(t), p(t), u(t), v(t)) be any solution of system (16) starting at time t = 0 from a point z(0)
satisfying q(0)2 + p(0)2 ≤ R0. This solution is defined on a maximal interval of future existence [0, ω[ . 
Defining r(t) = q(t)2 + p(t)2, by Assumption 5,

|ṙ(t)| ≤ CK(r(t) + 1) for every t ∈ [0, ω[ ,

hence, setting

c = (R0 + 1) eCKT ,

by the Gronwall Lemma we have that

r(t) ≤ c for every t ∈ [0, T ] ∩ [0, ω[ .

Let η be the function introduced in (25). Arguing as above, we can write Ĥ as in (26) and define H̃ as 
in (27), where now

h̃(t, q, p, u, v) = η(q2 + p2) ĥ(t, q, p, u, v) .

The Hamiltonian function H̃ induces the system (28), whose solutions are globally defined on [0, T ].
Let z(t) = (q(t), p(t), u(t), v(t)) be any solution of system (28) with starting point z(0) satisfying 

dist
(
(q(0), p(0)), D(Γ2) \ D(Γ1)

)
≤ ρ. Set U(t) = ζ(u(t)) and V (t) = χ(ζ(u(t), v(t)). Notice that (5) is 

satisfied. It can be verified that r(t) = q(t)2 + p(t)2 ≤ c for every t ∈ [0, T ], with the same constant c as 
above. Therefore, the couple (q(t), p(t)) is a solution of (6). So, by the assumption of the theorem, we get

r(t) ≥ ρ̃ for every t ∈ [0, T ] . (31)

We now introduce a new smooth cut-off increasing function η̃ : R → [0, 1] such that

η̃(s) =
{

0 if r ≤ ρ̃/2 ,
1 if r ≥ ρ̃

and the new Hamiltonian function

H(t, q, p, u, v) = 1
2(v2 − u2) + h(t, q, p, u, v) ,

where h(t, q, p, u, v) = η̃(q2 + p2)h̃(t, q, p, u, v).
For the new Hamiltonian system Jż = ∇H(t, z), we introduce the symplectic change of variables

q(t) =
√

2r(t) cos
(
θ(t) − 2π kt

)
, p(t) =

√
2r(t) sin

(
θ(t) − 2π kt

)
,
T T
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so to get a Hamiltonian system⎧⎨⎩θ̇ = ∂rH(t, θ, r, u, v) , ṙ = −∂θH(t, θ, r, u, v) ,

u̇ = ∂vH(t, θ, r, u, v) , v̇ = −∂uH(t, θ, r, u, v) ,
(32)

defined for r > 0. This system can now be extended also for r ≤ 0, preserving the regularity. Now, the 
periodicity Assumption 1 is recovered in the variable θ. A simple computation shows that

ṙ = q ∂pH(t, q, p, u, v) − p ∂qH(t, q, p, u, v) ,

hence Assumption 5 implies that the linear growth Assumption 4 holds for the new variables (θ, r) instead 
of (q, p). Then Theorem 2 applies, in view of Remark 9, providing the existence of two geometrically distinct 
T -periodic solutions of (32), which are then translated, by the inverse change of variables (θ, r) �→ (q, p), 
into the T -periodic solutions of (2) we are looking for. �
5. Examples of applications

Both Theorems 2 and 10 open the way to a multitude of applications. We will just sketch here a few.
Let us consider for example a system of the type⎧⎨⎩−q̈ = g(t, q) − e(t) + ∂qP (t, q, u) ,

−ü = −f(u) + ∂uP (t, q, u) ,
(33)

where all functions are continuous and T -periodic in t, with 
∫ T

0 e(t) dt = 0. Let P (t, q, u) be 2π-periodic in q

and continuously differentiable in (q, u). Assume moreover g(t, q) to be 2π-periodic in q, with 
∫ 2π
0 g(t, s) ds =

0.
Then system (33) is of the type (2), with

H(t, q, p, u, v) = 1
2(p + E(t))2 + 1

2v
2 +

q∫
0

g(t, s) ds−
u∫

0

f(σ) dσ + P (t, q, u) ,

where E(t) =
∫ t

0 e(s) ds. Precisely, we have⎧⎨⎩q̇ = p + E(t) , ṗ = −g(t, q) − ∂qP (t, q, u) ,

u̇ = v , v̇ = f(u) − ∂uP (t, q, u) .

Corollary 11. In the above setting, assume in addition that there exist two constants α < β such that

f(α) < ∂uP (t, q, α), ∂uP (t, q, β) < f(β), (34)

for all (t, q) ∈ [0, T ] × [0, 2π]. Then system (33) has at least two geometrically distinct T -periodic solutions 
(q, u), with α ≤ u ≤ β.

Proof. Notice that H(t, q, p, u, v) is 2π-periodic in q. By continuity, there is a sufficiently small δ > 0 such 
that Assumption 2 is satisfied. Also Assumption 3 is easily verified, setting f(s) = s and ϕ(s) constant. 
Moreover, there exists R > 0 with the following property: For any continuous function U : [0, T ] → R such 
that α− δ ≤ U(t) ≤ β + δ for every t ∈ [0, T ], the solutions of
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−q̈ = g(t, q) − e(t) + ∂qP (t, q, U(t))

satisfy

q(T ) − q(0) < 0 if q̇(0) < −R ,

q(T ) − q(0) > 0 if q̇(0) > R .

Then taking b = −a = R + ‖E‖∞, Theorem 2 applies. �
As an immediate consequence, we have the following.

Corollary 12. The system of coupled pendulums of the form{
q̈ + a sin q = e(t) − ∂qP (t, q, u),
ü + b sin u = −∂uP (t, q, u),

(35)

where P (t, q, u) and e(t) are as above, has at least two geometrically distinct T -periodic solutions for any 
a > 0 if ‖∂uP‖∞ < b.

We thus extend two classical results on the pendulum equation (cf. [42]). The first one states that, if e(t)
is T -periodic and 

∫ T

0 e(t) dt = 0, then the equation

q̈ + a sin q = e(t)

has at least two geometrically distinct T -periodic solutions, for any a > 0. The second one states that, if 
ê(t) is T -periodic and ‖ê‖∞ ≤ b, then the equation

ü + b sin u = ê(t)

has at least two geometrically distinct T -periodic solutions.
Here are other possible examples of applications.

1. Let f(u) = |u|�−1u, with � > 0, and let P be a function as above such that

lim
u→±∞

∂uP (t, q, u)
|u|� = 0 uniformly in (t, q) ∈ [0, T ] × [0, 2π] .

Then there exist two constants α and β with −α = β > 0 large enough such that (34) is satisfied. In 
particular, if ∂uP is bounded, it is enough to take

α < −‖∂uP‖1/�
∞ , β > ‖∂uP‖1/�

∞ .

Notice that this includes, e.g., the case of ∂uP being periodic in u. Hence, in this situation, there exist at 
least two geometrically distinct T -periodic solutions of system (33).
2. Let f(u) = |u|� sin(u), with � > 0, and let P be as in the previous example. Then (34) is satisfied for 
an infinite number of positive and negative pairs (αi, βi). Hence, there exist infinitely many T -periodic 
solutions of system (33) with positive u component and infinitely many T -periodic solutions with negative 
u component.
3. Consider f(u) = arctan(u). Then, if ∂uP is bounded with
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‖∂uP‖∞ <
π

2 ,

there exist at least two geometrically distinct T -periodic solutions of system (33). It is sufficient to take α
and β with −α = β > 0 large enough.

If P (t, q, u) is not periodic in q, we can appeal to Theorem 10. Consider for example the system⎧⎨⎩−q̈ = g(q) + ∂qP (t, q, u) ,

−ü = −f(u) + ∂uP (t, q, u) ,
(36)

where P (t, q, u) is continuously differentiable in (q, u). We can prove the following.

Corollary 13. Assume that

lim
|q|→∞

g(q)
q

= +∞ (37)

and that ∂qP is bounded. If there exist two constants α < β such that (34) holds, then system (36) has 
infinitely-many T -periodic solutions.

Proof. We will briefly explain the main arguments. At first we modify system (36) by introducing the 
functions

f̂(u) = (u− β)+ − (u− α)− + f(ζ(u))ζ ′(u) ,

P̂ (t, q, u) = P (t, q, ζ(u)) ,

thus obtaining ⎧⎨⎩q̇ = p , ṗ = −g(q) − ∂qP̂ (t, q, u) ,

u̇ = v , v̇ = f̂(u) − ∂uP̂ (t, q, u)
(38)

and denoting by Ĥ(t, z) = 1
2 (v2 − u2) + ĥ(t, z) its Hamiltonian, for a suitable choice of ĥ. Let B(0, R) ⊆ R2

be the ball of radius R > 0 centred at the origin, and set BR := B(0, R) ×R2. Then, following the arguments 
in [13, Section 2], we can prove that any solution of system (38) is globally defined in the interval [0, T ]. 
Moreover, by the elastic property stated in [13, Lemma 1] we can find r3 > r2 > r1 > 0 such that any 
solution z(t) = (q(t), p(t), u(t), v(t)) of (38) starting at t = 0 from a point belonging to ∂Br2 satisfies 
z(t) ∈ Br3 \ Br1 for every t ∈ [0, T ]. For such solutions we can find k > 0 such that Rot ((q, p); [0, T ]) < k.

Let us fix any k′ ≥ k. Assumption (37) provides the existence of R1 > 0 such that every solution z
of (38), with z(t) /∈ BR1 for any t ∈ [0, T ], satisfies Rot ((q, p); [0, T ]) > k′. Then, using again [13, Lemma 
1], we can find R3 > R2 > R1 such that any solution z of (38) starting at t = 0 from a point belonging to 
∂BR2 satisfies z(t) ∈ BR3 \BR1 for every t ∈ [0, T ]. Hence we have for such solutions Rot ((q, p); [0, T ]) > k′.

Now, we introduce a smooth cut-off function η̂ : [0, +∞[→ [0, 1] such that

η̂(r) =
{

0 if r ∈ [0, r1/2] ∪ [2R3,+∞[ ,
1 if r ∈ [r1, R3]

and the new Hamiltonian H̃(t, z) = 1 (v2 − u2) + h̃(t, z) where now
2



16 A. Fonda et al. / J. Math. Anal. Appl. 528 (2023) 127599
h̃(t, z) = η̂
(√

q(t)2 + p(t)2
)
ĥ(t, z) .

Finally, we are able to apply Theorem 10 to system (38), thus obtaining two T -periodic solutions satisfying 
Rot ((q, p); [0, T ]) = k′ with starting point z(0) ∈ BR2 \ Br2 . Then we can easily see that they are indeed 
solutions of (36).

Since the above construction can be made for every k′ ≥ k, we have proved the existence of infinitely 
many T -periodic solutions. �

We thus extend a result by Ding and Zanolin [13], stating that, if g(q) satisfies (37) and e(t) is T -periodic, 
the scalar equation

q̈ + g(q) = e(t)

has infinitely-many T -periodic solutions. A similar result for system (33) remains an open problem, because 
global existence of the solutions is not guaranteed. However, one could follow the lines of [25,34–36] by 
assuming that the first equation has 0 as an equilibrium point, and then prove that there are infinitely 
many T -periodic solutions.

Whenever the function g has a sublinear growth at infinity, the existence of periodic solutions whose 
minimal period is an arbitrarily large integer multiple of T has been investigated in [14]. These are called 
subharmonic solutions. We could also state such kind of result here, but we avoid the details, for briefness.

Another situation where our results can be applied is when the system in (q, p) has a different rotational 
behaviour at zero and at infinity. There are many papers dealing with such a problem (see, e.g., [39] and the 
references therein). This type of situation can be also exploited when dealing with some kind of asymmetric 
oscillators as, e.g., in [7], where the so-called jumping nonlinearities are treated. We do not enter into details, 
again, to be brief.

6. Going to higher dimensions

We consider system (1), assuming the Hamiltonian function H : R × R2N → R to be continuous, T -
periodic in its first variable t, and continuously differentiable with respect to its second variable z, with 
corresponding gradient ∇H(t, z).

For z ∈ R2N , we write z = (φ, ψ, q, p, u, v), where, for some nonnegative integers L, M and D,

φ = (φ1, . . . , φL) ∈ RL, ψ = (ψ1, . . . , ψL) ∈ RL,

q = (q1, . . . , qM ) ∈ RM , p = (p1, . . . , pM ) ∈ RM ,

u = (u1, . . . , uD) ∈ RD, v = (v1, . . . , vD) ∈ RD.

Notice that one or more of these integers could be equal to zero, in which case the corresponding group will 
not be taken into account; for example, if L = 0, then φ and ψ will disappear from the list.

Our system (1) then reads as ⎧⎪⎪⎨⎪⎪⎩
φ̇ = ∂ψH(t, z) , ψ̇ = −∂φH(t, z) ,
q̇ = ∂pH(t, z) , ṗ = −∂qH(t, z) ,
u̇ = ∂vH(t, z) , v̇ = −∂uH(t, z) .

(39)

Let us introduce our assumptions.

Assumption 6 (Periodicity). The function H(t, z) is periodic in each of the variables included in φ, ψ, q.
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To fix the ideas, we assume that all periods are equal to 2π. The total number of variables in which our 
Hamiltonian function is 2π-periodic is thus 2L + M .

In the sequel, inequalities ≤ involving vectors are to be interpreted componentwise. Moreover, for any 
σ ∈ R, we use the notation σ̄ = (σ, . . . , σ) ∈ RD.

Assumption 7 (Lower and upper solutions). There exist some constants δ > 0, α = (α1, . . . , αD) and 
β = (β1, . . . , βD) with α ≤ β, having the following property. When α − δ̄ ≤ u ≤ β + δ̄, then, for every 
j ∈ {1, . . . , D},

vj ∂vjH(t, z) > 0 if uj ∈ [αj − δ, αj ] ∪ [βj , βj + δ] and vj 
= 0 ,

and

∂uj
H(t, z) ≥ 0 if uj ∈ [αj − δ, αj ] and vj = 0 ,

∂uj
H(t, z) ≤ 0 if uj ∈ [βj , βj + δ] and vj = 0 .

In the sequel, the constant δ > 0 provided by Assumption 7 will be used without further mention.

Assumption 8 (Nagumo condition). For every j ∈ {1, . . . , D} there exist dj > 0 and two continuous functions 
fj , ϕj : [dj , +∞[→ ]0, +∞[ with

+∞∫
dj

fj(s)
ϕj(s)

ds = +∞ ,

satisfying the following property. When α− δ̄ ≤ u ≤ β + δ̄, then

∂vjH(t, z) ≥ fj(vj) if vj ≥ dj ,

∂vjH(t, z) ≤ −fj(−vj) if vj ≤ −dj ,

and ∣∣∂uj
H(t, z)

∣∣ ≤ ϕj(|vj |) if |vj | ≥ dj .

Assumption 9 (Linear growth). For every K > 0 there is a constant CK > 0 with the following property. If 
α− δ̄ ≤ u ≤ β + δ̄ and |v| ≤ K, then

|∂qH(t, z)| ≤ CK(|p| + 1) .

Adapting the argument in Remark 1, under the above assumption, for any two continuous functions 
U, V : [0, T ] → RD with

α− δ̄ ≤ U(t) ≤ β + δ̄ for every t ∈ [0, T ] , (40)

the solutions of the system ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
φ̇ = ∂ψH(t, φ, ψ, q, p, U(t), V (t)) ,
ψ̇ = −∂φH(t, φ, ψ, q, p, U(t), V (t)) ,
q̇ = ∂pH(t, φ, ψ, q, p, U(t), V (t)) ,
ṗ = −∂ H(t, φ, ψ, q, p, U(t), V (t)) ,

(41)
q
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are defined on [0, T ] and, setting K = ‖V ‖∞,

|p(t)| ≤ (|p(0)| + 1) eCKT for every t ∈ [0, T ] . (42)

In the following, we consider a convex body D of RM , i.e., a closed convex bounded set with nonempty 
interior. We denote by πD : RM \D̊ → ∂D the projection on the convex set D and by νD(ζ) the unit outward 
normal at ζ ∈ ∂D, assuming that D has a smooth boundary. We say that D is strongly convex if, for any 
p ∈ ∂D, the function F : D → R defined as F(η) = 〈η − p, νD(p)〉 has a unique maximum point at η = p.

Here is our first result in this higher dimensional setting, generalizing Theorem 2.

Theorem 14. Let Assumptions 6, 7, 8, and 9 hold. Assume that there exist ρ > 0, a symmetric regular M×M

matrix A and a strongly convex body D of RM , having a smooth boundary, with the following property: For 
any two continuous functions U, V : [0, T ] → RD satisfying (40), the solutions of (41) with p(0) /∈ D̊ and 
dist(p(0), ∂D) ≤ ρ are such that

〈
q(T ) − q(0) , AνD

(
πD(p(0))

)〉
> 0 .

Then system (39) has at least 2L + M + 1 geometrically distinct T -periodic solutions, satisfying

p(0) ∈ D̊

and

α ≤ u(t) ≤ β for every t ∈ R . (43)

Remark 15. In analogy with [11, Theorem 2], we expect a larger number of solutions provided that all the 
T -periodic solutions are assumed to be nondegenerate. We will not pursue this issue for the sake of briefness.

7. Proof of Theorem 14

Since the arguments will be similar to those provided in Section 3, we will try to be brief.
At first we need to suitably modify the Hamiltonian system working componentwise in the (u, v) variables.
For every j ∈ {1, . . . , D}, from Assumption 8 we can find some continuously differentiable functions 

γ±
j : R → R and then d̂j > 0 such that

−d̂j < γ−
j (s) < −dj , dj < γ+

j (s) < d̂j ,

for every s ∈ [αj − δ, βj + δ], satisfying

−∂uj
H
(
t, z

)
> ∂vjH

(
t, z

)
(γ+

j )′(uj) if vj = γ+
j (uj) ,

−∂uj
H
(
t, z

)
< ∂vjH

(
t, z

)
(γ−

j )′(uj) if vj = γ−
j (uj) ,

for every (t, z) ∈ [0, T ] ×R2N with uj ∈ [αj − δ, βj + δ].
We then define γ± : RD → RD as

γ±(u) = (γ±
1 (u1), . . . , γ±

D(uD))

and introduce the set
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V = {z = (φ, ψ, q, p, u, v) | α ≤ u ≤ β , γ−(u) < v < γ+(u)} ,

recalling that we need to check the inequalities componentwise. We can then introduce some functions 
ζj : R → R and χj : [αj − δ, βj + δ] ×R → R similarly as in (12) and (14), define

ζ(u) = (ζ1(u1), . . . , ζD(uD)) ,

χ(u, v) = (χ1(u1, v1), . . . , χD(uD, vD)) ,

and consider the modified Hamiltonian Ĥ : R ×R2N → R as

Ĥ(t, φ, ψ, q, p, u, v) = H
(
t, φ, ψ, q, p, ζ(u), χ(ζ(u), v)

)
+ H (u, v)

with

H (u, v) = 1
2

D∑
j=1

[[
(vj − d̂j)+

]2
+
[
(vj + d̂j)−

]2
−

[
(uj − βj)+

]2 − [
(uj − αj)−

]2]
.

The modified Hamiltonian system

Jż = ∇Ĥ(t, z) (44)

complies the following a priori bound, whose proof can be given adapting the one of Lemma 3, arguing 
separately on every couple of variables (uj, vj), and verifying the validity of some analogues of Proposi-
tions 4, 5, 6, and 7.

Lemma 16. If z = (φ, ψ, q, p, u, v) is a T -periodic solution of (44), then z(t) ∈ V for every t ∈ [0, T ], hence 
it solves (39).

The next step involves the (q, p) variables. The reasoning in Section 3.2 can be adapted to higher dimen-
sion. We fix K > 0 such that

|χ(ζ(u), v)| < K for every (u, v) ∈ R2D (45)

and, given the convex body D and the constant ρ > 0 as in the statement of the theorem, we set

P0 = max{|p| : p ∈ D} and c = (P0 + ρ + 1)eCKT .

Let z(t) be a solution of system (44) having [0, ω[ as its maximal interval of future existence, starting with 
p(0) satisfying dist(p(0), D) ≤ ρ. Arguing as at the beginning of Section 3.2, from Assumption 9 and (42), 
we have that

|p(t)| ≤ c for every t ∈ [0, T ] ∩ [0, ω[ . (46)

So, we can introduce the cut-off function η as in (25) in order to change the Hamiltonian function

Ĥ(t, z) = 1
2(|v|2 − |u|2) + ĥ(t, z)

into the new Hamiltonian function
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H̃(t, z) = 1
2(|v|2 − |u|2) + h̃(t, z)

with h̃(t, z) = η(|p|) ̂h(t, z). Notice that |∇h̃(t, z)| ≤ C̃ for a certain positive constant C̃.
Our aim is now to apply [18, Corollary 2.3] to the modified system

Jż = ∇H̃(t, z) . (47)

Any solution z = (φ, ψ, q, p, u, v) of (47) is defined on [0, T ]. As in the proof of Theorem 2, we can prove 
that, if dist(p(0), D) ≤ ρ, then |p(t)| ≤ c for every t ∈ [0, T ]. In particular, it is a solution of (44). Then, 
if we set U(t) = ζ(u(t)) and V (t) = χ(ζ(u(t)), v(t)), we see that (φ, ψ, q, p) is a solution of (41). By the 
assumption of the theorem, if the solution starts with dist(p(0), ∂D) ≤ ρ and p(0) /∈ D̊, then〈

q(T ) − q(0) , AνD
(
πD(p(0))

)〉
> 0 . (48)

The application of [18, Corollary 2.3] provides us 2L +M + 1 geometrically distinct T -periodic solutions 
of (47) satisfying p(0) ∈ D̊. Then, by the above estimates, they are solutions of (44). Finally, from Lemma 16, 
these are indeed solutions of the original Hamiltonian system (39), and they satisfy α ≤ u(t) ≤ β, for every 
t ∈ R. �
8. Variants in higher dimensions

Here are two variants of Theorem 14. In the first one, the twist is formulated as an avoiding rays condition.

Theorem 17. Let Assumptions 6, 7, 8, and 9 hold. Assume that there exist ρ > 0 and a convex body D of RM , 
having a smooth boundary, with the following property: For any two continuous functions U, V : [0, T ] → RD

satisfying (40), the solutions of system (41) with p(0) /∈ D̊ and dist(p(0), ∂D) ≤ ρ are such that

q(T ) − q(0) /∈ {λνD
(
πD(p(0))

)
: λ ≥ 0} . (49)

Then the same conclusion of Theorem 14 holds.

Proof. The argument follows the lines of the proof of Theorem 14, with the only difference of applying [18, 
Corollary 2.1] instead of [18, Corollary 2.3]. �

Notice that the twist condition (49) may as well be replaced by

q(T ) − q(0) /∈ {λνD
(
πD(p(0))

)
: λ ≤ 0}

and the same conclusion of Theorem 14 still holds.
We now consider the case when D is a M -cell, namely

D = [a1, b1] × · · · × [aM , bM ] .

Theorem 18. Let Assumptions 6, 7, 8, and 9 hold. Assume that there exist ρ > 0 and a M -tuple σ =
(σ1, . . . , σM ) ∈ {−1, 1}M , with the following property: For any two continuous functions U, V : [0, T ] → RD

satisfying (40), the solutions of (41) with p(0) /∈ D̊ and dist(p(0), ∂D) ≤ ρ are such that, for every i ∈
{1, . . . , M},

σi(qi(T ) − qi(0)) < 0 if pi(0) ∈ [ai − ρ, ai] ,

σ (q (T ) − q (0)) > 0 if p (0) ∈ [b , b + ρ] .
i i i i i i
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Then the same conclusion of Theorem 14 holds.

Proof. Again the proof is similar to the one of Theorem 14, just applying [18, Corollary 2.4] instead of [18, 
Corollary 2.3]. �
Remark 19. As noticed in Remark 9, instead of the fixed intervals [ai, bi] defining the M -cell D, we could 
have varying intervals [ai(qi), bi(qi)], where ai, bi : R → R are continuous 2π-periodic functions.

We now generalize Theorem 10; we thus drop the periodicity in the q-variables, still maintaining it in 
the φ and ψ variables, as stated below.

Assumption 10 (Periodicity). The function H(t, z) is periodic in each of the variables included in φ, ψ.

We also need to suitably modify Assumption 4, in the following way

Assumption 11 (Energy growth). For every K > 0 there is a constant CK > 0 such that, for every i ∈
{1, . . . , M}, ∣∣qi ∂pi

H(t, q, p, u, v) − pi ∂qiH(t, q, p, u, v)
∣∣ ≤ CK(q2

i + p2
i + 1)

if u ∈ [α− δ, β + δ] and |v| ≤ K .

Here is the generalization of Theorem 10.

Theorem 20. Let Assumptions 7, 8, 10 and 11 hold. Let k1, . . . , kM be integers and assume that there exist 
ρ > 0, ρ̃ > 0 and, for each i ∈ {1, . . . , M} there exist two planar Jordan curves Γi

1, Γi
2, strictly star-shaped 

with respect to the origin, with

0 ∈ D(Γi
1) ⊆ D(Γi

1) ⊆ D(Γi
2) ,

such that, for any two continuous functions U, V : [0, T ] → R satisfying (40), the solutions of system (41)
with

dist
(
(qi(0), pi(0)),D(Γi

2) \ D(Γi
1)
)
≤ ρ for every i ∈ {1, . . . ,M}

which are defined on [0, T ], satisfy

qi(t)2 + pi(t)2 ≥ ρ̃ for every t ∈ [0, T ]

and, when (qi(0), pi(0)) /∈ D(Γi
2) \ D(Γi

1),

Rot ((qi, pi); [0, T ]) < ki if dist
(
(qi(0), pi(0)),Γi

1
)
≤ ρ ,

Rot ((qi, pi); [0, T ]) > ki if dist
(
(qi(0), pi(0)),Γi

2
)
≤ ρ .

(50)

Then system (39) has at least 2L + M + 1 distinct T -periodic solutions

z(1)(t) , . . . , z(2L+M+1)(t) ,

satisfying (43), with

(q(n)
i (0), p(n)

i (0)) ∈ D(Γi
2) \ D(Γi

1)
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and

Rot ((q(n)
i , p

(n)
i ); [0, T ]) = ki ,

for every i = 1, . . . , M and n = 1, . . . , 2L + M + 1. The same is true if, for some i ∈ {1, . . . , M}, assump-
tion (50) is replaced by

Rot ((qi, pi); [0, T ]) > ki if dist
(
(qi(0), pi(0)),Γi

1
)
≤ ρ ,

Rot ((qi, pi); [0, T ]) < ki if dist
(
(qi(0), pi(0)),Γi

2
)
≤ ρ .

Proof. It is perfectly analogous to the one of Theorem 10, the only difference being the use of Theorem 18
(and Remark 19) instead of Theorem 2. �

Let us now add a further equation, and consider the more general system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
φ̇ = ∂ψH(t, z) , ψ̇ = −∂φH(t, z) ,
q̇ = ∂pH(t, z) , ṗ = −∂qH(t, z) ,
u̇ = ∂vH(t, z) , v̇ = −∂uH(t, z) ,
Jẇ = ∂wH(t, z) .

(51)

Here, and in the following, the symbol J is always used as the standard symplectic matrix, in different 
dimensions. Moreover, now z = (φ, ψ, q, p, u, v, w). We will generalize Theorem 14. Assumptions 6, 7 and 8
will remain the same, while Assumption 9 needs to be modified as follows.

Assumption 12 (Linear growth). Let

H(t, z) = 1
2
〈
B(t)w,w

〉
+ H(t, z) ,

where the symmetric matrix B(t) is continuous, T -periodic, and such that

w(t) ≡ 0 is the only T -periodic solution of Jẇ = B(t)w .

The function H is such that for every K > 0 there is a constant CK > 0 with the following property: If 
α− δ̄ ≤ u ≤ β + δ̄ and |v| ≤ K, then

|∂qH(t, z)| + |∂wH(t, z)| ≤ CK(|p| + 1) .

Under the above assumption, given any two continuous functions U, V : [0, T ] → RD, with

α− δ̄ ≤ U(t) ≤ β + δ̄ for every t ∈ [0, T ] , (52)

the solutions of the system ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

φ̇ = ∂ψH(t, φ, ψ, q, p, U(t), V (t), w) ,
ψ̇ = −∂φH(t, φ, ψ, q, p, U(t), V (t), w) ,
q̇ = ∂pH(t, φ, ψ, q, p, U(t), V (t), w) ,
ṗ = −∂qH(t, φ, ψ, q, p, U(t), V (t), w) ,
Jẇ = ∂wH(t, φ, ψ, q, p, U(t), V (t), w) ,

(53)

are defined on [0, T ], cf. Remark 1.
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Theorem 21. Let Assumptions 6, 7, 8 and 12 hold. Assume that there exist ρ > 0, a symmetric regular 
M × M matrix A and a strongly convex body D of RM , having a smooth boundary, with the following 
property: For any two continuous functions U, V : [0, T ] → RD satisfying (52), the solutions of (53) with 
p(0) /∈ D̊ and dist(p(0), ∂D) ≤ ρ are such that〈

q(T ) − q(0) , AνD
(
πD(p(0))

)〉
> 0 . (54)

Then system (51) has at least 2L + M + 1 geometrically distinct T -periodic solutions, such that p(0) ∈ D̊
and α ≤ u(t) ≤ β for every t ∈ R.

Proof. Following the lines of the proof of Theorem 14, we can introduce a modified system ruled by a 
Hamiltonian function of the type

Ĥ(t, z) = 1
2
〈
B(t)w,w

〉
+ 1

2(|v|2 − |u|2) + ĥ(t, z) .

Moreover, Ĥ can be introduced so to guarantee that every T -periodic solution of Jż = ∇Ĥ(t, z) satisfies 
an a priori bound as in Lemma 16, in particular α ≤ u ≤ β. Then, from Assumption 12, we can introduce 
K > 0 as in (45) such that, if α− δ̄ ≤ u ≤ β + δ̄ and |v| ≤ K, then

|∂qĥ(t, z)| + |∂wĥ(t, z)| ≤ ĈK(|p| + 1) .

Hence, we can find a constant c > 0 such that any solution of Jż = ∇Ĥ(t, z) starting with z(0) satisfying 
dist(p(0), D) ≤ ρ is such that (46) holds.

Again, we can introduce the cut-off function η, as in (25), and the Hamiltonian function

H̃(t, z) = 1
2
〈
B(t)w,w

〉
+ 1

2(|v|2 − |u|2) + h̃(t, z) ,

where h̃(t, z) = η(|p|)ĥ(t, z). Using Assumption 12 we get

|∇h̃(t, z)| ≤ C̃ ,

for a certain positive constant C̃. We can rewrite the previous Hamiltonian as

H̃(t, z) = 1
2

〈
M(t)

(
w, (u, v)

)
,
(
w, (u, v)

)〉
+ h̃(t, z) ,

where

M(t)
(
w, (u, v)

)
=

(
B(t)w, (−u, v)

)
.

Our aim is to apply [18, Corollary 2.3] to the modified system Jż = ∇H̃(t, z). We easily verify the nonres-
onance condition

ω(t) ≡ 0 is the only T -periodic solution of Jω̇ = M(t)ω ,

where ω = (w, (u, v)).
We finally verify, with the usual argument, that any solution z of the previous system with 0 <

dist(p(0), D) ≤ ρ is such that

〈q(T ) − q(0),Ap(0)〉 > 0 . (55)
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The application of [18, Corollary 2.3] provides us 2L +M+1 geometrically distinct T -periodic solutions of 
Jż = ∇H̃(t, z) satisfying p(0) ∈ D̊. Then, as in the previous proofs, we end showing that they are solutions 
of (51), too, and they satisfy α ≤ u(t) ≤ β, for every t ∈ R. �

Clearly enough, the twist condition (54) could be replaced by an avoiding rays condition, as in Theorem 17, 
or by a sign condition on the edges of an M -cell, like in Theorem 18. Also, we could provide a statement on 
an annulus, similarly as in Theorem 20. Or even some combination of these could be considered. We avoid 
the details, for briefness.

9. Examples in higher dimensions

In this section we just briefly mention how the examples given in Section 5 generalize to higher dimensions 
applying the results of Sections 6 and 8. To this aim, consider a system of the form⎧⎪⎪⎨⎪⎪⎩

φ̇ = ∂ψP (t, φ, ψ, q, u) , ψ̇ = −∂φP (t, φ, ψ, q, u) ,
−q̈i = gi(t, qi) − ei(t) + ∂qiP (t, φ, ψ, q, u) , i = 1, . . . ,M,

−üj = −hj(uj) + ∂uj
P (t, φ, ψ, q, u) , j = 1, . . . , D,

(56)

where all functions are continuous and T -periodic in t. For simplicity, we assume that P (t, φ, ψ, q, u) is 2π-
periodic in each of the variables included in φ, ψ and q, so, due to this, we fix an arbitrary cube in R2L+M

of length [0, 2π], denoting it by Θ. Moreover, let P (t, φ, ψ, q, u) be continuously differentiable in (φ, ψ, q, u)
and assume that, for every i ∈ {1, . . . , M},

T∫
0

ei(t)dt = 0 and
2π∫
0

gi(t, s)ds = 0 .

Then system (56) is of the type (39), with

H(t, z) = 1
2 |p + E(t)|2 + 1

2 |v|
2 +

M∑
i=1

qi∫
0

g(t, s) ds

−
D∑

j=1

uj∫
0

hj(σ) dσ + P (t, φ, ψ, q, u) ,

where z = (φ, ψ, q, p, u, v) and E = (E1, . . . , EM ) : [0, T ] → RM is a primitive of the field e(t) =
(e1(t), . . . , eM (t)).

Let us state the analogues of Corollaries 11 and 12.

Corollary 22. In the above setting, assume moreover that there exist two vectors α, β ∈ RD, with α ≤ β, 
such that, for all j ∈ {1, . . . , D},

hj(αj) < ∂uj
P (t, φ, ψ, q, u) if uj = αj ,

hj(βj) > ∂uj
P (t, φ, ψ, q, u) if uj = βj ,

(57)

for all (t, φ, ψ, q) ∈ [0, T ] ×Θ and all u ∈ RD such that α ≤ u ≤ β. Then system (33) has at least 2L +M +1
geometrically distinct T -periodic solutions, with α ≤ u ≤ β.
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Proof. All the assumptions of Theorem 18 are easily verified, whence the conclusion. �
As an immediate consequence, we have the following.

Corollary 23. The system⎧⎪⎪⎨⎪⎪⎩
φ̇ = ∂ψP (t, φ, ψ, q, u) , ψ̇ = −∂φP (t, φ, ψ, q, u) ,
q̈i + ai sin qi = ei(t) − ∂qiP (t, φ, ψ, q, u) , i = 1, . . . ,M,

üj + bj sin uj = −∂uj
P (t, φ, ψ, q, u) , j = 1, . . . , D,

(58)

where P (t, φ, ψ, q, u) and e(t) are as above, has at least 2L +M+1 geometrically distinct T -periodic solutions, 
for any ai > 0, if ‖∂uj

P‖∞ < bj for every j ∈ {1, . . . , D}.

All the other examples presented in Section 5 can be displayed in this more general setting, also with a 
mixing of assumptions on each component. In particular, we thus generalize, e.g., the results in [7,8,10,13,
14,25,28,32,35,36,40,41]. Also equations with singularities could be considered, as in [22,26]. We will avoid 
entering further into details, for briefness.

A further example of application is analyzed in the next section.

10. Periodic perturbations of completely integrable systems

In [3,18], perturbations of completely integrable Hamiltonian systems were studied (see also [19], and the 
references therein). We will now add an extra term to the Hamiltonian function, involving lower and upper 
solutions.

We consider the system{
ϕ̇ = ∇K(I) + ε∂IP (t, ϕ, I, u) , İ = −ε∂ϕP (t, ϕ, I, u) ,
−ü = ∂uG(t, u) + ε∂uP (t, ϕ, I, u) .

(59)

Here, we have (ϕ, I) ∈ R2M and u ∈ RD. We assume that K : RM → R is continuously differentiable and the 
same for G : R ×RD → R with respect to the second variable. The perturbation function P : R ×R2M+D → R

is continuous, T -periodic in t, and continuously differentiable with respect to all the other variables, with a 
bounded gradient. Moreover, the function P is τi-periodic in each ϕi, i.e., for every i ∈ {1, . . . , M},

P (. . . , ϕi + τi, . . . ) = P (. . . , ϕi, . . . ) .

We also assume that there exist some integers m1, . . . , mM for which

T∇K(I 0) = (m1τ1, . . . ,mMτM ) .

The expert reader will recognize that we are dealing with a completely resonant torus. Here is our result.

Theorem 24. In the above setting, assume that there exist I 0 ∈ RM , a symmetric invertible M ×M matrix 
A and ρ̄ > 0 such that

0 < |I − I 0| ≤ ρ̄ ⇒ 〈∇K(I) −∇K(I 0),A(I − I 0)〉 > 0 . (60)

Moreover, let there exist constants δ > 0, ς > 0, α = (α1, . . . , αD) and β = (β1, . . . , βD) with α ≤ β, having 
the following property: When α− δ̄ ≤ u ≤ β + δ̄, for every j ∈ {1, . . . , D} one has
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∂uj
G(t, u) ≥ ς if uj ∈ [αj − δ, αj ] ,

∂uj
G(t, u) ≤ −ς if uj ∈ [βj , βj + δ] .

Then for every σ > 0 there exists ε̄ > 0 such that, if |ε| ≤ ε̄, there are at least M + 1 geometrically distinct 
solutions of system (59) satisfying

ϕ(t + T ) = ϕ(t) + T∇K(I 0) , I(t + T ) = I(t) ,

u(t + T ) = u(t) , v(t + T ) = v(t)

and such that

|ϕ(t) − ϕ(0) − t∇K(I0)| + |I(t) − I0| < σ

and

α ≤ u(t) ≤ β ,

for every t ∈ R.

Proof. Since we are looking for solutions with I(t) in the open ball B(I0, σ), we can suitably modify the 
function K outside this set and assume that it has a bounded gradient. We perform the change of variables

q(t) = ϕ(t) − t∇K(I 0) , p(t) = I(t) − I0 ,

thus obtaining the new Hamiltonian function

H (t, q, p, u, v) = K (p) + 1
2 |v|

2 + G(t, u) + εQ(t, q, p, u) ,

where the functions

K (p) = K(I) −
〈
∇K(I 0) , I − I 0〉 , Q(t, q, p, u) = P (t, ϕ, I, u)

are implicitly defined. We notice that Q is periodic in q1, . . . , qM and both Q and K have bounded gradient: 
so, there are CK , CQ > 0 such that

|∇K (p)| ≤ CK , |∇Q(t, q, p, u)| ≤ CQ ,

for every (t, q, p, u) ∈ [0, T ] ×R2M+D. Our goal is now to prove that for every σ > 0 there exists ε > 0 such 
that, if |ε| ≤ ε, there are M + 1 geometrically distinct T -periodic solutions z = (q, p, u, v) of the system

Jż = ∇H (t, z) , (61)

satisfying max{|q(t) − q(0)| , |p(t)|} < σ and α ≤ u(t) ≤ β, for every t ∈ R.
Let us fix σ ∈ ]0, ρ[ . We are in the setting of Theorem 21. Assumptions 6, 7, 8 and 12 can be easily 

checked. We need to verify the twist condition (54).
Since ∇K (0) = 0, we can choose r < σ/4 such that

|p| ≤ 4r ⇒ 2T |∇K (p)| < σ (62)

and by (60) there is � > 0 such that
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r ≤ |p| ≤ 4r ⇒ 〈∇K (p),Ap)〉 > 4� . (63)

Let us fix δ > 0 satisfying

δ < min
{
r ,

2�
CK ‖A‖

}
.

Reducing ε if necessary, every solution of (61), with |ε| ≤ ε, is such that |p(t) −p(0)| < δ for every t ∈ [0, T ].
Let us consider a solution z of (61) with |ε| ≤ ε and initial condition satisfying 2r ≤ |p(0)| ≤ 3r. Then 

r ≤ |p(t)| ≤ 4r for every t ∈ [0, T ], and so, by (63),

〈∇K (p(t)),Ap(t)〉 > 4� for every t ∈ [0, T ] .

Reducing ε if necessary, we have that

〈∂pH(t, z(t)),Ap(0)〉 =

= 〈∇K (p(t)),Ap(t)〉 − 〈∇K (p(t)),A(p(t) − p(0))〉 + ε〈∂pQ(t, z(t)),Ap(0))〉
> 4�− CK ‖A‖δ − 3εCQ‖A‖r > � .

Integrating the previous estimate in the interval [0, T ], we get

〈q(T ) − q(0),Ap(0)〉 > �T > 0 .

We can thus apply Theorem 21, choosing D = B(0, 2r) and ρ = r. We have that

|p(t)| ≤ |p(0)| + δ < 2r + δ < 3r < σ for every t ∈ [0, T ] .

Moreover, by (62), we deduce that |q(t) − q(0)| < σ for all t ∈ [0, T ].
The T -periodic solutions we have found are then translated, by the inverse change of variables, into the 

solutions of (59) we are looking for. �
Remark 25. The twist condition (60) holds true if K is twice continuously differentiable with detK′′(I 0) 
= 0, 
by taking A = K′′(I 0).

Remark 26. A more general twist condition (see [16]) can be considered, e.g.,

0 ∈ cl
{
r ∈ ]0,+∞[ : min

|I−I 0|=r
〈∇K(I) −∇K(I 0),A(I − I 0)〉 > 0

}
.

Remark 27. The same type of result holds, with due changes, for a more general system of the type⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
φ̇ = ε∂ψP (t, φ, ψ, ϕ, I, u, w) , ψ̇ = −ε∂φP (t, φ, ψ, ϕ, I, u, w) ,
ϕ̇ = ∇K(I) + ε∂IP (t, φ, ψ, ϕ, I, u, w) , İ = −ε∂ϕP (t, φ, ψ, ϕ, I, u, w) ,
−ü = ∂uG(t, u) + ε∂uP (t, φ, ψ, ϕ, I, u, w) ,
Jẇ = B(t)w + ε∂wP (t, φ, ψ, ϕ, I, u, w) ,

when P is also periodic in φ1, . . . , φL and ψ1, . . . , ψL, and B(t) is a continuous, T -periodic, symmetric matrix 
such that w(t) ≡ 0 is the only T -periodic solution of Jẇ = B(t)w.

Remark 28. It would be interesting to see how Theorem 24 could be extended to infinite dimensions in the 
spirit of [19].
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11. The general result

We consider system (1), assuming the Hamiltonian function H : R × R2N → R to be continuous, T -
periodic in the variable t, and continuously differentiable with respect to the variable z, with corresponding 
gradient ∇H(t, z).

For z ∈ R2N , we use the notation z = (x, y), with x = (x1, . . . , xN ) ∈ RN and y = (y1, . . . , yN ) ∈ RN . 
Moreover, we split each of the variable tuples x and y into five tuples, thus writing

x = (xa, xb, xc, xd, xe), y = (ya, yb, yc, yd, ye),

where, for some nonnegative integers Na, N b, N c, Nd, Ne,

xa = (xa
1 , . . . , x

a
Na) ∈ RNa

, ya = (ya1 , . . . , yaNa) ∈ RNa

,

xb = (xb
1, . . . , x

b
Nb) ∈ RNb

, yb = (yb1, . . . , ybNb) ∈ RNb

,

xc = (xc
1, . . . , x

c
Nc) ∈ RNc

, yc = (yc1, . . . , ycNc) ∈ RNc

,

xd = (xd
1, . . . , x

d
Nd) ∈ RNd

, yd = (yd1 , . . . , ydNd) ∈ RNd

,

xe = (xe
1, . . . , x

e
Ne) ∈ RNe

, ye = (ye1, . . . , yeNc) ∈ RNe

,

and we also introduce the notation

za = (xa, ya) , zb = (xb, yb) , zc = (xc, yc) , zd = (xd, yd) , ze = (xe, ye) .

Notice that one or more of these integers could be equal to zero, in which case the corresponding tuples will 
not be taken into account; for example, if Na = 0, then xa, ya and za will disappear from the list. In the 
following, for simplicity we sometimes write (u, v) instead of (xe, ye), and D = Ne.

Let us introduce our assumptions in this general setting.

Assumption 13 (Periodicity). The function H(t, z) is periodic in each of the variables included in 
xa, xb, ya, yc.

The total number of variables in which our Hamiltonian function is periodic is thus 2Na + N b + N c.

Assumption 14 (Lower and upper solutions). There exist constants δ > 0, α = (α1, . . . , αD) and β =
(β1, . . . , βD) with α ≤ β, having the following property. When α − δ̄ ≤ u ≤ β + δ̄, then, for every j ∈
{1, . . . , D},

vj ∂vjH(t, z) > 0 if uj ∈ [αj − δ, αj ] ∪ [βj , βj + δ] and vj 
= 0 ,

and

∂uj
H(t, z) ≥ 0 if uj ∈ [αj − δ, αj ] and vj = 0 ,

∂uj
H(t, z) ≤ 0 if uj ∈ [βj , βj + δ] and vj = 0 .

Assumption 15 (Nagumo condition). For every j ∈ {1, . . . , D} there exist dj > 0 and two continuous 
functions fj , ϕj : [dj , +∞[→ ]0, +∞[ with

+∞∫
fj(s)
ϕj(s)

ds = +∞ ,
dj
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satisfying the following property. When α− δ̄ ≤ u ≤ β + δ̄, then

∂vjH(t, z) ≥ fj(vj) if vj ≥ dj ,

∂vjH(t, z) ≤ −fj(−vj) if vj ≤ −dj ,

and ∣∣∂uj
H(t, z)

∣∣ ≤ ϕj(|vj |) if |vj | ≥ dj .

Assumption 16 (Linear growth). There exists a symmetric 2Nd×2Nd matrix B(t), T -periodic and continuous 
in t, satisfying the nonresonance condition

zd(t) ≡ 0 is the only T -periodic solution of Jżd(t) = B(t)zd(t)

and such that, writing

H(t, z) = 1
2
〈
B(t)zd, zd

〉
+ H(t, z) ,

for every K > 0 there is a CK > 0 with the following property: If α− δ̄ ≤ u ≤ β + δ̄ and |v| ≤ K, then

|∂xbH(t, z)| + |∂ycH(t, z)| + |∂xdH(t, z)| + |∂ydH(t, z)| ≤ CK(|yb| + |xc| + 1) .

The above assumption guarantees that, for any two continuous functions U, V : [0, T ] → RD with

α− δ ≤ U(t) ≤ β + δ for every t ∈ [0, T ] , (64)

setting W (t) = (U(t), V (t)) and

H(t, z) = H(t, za, zb, zc, zd,W (t)) ,

the solutions of

Jż = ∇H(t, z) (65)

are defined on [0, T ], cf. Remark 1.
Let us also introduce a C1-function h : RNb+Nc → R and a regular symmetric (N b + N c) × (N b + N c)

matrix S such that, for some positive constants C1, C2,

|h(υ) − 1
2 〈Sυ, υ〉| ≤ C1 and |∇h(υ) − Sυ| ≤ C2 for every υ ∈ RNb+Nc

,

and let

D = {υ ∈ RNb+Nc

: ∇h(υ) = 0} .

We assume that such a set is compact. Our main result is the following.

Theorem 29. Let Assumptions 13, 14, 15, and 16 hold. Assume in addition that there exists ρ > 0 such that, 
for any two continuous functions U, V : [0, T ] → RD satisfying (64), the solutions of (65) with (yb(0), xc(0)) /∈
D̊ and dist((yb(0), xc(0)), D) ≤ ρ are such that
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(xb(T ) − xb(0), yc(T ) − yc(0)) /∈ {λJ∇h((yb(0), xc(0))) : λ ≥ 0} .

Then system (1) has at least 2Na + N b + N c + 1 geometrically distinct T -periodic solutions z(t) such that

(yb(0), xc(0)) ∈ D̊

and

α ≤ u(t) ≤ β for every t ∈ R .

Proof. With the same procedure adopted in the proof of Theorem 14 in Section 7, dealing with the ze =
(u, v) coordinates, we can introduce a modified problem ruled by a Hamiltonian of the type

Ĥ(t, z) = 1
2
〈
B(t)zd, zd

〉
+ 1

2(|v|2 − |u|2) + ĥ(t, z) .

Moreover, Ĥ can be introduced so to guarantee that every T -periodic solution of Jż = ∇Ĥ(t, z) satisfies 
an a priori bound as in Lemma 16, in particular α ≤ u ≤ β. Then, from Assumption 16, we can introduce 
K > 0 as in (45) so to obtain

|∂xb ĥ(t, z)| + |∂yc ĥ(t, z)| ≤ CK(|yb| + |xc| + 1) ,

when α− δ̄ ≤ u ≤ β + δ̄ and |v| ≤ K. Hence, as in (46), we can find a constant c > 0 such that, if z(t) is a 
solution of Jż = ∇Ĥ(t, z) starting with dist((yb(0), xc(0), D) ≤ ρ with maximal interval of future existence 
[0, ω[ , then

max{|yb(t)| , |xc(t)|} ≤ c for every t ∈ [0, T ] ∩ [0, ω[ .

Again, we can introduce the cut-off function η as in (25) and the Hamiltonian

H̃(t, z) = 1
2
〈
B(t)zd, zd

〉
+ 1

2(|v|2 − |u|2) + h̃(t, z) ,

where h̃(t, z) = η(|yb|)η(|xc|)ĥ(t, z). Using Assumption 16 we get

|∇h̃(t, z)| ≤ C̃

for a certain positive constant C̃.
We can rewrite the previous Hamiltonian as

H̃(t, z) = 1
2
〈
M(t)(zd, ze), (zd, ze)

〉
+ h̃(t, z) ,

where

M(t)
(
zd, ze

)
= M(t)

(
zd, (u, v)

)
=

(
B(t)zd, (−u, v)

)
.

In particular, we can verify the nonresonance condition

zd,e(t) ≡ 0 is the only T -periodic solution of Jżd,e(t) = M(t)zd,e(t) ,

where zd,e = (zd, ze). Our aim is to apply [18, Theorem 1.1] to the modified system Jż = ∇H̃(t, z). Its 
solutions are globally defined on [0, T ].
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Let z = (za, zb, zc, zd, ze) be a solution of Jż = ∇H̃(t, z). As in the above proofs we can show that if 
dist((yb(0), xc(0), D) ≤ ρ, then max{|yb(t)| , |xc(t)|} ≤ c for every t ∈ [0, T ]. Hence, z solves Jż = ∇Ĥ(t, z)
and, setting W (t) =

(
ζ(u(t)), χ(ζ(u(t)), v(t))

)
, we see that (za, zb, zc, zd) is a solution of (65).

If 0 < dist((yb(0), xc(0)), D) ≤ ρ, then

(xb(T ) − xb(0), yc(T ) − yc(0)) /∈ {λJ∇h((yb(0), xc(0))) : λ ≥ 0} , (66)

by the hypothesis of the theorem.
The application of [18, Theorem 1.1] provides us 2Na + N b + N c + 1 geometrically distinct T -periodic 

solutions of Jż = ∇H̃(t, z) satisfying (yb(0), xc(0)) ∈ D̊. Then, following the argument of the previous 
proofs, it can be seen that they are solutions of Jż = ∇H(t, z) as well, and α ≤ u ≤ β. �
Remark 30. Theorem 29 generalizes all three Theorems 14, 17 and 18. For example, let the assumptions of 
Theorem 14 hold. We consider a smooth function σ : R → R such that

σ(s) =
{

0 if s ≤ 0 ,
1 if s ≥ 1

and σ′(s) > 0 if s ∈ ]0, 1[

and, adapting the notations, we define the function h : RNb+Nc → R by

h(p) = −ξ(p)〈A(p− πD(p)), p− πD(p)〉 ,

where

ξ(p) =
{

0 if p ∈ D ,
1
2σ(|p− πD(p)|) if p /∈ D .

Following the proof of [18, Corollary 2.3] one can verify that h satisfies the assumptions in Theorem 29.

Having extended the main theorem in [18] with Theorem 29, we thus have generalized, e.g., the results 
of [9,11,17,30,33,37,38,40].
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