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The continuous spontaneous localization (CSL) model is the most studied among collapse models, which
describes the breakdown of the superposition principle for macroscopic systems. Here, we derive an upper bound
on the parameters of the model by applying it to the rotational noise measured in a recent short-distance gravity
experiment [Lee et al., Phys. Rev. Lett. 124, 101101 (2020)]. Specifically, considering the noise affecting the
rotational motion, we found that despite being a tabletop experiment the bound is only one order of magnitude
weaker than that from LIGO for the relevant values of the collapse parameter. Further, we analyze possible ways
to optimize the shape of the test mass to enhance the collapse noise by several orders of magnitude and eventually
derive stronger bounds that can address the unexplored region of the CSL parameters space.

I. INTRODUCTION

The quantum-to-classical transition is still an open issue
in quantum physics. On top of the theoretical and concep-
tual problems, assessing if and where the transition occurs
is an important experimental challenge. Spontaneous wave-
function collapse models [1–3] offer a possible answer to it.
They introduce a consistent and minimally invasive modifi-
cation to the Schrödinger equation in order to account for
the loss of macroscopic quantum superpositions, by adding
nonlinear and stochastic terms. Their effect is negligible on
microscopic systems, thus preserving their quantum prop-
erties, while it becomes stronger for macroscopic systems,
causing a progressive breakdown of the quantum superpo-
sition principle. The most studied model is the continuous
spontaneous localization (CSL) model [4–6]. This is charac-
terized by two phenomenological constants: the collapse rate
λ and the spatial resolution of the collapse rC. There are two
main theoretical predictions for these constants: the first one,
rC = 10−7 m and λ = 10−16 s−1, proposed by Ghirardi et al.
[7], and the second one, λ ∼ 10−8±2 s−1 for rC = 10−7 m
and λ = 10−6±2 s−1 for rC = 10−6 m, proposed by Adler [8].
Since this is a phenomenological model, the values of these
constants need to be validated through experiments [3]. The
stronger bounds on the CSL parameters come from the non-
interferometric class of experiments [3,9–11]. Such tests aim
at detecting Brownian-like motion, which is induced by the
collapse on all systems [12].

As shown in Ref. [12], such a Brownian-like motion is a
general feature appearing in all models imposing a collapse
in space. Thinking in terms of discrete collapses in time, they
never occur precisely around the mean value of the position of
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the (center of mass of the) system; this means that the mean
position (slightly) changes over time, and in the continuous
case these changes amount to a diffusion process. When ro-
tating systems are considered, this results in a diffusion in the
torque.

In this work, inspired by the experiment in Ref. [13],
we study the CSL effects on the rotational dynamics of a
macroscopic optomechanical system. The setup in Ref. [13]
contains some features that are known to improve the CSL
effect: it consists of a macroscopic system, therefore it ex-
hibits the amplification mechanism built in collapse models
[14], and it has a periodic mass distribution, which magnifies
the collapse in specific regions of the parameter space [15,16].
Finally, we analyze the rotational dynamics of the system as
it should ensure the experimental advantage of having a low
noise environment. Indeed, the rotational degrees of freedom
have a much weaker coupling to seismic and acoustic noise
than the translational ones [17].

We find that the experiment in Ref. [13] provides a bound
on CSL parameters (λ � 10−9 s−1 at rC = 10−4 m) which
is just about one order of magnitude weaker than that de-
rived from the more sophisticated experiment LIGO [14].
Moreover, by suitably modifying the parameters of the ex-
periment, one could be able to push the bounds down to λ �
3 × 10−14 s−1 at rC � 10−7 m. This is a bound comparable
to that obtained from the collapse-induced radiation emis-
sion compared against the data measured in the MAJORANA

DEMONSTRATOR experiment on double β decay [18], and it
becomes the strongest bound at rC = 10−7 m in the case of
the (more realistic) non-Markovian (colored) version of the
CSL model [19].

II. COLLAPSE DYNAMICS AND ROTATIONS

The dynamics of the CSL model is given by a master
equation [1] for the statistical operator of the Lindblad type:
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FIG. 1. Top view of the mass density configurations. The orange
region has density � + �� and the cyan one has density �. (a) Actual
configuration used in Ref. [13]. (b) Simplified configuration; the
angle subtended by the orange sectors is denoted by α, while r and
R represent the inner and the outer radii of the annulus with periodic
mass density.

d�̂(t )/dt = − i
h̄ [Ĥ, �̂(t )] + L[�̂(t )], where Ĥ describes the

standard evolution of the system and

L[�̂(t )] = − λ

2r3
Cπ3/2m2

0

∫
dz[M̂(z), [M̂(z), �̂(t )]] (1)

accounts for the CSL effects. Here, m0 is a reference mass
chosen equal to the mass of a nucleon, while M̂(z) =∑

n mn exp(− (z−q̂n )2

2r2
C

) is a Gaussianly smeared mass density
operator, the sum running over the particles of mass mn of the
system. Since the mass of the electron is much smaller than
that of nucleons, we can safely consider only the latter, thus
setting mn = m0.

We consider a system whose motion is purely rotational. In
the approximation of small rotations of the system under the
action of the CSL noise, L[�̂(t )] can be expanded around the
equilibrium angle [20]. In this case, Eq. (1) reduces to

L[�̂(t )] = −η

2
[θ̂ , [θ̂ , �̂(t )]], (2)

where θ̂ is the angular operator describing rotation around a
fixed axis and η is a function of the mass density of the system.

Following the idea developed in Ref. [21], we explore
how to enhance the CSL effect in this purely rotational case
by optimizing the shape and the mass density distribution
of an hypothetical test mass. Once the geometry of the sys-
tem is suitably chosen, the rotational degrees of freedom are
more advantageous than the translational ones since the first
are subject to less environmental noises. In this work the
choice of the shape is inspired by the disk used as a torsion
balance reported in the experiment in Ref. [13], which is de-
picted in Fig. 1(a). The equations of motion of the pendulum
we are investigating read [14]

d θ̂

dt
= L̂

I
,

dL̂

dt
= −Iω2

0 θ̂ − γ L̂ + τ̂th + τ̂CSL, (3)

where ω0, γ , and I are, respectively, the resonance frequency
of the torsion balance, the damping of the resonator, and the
moment of inertia of the system; τth and τCSL are the thermal
and the CSL stochastic torques. A complete treatment of the
problem should consider extra noise terms due to the measure-
ment. However, we take a conservative approach, and assume

that all nonthermal noises are caused by CSL. Accounting
for other noises can only improve the bounds on the CSL
parameters.

Once the correlation functions of the two torques are eval-
uated, one can derive the thermal and CSL contribution to
the density noise spectrum (DNS), whose form is Sτ (ω) =∫ ∞
−∞ ds e−iωsE[〈τ̂ (t )τ̂ (t + s)〉], where E[...] represents the av-

erage over the collapse and on the thermal noise, while 〈...〉
is the standard quantum average. A common experimental
design involves monitoring the position or the rotation of
the system and then determining the force exerted on it,
expressing it in terms of the DNS. In the case of a mass
with cylindrical symmetry rotating around its axis, the CSL
contribution to the torque DNS has the following expression
(see Appendix A):

SCSL(ω) = λh̄2

4m2
0r4

C

P × Y, (4)

with

Y =
∫ h/2

−h/2
dy

∫ h/2

−h/2
dy′e

− (y−y′ )2

4r2
C ,

P =
∫ ∞

0
dr⊥

∫ ∞

0
dr′

⊥r2
⊥r′2

⊥e
− r2⊥+r′2⊥

4r2
C A(r⊥, r′

⊥), (5)

where the integrals are expressed in terms of the cylindrical
coordinates (r⊥, θ, y), with r⊥ and θ determining the points
of the plane represented in Fig. 1 and y the perpendicular di-
rection. Moreover, we assume a mass distribution of the form
�(r⊥, θ, y) = H (h/2 − y)H (y − h/2)�P(r⊥, θ ) expressed in
terms of the Heaviside function H , with h being the thickness
of the cylinder. Finally, we define

A(r⊥, r′
⊥)

=
∫ 2π

0
dθ

∫ 2π

0
dθ ′�P(r⊥, θ )�P(r′

⊥, θ ′)

× [
2r2

C cos(θ − θ ′) − r⊥r′
⊥ sin2(θ − θ ′)

]
e
− 2r⊥r′⊥ cos(θ−θ ′ )

4r2
C ,

(6)

which explicitly accounts for the angular and radial mass
distribution. To derive a bound, we compare the contribution
to the spectral density due to the CSL SCSL(ω) with that
due to thermal fluctuation, which reads Sth(ω) = 4kBT γ I .
The bound is found by imposing SCSL(ω) � Sth(ω); this is
a conservative approach in which we assume that the CSL
contribution is responsible at most for the entire thermal
contribution to the DNS. If we modify the mass density of
the system without altering the moment of inertia I , then Sth

remains constant. For this reason most of the analysis here is
performed by keeping I fixed.

III. A SIMPLIFIED MODEL

The following analysis aims at enhancing the CSL effect
by introducing a periodic mass density in the angular variable
as depicted in Fig. 1(b). Here, we study a simplified model,
where the system is composed of a single annulus with a
periodic mass density. This is a case with fewer parameters
with respect to that in Fig. 1(a), which refers to the experiment
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FIG. 2. Upper panels: comparison of the values of P for different mass density functions of the simplified model for (a) rC = 10−4 m and
(b) rC = 10−7 m. The values of n taken into consideration are n = 4 (blue lines), n = 10 (red lines), n = 20 (green lines), and n = 100 (orange
lines). The orange line in (a) drops at α = 2π/100, which corresponds to the homogeneous limit. The solid and dashed lines represent the
cases in which ε = 2 and ε = 20, respectively. The moment of inertia is kept fixed at I = 9 × 10−6 kg m2 by changing the value of r. The
thickness of the cylinder is kept fixed at h = 10−4 m. Lower panels: comparison of the values of P × Y for different mass density functions
of the simplified model for (c) rC = 10−4 m and (d) rC = 10−7 m. The parameter h is varying while ε = 2 and I = 9 × 10−6 kg m2 are kept
fixed. In (b) and (d) we only analyzed the case with n = 4, since for rC = 10−7m the effect of the model is much smaller than the case of
rC = 10−4 m, and it is not worth a more detailed analysis.

in Ref. [13]. To evaluate the torque DNS, we introduce the
following mass density function for this configuration:

�P(r⊥, θ ) = H (R − r⊥)

[
�H (r⊥) + ��H (r⊥ − r)

×
n−1

j=0

H

(
θ − 2 jπ

n

)
H

(
2 jπ

n
+ α − θ

)]
, (7)

where � is the mass density of the lighter material (shown
in cyan in Fig. 1), �� > 0 is the difference of mass densi-
ties between the two materials, 2n is the number of sectors
in which the annulus is divided, α ∈ [0, 2π/n] is the angle
subtended by an orange sector, and r and R are, respectively,
the inner and outer radii. We show in Appendix A that the
first term in parentheses, corresponding to the homogeneous
cylinder at the center of the annulus, does not contribute to the
CSL effect. Conversely, the second one does. Thus, according
to Eq. (6), the effect scales with the square of the density
difference between the materials �ρ. Moreover, in the con-
figuration just described, Eq. (6) can be evaluated analytically,

leading to the following expression:

A(r⊥, r′
⊥) = 32r4

C��2

r⊥r′
⊥ rx=r′

⊥,r⊥

H (rx − r)H (R − rx )

×
∞

j=0

I jn

(
r⊥r′

⊥
2r2

C

)
n2 sin2

(
α jn

2

)
, (8)

where Iσ (x) are the modified Bessel function of the first kind
of order σ = j × n. We note that A is zero for α = 0 and α =
2π/n, since these values correspond to a homogeneous mass
density configuration.

We can start our numerical analysis of Y and P noting that,
once the value of the moment of inertia I and the material
densities are fixed, P depends on the angle α, the number n of
heavier (orange) sectors, the inner (r) and outer (R) radii, and
the height (h). This choice follows that performed in Ref. [21],
where the translational moment of inertia, namely, the mass,
was fixed. Such a choice provides a fair comparison be-
tween the proposed configurations, since the value of Sth does
not change. We consider the values rC = 10−4 m and rC =
10−7 m for reference, and compute P for n = 4, 10, 20 and
ε = R/r = 2 and 20 by varying α in the interval [0, 2π/n].
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TABLE I. Optimized values of the parameters obtained from the
numerical analysis for the simplified model.

rC (m) ε I (kg m2) α h (m) n

10−4 2 9 × 10−6 5 × 10−3 10−3 100
10−7 2 9 × 10−6 3 × 10−5 6 × 10−3 4

To keep the value of I fixed, we change the value of r as a
function of the different values assumed by n, α and ε, while
keeping h fixed. Under this assumption, the value of Y is
constant.

Figure 2 shows the dependence of P from α for rC �
10−4 m and rC � 10−7 m. The optimal value of α does not
depend strongly on the value of n, while it does on the value
of rC. This behavior is the same that has been noticed in
Ref. [21]. Indeed, in this case the maximum of the CSL effect
occurs when rC and the arc length subtended by the α sector
are similar. Figure 2(a) shows that there is an enhancement
of the CSL effect on P for rC = 10−4 m when increasing
the number n of sectors. The dependence on ε seems less
impactful: the dashed line (ε = 20) and the solid line (ε = 2)
almost completely overlap for every n. Finally, it is important
to note that the orange curve, corresponding to the annulus
with n = 100 orange sectors, goes to zero for α → 2π/100.
This is expected, since it corresponds to an homogeneous
mass configuration. Figure 2(b) shows the behavior of P for
rC = 10−7 m: the constraints imposed on the geometry (the
choice of the value of r) produce a weaker CSL effect in
comparison with that shown in Fig. 2(a).

In the following numerical analysis, we fix the values of
rC, ε, I , and therefore α to their optimal values, based on the
choice of rC. These are shown in Table I. We then evaluate
P × Y by letting h and n vary, and at the same time we change
r to maintain I constant. This analysis gives us the optimal
value of h from Figs. 2(c) and 2(d) in correspondence with the
two values of rC here considered. In summary, from Fig. 2 it
is possible to identify the optimal values of α and h in order to
enhance the bound at rC = 10−4 m and rC = 10−7 m. Fixing
these parameters to their optimal value (cf. Table I) for rC =
10−4 m, we derive the corresponding bound, which is reported
in Fig. 3 (black line).

IV. COMPARISON WITH EXPERIMENTAL DATA
The experiment [13] that inspired this analysis was de-

signed to test gravity over short distances to find possible
violations of the gravitational inverse square law. In particular,
the experiment was used to constrain a possible additional
Yukawa interaction to the Newtonian potential of the form

FIG. 3. Exclusion plot for the CSL parameters λ and rC from
rotational tests, compared with the existing experimental bounds.
The red area represents the region excluded by the experiment in
Ref. [13]. The black line is the hypothetical upper bound derived
by optimizing the geometry of the simplified model for rC � 10−4 m
and T = 300 K. The purple lines refer to the hypothetical bounds
derived by optimizing the geometry of the simplified model for
rC � 10−6 m at different temperatures T : respectively, T = 300 K
(continuous light purple line), T = 50 mK (continuous dark purple
line), and T = 1 mK (dashed dark purple line). These upper bounds
are compared with the colored areas corresponding to regions already
excluded experimentally. The green regions refer to cantilever-based
experiments with multilayer structures [22]. The blue areas corre-
spond to gravitational wave detectors [14,23,24]: LIGO (light blue)
and LISA Pathfinder (dark blue). The orange areas delimited by the
dashed lines are from spontaneous x-ray emission tests: the darker
one is derived in Ref. [25] and the lighter one is derived with data
from the MAJORANA DEMONSTRATOR [18]. The region excluded by
theoretical requirements is represented in gray, and it is obtained by
requiring that macroscopic superposition should not persist in time
(see Appendix D). The white area is yet to be explored.

V (r) = VN (r)[1 + a exp(−r/�)], where VN (r) is the Newto-
nian potential, and a and � are the free parameters to be tested.
The mass used in the experiment is represented in Fig. 1(a).

The disk considered in the experiment consists of two con-
centric annuli; we then have extended the analysis presented
in the previous section to more than one annulus. In this way
we will show that it is possible to enhance the CSL effect

TABLE II. Parameters of the setup in Ref. [13] (see also Fig. 1): the height h, thermal contribution to the noise Sth, mass density ρ, mass
density difference �ρ, and radii (from the most inner to the most outer); internal radius r for the annulus with 120 sectors internal radius r120

and external R120, and for the annulus with 18 sectors internal radius r18 and external R18, external radius R.

h (m) Sth (N2 m2 s) ρ (kg/m3) �ρ (kg/m3) r (m)

5.4 × 10−5 1 × 10−30 1.2 × 103 19.3 × 103 1.05 × 10−2

r120 (m) R120 (m) r18 (m) R18 (m) R (m)
1.30 × 10−2 2.30 × 10−2 2.35 × 10−2 2.60 × 10−2 2.70 × 10−2
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for different values of rC simultaneously. In the case of two
concentric annuli with different angular periodicity (internal

annulus with n orange sectors, external annulus with m orange
sectors [cf. Fig. 1(a)]), Eq. (6) takes the following form:

A(r⊥, r′
⊥, m, n) = 32r4

C

r⊥r′
⊥

��2
∞

k=1

Ik

(
r⊥r′

⊥
2r2

C

)[
ν=n,m

ν2
∞

h=0

δk,(2h+1)ν

rx=r′
⊥,r⊥

H (rx − rν )H (Rν − rx )

+ mnH (r′
⊥ − rn)H (Rn − r′

⊥)H (r⊥ − rm)H (Rm − r⊥)

( ∞∑
h=0

∞

h′=0

δk,(2h+1)mδk,(2h′+1)n

)]
, (9)

where rν and Rν are, respectively, the inner and outer radii of
the νth annulus, with ν = n and ν = m indicating the internal
and external annulus, respectively. We recall that the terms
representing an homogeneous mass density do not contribute
to the effect. In the second line of Eq. (9) a mixed term is
present; this is where both the inner and outer annuli parame-
ters appear. It vanishes if n and m satisfy the condition (2k +
1)m �= (2k′ + 1)n, ∀k ∈ N,∀k′ ∈ N. In our case, we have
n = 120 and m = 18 that satisfy this condition, thus only the
first line of Eq. (9) contributes. Now, we take the experimental
results reported in Ref. [13] to set an upper bound on the
parameters of the CSL model as discussed in Sec. II. In doing
this, we consider the frequency region between 2 × 10−3 Hz
and 10−1 Hz (the resonant frequency is ω0 = 1.8 × 10−2 Hz)
of the experimental spectrum in which the main noise is the
thermal one. The parameters characterizing the test mass are
summarised in Table III. The corresponding bound is shown
in Fig. 3 with the red area: it has two local minima reflecting
the two different periodicities.

V. DISCUSSION AND FUTURE PERSPECTIVE

In the relevant range of values of rC, the bound derived
from the experiment in Ref. [13] is comparable to that ex-
cluded by the much more sophisticated experiment LIGO
[14]. The considered experiment was not designed to test the
CSL model, therefore it is possible to optimize the geometry
of the system to improve even further the bound in regions
of the parameters plot yet to be explored. For example, in
the simplified model, it is possible to derive a bound with
its minimum at rC = 10−6 m by choosing the parameters as
follows: r = 10−5 m, R = 2 × 10−4 m, n = 300, α = π/n,
h = 10−3 m. If we assume T = 300 K, we obtain the bound
represented with a light purple line. However, by taking T �
50 mK we obtain a stronger bound (dark purple line), which
allows to explore a new region at rC = 10−6 m. The corre-
sponding thermal contribution to the noise has been obtained
by rescaling the experimental thermal noise with respect to
the ratio of the moment of inertia and temperature, namely,
Sth,new = Sth,exp(InewTnew)/(IexpTexp). This bound comes with
the assumptions that it is possible to realize a test mass with
the above parameters, and that thermalizes at 50 mK. Exper-
iments around the temperature of T = 50 mK have already
been carried out [22]. An even stronger bound (dashed purple
line) can be obtained with T � 1 mK, which is a temperature
that it is reasonable to expect can be achieved in near-future
experiments.

To conclude, we summarize the main properties of the pro-
posed technique: a geometry with concentric annuli is capable
of simultaneously probing multiple regions of the parameter
space. The effect of the model is maximum approximately
when the arc length subtended by the sectors is comparable
to rC (this is verifiable analytically for a simple case discussed
in Appendix B). Conversely, there is no advantage in applying
this technique to test rC bigger than the system’s dimension.
Indeed, the effect fades rapidly as rC increases. Our analysis
shows that in principle this technique can offer competi-
tive bounds in the same region (10−7 m < rC < 10−6 m) as
that touched by x-ray detection experiments (orange areas
in Fig. 3). However, the latter experiments, in contrast to
mechanical oscillators, target the high-frequency region of the
CSL noise spectrum and as such are much more sensible to
changes in noise, for example, based on the introduction of
a cutoff [15,26,27]. In such a case, the bounds highlighted
in orange lose strength and the purple bound presented here
becomes the dominant one.
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APPENDIX A: CSL TORQUE
FROM THE MASTER EQUATION

We derive the CSL torque τCSL starting from the master
equation (1). This dynamics can be reproduced by a standard
Schrödinger equation with an additional stochastic potential
of the form [14,28]

V̂CSL(t ) = − h̄
√

λ

π3/4r3/2
C m2

0

∫
dzM̂(z)w(z, t ), (A1)

where w(z, t ) is a collection of white noises (one for each
point of space z) with E[w(z, t )] = 0 and E[w(z, t )w(y, s)] =
δ(t − s)δ(3)(z − y). Such a stochastic potential acts on the nth
particles of the system as a stochastic force:

F̂n = i

h̄
[V̂CSL, p̂n]. (A2)

Then, the position operator can be written as q̂n = q(0)
n + �q̂n,

where q(0)
n is the classical equilibrium position of the αth
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nucleon and �q̂n quantifies the quantum displacement of the
nth nucleon with respect to its classical equilibrium position.
Now, assuming that we are dealing with a rigid body and that
the quantum fluctuations are small with respect to rC, we can
Taylor expand the mass density:

M̂(z) = M0(z) + r−2
C

∫
dx �(x)

× exp
[−(z − x)2/

(
2r2

C

)]
(z − x) · �q̂, (A3)

where �q̂ represents the fluctuation of the position of the
center of mass and M0(z) is a classical function whose form is

not important. Thus, Eq. (A2) becomes

Fn(t ) = h̄
√

λ

π3/4m0

∫
dz

r7/2
C

e
− (z−q(0)

n )2

2r2
C

(
z − q(0)

n

)
w(z, t ). (A4)

Since the geometry of the system studied is cylindrical, as
depicted in Fig. 1, it is easier to handle the problem using
cylindrical coordinates, defined as y, r⊥ = √

x2 + z2 and θ =
arctan(x/z). By using the tangent component of the force
Fθ (x, t ) = F(x, t ) · eθ , we can evaluate the torque along y
acting on the whole system:

τCSL(t ) =
∫

dr⊥dθdy r2
⊥ Fθ (x, t ). (A5)

Starting from the correlation function for Fθ (x, t )

E[Fθ (x, t ) Fθ (x′, s)] = λh̄2

4m2
0r4

C

[
2r2

C cos(θ − θ ′) − r⊥r′
⊥ sin2(θ − θ ′)

]
�(x)�(x′)

× exp

(
− r2

⊥ − 2r⊥r′
⊥ cos(θ − θ ′) + r′2

⊥ + (y − y′)2

4r2
C

)
δ(t − s), (A6)

we can evaluate the correlation function for τCSL as

E[τCSL(t )τCSL(s)] =
∫

dr⊥dθdy
∫

dr′
⊥dθ ′dy′ r2

⊥r′2
⊥ E[ Fθ (x, t ) Fθ (x′, s)]. (A7)

Finally, one obtains the DNS via

SCSL(ω) =
∫ ∞

−∞
ds e−iωsE[τCSL(t )τCSL(t + s)]. (A8)

Now, we analyze the case in which the mass density is independent from θ , i.e., rotationally homogeneous. We consider only
the radial and angular part of the previous integral. We recall the following known identities:

∫ 2π

0
dθ cos(θ − θ ′) exp

(
r⊥r′

⊥ cos(θ − θ ′)
2r2

C

)
= 2π I1

(
r⊥r′

⊥
2r2

C

)
(A9)

and

∫ 2π

0
dθ sin2(θ − θ ′) exp

(
r⊥r′

⊥ cos(θ − θ ′)
2r2

C

)
= 2π

I1

(
r⊥r′

⊥
2r2

C

)
r⊥r′

⊥
2r2

C

, (A10)

where I1 is the modified Bessel function of the first kind. Finally, by replacing Eqs. (A9) and (A10) in Eq. (A7), one finds that
the CSL effect vanishes. This means that CSL has no effect on rotations of a rotationally homogeneous system.

APPENDIX B: STUDY OF A SIMPLE SYSTEM FOR UNDERSTANDING THE CSL AMPLIFICATION MECHANISM

To better understand the relation between the size of the test mass and the maximization of the CSL effects, we consider the
simple example of a half-cylinder of radius R. In this case the expression in Eq. (6) takes the simple form

A(r⊥, r′
⊥) = 32r4

C��2
∞

j=0

I2 j+1

(
r⊥r′

⊥
2r2

C

)
rx=r′

⊥,r⊥

H (R − rx )

rx
= 16r4

C��2 sinh

(
r⊥r′

⊥
2r2

C

)
rx=r′

⊥,r⊥

H (R − rx )

rx
, (B1)

and the corresponding form of P becomes

P = 16r4
C��2

∫ R

0
dr⊥

∫ R

0
dr′

⊥r⊥r′
⊥e

− r2⊥+r′2⊥
4r2

C sinh

(
r⊥r′

⊥
2r2

C

)
. (B2)
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Then, we equate the CSL contribution to the thermal noise, which depends on the moment of inertia of the half cylinder:
I = π

4 h�R4. It follows that the dependence of the corresponding λ can be expressed in terms of λ ∝ [F (R/rC)]−1, where

F

(
R

rC

)
=

2 − 3
(

R
rC

)2
+ e

−
(

R
rC

)2[
−2 +

(
R
rC

)2
]

+ √
π

(
R
rC

)3
erf

(
R
rC

)
(

R
rC

)4 . (B3)

FIG. 4. Dependence of F in Eq. (B2) on the dimensionless ratio
between the radius of the cylinder and the CSL parameter rC.

From the plot in Fig. 4 we can see that the maximum of
the term in parentheses (which gives the optimized value of
R/rC in order to have a stronger bound for λ) is for values
of R/rC � 3.

APPENDIX C: COLORED CSL EVALUATION

We can generalize our calculation to the colored version of
the CSL model (the quantities relative to this model contain
the label C), in which E[wC(z, t )wC(y, s)] = f (t − s)δ(3)(z −
y), where f (t ) is a correlation function with colored spectrum.
By taking f (t ) = δ(t ) one recovers the standard CSL model.
In this case the correlation function for F C

θ (x, t ) is the same
as in Eq. (A6), with f (t − s) substituting δ(t − s). As already
derived in Ref. [15], the colored density noise spectrum can be
defined in terms of the white one, which is shown in Eq. (4):

SC
CSL(ω) = f̃ (ω) × SCSL(ω), (C1)

where f̃ (ω) is the Fourier transform of f (t ). We consider an
exponential correlation function f , which is characteristic of

many physical processes, as already done in Ref. [29]:

f (t − s) = �C

2
e−�C|t−s|, (C2)

with correlation time �−1
C ; by doing this we introduce a cut-

off in the frequency domain. Correspondingly, we obtain the
following DNS:

SC
CSL(ω) = �2

C

�2
C + ω2

SCSL(ω). (C3)

As long as �C � ω � 10−2 s−1, SC
CSL(ω) � SCSL(ω), mean-

ing that the results derived in the main text are not affected by
the cutoff. For comparison, the bounds on the CSL parame-
ters coming from the spontaneous radiation emission set in
Ref. [18] for the MAJORANA DEMONSTRATOR remain valid
only for values of the cutoff �C � 1019 s−1. As discussed
in Ref. [15], a reasonable value for the cutoff frequency is
�C � 1012 s−1, which leaves unaffected the bound derived in
this work, but suppresses the bound set by radiation emission
experiments.

APPENDIX D: THEORETICAL EXCLUDED REGION

We comment on the theoretical lower bound on the CSL
parameters. The bound represented in Fig. 3 was obtained by
considering a graphene disk with diameter of 20 µm (about the
smallest possible size detectable by human eye) and requiring
it to collapse in less than 0.01 s (about the time resolution
of the human eye) [30]. The area is colored with a gradient
since there is some degree of subjectivity in choosing the
system’s size and the time within which the superposition
must collapse. For example, another comparable bound was
found by requiring that a carbon sphere with the diameter of
4000 Å must collapse in less than 0.01 s [31]. Finally, a much
weaker bound was proposed in Ref. [32], by requiring the
collapse of ink molecules corresponding to a digit in a printout
in less than 0.5 s (for a graphical representation, see Fig. 4 of
Ref. [25]).
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