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Abstract

This thesis presents the research conducted as part of the PhD program in Applied
Data Science and Artificial Intelligence, to establish a methodological framework for
identifying, measuring, and interpreting collaborative dynamics that drive innova-
tion, through the application of network analysis.

Collaboration among businesses, research centres, and policymakers is a core
process in innovation; however, the lack of structured data and the heterogeneity of
interactions make this study particularly challenging. The proposed methodology
is applied to datasets that describe relationships among entities (such as compa-
nies, organizations, or individuals) collaborating over time. The data are segmented
into temporal intervals and used to represent collaborations as weighted networks.
By applying standard techniques like centrality measures, influential actors can be
identified, while community detection algorithms reveal cohesive groups. Compar-
ing networks across consecutive time intervals provides insight into the evolution
of collaborations.

The methodology and tools developed were applied to two case studies to demon-
strate their practical relevance. The first investigates innovation dynamics in the
Friuli Venezia Giulia region, emphasizing the interactions among industries, univer-
sities, and research centres as drivers of regional innovation. The second explores
patterns of leadership and collaboration within EU-funded research projects, with
a particular focus on the hydrogen energy sector. These applications highlight the
effectiveness of the proposed approach in extracting meaningful insights from col-
laborative networks and addressing concrete challenges in data-driven innovation
studies.

Solving this applied problem required a novel theoretical and methodological
development, which became an integral and distinctive component of the thesis.
Community detection introduces several well-known challenges, such as result
variability, the need for validation, and sensitivity to input data ordering. The
objective was to achieve a solution that is stable (i.e. minimizing dependence on
stochastic factors) while being able to manage the fuzziness of collaborations and
the presence of outliers.

The solution was found by developing an innovative paradigm, based on the
idea that community detection algorithms generate a single point within a broader
solution space. This solution space must therefore be generated (through an opti-
mized process) and subsequently analysed. The methodology involves generating
multiple solutions until a sufficiently stable solution space is detected, followed,
whenever necessary, by a consensus procedure to obtain a single result. The process
produces a node-level uncertainty coefficient and introduces strategies to effectively
manage outliers, enhancing the interpretability and reliability of the outcomes.

One of the key outputs of this thesis is the communities R package, which pro-
vides the complete algorithm (solution space exploration, consensus community
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detection, and node-level uncertainty quantification). The package facilitates repro-
ducibility, allowing anyone to assess the robustness and reliability of results. The
open-source nature of the software aligns with FAIR principles (Findable, Accessi-
ble, Interoperable, Reusable), promoting transparency and accessibility in network
research.

The proposed methodological contribution extends beyond the specific context
of this thesis and can be applied to other domains of network analysis, offering a
versatile tool for analysing complex and dynamic collaborative phenomena.



Abstract (italiano)

Questa tesi illustra il lavoro di ricerca svolto nel contesto del programma di dot-
torato in Applied Data Science and Artificial Intelligence, con l’obiettivo di definire
un quadro metodologico per l’identificazione, la misurazione e l’interpretazione
delle dinamiche collaborative che promuovono l’innovazione, utilizzando metodi
di network analysis.

La collaborazione tra imprese, centri di ricerca e decisori politici rappresenta
un elemento cruciale per l’innovazione; tuttavia, la mancanza di dati strutturati e
l’eterogeneità delle interazioni rendono lo studio particolarmente complesso. La
metodologia proposta si applica a dataset che descrivono una relazione tra soggetti
(imprese, centri di ricerca, organizzazioni, persone...) che collaborano nel tempo.
I dati vengono segmentati in intervalli temporali ed utilizzati per rappresentare
le collaborazioni come reti pesate. Applicando tecniche standard come le ’misure
di centralità’ è possibile individuare i soggetti più influenti, mentre gli algoritmi
di ’community detection’ consentono di identificare gruppi coesi. Il confronto
tra le reti in successvi intervalli di tempo offre una visione dell’evoluzione delle
collaborazioni.

La metodologia e gli strumenti sviluppati sono stati applicati a due casi di
studio per dimostrarne le applicazioni pratiche. Il primo esamina le dinamiche
dell’innovazione nella regione Friuli Venezia Giulia, evidenziando l’interazione tra
industrie, università e centri di ricerca come motore dell’innovazione regionale.
Il secondo esplora i modelli di leadership e collaborazione nei progetti di ricerca
finanziati dall’Unione Europea, con un focus sul settore dell’energia da idrogeno.
Queste applicazioni dimostrano l’efficacia dell’approccio proposto nell’identificare
informazioni significative all’interno delle reti di collaborazione e nell’affrontare
sfide concrete negli studi sull’innovazione guidata dai dati.

La soluzione di questo problema applicativo ha richiesto un approfondimento
teorico e metodoligico che ha dato origine ad una componente importante ed ag-
giuntiva della tesi. L’identificazione delle comunità, infatti, introduce problem-
atiche ampiamente riconosciute in letteratura, come la variabilità dei risultati, la
necessità di validazione e la sensibilità all’ordine dei dati in ingresso. L’esigenza
è ottenere una soluzione stabile (che riduca al minimo la dipendenza da fattori
stocastici) e al tempo stesso capace di gestire efficacemente la complessità delle
relazioni e la presenza di outlier.

La soluzione è stata trovata definendo un paradigma innovativo, basato sull’idea
che gli algoritmi di rilevazione delle comunità generano un singolo punto all’interno
di un più ampio spazio delle soluzioni. Lo spazio delle soluzioni deve quindi essere
generato (con un processo ottimizzato) e successivamente analizzato. La metodolo-
gia prevede la generazione di soluzioni multiple, fino a raggiungere un quadro
sufficientemente stabile, seguito quando necessario, dall’applicazione di una pro-
cedura di consenso per raggiungere un risultato univoco. Il processo genera un
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coefficiente di incertezza a livello di nodo e introduce strategie per gestire efficace-
mente gli outlier, migliorando l’interpretabilità e l’affidabilità del risultato.

Uno dei prodotti di questa tesi è il pacchetto R communities, che mette a dispo-
sizione l’algoritmo completo (esplorazione dello spazio delle soluzioni, consensus
community detection e la quantificazione dell’incertezza a livello di nodo). Il
pacchetto facilita la riproducibilità dei risultati, consentendo a chiunque di val-
utare l’affidabilità e la robustezza dei risultati. La natura open-source del software
è allineata ai principi FAIR (Findable, Accessible, Interoperable, Reusable), pro-
muovendo trasparenza e accessibilità nella ricerca sulle reti.

Il contributo metodologico proposto non si limita al contesto specifico della tesi,
ma può essere esteso ad altri settori della network analysis, offrendo uno strumento
versatile per analizzare fenomeni collaborativi complessi e dinamici.
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The following is a comprehensive list of acronyms and symbols used in this doc-
ument, presented in the order in which they first appear in the text. Each entry
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Introduction

This thesis presents the research conducted as part of a PhD program in Applied
Data Science and Artificial Intelligence. The central theme of this work revolves
around advancing the field of community detection within complex networks,
specifically addressing the challenges related to the stability and reproducibility of
the detected communities.

Innovation, as a fundamental strategy for organizations and policymakers, pro-
vides a compelling framework to motivate this research. Collaboration between
academia, industry, government and society is essential for achieving technolog-
ical advancements and fostering creative solutions to complex problems. Under-
standing the structure and dynamics of the collaborations is therefore relevant for
policymakers addressing social and economic issues, as well as for organizations
operating in competitive environments.

However, collaboration are difficult to study due to the lack of structured and
comprehensive data, and the deep dynamics of innovation remain elusive.

The proposed approach is to model collaboration as networks, identify leading
organizations and cohesive groups, and track their evolution over time.

The workflow begins by preparing and segmenting the data into relevant time
slices to enable temporal analysis of collaboration patterns. For each time slice, col-
laborations between organizations are represented as weighted networks that reflect
the strength of their relationships. Network analysis techniques are then employed:
centrality measures are used to identify leading organizations, and community de-
tection methods reveal cohesive groups of collaborators. By comparing networks
across time, the evolution of collaboration dynamics can be observed.

However, testing this approach on both artificial and real-world networks re-
vealed several issues. Many algorithms, when applied to complex cases, produced
invalid or inconsistent results, with outcomes changing at each run.
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2 Introduction

Acknowledging variability prompts a fundamental paradigm shift in community
detection. Algorithms should not be viewed as delivering a single, definitive solu-
tion. Instead, each run reveals only one possible outcome within a larger solution
space. Through repeated execution, a clearer understanding of the solution space’s
topology can gradually emerge.

To explore this topic further, a specific parametric network called the "Ring of
Cliques" was developed, capable of generating different communities ranging from
trivially simple to extremely fuzzy. This approach helped identify input-ordering
bias and led to the development of a strategy for managing outliers.

In response to these challenges, an extended workflow were created. This novel
workflow introduces the concepts of exploring the solution space, which can have
a single, dominant or multiple solutions. In the latter case, a consensus procedure
can be applied to deliver a stable solution. Such procedure is derived by other pro-
posed in literature, and enriched by a more nuanced management of the prevalence
of different solution in the solution space, Moreover the consensus approach also
generates “uncertainty coefficients” for each node, which offer a more robust un-
derstanding of the network structure. Finally, the workflow introduces a taxonomy
to manage outliers, with three cases: incorporating, highlighting, or grouping. The
overall performance of the new approach has been tested on artificial benchmark
networks, and resulted in the creation of the communities R package, which is
openly available on GitHub and Zenodo.

Two case studies are presented, based on relevant and largely unexplored datasets.
The first is the Labour Market Network in Friuli Venezia Giulia region, focusing
on the movement of workers across various types of organizations—-such as aca-
demic institutions, research centers, and industries-—as a proxy for the exchange
of knowledge, skills, and innovation. The second is the data on Horizon 2020 and
Horizon Europe programs, focusing on the ’hydrogen energy’ sector. These case
studies demonstrate the effectiveness of network analysis in revealing collaboration
dynamics and contribute to the growing body of open science resources.
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1 Innovation

Innovation is the process of creating new value by introducing new products, ser-
vices or methods that benefit customers or society at large [81, 80]. This process
is crucial for societal development, as it facilitates adaptation to changing envi-
ronments and the resolution of emerging challenges. Innovation plays a particu-
larly significant role in research-industry collaborations, where academic research
provides cutting-edge advancements, while industry brings knowledge of market
demands and practical applications. Together, these efforts drive economic growth
and promote societal progress.

In public research institutions, such as universities and research centres, in-
novation is central to their mission of advancing knowledge and making tangible
contributions to industry and society. These organizations strive not only to ex-
plore theoretical knowledge but also to apply their findings to real-world problems.
By engaging in innovation, they bridge the gap between research and industry,
ensuring that their discoveries contribute to technological advances, economic pro-
ductivity, and social progress. This collaborative effort often results in the com-
mercialization of research, where academic findings are translated into products,
services, or solutions that benefit both the public and private sectors.

For industrial companies, innovation is crucial for maintaining competitiveness
in a fast-paced global market. Companies that continuously innovate are better po-
sitioned to differentiate themselves from their competitors by offering new and im-
proved products or services. In industries where consumer needs and preferences
rapidly evolve, innovation becomes a key driver of success. It allows businesses
to adapt, meet market demands, and provide superior value to their customers.
In this way, innovation not only fosters growth but also strengthens a company’s
market position and long-term sustainability.
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6 CHAPTER 1. INNOVATION

1.1 Knowledge diffusion and innovation

The concept of innovation is well rooted in literature, dating back to Joseph Schum-
peter’s work from the 1930s [86], when it has been recognized as a key driver of
economic growth and transformation. Initially, innovation was seen as confined
within company boundaries and driven by in-house research and development.
However, with globalization and technological advances, this "closed" approach
became limiting.

Technology transfer is a model of collaboration for innovation that involves the
formal exchange of knowledge, technologies, or expertise between organizations,
typically from research institutions to commercial entities. This process is often
structured through contracts, such as licensing agreements, patents, or joint ven-
tures, where intellectual property is transferred under defined legal terms. Technol-
ogy transfer is a relevant driver of innovation, as it allows scientific advancements to
be commercialized and applied in real-world industries, leading to new products,
processes, and services.

While technology transfer is a valuable driver of innovation by facilitating the
commercialization of scientific advancements, it alone is not sufficient.

Open innovation, introduced by Chesbrough, is "a distributed innovation process
based on purposively managed knowledge flows across organizational boundaries"
[16]. In this a paradigm companies integrate external ideas and technologies with
internal ones to enhance their products and services. This approach contrasts with
the traditional "closed" innovation model, which relies solely on in-house research
and development. Open innovation promotes collaboration with external partners,
such as universities, research institutions, suppliers, and customers, to access a
broader range of expertise and resources. This can accelerate product development,
reduce costs, and provide access to new markets and technologies.

Since its introduction, the open innovation model has continued to evolve, adapt-
ing to new technological advancements and shifting business environments, and it
remains a vital and valid concept for interpreting innovation today.

Bertello et al. [6] offer a more recent analysis of open innovation, examining its
research evolution over the past decade using bibliometric techniques and content
analysis to explore the field’s knowledge structure and theoretical developments.
Also, the Economist Impact’s project on open innovation [45] provides an in-depth
analysis of how the open innovation model has adapted to the evolving technolog-
ical and business landscape. It emphasizes the importance of cross-sector collabo-
ration and the role of digital transformation in facilitating the flows of knowledge
between an organisation and the external expertise from universities, research in-
stitutions, suppliers, and customers.
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Similarly, the Open Innovation Briefing Paper [46] emphasizes the critical role
of collaboration in driving innovation. It outlines key benefits such as integrating
diverse expertise, resource sharing, speeding up development, and accessing new
markets. These collaborative efforts foster co-creation and the exchange of ideas,
enabling faster innovation and cost reduction.

In the open innovation paradigm,inbound and outbound knowledge flows are
essential, enabling a company to acquire new ideas, or to exploit a market oppor-
tunity to support innovation within a wider value chain.

1.2 Collaboration as a driver for innovation

As noted by Meireles, Azevedo, and Boaventura [87], collaboration beyond internal
research and development, creates networks that facilitate the exchange of crucial
knowledge and resources.

Collaboration drives innovation at multiple levels. Within organizations, differ-
ent departments collaborate to integrate diverse expertise. Between organizations,
partnerships enable the sharing of complementary assets, such as technology and
market access. Beyond the private sector, collaboration with public institutions,
non-profit organisations and governments addresses broader societal challenges,
like sustainability and public health. Overall, collaboration allows to co-create
value (i.e. to innovate), solving complex problems that would be unachievable in
isolation.

The open innovation model has thus evolved to include frameworks such as the
triple helix and quadruple/quintuple helix models. The triple helix model [26]
highlights the synergy between universities, industry, and government in foster-
ing innovation. The quadruple and quintuple helix models [12] build on this by
incorporating civil society and environmental sustainability into the innovation
process.

As Meireles et al. argue, the existing literature offers valuable insights but lacks
a comprehensive, data-driven framework for understanding large-scale collabora-
tion. Measuring the relation between collaboration and innovation remains chal-
lenging, primarily due to the scarcity of comprehensive data. Collaboration often
happens through informal networks, reserved contracts or ad hoc partnerships,
which are not consistently tracked. consequently, much of the available informa-
tion is either restricted, confidential, or anecdotal.

Additionally, the absence of standardized metrics for innovation complicates
efforts to assess collaboration. Innovation outcomes vary widely — some bring
immediate financial returns, while others offer long-term strategic value, such as
enhancing a company’s reputation or market position. This diversity makes it
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hard to quantify collaboration’s role and impact on innovation. This thesis aims to
addresses these issues, by developing a methodology to capture the existence and
measure the intensity of collaborations, at least in some domains where structured
datasets are available.

From the perspective of individual organizations, understanding the dynamics
of innovation at the regional or international level can be a good opportunity.
Consider, for example, an organization involved in a new hydrogen valley project:
it must not only focus on the development of its own project activities, but it
may benefit from identifying partners and competitors that are engaged in other
hydrogen valleys. This broader awareness may help identifying synergies, risks,
and market opportunities.

Policymakers adopt yet another perspective. They have a strategic vision to align
local, national, and European resources, aiming for medium- and long-term impact
of the innovation ecosystems. Achieving this requires a clear understanding of how
collaborations emerge between industry and research, who the key stakeholders are,
and how these collaborations evolve over time.

1.3 Innovation Networks

Networks provide a powerful framework for modeling collaboration by represent-
ing knowledge exchange between organizations. In these models, nodes typically
represent organizations, while edges represent the collaborative effort or knowl-
edge exchange between them. Identifying nodes is straightforward, but defining
the edges is more complex, as the modeling choices are heavily influenced by the
available data—or the lack thereof. The type of data available determines which
aspects of the relationships between nodes can be represented, how accurately and
under which time frame.

The key challenge is selecting the appropriate data to accurately reflect the na-
ture of collaboration, which directly influences our understanding of innovation
dynamics.

This thesis explores the use of networks as models for collaboration-driven inno-
vation, addressing three key research questions:

1. Which organizations are the most influential in establishing collaborations,
and driving knowledge flows?

2. Are there any meaningful communities within the network?

3. How do knowledge flows, leading roles and communities evolve over time?
These questions are relevant to two main stakeholder groups: project managers

and policymakers. Project managers are interested in understanding their organi-
zation’s position within a broader network, identifying sector leaders, and engaging
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with the primary knowledge flows. Policymakers, on the other hand, aim to eval-
uate whether their regional policies have enhanced leadership roles over time and
whether knowledge flows link organizations in their territories with more innova-
tive and successful counterparts.

Key requirements of this approach are that the results must be independent of
contingent factors (such as software implementation or ordering of the input data)
and tested for validity. Additionally, if multiple algorithmic options are available,
the selection must be data-driven and performance-oriented, ensuring that the
chosen algorithm yields the most interpretable and reliable outcomes.





2 Fundamentals of Network Analy-
sis

This chapter introduces the definitions and notation that will be used throughout
the thesis. It covers fundamental concepts in network analysis, including centrality
measures, partitions, community detection algorithms and temporal analysis. The
examples, Whenever possible, will refer to the context of innovation networks
illustrated in the previous chapter.

2.1 Network definition and notation

A graph, or network, is defined as a set G = {V,E,W}where V is the set of vertices
(nodes), E is the set of edges connecting pairs of nodes and W is the set of weights
corresponding to the elements of E. The number of vertices in the graph is nv = |V |
and the number of edges and weights is ne = |E|.

Formally, V and E are sets, i.e. there is no inherent order in the arrangement of
nodes and edges. However, in practice, the representation of a network in a file
or in a data structure in a programming language is inherently ordered, taking the
form of a data frame or a matrix. This implies that network analysis algorithms
may suffer of biases based on the order in which nodes and edges are processed.
The potential impact of such input order biases will be explored in detail in Section
3.4.

2.1.a Weighted and unweighted networks

The first step in network analysis is constructing the network by identifying its
nodes, edges, and weights. Networks are typically derived from tabular data, which
consists of a list of nodes and a corresponding list of edges—pairs of connected
nodes. A more compact way to represent this information is through matrix.

11
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The adjacency matrix is a mathematical representation of a network that describes
the relationships between its nodes. For a network with nv nodes, the adjacency
matrix A is a square matrix of size nv × nv, where each element Aij represents the
connection between node i and node j. An unweighted matrix is represented by:

In an unweighted network, the elements of the matrix are binary, meaning:

Aij =

{︄
1, if there is an edge between node i and j

0, if no edge exists between node i and j

When not all connections are of equal importance - this is the case for all networks
discussed in the case studies of this thesis - a weighted networks offer a more
nuanced model. The elements of the adjacency matrix in a weighted network ˜︁Aij

are represented by the weight of the edge connecting nodes i and j, or zero if no
connection exists:

˜︁Aij =

{︄
Wij , if there is an edge between node i and j

0, if no edge exists between node i and j

For example, in a network where edges represent knowledge transfer and collaboration-
driven innovation, the weights could reflect the intensity or frequency of collab-
orative efforts between organizations. A higher weight on an edge between two
companies might indicate frequent joint research projects, shared intellectual prop-
erty, or significant knowledge exchange, all of which drive innovation. In contrast,
a lower weight could represent occasional interactions or minimal knowledge shar-
ing.

2.1.b Directed and undirected networks

Networks can be classified as either directed or undirected, depending on the nature
of the relationships between nodes. In undirected networks, the edges represent
mutual or bidirectional connections, meaning the order of nodes in each edge does
not matter. These networks are often used to model symmetric relationships, such
as friendships or collaborations. The adjacency matrix of an undirected network is
symmetric.

In contrast, directed networks use edges where directionality is important, with
edges represented as ordered pairs. These networks model asymmetric relation-
ships, such as hierarchies or web links, where a connection from node u to node v

does not necessarily imply a reciprocal connection from v to u.
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2.1.c One-Mode or Two-Mode networks

The networks discussed thus far are one-mode networks, meaning all nodes are of
the same type and belong to the same set V . In contrast, a two-mode network, also
known as a bipartite network, has two distinct sets of nodes, denoted as V ′ and V ′′,
and edges can only connect a node in u ∈ V ′ to a node in vinV ′′.

For the purpose of this thesis, a one-mode network is a suitable model. However,
in some cases two-mode networks are more easily derived from tabular data. For
example in the case study presented in chapter 7 the construction of a two mode
network is straightforward, with nodes in V ′ as projects, and nodes in V ′′ as or-
ganisations. In such case the matrix representation is in the form of rectangular
matrix B of size |V ′| × |V ′′|. A one-mode network can be obtained from a two-
mode network via matrix product: A = BTB, where BT is the transposed of B.
Figure 2.1 illustrates the two-mode network of organisations by projects (left) and
the one-mode network consisting only of organisation-by-organisation ties (right).

Figure 2.1: Schematic view of a project as two-mode network (left) and as one-mode network
(right). Uppercase letters A, B, C, D, E represent organisations. The green square denoted
with P represents a project. Edge width is proportional to the weight, i.e. the value of
the contribution of each organisation to the project. The sum of weights in the two-mode
network is equal to the sum of weights in the one-mode network.

2.2 Centrality Measures

The network structure can be evaluated using centrality measures such as degree,
strength, and coreness to determine the importance and influence of nodes, each
offering distinct insights.

The degree of a node v, denoted as deg(v) is the simplest centrality measure,
calculated as the number of edges incident to that node. In this context, the degree
reflects the number of projects in which an organization is involved during a given
year. A higher degree indicates that the node plays a more locally central role within
the network, as it has a greater number of direct interactions with other nodes; in the
context of our research, a node with a high degree represents an organisation that
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is, or has been, a partner in many large projects, reflecting its extensive collaborative
involvement.

Strength of a node is the sum of the weights of the edges incident to that node:
s(v) =

∑︁
u∈N(v)wvu whereN(v) is the set of neighbours of v, andwvu represents the

weight of the edge between nodes v and u. In weighted networks, strength provides
a more nuanced measure of a node’s connectivity: with reference to Figure 2.1, all
nodes have the same degree, but for example s(C) ≫ s(A). In this context, the
strength reflects the monetary value of the projects in which an organization is
involved during a given year.

The k-coreness (or coreness) [3] of a node is a measure of the node’s position
within the network’s hierarchical structure, based on its connectivity. Specifically,
a node has a k-coreness of k if it belongs to the k-core of the network. The k-core
is a maximal subgraph in which every vertex has at least degree k, i.e. within
this subgraph, each node is connected to at least k other nodes. In this context,
coreness can be interpreted as the capacity of an organisation to partner with other
organisations that, in turn, possess the same level of collaborative capacity.

Centrality measures are computed individually for each Gy ∈ G and saved as
attributes of the nodes in Gy. This allows to track changes and compare the net-
work structure across different years, providing insights into the dynamics of the
collaborations and the shifting roles of organisations over time.

2.3 Components

In network theory, a component refers to a subset of the network where any two
nodes are connected by a path, and no node in the subset is connected to any node
outside of the component. Formally, a component Ki is a maximal subgraph of G
such that all its nodes are connected internally and disconnected externally from
other components. Let Ki denote the i-th component of a network G. Vertices are
internally connected if

∀u, v ∈ Vi, ∃ a path from u to v in Ki

and externally disconnected if

∀u ∈ Vi, ∀v ∈ Vj , (u, v) /∈ E

If a network consists of a single component, all nodes in the network are reachable
from one another, either directly or through intermediate nodes. This is usually the
case of simple networks, and artificial benchmark networks. However, a common
feature in networks derived from real world data is the presence of a giant compo-
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nent—a single, large subgraph that includes the majority of the nodes. In addition
to this giant component, smaller, disconnected components may exist, though they
typically contain significantly fewer nodes. An example of network with multiple
components is provided in figure 6.2.

Analysing components provides insights into the connectivity of a network, help-
ing to identify isolated groups that may function differently from the core network.
In the context of innovation and knowledge transfer networks, the giant compo-
nent is especially important because it represents the subset of nodes where most
collaborations and exchanges of knowledge occur. Organizations within the giant
component are usually highly interconnected, which facilitates the transfer of in-
novative ideas, research, and technologies. Conversely, organizations in smaller
components are often less integrated into the knowledge network, potentially lim-
iting their access to critical information and innovations.

2.4 Communities

A community is defined as a set of vertices Ci ⊆ V that satisfies a condition: nodes
that belong to Ci are more densely connected within each other than with the rest of
nodes in V .

In practical terms, C is a mapping each node v ∈ V to a label l ∈ {l1, l2, . . . , lk}
that identifies the community to which the node belongs. This mapping can be rep-
resented as a vector of pairs, where each pair consists of a node and its corresponding
label:

C =

⎛⎜⎜⎜⎜⎝
(v1, l1)

(v2, l2)
...

(vn, ln)

⎞⎟⎟⎟⎟⎠
Here, vi represents the i-th node, and li represents the label of the community
to which the node is assigned. In a programming language as R or Python this
structure is well represented by a data frame.

The expression more densely connected can be interpreted in various ways. In this
thesis, it is assumed that the network is a one-mode, weighted and undirected,
and the condition above is interpreted as follows. For a given community Ci, two
subsets of edges are identified:

• Eint, which consists of edges connecting pairs of nodes within Ci,

• Eext, where each edge connects one node in Ci to a node in Cj , with i ̸= j
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The total weights associated with these edges are denoted as wint
i and wext

i re-
spectively. The community Ci is considered valid if the following condition holds:∑︂

wint
i >

∑︂
wi

It is important to note that, according to this definition, a community consisting
of a single node (referred to as a singleton) necessarily has wi = 0∀i , and thus
cannot be considered a valid community under the criteria outlined above. This
scenario frequently arises in real-world networks, where singletons may either be
treated as exceptions to the rule, classified as outliers, or regarded as non-valid
outputs.

Another implicit requirement for a community is that it should be internally
connected i.e. given any pair of nodes u, v ∈ Ci, there must exist a path connecting
them. While this condition may seem trivial, it is not always respected in practice.
For instance, the Louvain (LV) algorithm described in 2.7 can produce communities
that are internally disconnected, thereby violating this principle. This issue is
particularly problematic because some tools, such as the igraph library, do not
automatically check for or flag such cases. As a result, an algorithm may report
a partition that includes communities failing to meet the connectivity criterion
without any indication that the result is invalid. Therefore, it is crucial to perform a
post-algorithm check to ensure the validity of the generated communities, as those
described in 3.2.

2.5 Partitions

A partition P is a set of disjoint communities whose union is equal to the whole
graph. Formally:

P = {C1, C2, . . . , Ck} such that
{︄
C1 ∪ C2 ∪ · · · ∪ Ck = V

Ci ∩ Cj = ∅ ∀ i ̸= j

This implies that P divides the network into non-overlapping groups, where
each node belongs to exactly one group. While this definition is widely adopted
in network analysis, other types of partitions are also possible. For instance, fuzzy
partitions allow nodes to belong to multiple communities with varying degrees
of membership. Similarly, partitions with overlapping nodes permit nodes to par-
ticipate in more than one community. However, in this thesis, the focus will be
exclusively on non-overlapping partitions, as they provide clearer analysis and
interpretation.
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2.5.a Mixing parameter

The fuzziness of a network partitionP can be measured using the mixing parameter
µ defined as:

µ =

∑︁
i d

ext
i∑︁

i d
total
i

where dexti is the external degree of node i, which corresponds to the number
of edges connecting node i to other nodes in different communities, and dtotali is
the total degree of node i. Consequently, µ takes values between 0 and 1. The
mixing parameter, µ, takes low values in networks with well-defined community
structures, where there are minimal connections between different communities.

The parameter µ has some similarities to the condition of validity we previously
defined for individual communities. While the validity condition for communities
uses the sum of the weights, here, for partitions, µ is based on the degree, or the
count of edges, across the entire network.

2.5.b Modularity

Modularity is a widely used as an objective functions for community detection
algorithms. It measures the quality of a partition by comparing the actual density
of internal and external edges to the expected density in a randomized network
with the same degree distribution. Formally, modularity Q is defined as:

Q =
1

2m

∑︂
i,j

[︃
Aij −

didj
2m

]︃
δ(li, lj)

where:

• Aij is the element of the adjacency matrix representing the edge between
nodes i and j,

• di and dj are the degrees of nodes i and j,
• m is the total number of edges in the network,
• δ(li, lj) is the Kronecker delta function that equals 1 if nodes li = lj (nodes i

and j are in the same community), and 0 otherwise.

The modularity score Q ranges from −1 to 1, where a higher value indicates a
better division of the network into distinct communities. A value of Q close to 0

suggests no significant community structure, while a value closer to 1 implies that
the partition captures well-defined and dense communities.

While modularity is a powerful tool for community detection, it has several
limitations, which can affect the accuracy and reliability of its results. One issue
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is the resolution limit, where small communities, especially in large networks,
may be overlooked and merged into larger ones, even if they have meaningful
structures. Moreover, modularity tends to favour balanced partitions, leading to
misleading results in networks where the actual community sizes vary significantly.
Another problem is degeneracy, which occurs when different partitions produce
similar modularity scores, making it difficult to determine the optimal one partition.
This is the basis for the variability of results discussed in chapter 3.1.

Ideally, algorithms should consistently produce a single, valid partition, but in
practice, this is not always the case. The partition may violate the requirement of
internal connectivity, or have a mixing parameter µ > 0.5. Moreover the results
may vary each time the algorithm is run. This will be further explained in Chapter
4.

2.6 Temporal Network Analysis in Longitudinal Data

When data are available as a date-annotated series, it is possible to conduct a time-
based analysis. As introduced in Section 1, this may provide relevant insights
into the underlying dynamics of collaboration over time, through the evolution of
centrality measures and communities.

In such cases, the data can be divided into discrete time intervals (e.g., years)
to create a set of networks G = {G1 . . . , Gt, . . . , Gn}, where each network Gt rep-
resents collaborations or interactions within a specific time interval. The generic
network for any year is denoted as Gt, or Gy, with the subscript y indicating the
corresponding year.

Within each yearly network, centrality measures and partitions can be calculated,
and our primary objective is to understand how they evolve over time. With
reference to node-properties such as strength degree or coreness, we can compare
the trajectory of each node along time.

For communities, the method involves comparing each community Ci, y with
each Cj, y + 1, and determine whether Ci and Cj are disjoint or have a non-null
intersection. If they intersect, the relationship between the two communities is
further classified as either continuing (i.e. Ci shares most of its members with Cj),
or as part of a merge or split. To ensure accurate tracking across different years, we
assign global community labels that remain consistent for identical or continuing
communities.

This method enables the tracking of network properties over time, allowing for
the analysis of evolving patterns in relationships, such as the growth or decline of
collaborations between organizations.

However, it is important to note that nodes may not appear in every year. Conse-
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quently, the size of the network—measured by the number of nodes (nv) and edges
(ne)—can vary across time periods, and this fluctuation must be analysed carefully
to account for changes in network composition and structure.

2.7 Community detection algorithms

Community detection is a crucial step in network analysis, as it helps to understand
the role of an organisation within the network.

A community detection algorithm A(G, ρ) → P is a function that takes as input
a graph G and one or more parameters ρ, and returns a partition P .

Many methods exist to detect meaningful community structures based on the
density of their interconnections [42, 23, 48]. This principle is quite general although
other attachment and aggregation mechanisms are possible in social networks [54].
The main strategies for identifying an optimal partition include the detection of ac-
tors or edges with high centrality [63] optimization-based algorithms [22], statistical
inference using stochastic block models [52], dynamic process-based approaches
such as random walks [84]. Furthermore, a new class of community detection
methods has emerged that exploits node semantics or node attributes in addition
to network topology. According to the taxonomy proposed by [47], these include
graphical model-based community detection, deep learning-based community de-
tection, as well as node embeddings [88].

Although many of these methods focus on partitioning networks into non-
overlapping communities, there is a diverse range of variants, including hierar-
chical clustering [18] [71], which captures structures at different scales, overlap-
ping communities [67] [4] [73] and mixed-membership communities [1], where a
node can belong to more than one community, as well as a combination of over-
lapping and non-overlapping communities [56]. However, probably due to their
ability to produce easily interpretable results, optimisation methods that generate
non-overlapping partitions are still widely used.

Research has investigated detectability thresholds, resolution limits (which limit
the ability to find small communities in large networks), the generation of discon-
nected communities [90], and the computation time and cost on large networks.

While many more algorithms are discussed in the literature, their source code is
not always openly available, limiting their practical application. In this section, we
focus on the community detection algorithms available in the igraph library [21],
that produce non-overlapping partitions: Infomap (IM), Leiden (LD), Louvain (LV),
Label Propagation (LP) and Walktrap (WT). These algorithms have been tested and
discussed by literature, as for exampe in [39], and [76].

LV The Louvain (LV) algorithm [9] optimizes modularity using a greedy approach.



20 CHAPTER 2. FUNDAMENTALS OF NETWORK ANALYSIS

Initially, each node is assigned to a separate community; nodes are then
iteratively moved to the community of one of their neighbours, maximizing
the positive impact on modularity, until no further improvement can be made.
LV yields stochastic results, as it relies on random initialization to determine
the sequence in which nodes are examined, and identifies a local maximum
of modularity. The algorithm has one parameter, called resolution (r) that
controls the size of detected communities: r > 1 leads to smaller and more
numerous communities, while r < 1 leads to larger and fewer communities.
The LV algorithm can take into account edge weights, but is compatible only
with undirected networks.

LD The Leiden (LD) algorithm, as introduced in Traag et al.’s work [90], is a
community detection algorithm primarily designed as an enhancement of the
Louvain method, to mitigate the generation of disconnected communities.
Notably, it shares similarities with the LV algorithm, employing a resolution
parameter and yielding stochastic results. Similarly to the previous algorithm,
also LD can be applied only to undirected networks.

IM The Infomap algorithm [83, 82, 25] exploits the information-theoretic duality
between finding community structure in networks and minimizing the de-
scription length of a random walker’s movements on a network; communities
are aggregated following an approach similar to LV, using a new random
sequential order at each iteration, hence results are stochastic.

WT Walktrap [74] is a hierarchical clustering algorithm based on the assumption
that nodes within a community are likely to be connected by shorter random
walks. Beginning with a non-clustered partition, it merges adjacent communi-
ties minimizing the squared distances between each node and its community,
iterating until no further improvement is possible. A user-defined parame-
ter s defines the length of the random walk to be performed, controlling the
resulting community size.

LP Label Propagation (LP) relies on the notion of proximity or neighborhood re-
lationships, as discussed in [79]. Initially, each node is assigned a unique
community label, then nodes are iterated through in a random sequential
order, and each node adopts the label that is most prevalent among its neigh-
bors. This process continues until each node shares the label of the majority
of its neighbors.

The Louvain algorithm is widely employed for community detection in networks
due to its efficiency, scalability, and the intuitive nature of its greedy method, mak-
ing it worthy of further examination. Since its introduction, numerous refinements
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have been proposed in the literature to address its limitations; three key studies are
presented to illustrate these advancements. The retrospective study “Fast Unfold-
ing of Communities in Large Networks: 15 Years Later” [8] highlights the algorithm’s
limitations (namely the resolution limit, sensitivity to initialization, and susceptibil-
ity to local optima) and presents the main optimizations proposed, which include
generalizations of quality functions and parallelization techniques. The paper also
emphasizes the role of vertex processing order, noting:

“In most implementations of Louvain, the order in which vertices are considered
is random. Although this can be seen as a problem, it does allow us to explore
more possible solutions. If the aim is to obtain an identical partition, any fixed
order can be used.”

The second study, “An Improvement on the Louvain Algorithm Using Random Walks”
[24] introduces the Random Walk Graph Partition Louvain Algorithm (RWGP-
Louvain). This method enhances modularity optimization by adding a random
walk phase, achieving higher modularity on graphs with ambiguous structures.
However, variability and solution multiplicity remain an issue with RWGP-Louvain,
as inherent to all modularity-based approaches. The third study, “An Improved
Louvain Algorithm Based on Node Importance for Community Detection” [2] proposes the
Improved Louvain Algorithm (ILVA). By replacing random vertex processing with
a deterministic order based on degree centrality, ILVA stabilizes results, producing
consistent community structures and higher modularity values across runs. It
must be noted that this approach sidesteps randomness rather than addressing its
underlying impact.

The issues related to variability and node ordering will be discussed further in
Chapter 3, and will be the basis for introducing a new framework for community
detection that explicitly examines and addresses the role of vertex ordering in
shaping results in Chapter 4.

2.8 Benchmark networks

Benchmark networks are synthetic graphs with known properties designed to test
and validate algorithms in network analysis. The use of benchmark networks is cru-
cial because they provide a standardized framework for assessing the effectiveness
of algorithms in tasks such as community detection, and assessment of centrality
indicators.

While benchmark networks usually have a predefined "ground truth" to measure
algorithm accuracy, this thesis assumes no such ground truth exists. Instead, the
focus is on evaluating algorithms based on their ability to reveal meaningful patterns
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and insights, emphasizing performance and interpretability without relying on a
predefined standard.

Three networks will be used for test and performance evaluation: Zachary’s
Karate club network [93], (LFR) and Ring of Cliques (RC).

The Karate network is a real-world example, though small in size, it is not trivial.
It has become a standard test case in the field of community detection due to its
well-documented structure and the interpretability of its communities. Despite its
simplicity, the Karate network provides valuable insights and is frequently used
as a reference point for evaluating the performance of algorithms across different
studies.

In contrast, the LFR and RC networks are artificial benchmark networks de-
signed specifically to test and compare the performance of community detection
algorithms.

LFR LFR is a parametric benchmark network, named after the Authors that first
proposed it Lancichinetti – Fortunato – Radicchi [51]. It is widely used as
benchmark for testing the performance of community detection algorithms as
it is characterised by a power-law distribution of the degree of the nodes (pa-
rameter τ1) and the size of the communities (parameter τ2). For the purpose of
this thesis the LFR benchmarks will be used with parameters N = 1000 nodes,
tau1 = 2, τ2 = 3, an average degree = 10, community size between 20 and 50,
and nominal mixing parameter in the range µ ∈ (0.05, 0.50). Lower values
of mixing parameter µ indicate that the communities are sharply separated
and are therefore easily identified by community detection algorithms; on the
contrary, high values of µ are related to networks with fuzzy communities
that are hard to identify.

RC The Ring of Cliques is another artificial model that offers a simplified, yet
controlled environment to study algorithm performance. RC is a benchmark
network composed of k0 identical cliques of size s, where pairs of cliques are
connected in a regular sequence to form a ring. A family of RCs, with a fixed
s and varying k0, provides a valuable benchmark for community detection
as it ensures a consistent degree of fuzziness with a mixing parameter µ =

1/s!. A RC is apparently a straightforward problem for community detection
algorithms, which can be expected to identify each clique as a community.
However, it can become a more challenging problem when additional nodes
are introduced such as ’bridge nodes’ between pairs of cliques or a central
node connected to each clique. Such additional nodes will result in a slight
increase in µ (while keeping it independent of k0), and create a dilemma for
the community detection algorithm since bridge nodes are equally connected
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to two communities and central nodes are symmetrically connected to each
clique.

It is important to note that while benchmark networks are a convenient tool
for testing and explaining the behaviour of algorithms, real-world networks are
often far more complex and present unique challenges that are not captured by
these simplified models. As a result, benchmark networks are ideal for initial
experimentation and validation, but they may not fully represent the intricacies of
real-world systems.





3 Limitations of community detec-
tion

This chapter examines the limitations of community detection, addressing both
well-known challenges, such as the variability observed across repeated trials (sec-
tion 3.1), and less-explored issues, including the validity of the results (3.2), outliers
(section 3.3, and the influence of input ordering on the outcomes (3.4).

3.1 Variability

In networks with simple topologies, community detection algorithms generally
produce consistent results. However, in networks with fuzzy or complex commu-
nity structures, significant variability can occur both across different algorithms
and within repeated runs of the same algorithm.

Variability is a critical issue that compromises the reliability of conclusions drawn
from community detection analyses, while also hindering the replicability and
verification of results.

The first cause of variability can be explained by the fact that each algorithm
relies on different principles and assumptions about what defines a community.
This issue can be mitigated by standardizing the analysis through the selection of a
single algorithm.

However, the second cause of variability is more complex and occurs specifically
in algorithms that rely on heuristic or randomized methods to explore only a subset
of all possible solutions. Formally, this is expressed by the fact that the algorithm
A(G, ρ) can produce different partitionsPi ̸= Pj , even when using exactly the same
set of parameters ρ is used.

Figure 3.1 illustrates the variability of results obtained by different algorithms
(LV, LD, IM, WT and LP) on a LFR benchmark network characterised by a nominal
value of mixing parameter µ = 0.40. Partitions and number of communities are

25
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different at each trial, and modularity is not sufficient to identify a single optimal
solution.

Figure 3.1: Variability of results of selected community detection algorithms on a LFR
benchmark network with a nominal mixing parameter µ = 0.40. Top: distribution of
the number of communities. Middle: similarity between pairs of partitions. Bottom:
scatterplot modularity and similarity.

These results suggest that relying on a single execution of an algorithm may be
insufficient even for simple tasks such as determining the number of communities
or assessing whether a given pair of nodes belong to the same community.

The relevance of the issue, however, depends on the specific goals of the analysis.
If the focus is on evaluating the overall performance of the algorithm, as for example
in Stoltenberg et al. [89], a common solution is to run the algorithm multiple times
(e.g., t = 100) and compute performance metrics based on the mean and standard
deviation of the results.

On the other hand, if the objective is to answer specific questions like "Do nodes
u and v belong to the same community?", variability becomes a more significant
challenge. The answer may change with each run of the algorithm, leading to
inconsistent and non-reproducible results.
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However, variability should not be seen as a flaw in the algorithm. Instead, it can
provide valuable insights into the network’s underlying structure. As Fortunato
and Hric [41] discuss, variability across repeated trials can be leveraged to improve
results when combined with consensus methods.

Ensemble and Consensus approaches have been proposed based on the idea that
combining results from multiple partitions can improve the stability and reliability
of the outcomes. This will be further discussed in Section 4.2.

3.2 Validity of results

Community detection algorithms always produce a partition of the network, as-
signing each node a membership label linking it to a specific community. However,
they do not provide any feedback on the quality of the result. For the purposes
of this thesis, we will validate the resulting partition by checking the following
criteria:

a. A community should consist of more than one node.

b. A community should be smaller than the entire network.

c. A community should be internally connected

d. A community should be composed of nodes that are more densely connected
with other nodes within their own community than with nodes outside of it.

Further discussion of these issues, including challenges related to exploring the
solution space and the importance of quality checks for validating the results, will
be presented in the sections on Solution Space (Section 4.1) and Quality Check
Functions (Chapter 5).

Criteria a) and b) suggest that P should have a meaningful number of partitions.
In most real-world networks, encountering one or a few singletons can be a normal
outcome, especially if those singletons are isolated components of the network.
Moreover, singletons may be the expected output when they have a special role
within the network, acting as bridges between different communities, as the central
node in Figure 4.8 discussed in Section 4.1.

Nevertheless, some extreme scenarios can arise in the application of community
detection algorithms, both representing degenerate cases where the detection of a
community structure is not possible, and the partition fails on the first and second
quality criteria:

k = nv This scenario occurs when each node is placed in its own community, mean-
ing k, the number of communities, equals nv, the total number of nodes in
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the network. Essentially, every node is treated as a singleton, isolated from all
others. While having one or more singletons is not unusual if these nodes are
disconnected components of the network, this extreme case of "all singletons"
indicates that the algorithm failed to detect any cohesive groupings within
the network.

k = 1 At the other extreme, the algorithm may return a single community, as-
signing all nodes to the same label. This can happen in random or highly
interconnected networks where no distinct clusters or subgroups are present.

In the case of random networks, which lack an inherent community structure
by definition, the most appropriate outcome would be a degenerate partition and
indeed algorithms such as IM and LP to random networks consistently yields k = 1.
However, other algorithms, including LV, LD and WT applied to random networks
may generate partitions with k > 1, erroneously suggesting the presence of multiple
communities.

Criterion c) requires that every community must be internally connected (i.e.,
each node should be reachable from a given other nodes in the community). While
this might seem straightforward, it is not always upheld in practice. For exam-
ple, the Louvain (LV) algorithm, which optimizes modularity, can assign distant,
unconnected nodes to the same community because it prioritizes global structural
patterns over local connectivity [90]. This can lead to communities consisting of
multiple disjoint subgraphs. Similarly, the Leiden (LD) algorithm and the Label
Propagation (LP) algorithm can also produce internally disconnected communities,
as discussed by Sahu et al. [85] and highlighted in some of the examples in Chapter
7.

The issue of disconnected communities is particularly problematic because soft-
ware packages such as the igraph library do not check for or flag such cases. As
a result, a partition that includes communities failing to meet the connectivity cri-
terion without any indication that the result is invalid. Therefore, it is crucial to
perform a post-algorithm check to ensure the validity of the generated communities.

Criterion d) can be assessed using the mixing parameter µ that indicates the
extent to which nodes within a community are connected to nodes outside that
community. As described in section 2.3, µ > 0.5 implies that on average the nodes
have more external than internal connections, which violates the fourth validity
criterion. Hence, partitions with µ > 0.5 should be flagged and discarded.

Additionally, while µ is typically calculated as an average for the entire network, a
more granular analysis could involve computingµ for each community individually.
This would allow for a more detailed assessment of whether certain communities
are poorly defined, even when the overall network’s mixing parameter appears
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reasonable.

3.3 Outliers

An additional focus is to examine the behaviour of community detection algorithms
when confronted with outliers, which are nodes that display significantly different
behaviour compared to the rest of the network.

Outliers can be highly relevant for interpreting the community structure, for
example in a social network it is the case of an individual that is well-connected to
many actors that belong to different communities. Another example can be found
in networks modelling organizations involved in knowledge flows for innovation.
Here, an organization that acts as a bridge between two communities—such as a
consultant or a key service provider—can be considered an outlier, playing a crucial
role in fostering innovation by connecting otherwise disconnected groups.

Not all algorithms have the capability to detect outliers. For example, algorithms
based on modularity maximization consistently form communities with two or
more nodes and suffer from the resolution limit. This issue is well-documented in
the literature. Fortunato and Barthélemy [40] explain how modularity optimization
tends to overlook smaller communities, leading to the merging of outliers into
larger groups. Other algorithms have the opposite behaviour and identify outliers
as singletons.

To categorize these varied approaches, a novel taxonomy is introduced in this
thesis, classifying algorithmic responses to outliers into three categories, illustrates
in figure 3.2:

• Incorporate: In this approach, the outlier is forced to be part of a larger
community, keeping the number of communities k as low as possible.

• Highlight: in this approach, outliers are identified and labelled as singleton.
This allows to analyse their distinctive role, but has the drawback of generating
a high number of communities.

• Group: This involves the identification of individual outliers and label each
of them with a conventional label l0. This allows to identify clearly all outliers,
and at the same time has little impact on k. It must be noted that the group of
outliers is internally disconnected, hence is not a proper community.

in Figure 3.2, a RC with k0 = 4, s0 = 6, bridge nodes, and a central node
provides a clear representation of the three alternative ways to manage outliers,
This example shows clearly how each of the strategies can support the analysis.
Incorporating outliers correctly detects the number of communities (k = k0), but
overestimates s and does not capture symmetry. On the other hand, highlighting
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Figure 3.2: Three alternative strategies to manage outliers: incorporate (left), highlight as
single-node communities (centre), or group into an outliers’ community (right). The top
row shows the network; the bottom row shows a graph of the communities, labelled with
the number of nodes in each community.

perfectly recognizes community size s = s0, but at the cost of overestimating their
number (k = (2k0)+1). Finally, grouping provides a trade-off between the previous
options, capturing community size and symmetry while adding only a fixed bias
to their number (k = k0 + 1).

3.4 Input ordering bias

A less known issue is the input-ordering bias. Although networks are mathe-
matically non-ordered entities, their implementation in any software algorithm is
inevitably ordered (in the form of a list of edges, or a matrix). The order in which
nodes and edges are stored in the practical implementation of the network can affect
the results, as illustrated in [62].

Ideally, community detection algorithms should ignore order, but this is not
always the case in practice. The issue can be highlighted by comparing P = A(G)

with P∗ = A(G∗), where G∗ is generated by a random permutation of edges and
vertices ofG. IfA is unbiased algorithm, we may expected thatP = P∗. In complex,
real-world networks the differences P and P∗ may not be noticed.

The input ordering bias can be devised using the following test: letG be a network
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Figure 3.3: Ring of cliques with central outlier (RCC) and resulting partitions. The RCC
network comprises four cliques and a central outlier node connected to all cliques. Partitions
P1 through P4 assign the outlier to one clique, introducing imbalance. Partition P5 isolates
the outlier as a single-node community, a configuration not all algorithms can produce.

with nodes and edges built in known order, with a sharply defined and symmetric
community structure, and identifiable outliers, such as the RC with nc = 4 and
cs = 5, depicted in Fig 3.3. The central node is connected with equal strength to
four communities, hence one would expect that an unbiased algorithm assigns it to
any of the four communities with equal likelihood.

Most algorithms are likely to generate partitions such as P1, P2, P3, or P4 where
the central node (outlier) is incorporated into one of the cliques. However, these
solutions are inherently flawed, as they unfairly favour one clique over the others.
Alternatively, a solution likeP5, where the outlier forms a separate community, may
appear more equitable. Nevertheless, not all algorithms are capable of producing
such a partition, as it requires accepting the assumption that a single node can
constitute a valid community.

Fig 3.4 shows the results of a test with different algorithms (IM, LD, LV, LP, LV,
WT), over 100 iterations. We observe that most algorithms exhibit a noticeable
input-ordering bias, with the exception of LP. Specifically, when applied to G, IM
assigns the centre to a single-node community, WT always to the same community
C2, while LD and LV strongly favour community C1. In contrast, when applied
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to G∗, all algorithms produce a less biased cenario. Specitically, LV, WT, and LP
consistently integrate the outlier node into an existing community and generate
partitions P1 to P4 with equal likelihood, depending on the random seed. On
the other hand, IM and LD are capable of highlighting the outlier: they not only
generate P1 to P4 with equal likelihood but can also produce P5, although the latter
occurs with a lower probability.

Figure 3.4: An illustration of input-ordering bias, using a RC with nc = 4, cs = 5 with
a central node. Above: label assigned to the central node by various algorithms, applied
t = 100 times to network G. Below: labels assigned to the central node applied to network
G∗, a copy of G randomly permuted at each iteration. Labels: S = the centre is highlighted
as a single-node community, Ci = the centre is incorporated in community i.

Input ordering bias has been discussed in the literature, notably by [14, 44, 15]
mainly focusing on modularity-based methods. In this paper, we aim to generalize
these results to any algorithm, and to devise a procedure that mitigates input-
ordering bias, while improving the stability and reliability of results.



4 Enhancing stability of community
detection

This chapter is taken from the papers "Enhancing Stability and Assessing Uncertainty
in Community Detection through a Consensus-based Approach" [62], currently under
peer review, and "Beyond One Solution: The Case for a Comprehensive Exploration of
Solution Space in Community Detection" [61], accepted for the Complex Networks and
their Applications conference - December 2024.

—
The preceding chapters have addressed the significance of networks as models

for collaboration, discussed fundamental concepts in network analysis, and high-
lighted several limitations. This chapter presents a novel workflow that aims to
overcome the limitations presented in previous chapter, and enhance the reliability
and replicability of community detection. The method is built on the following
principles:

• Solution Space Exploration: Each execution of A(G, ρ) identifies a point
within a solution space. if G is simple and has a clear community structure,
this may represent a single, definitive solution. However, in more complex
scenarios, the solution space may be more intricate and require thorough
exploration. A taxonomy for the solution space is introduced in 4.1.

• Consensus: When multiple solutions emerge, a consensus approach becomes
necessary to synthesize the various possibilities into a unified solution. This
is introduced in Section 4.2.

• Uncertainty is inherent in community detection; therefore, the community
structure should be represented by a list of triplets (v, l, γ), where uncertainty
is explicitly acknowledged.

The proposed workflow is illustrated in Figure 4.1.

33
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Figure 4.1: proposed workflow to identify a stable and valid partition of a network.

4.1 Solution Space

This section explores the importance of examining the solution space in community
detection, highlighting its role in achieving reliable results when dealing with real-
world problems.

As discussed in Section 3.1, a community detection algorithm A(G, ρ) → P is a
function that takes as input a graph G and one or more parameters ρ, and returns
a partition P . Ideally, A should produce a single, valid partition each time it is
applied with the same parameters. In practice, however, for large, dense networks,
Amay produce different partitions, Pi ̸= Pj at each trial.

The solution space S = {P1, . . . ,Pns} is the set of all unique partitions that A
produces across t trials.

The aim of exploring solution space is to determine the minimum number of
trials tc required to confidently assert that S is stable, i.e. it is unlikely to expand
with an additional run of A.

4.1.a Bayesian model

To understand whether S is stable and the relative frequency of each of the so-
lutions found, we created an experimental setting, described in Algorithm 1, to
produce a probability model M under a Bayesian framework. The algorithm imple-
ments a Beta-Binomial model M within a Bayesian framework. The solution space
is explored by successive trials, and each trial is treated as a Bernoulli process,
with the Beta distribution updating the probability of finding new solutions. As
trials progress, the model refines the estimate of pstable, optimizing computational
resources and allowing the experiment to stop when further trials are unlikely to
reveal new solutions.

The model M is composed of a probability distribution θi associated to each
partition Pi ∈ S. The process starts with one solution, and therefore, only one
probability distribution θ1; as new solutions are found, additional distributions are
added to the model, and the process continues until either the solution space has
reached stability, or a maximum number of trials is reached.

Each trial is modeled as a Bernoulli experiment with two possible outcomes:
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Algorithm 1: Solution Space Exploration
Input: Graph G, algorithm A, tmax, τ
Output: Solution space S and Bayesian model M
Initialize: Empty solution space S← ∅;
Initialize: Non-informative prior for Beta-Binomial model M← Beta(1, 1);
for i← 1 to tmax do

Shuffle the network G to generate a random permutation G∗;
Run community detection algorithm A(G∗, ρ) to obtain partition Pi;
if Pi /∈ S then

Add the new solution Pi to solution space S;
Add the new solution Pi to Bayesian model M;

end
Bayesian update of M;
if probability of Pstable > τ then

break ; /* Exit the loop */
end

end
Output: Solution space S and Bayesian model M;

success or failure. In this case, a "success" at trial i occurs when a new, previously
unseen solution is discovered: A → Pi /∈ S. A "failure" happens when an already
observed solution is found again Pi ∈ S.

Specifically, a trial Pi is considered a success when NMI(Pi, Pj) < 1 where NMI
is the Normalized Mutual Information between the new partition Pi and another
partition Pj ∈ S. NMI [17] is a function that accounts for the amount of shared
information between the two partitions, adjusting for chance, and returns values
range from 0 (no similarity) to 1 (identical information content). This means that
we have a success when Pi and Pj have the same informational content, even if the
community labels in each partition may differ.

The probability distributions θ are calculated in a Bayesian framework, using a
Beta-Binomial model. Our prior belief about the unknown probability θ is

θ ∼ Beta(α, β)

whereα and β are the prior parameters, representing our belief about the number of
prior successes and failures, respectively. In our case we start by a non-informative
prior with α = 1 and β = 1. For t independent trials, the likelihood of observing
ns successes is given by the binomial distribution:

P (data | θ) =
(︃

t

ns

)︃
θns(1− θ)t−ns
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At each trial, M is updated using the observed successes and failures: assuming
the k-th solution is a success, the corresponding posterior distribution is updated
incrementing the success count αk ← αk + 1 while all the others are updated
incrementing the failure count β ← β + 1.

From each θi ∈ Mwe can derive a confidence interval [pi,lower, pi,upper] and a point
estimates p̄i of the likelihood of any solution Pi. Specifically:

p̄i = E(Beta(α, β)) = α

α+ β

where E is the expected mean of distribution.
The probability that S is stable after t trials (meaning the t+ 1 trial will not yield

a new solution) can be modeled as pstable = 1− E(β(t+ 2, t− ns+ 2)).
The exploration of solution space continues until either tmax is reached or the

pstable reaches a predefined threshold τ .
An important step in the exploration of S is highlighted in step 4 of the algorithm:

G should be permuted at each trial, to avoid incurring in the input ordering bias, as
discussed in [62]. Moreover, a partition P may be considered invalid for several
reasons: it may be trivial (e.g., k = 1 or k = nv), internally disconnected, or fail to
meet the community definition (i.e. nodes in Ci are more connected to nodes in
any other partitions Cj (where j ̸= i) than within Ci.

4.1.b Taxonomy

Finally, a taxonomy can be introduced to classify S in different categories (depicted
in Figure 4.2), based on ns and the relative frequencies of Pi observed in the trials.

Figure 4.2: Taxonomy for the solution space of generated by a community detection algo-
rithm.

The taxonomy proposed in Figure 4.2 can be formally defined as follows: the
Single category describes the case where the solution space is stable and there is only
one valid partition (ns = 1). The Dominant category occurs when there are multiple
valid partitions (ns > 1), but one partition is dominant, i.e., max(plower) > 0.5. The
Multiple category applies when ns > 1 and max(plower) < 0.5. The Sparse category
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Figure 4.3: Sample networks used in the experiment. Left: A simple ring of cliques. Middle:
The same ring of cliques with an added central node. Right: A variation of the original
ring of cliques with added bridge nodes. While the number of true communities remains
4 in all cases, the additional nodes significantly increase the complexity for the community
detection algorithm.

occurs when a high number of solutions exists (ns ≈ t) each with a low probability
(max(pupper) ≈ 0). Lastly, the Empty category represents a situation where there
are no solutions, or all solutions are invalid, i.e ns = 0.

4.1.c Examples

To illustrate the diversity in the structure of solution spaces, we employ a set of
artificial networks referred to as Rings of Cliques (RC). These networks are partic-
ularly useful in studying the effects of different topological changes on community
detection and network analysis.

The first network represents a very simple case, where the solution is intuitive
with k = 4 communities, making it easy for any algorithm to identify the structure.
However, in the subsequent examples, the addition of a central node or bridge
nodes introduces greater complexity, making the community boundaries less clear.
Finally, we include a random graph, where no community structure is present, to
illustrate the case of an Empty solution space.

Single

In this example, we consider a simple model of a ring of cliques: 4 cliques, each
containing 6 nodes. This basic configuration is used to illustrate the process of
exploring the solution space of community detection algorithms. The threshold for
stability is set at τ = 0.95, and the maximum number of trials is tmax = 200. The
solution space stabilizes at t = 50, meaning that after 50 trials, it is unlikely that
additional trials will yield new solutions or alter the current understanding of the
solution space.

A Bayesian model is applied at each trial, updating the likelihood that the solution
space is stable. As shown in the figure, the ribbon represents the narrowing con-
fidence intervals, reflecting that with more trials, our certainty about the solution
space increases.
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Figure 4.4: Example of a Single solution space. The network consists of 4 cliques, each
containing 6 nodes. Any community detection algorithm consistently identifies the same
solution, yielding 4 distinct communities. This illustrates a stable solution space, where no
variation in community structure is observed across trials.

Figure 4.5: Evolution of the knowledge on solution space. Parameters: tmax = 200, τ = 0.95.
Result: S is stable at t = 50 trials, after which no new solutions emerge. The Bayesian model
is applied at each step, and the narrowing ribbon represents increased confidence as the
solution space stabilizes.

Dominant

The "dominant" solution space is characterized by the fact that multiple indepen-
dent solutions are found, but one particular solution is generated far more fre-
quently than the others. This occurs when a solutio Pi appears in a majority of
trials, with its estimated probability pi > 0.5.

Figure 4.6 shows an example, referring to RCc: Solution 1 is by far the dominant
one (93%), but there are two alternatives with pi = 0.3 and 0.5 respectively.

Figure 4.7 shows how the knowledge about solution space evolves as trials
progress. The parameters are tmax = 200, τ = 0.95, and the search actually
stops at t = 80. It may be tempting to select Solution 1 as the "best" solution, given
its dominant frequency, and to treat it as the only valid partition. However, there
are two important issues to consider.

The first issue is that a more frequently found solution does not necessarily mean
it is the "best" or most optimal partition. The concept of an optimal solution is not
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Figure 4.6: Solutions present in S

intrinsic to the solution space itself but instead depends on the specific analysis
framework. For instance, the "best" solution might be the one with the highest
modularity score, or it may be defined by another objective function relevant to
the network under study. In other words, the determination of the "best" solution
is shaped by external criteria reflecting the goals of the analysis, not merely the
solution’s frequency.

It is possible, and not uncommon, for a community detection algorithm to fre-
quently return a suboptimal solution due to its heuristic or randomized nature.
The optimal partition—according to some metric—might only rarely emerge in the
trials. This highlights the importance of not conflating solution frequency with
quality: a dominant solution, while stable and recurring, may not represent the
most accurate or desirable partition for the problem at hand.

Figure 4.7 illustrates this concept, showing how one solution dominates in fre-
quency but does not inherently indicate that it is the best according to any specific
criterion. The Bayesian framework aids in quantifying the dominance, but the
decision about which solution is optimal remains a separate analytical judgment.

The second issue is the input ordering bias. As shown in Figure 4.7, there is a
clear symmetry in the network, but the solutions do not reflect this symmetry. One
solution is favored over others with no apparent reason. This bias arises because the
algorithm is sensitive to the ordering of nodes and edges in the software object used.
However, the mathematical definition of the network treats it as an unordered entity.
The algorithm’s sensitivity to input order is an undue bias, as it relies on the inherent
ordering of data structures (like vectors) used in the software implementation.

The input ordering bias can be addressed by randomly permuting the order of
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Figure 4.7: Evolution of the knowledge on solution space. Parameters: tmax = 200, τ = 0.95.
Result: S is stable for t = 80, with 3 solutions.

edges and nodes within the network at each trial. This technique is applied in the
next example to eliminate the bias and ensure a more accurate representation of the
solution space.

Multiple

When the same RCc network is analyzed using the same community detection
algorithm, but with random permutations applied at each trial, the solution space
changes dramatically. In this case, the algorithm identifies four distinct solutions,
which respect the inherent symmetry of the network. These solutions are equally
likely, with each having a mean probability of approximately 0.25. Specifically, the
Bayesian interval estimates for each solution overlap, indicating no clear dominance.
Figure 4.8 illustrates this balanced solution space.

In this experiment, we set tmax = 200 τ = 0.95, with the stability criterion being
met around t = 100. The evolution of the solution space as a function of trials is
different from the previous case and is shown in Figure 4.8. Here, the algorithm
gradually converges on the four equally likely solutions, which more faithfully
represent the community structure.

This more balanced outcome reflects the symmetry present in the network, where
no solution is preferred over the others. The central node, which connects the oth-
erwise symmetrical substructures, cannot be preferentially assigned to any specific
community. It is, therefore, more appropriately treated as an outlier or a singleton
community. This highlights that the small differences in modularity between these
solutions do not capture the true nature of the solution space.

In cases like this, a consensus-based approach to community detection might be
more suitable. For example, the central node could be consistently identified as its
own singleton community, rather than arbitrarily included in one of the symmetrical
subgroups. Such an approach would better represent the underlying structure of
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Figure 4.8: Solutions present in S

Figure 4.9: Evolution of the knowledge on solution space. Parameters: tmax = 200, τ = 0.95.
Result: S is stable at t = 100. The credible intervals are overlapping, hence all four solutions
are equally likely.

the network, as it avoids forcing the central node into a community where it does
not naturally belong.

This example demonstrates how permuting the network at each trial can lead to
a more accurate and faithful representation of its community structure. In contrast
to the "dominant" solution space, the "multiple" solution space provides a more
nuanced view, revealing the potential symmetries and allowing for more equitable
consideration of different partitions. It also underscores that relying solely on
modularity as a measure of quality may not fully capture the complexity of the
solution space.

In the following case we show a further example of multiple solution space, with
different features. we consider a ring of cliques (RC) network with additional bridge
nodes. This configuration introduces a new form of symmetry, where the network
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Figure 4.10: Solutions present in S

can be partitioned in two equivalent ways: clockwise or counterclockwise. The
solution space, in this case, consists of eight distinct solutions. Among these, two
solutions dominate with equal probabilities of p ≈ 0.36, while the remaining six
solutions have much lower probabilities, with p < 0.1. Figure 4.10 illustrates this
distribution.

his structure is well captured by the solution space. The two prominent solutions
reflect the natural symmetry of the network, corresponding to the clockwise and
counterclockwise partitioning of the ring. The minor solutions represent variations
that are less aligned with the network’s core structure, thus appearing far less
frequently.

In this scenario, if the analytical framework requires a single solution, several
approaches could be taken. One option is to apply a consensus method that in-
corporates all eight solutions, balancing the contributions of both the dominant
and minor partitions. Alternatively, a more focused consensus approach could be
adopted by restricting the analysis to the two most frequent solutions (Solutions
1 and 2), ensuring that the symmetry of the network is respected while simplify-
ing the solution space. Figure 4.10 shows how the solution space evolves as trials
progress, with the two dominant solutions quickly emerging as stable and the mi-
nor solutions remaining infrequent. Stability is typically reached at around t=120,
with parameters t max =200 and tau =0.95.
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Figure 4.11: Evolution of the knowledge on solution space. Parameters: tmax = 200,
τ = 0.95. Result: S is stable at t = 130 trials. There multiple solutions, divided in two
groups.

This example underscores the flexibility of the solution space framework in cap-
turing the true structure of the network. By considering multiple partitions, par-
ticularly in cases of symmetry, the analysis can better represent the underlying dy-
namics of the network. When the solution space contains symmetrically equivalent
solutions, as in this case, consensus approaches can help in selecting or combin-
ing solutions, ensuring that important structural properties are preserved without
over-simplifying the analysis.

Sparse

In the "sparse" solution space, we analyze a ring of cliques (RC) network with
a central node and additional bridge nodes, which results in a highly complex
structure with numerous potential partitions. Despite the network’s underlying
symmetry, no dominant solution emerges in this case. Instead, the solution space is
characterized by a high number of distinct solutions, each occurring with very low
probability. Specifically, the probability pi for each solution is close to zero, and the
number of solutions is nearly equal to the number of trials.

For this experiment, we limited the number of trials to t=50 for the sake of
clarity in visualizing the figures, but even at t=500, the stability criterion is not met.
Figure 4.12 shows the distribution of solutions, where all are equally unlikely and
no single solution stands out.

The evolution of the solution space is depicted in Figure 4.12. Unlike the previous
cases, the solution space does not stabilize, even with an increased number of trials.
As more trials are conducted, new solutions continue to emerge, reflecting the
complexity of the network’s structure. This lack of stability is a defining feature
of the sparse solution space, where the algorithm struggles to converge on a few
stable solutions due to the inherent variability and multitude of possible partitions.
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Figure 4.12: Solutions present in S

Achieving a single, reliable solution in this scenario can be challenging due to
the high variability in the solution space. One potential approach is to apply a
consensus method across all solutions, combining the information from multiple
partitions to create a more robust final result. Alternatively, simplifying the network
by pruning unnecessary elements, such as peripheral nodes or bridges, could help
reduce the number of possible partitions. After pruning, the network could be
reanalyzed, potentially yielding a clearer and more stable solution space.

This example demonstrates that, in cases of high complexity where the solution
space is sparse and no clear solution emerges, additional steps such as consensus
building or network pruning are necessary to arrive at a useful interpretation of
the network’s structure. The Bayesian framework helps identify when the solution
space is unlikely to stabilize, guiding further efforts to refine the analysis.

Empty

In the "empty" solution space, we analyze a random graph with no inherent com-
munity structure. When applied to such a graph, community detection algorithms
still return partitions, but the partitions are entirely inconsistent across trials, with
each partition being different from the others. What distinguishes the "empty" case
from the "sparse" case is the degree of similarity between the solutions.

In the sparse case, even though many solutions are found, there is still some un-
derlying community structure, no matter how fuzzy, leading to similarities between
the partitions. This can be quantified using the Normalized Mutual Information
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Figure 4.13: Evolution of the knowledge on solution space. Parameters: τ = 0.95 and
tmax = 50. The value has been chosen to improve clarity of the figure. The solution space
is not stable and new solutions appear also at t = 1000.

(NMI) between pairs of solutions, which measures how similar the partitions are.
In the sparse case, NMI scores between pairs of solutions typically remain above
0.5, indicating that the solutions share some common structure.

By contrast, in the empty case, the solutions generated by the algorithm are
completely dissimilar, with NMI scores falling below 0.5. This lack of similarity
indicates that the partitions are random and carry no meaningful information about
the structure of the graph. Figure 4.14 shows this stark contrast between the sparse
and empty cases, with similarity coefficients clearly separating the two types of
solution spaces.

Figure 4.14: Similarity between solutions S for the case of sparse (left) and empty (right).

Another useful metric for identifying an empty solution space is the mixing
parameter µ, which measures the ratio of inter-community connections to intra-
community connections as described in chapter 2. In this "empty" scenario, there
is no structure in the graph, and thus, no valid partitions can be identified. As a
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result, the solution space S is effectively empty, meaning that none of the returned
partitions can be considered valid or meaningful representations of the network.
This is in contrast to the sparse case, where despite the complexity and variability,
there are still some valid partitions emerging from the analysis. More examples of
solution space are illustrated in the case studies in chapters 6 and 7.

4.2 Consensus Community Detection

The exploration of the solution space is essential for determining whether a unique
solution exists. In cases where multiple solutions are present, it becomes necessary
to identify one that is both valid and stable. An example will clarify the importance
of this process. Consider the goal of understanding how knowledge flows to enable
and foster innovation, as discussed in Chapter 1. Collaborations are modelled using
networks, where communities, or cohesive groups, play a key role in analysis and
interpretation. However, discovering communities is not the primary objective;
instead, it is a means to better understand and interpret the network’s community
structure. Interpreting the results in a reliable and reproducible way requires that
A(G, ρ)→ P that meets the following conditions:

• P should be composed of 1 < k < nv communities
• each C ∈ P should be valid according to the four criteria explained in section

3.2;
• P should be insensitive to the specific formulation of the network within the

given programming environment.
• P should not vary upon repeated executions of A;

The first two criteria can be addressed through a quality check on P and C,
flagging inconsistent results and excluding them from further analysis. Ordering
bias and variability are mitigated by exploring the solution space, leaving only the
issue of multiple valid solutions to be addressed.

One approach is to identify as "optimal partition" Px ∈ S that maximizes an
objective function such as modularity. This approach naturally fits with modularity-
based algorithm such as LV or LD, but is less consistent with algorithms as IM, WT
and LP. This approach yields a single solution, but not a stable one, as it may
be surpassed by subsequent iterations of the procedure. Moreover, in the case
of degeneracy (section 2.4) there may be a large number of solutions with only
minimal differences in modularity. Relying solely on modularity to choose one of
these solutions can result in the loss of valuable information. Furthermore, there
exists no clear correlation between modularity optima and any features relevant
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for interpretation, such as the number of communities, as illustrated in Figure 3.1
(bottom row).

Consensus offers a more robust option to enhance stability. For example, as
discussed in [50], distinct partitions obtained by repeated execution of A are used
to build a co-occurrence matrix, D, in which each entry dij signifies the proportion
of partitions in which vertices i and j are clustered together. D is then interpreted
as an adjacency matrix for a new network, representing the community structure.
In the new network, edges below a chosen threshold p are pruned, and the pro-
cess is repeated recursively until D is a block-diagonal matrix, where each block is
interpreted as a community. The process is effective but has the disadvantage of
requiring multiple iterations. Moreover, pruning can generate disconnected nodes
(vertices that have all edges below the threshold p), hence a threshold p = 0.6 is rec-
ommended. To maintain network connectivity, disconnected nodes are aggregated
into the neighbouring community with the highest weight. The algorithm’s abil-
ity to identify communities of varying scales and its capacity to properly identify
outliers is limited by this assumption, as discussed in section 3.3.

Another approach can be found in [38] and [39], which propose the Ensamble
Louvain algorithm to find stable communities. As with the previous method, a
co-occurrence matrix D is calculated, and communities are identified by pruning
with a threshold p = 0.9. Selecting such a high threshold value returns more
stable results without necessitating recursive iterations but has the drawback of
overlooking outliers, i.e. all the nodes that fall above the threshold. Depending on
the network topology and the objective of the analysis, outliers may be a negligible
minority.

Other consensus approaches have been presented, to address specific issues. For
example, [11] is focused on incomplete networks, and leverages a link-prediction
strategy to infer missing intra-community edges and casting results with a con-
sensus approach. Ensemble methods involve combining the outcomes of multiple
community detection algorithms. One notable example is the ensemble method
introduced by [15] that aims to identify overlapping and fuzzy communities.

The novel Consensus Community Detection (CCD) procedure introduced in this
thesis can be applied to any community detection algorithm, to produce a sta-
ble representation of communities, improving the reliability and interpretability
of results. Specifically, CCD addresses the four challenges outlined in section 4,
dealing with the validity of detected communities, reducing variability across dif-
ferent algorithm runs, quantifying the residual variability, dealing with outliers,
and mitigating the input-ordering bias.

While the variability of clustering results is widely explored in data science, its
direct application to network community detection has been less emphasised in the
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literature. Notably, the specific considerations regarding the handling of outliers
and input-ordering bias in the context of community detection have been largely
overlooked.

CCD is based on the assumption that uncertainty is an inherent characteristic
of community detection, hence it should be carefully assessed and incorporated
into the results.

For this reason, the results of a CCD algorithm produce an extended representa-
tion of a community as a vector of triplets node, label and uncertainty coefficient:

˜︁C =

⎛⎜⎜⎜⎜⎝
(v1, l1, γ1)

(v2, l2, γ2)
...

(vn, ln, γn)

⎞⎟⎟⎟⎟⎠
where l is the community label assigned to node v, and γ ∈ [0, 1] is a coefficient

that represents the uncertainty associated with the assignation of ci.
γ = 0 indicates that the corresponding node is always co-occurring in the same

community of at least one other vertex of the community. Higher values of γ

indicate that the vertex was associated with different communities at each trial of
the community detection.

The CCD approach builds on previous work but differs in three major aspects:
addresses input-ordering bias, and introduces the novel uncertainty coefficient γ

serving as a concise representation of residual variability at the node level, which
can be subsequently leveraged for in-depth network analysis.

CCD provides a comprehensive framework to augment the efficacy of exist-
ing community detection algorithms, hence it maintains compatibility with legacy
methods, enabling straightforward comparisons with prior analyses and estab-
lished literature.

Given the issues discussed in this chapter and the exploration of the solution
space in Algorithm 1, a general workflow for identifying a single, stable community
structure is proposed. This workflow is built on the premise that variability in
community detection outcomes is inherent and must be managed.

The algorithm accepts as input a graph G, a community detection algorithm A,
a maximum number of iterations tmax, and a similarity threshold τ . The output
consists of a final, stable partitionP, representing the detected community structure,
and a vector of uncertainty coefficients which quantifies the uncertainty associated
with each node.

The first step in the workflow involves exploring the solution spaceS by executing
the community detection algorithm A multiple times, as outlined in Algorithm 1.
Following this, a quality check is performed on S: partitions are tested against the
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validity criteria described in Section 3.2, and their pairwise similarity is measured.
This ensures that the subsequent analysis focuses only on meaningful and well-
formed partitions.

The final step processes the solution space S according to the taxonomy defined
in Section 4.1.b, which classifies S into four cases:

• Empty: If no valid partitions are found, the algorithm returns NA, indicating
no valid result is available.

• Single: If S contains only one valid partition, that partition is returned as the
final output.

• Dominant: If one partition clearly dominates the others, this dominant parti-
tion Pdominant is selected as the final community structure.

• Multiple or Sparse: If no dominant solution exists, the algorithm applies
a consensus procedure to generate a consensus partition Pconsensus, which
represents the most stable community structure derived from the available
solutions.

This workflow offers flexibility by adapting to various solution space scenarios,
ensuring robustness in identifying community structures even when the solution
space is complex or ambiguous. The workflow could be further refined by intro-
ducing a specific case for "sparse" solutions, such as performing a manual review of
the partition similarity or intervening on the network structure—e.g., by pruning
edges to reduce network density and reapplying the detection algorithm to seek a
clearer solution.

The pseudocode for the complete complete community detection procedure is
represented in Algorithm 4.2.

The previous algorithm calls for a functionCCD(S, p), which refers to the method
used to identify stable community structures in the case of multiple or sparse
solution spaces .

The algorithm takes as input a solution space object S, along with two thresh-
olds: p, which determines whether two nodes should be considered part of the
same community, and nmin, which sets the minimum size for grouping outliers as
described in 3.3.

The first step of the CCD algorithm is removing from S that marked as invalid.
This is optional, but recommended as it ensures that only valid solutions are in-
cluded, thereby improving the reliability of the consensus results.

Next, the algorithm computes a co-occurrence matrix D that tracks how fre-
quently pairs of nodes appear in the same community across different solutions.
Each solution is weighted according to its frequency in the solution space, and the
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Algorithm 2: Community Detection
Input: Graph G, algorithm A, tmax, τ , p
Output: A single, stable partition ˜︁P
Explore solution space: generate S as per algorithm 1
Quality check on S : identify valid partitions and similarity
Proceed according to solution space taxonomy: switch Proceed according to
the type of S do

case "Empty" do
Output NA

end
case "Single" do

Output the single solution Psingle

end
case "Dominant" do

Output the dominant solution Pdominant

end
case "Multiple" or "Sparse" do

Output ˜︁P ← CCD(S, p)
end

end

matrix is updated by adding the appropriate weights whenever two nodes co-occur
in the same community.

The third step involves identifying consensus communities. The matrix D is
processed in sequence, starting from the first row. Nodes having a co-occurrence
score greater than the threshold p are considered part of the same community.
Typical values of the threshold are p0.6 to incorporate outliers and obtain large
communities, or p = 0.9 to highlight outliers. An uncertainty coefficient γ is
calculated for each node, as the mean value of coefficients D[i, j] within the group.
If no other nodes meet the threshold, the node is marked as a singleton, representing
an isolated node with no strong community ties.

Finally, the algorithm handles outliers. If the algorithm detects communities with
fewer than nmin nodes, those nodes are re-assigned to a default label and grouped
together as outliers . This ensures that small, isolated communities do not skew the
results or are incorrectly interpreted as significant community structures. To avoid
grouping, nmin should be set to 0.

The output of the algorithm is a data frame that associates the node identifiers,
their assigned community labels, and uncertainty coefficients. This provides a
comprehensive view of both the community structure and the confidence in each
node’s assignment, offering a robust and interpretable analysis of the network.
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The pseudocode for the CCD algorithm is represented in Algorithm 4.2.
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Algorithm 3: Consensus Community Detection
Input: Solution space object SSP, threshold for community detection p,

threshold for grouping outilers, nmin

Output: Partition ˜︁P
1) Filter valid trials
SSP← SSP such that SSP.valid == TRUE;
2) Calculate co-occurrence matrix
α← weight of each solution P ∈ S ;
D ← 0 matrix of size n_nodes× n_nodes;
foreach solution P ∈ S do

foreach community C in trial P do
foreach node ni ∈ C do

foreach node nj ∈ C do
Increment D[i, j] by α[t] ;

end
end

end
end

3) Identify consensus communities
Initialize all nodes as not processed Initialize community label i← 0
while there are unprocessed nodes do

i← i+ 1;
D ← subset of D representing all unprocessed nodes;
C ← {nodes u | D[1, j] > p}
if |C| > 1 then

Calculate uncertainty γ for each node in C
end
else

Mark the node in C as a singleton Assign γ ← 0.0
end
Assign community label i to all node(s) in C Assign community size n to
all node(s) in C Mark all nodes in C as processed

end

4) Handle outliers:
if ncmin > 0 then

Identify all nodes within communities Ci such that n ≤ nmin Re-assign
the community label ci ← 0;

end
return Partition ˜︁P
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4.3 Performance of CCD

In this section, we show the results of tests on CCD to address all the issues shown
in 4, namely its ability to reduce the variability of results, assess uncertainty, identify
outliers, and reduce the input-ordering bias. Finally, we evaluate the performance
of CCD in identifying a known community structure in three cases: (1) Karate
network; (2) a family of RC networks with a fixed µ, but varying numbers of
communities, and (3) a family of LFR networks with varying value of the mixing
parameter µ.

4.3.a Reduction of variability - parameter t

CCD operates through a repetitive process executed for a designated number of
iterations, denoted as t. Our first test concentrates on evaluating residual variability
in relation to t, a critical decision involving a trade-off between cost (increasing
linearly with t) and performance. We utilize two metrics: the count of identified
communities (k) and the similarity between all pairs of partitions, assessed with
NMI.

The test is conducted on LFR benchmark networks with parameters as outlined
in section 4 and a nominal mixing parameter of µ = 30. CCD was implemented
with p = 0.6, q = 0.5, and t values ranging from 5 to 500. Stability, measured as
the similarity between pairs of partitions, ideally yields S = 1.0. Results, depicted
in Figure 4.15, reveal that CCD significantly enhances stability compared to single
trials, with stability increasing as t increases, gradually reducing dispersion and
approaching the optimal value. Notably, each algorithm reaches a plateau at a
distinct value of t. In practical applications, the choice of an optimal t involves
a trade-off between result stability and computational resources, where the right
balance depends on the interplay between the network characteristics, the chosen
algorithm and the analysis objectives.

4.3.b Assessment of residual variability

To illustrate how CCD assesses uncertainty associated with nodes, we apply it to
the Karate network mentioned in section 2. We use the LV algorithm with t = 100,
and different values of the resolution parameter r to control the granularity of
community structure.

Results are shown in Figure 4.16, where some nodes are labelled: H and A (leaders
of the two main communities) and node 10 (that may belong to either community,
depending on the chosen value of r and the random variation that characterizes each
trial). The first three panels display the results of single trials, demonstrating how
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Figure 4.15: Stability of CCD results as a function of the number of iterations t =
(10, 20, 50, 100, 200, 500). Results of single trials t = 1 are highlighted in red. Test on a
LFR network with µ = 0.3, CCD parameters p = 0.8 and q = 0.5. Stability is measured by
the similarity between pairs of solutions S(Ci, Cj) = mean(NMI(Ci, Cj)).

the number of communities k depends on the resolution parameter r. For example,
in panel a) with r = 0.5 the result is k = 2; in panel b) with r = 0.8 there are two
distinct results: k = 3 (in 61% of trials), and k = 2 (39% of trials). As per panel c),
setting resolution r = 1.0 leads to k = 4. In the context of unsupervised machine
learning, all the above results are equally valid. However, even when the value of
the r is fixed, there is still significant variability that hinders interpretation. Panel
d) shows how CCD can improve the interpretability: selecting r = 0.5, p = 0.9 and
q = 0.5, produces a simple community structure with k = 2 and highlights node
10 as an outlier, with an uncertainty γ = 0.75, expressed by the color scale. Panel
d) showcases a more nuanced application of CCD, where the resolution parameter
assumes a different value at each trial, randomly selected in the range [0.5, 1.0]

which allows identification of k = 3 communities at different scales, and associates
different levels of uncertainty to each.

Uncertainty is assigned at each node, but it can be summarised at the network
level by the number of nodes with some degree of uncertainty or by the mean value
of the uncertainty coefficient. Figure 4.17) shows both measures for a set of LFR
with the characteristics presented in section 4; specifically the top row shows the
fraction of nodes with γ > 0 and bottom row the median value of γ; the shaded area
is delimited by 10th and 90th percentile. In both cases uncertainty increases non-
linearly with the mixing parameter. However the behavior is different according
to the algorithm: in this example, IM identifies the communities with almost no
variations for µ < 0.4, then increases sharply. Other algorithms show a growing
number of uncertain assignations at low values of µ, and plateau for µ > 0.3.

Figure 4.18 shows a possible use of γ in unraveling network structure, in conjunc-
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Figure 4.16: Example of CCD Zachary’s Karate network (weighted). a) single trial of
Louvain with resolution r = 0.5. b) single trial of LV, r = 0.8. c) single trial of LV, r = 1.0.
d) CCD with t = 100 and r = 0.5 e) CCD with t = 100 and r ∈ [0.5, 1.0]. Uncertainty
coefficient γ is available only for CCD.

tion with a centrality centrality measures - in this example k-coreness, a centrality
measure introduced by [49]. Specifically, a k-core is a subgraph where all vertices are
connected to at least k other vertices within that subgraph; the k-coreness of a node
indicates the highest k-core that the node belongs to. The example is calculated on
a LFR benchmark network with µ = 0.4, and communities are detected CCD with
parameters t = 1000, p = 0.6, and q = 0.5. The scatterplot depicts k-coreness against
γ; two examples of nodes with high uncertainty are highlighted by the arrows,
and their respective neighborhood (at geodesic distance equal to 2) is depicted as
subgraph. A single-node component is represented in the top left corner of the
scatterplot(k − coreness = 0 and γ = 1).

Finally, a specific test is carried out to assess the ability of different algorithms to
assign an appropriate value of γ. To ensure a reproducible example with a known
expected value, the test is conducted on a family of RCs with clique sizes s = 6 and
a number of cliques in the range k0 ∈ {5, . . . , 100}. CCD was applied using p = 0.8,
q = 0.5 and t = 200. The test is focused on the bridge nodes, i.e. nodes that connect
two successive cliques within the ring, and can be expected to have γ = 0.5. Fig 4.19
shows that most algorithms behave well within a limited range of k0, and that for
larger rings there are remarkable variations depending on the algorithm. IM and
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Figure 4.17: Assessment of uncertainty with CCD on a family of LFR benchmark networks.
Top: median value of γ; the shaded area is delimited by 10th and 90th percentile. Bottom:
fraction of nodes with γ > 0.

LP produce very stable results even for k0 = 100.

4.3.c Assessment of performance

In this section we evaluate the performance of CCD in identifying a known com-
munity structure, focusing on the ability to determine the number of communities
and measuring the similarity between the inherent community structure and the
outcomes of community detection.

The first test evaluates the ability of CCD to detect communities of varying sizes,
on a family of LFR benchmark networks with parameters presented in section 4,
Performance is assessed with two indicators: NMI (similarity between the iden-
tified communities and the built-in communities), and the normalized number of
communities (k/k0). CCD parameters are t = 1000, q = 0.5

Figure 4.20 compares the performance of the three different strategies to man-
age outliers discussed in section 3.3: for low µ, the curves overlap, indicating no
significant deviations; however, as µ increases, differences emerge. Incorporating
outliers (p = 0.6) leads to the best performance in terms of k/k0, but may hin-
der performance measured by NMI, especially with modularity-based methods LV
and LD. On the other hand, highlighting (p = 0.8) generates several single-node
communities, resulting in lower performance in terms of k/k0, but may offer an
advantage in the interpretation of results. Finally, grouping (p = 0.8 and all outliers
re-assigned to community 0) provides a trade-off between the previous options: it
captures community structure (NMI comparable to previous case), still allows for
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Figure 4.18: A coreness-uncertainty diagram on LFR network withµ = 0.40. The subgraphs
on the left and right of the diagram show the neighborhood of two nodes with high
uncertainty.

Figure 4.19: Uncertainty coefficient assigned by CCD to the bridge nodes of a family of RC
benchmark networks. The expected value µ = 0.5 is highlighted by the horizontal dotted
line.

the identification of outliers and adds smaller errors to k/k0.
Figure 4.21 compares the performance of CCD (incorporating outliers, p = 0.6)

with single trials and the recursive consensus community detection technique in-
troduced by Lancichinetti et al. [50]. When measuring performance with NMI,
consensus methods are outperforming single trials, especially as µ increases, al-
though with different behavior depending on the algorithm. Performance mea-
sured with k/k0 is comparable for WT and IM and diverges for the other methods
as the fuzziness of the benchmark network approaches the limit value of µ = 0.5.

The second test is focused on the effectiveness of identifying small, non-overlapping
communities of the same size. The test is performed on a family of RC where k0
varies between 5 and 100; CCD parameters are p = 0.8, q = 0.5, the network is
shuffled and outliers are grouped according as discussed in 3.3.

Results are shown in Figure 4.22, representing the number of cliques k0 versus the
number of communities detected by CCD (red), recursive consensus (green), and
single trials (blue). A dashed line shows the ideal result k = k0. For low values of k0
all methods perform well: the number of communities identified by the algorithm
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Figure 4.20: Performance of CCD on a family of LFR benchmark networks, using different
strategies to manage outliers: group (blue), highlight (red) or incorporate (green).

k is equal (or very close) to the number of cliques in the network k0. However,
as k0 increases, most algorithms tend to agglomerate neighboring communities,
resulting in k < k0, with behavior depending on the algorithm. In all cases, CCD
is more accurate than recursive consensus and single trials, even for small cliques
s = 3 arranged in large rings up to k0 = 100. In addition, CCD generally provides
more stable results, as indicated by the vertical error bars in each plot, and allows
the identification of outliers and quantitative assessment of uncertainty.
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Figure 4.21: Performance of CCD on a family of LFR benchmark network. CCD (red), is
compared to recursive consensus (black) and single trials (yellow).

Figure 4.22: CCD results on a family of RC, compared to recursive consensus and single
trials.





5 R-package ’communities’

This chapter introduces the R package "communities," which was developed as part
of the research work. The package provides tools for the analysis and visualization
of communities within networks, building on the functionality of the R-igraph
library and incorporating the methods discussed in previous chapters. Its key fea-
tures include the generation of benchmark networks, exploration of solution space,
consensus community detection, analysis of community structure and enhanced
visualization.

5.1 Functions to generate benchmark networks

5.1.a Function: make_clique

The make_clique function generates a fully connected subgraph (i.e., a clique) of a
specified size and assigns a community label to all nodes in the clique. This function
is used by make_ring_of_cliques(). The function constructs a clique using a given
number of nodes and allows the assignment of a common community label to those
nodes. The returned graph is undirected and can be combined with other cliques
or networks. The function accepts the following arguments:

clique_size An integer representing the number of nodes in the clique. All nodes
will be fully connected to each other.

comm_label A numeric or character value used to assign a community label to the
nodes within the clique. The label will be stored in the

Return value: An undirected igraph object representing a clique, where all nodes
are connected. Each node will have a community attribute assigned according to
the comm_label parameter.

61
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Usage:

# Create a clique of size 5 with community label 1

clique <- make_clique(clique_size = 5, comm_label = 1)

5.1.b Function: make_ring_of_cliques

The make_ring_of_cliques function generates a graph composed of multiple fully
connected subgraphs (cliques) arranged in a ring. Optionally, "bridge nodes" can be
added between cliques, and a central node can be added that connects to all cliques.
Rings of cliques are useful for testing community detection algorithms. By varying
the parameters, one can create toy examples of controlled complexity, ranging from
trivially simple to particularly challenging. Arguments:

num_cliques An integer specifying the number of cliques to include in the ring.

clique_size An integer specifying the number of nodes in each clique.

add_center A logical value indicating whether to add a central node that connects
to all cliques. Default is TRUE.

add_bridges A logical value indicating whether to add bridge nodes between
adjacent cliques in the ring. Default is TRUE.

Value: the function returns an igraph object representing the ring of cliques.
Each node is assigned a community label, with cliques labeled as C1, C2, ...,
bridge nodes labeled as B1, B2, ..., and the central node labeled as A. The graph
is undirected, and all edges have a weight of 1.

Usage:
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# Create a ring of 4 cliques, each with 5 nodes,

# with both bridges and a central node

ring_of_cliques <- make_ring_of_cliques(

num_cliques = 4,

clique_size = 5,

add_center = TRUE,

add_bridges = TRUE)

# Create a ring of 3 cliques, each with 4 nodes,

# without bridges or a central node

ring_of_cliques_no_center <- make_ring_of_cliques(

num_cliques = 3,

clique_size = 4,

add_center = FALSE,

add_bridges = FALSE)

5.2 Functions for solution space and quality check

5.2.a Function: solutions_space

The solutions_space function generates the solution space for a given community
detection algorithm by running multiple trials. Each solution is assessed based on
various performance metrics. The function accepts the following arguments:

g An igraph object representing the network.

algorithm A string specifying the community detection algorithm to be used.

trials The number of trials to generate different solutions. Default is 100.

Return value: A list containing the solution space, including the community
membership matrix ssp$M and associated dataframe ssp$data.
Usage:

# Generate solution space using a specified algorithm

g <- make_ring_of_cliques(3, 5)

solution\_space <- solutions_space(

g,

algorithm = "LV",

trials = 50)
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5.2.b Function: quality_check

The quality_check function calculates several quality metrics to evaluate the ro-
bustness and integrity of the detected communities in the network. This function
updates the results generated by the solution_space function. The function ac-
cepts the following arguments:

solution_space A vector of community labels assigned to each vertex in the graph.

g An igraph object representing the network to be analyzed.

Return value: A dataframe containing various quality metrics for the detected
communities.
Usage:

# Perform a quality check on detected communities

g <- make_ring_of_cliques(3, 5)

ssp <- solutions_space(g, algorithm = "LV", trials = 50)

ssp <- quality_check(ssp)

5.2.c Function: plot_sol_space

The plot_sol_space function visualizes the solution space for a community detec-
tion algorithm. This plot helps users identify patterns, clusters, or optimal solutions
based on various performance metrics. The function accepts the following argu-
ments:

solution_space A matrix or dataframe representing the different solutions (rows)
and their associated metrics (columns).

title A string specifying the title of the plot. Default is "Solution Space".

Return value: A plot visually representing the solution space, where each point
corresponds to a solution with its performance metrics.
Usage:

# Example

g <- make_ring_of_cliques(3, 5)

ssp <- solutions_space(g, algorithm = "LV", trials = 50)

ssp <- quality_check(ssp)

plot_sol_space(ssp)
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5.2.d Function: empirical_mu

The empirical_mu function calculates the mixing parameter "mu" for a given net-
work, which represents the proportion of edges that exist between different commu-
nities. This parameter is often used in community detection algorithms to quantify
how mixed or modular a network is. The function works by ensuring that all edges
have weights (defaulting to 1.0 if no weights are provided). It calculates the number
of edges that connect nodes from different communities and computes the propor-
tion of such edges relative to the total number of edges in the graph. The function
accepts the following arguments:

g Anigraphobject representing the network. The edges should ideally be weighted,
but if not, all edge weights are set to 1.0 by default.

community_labels A vector of community labels, ordered according to the vertices
in g. These labels define the community membership of each node in the
graph.

Return value: A numeric value representing the empirical mixing parameter (mu),
which is the ratio of inter-community edges to the total number of edges.
Usage:

# Create a simple graph and calculate the mixing parameter

g <- make_ring_of_cliques(3, 5)

community_labels <- V(g)$community

mu <- empirical_mu(g, community_labels)

print(mu)

5.2.e Function: internally_connected

The internally_connected function calculates how internally connected each
community in the network is. It returns the number of connected components
for each community, which helps evaluate the structural integrity of the communi-
ties. The function accepts the following arguments:

g An igraph object representing the network to be analyzed.

community_labels A vector of community labels, ordered according to the vertices
in g. These labels define the community membership of each node.

Return value: A numeric vector where each entry corresponds to the number of
connected components within a community.
Usage:
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# Example of calculating internal connectivity

g <- make_ring_of_cliques(3, 5)

community_labels <- V(g)$community

internal_conn <- internally_connected(g, community_labels)

print(internal_conn)

5.3 Functions for consensus community detection

5.3.a Function: co_occurrence

The co_occurrence function computes a normalized co-occurrence matrix based on
the solution space provided by the input object ssp. The output matrix D indicates
the extent to which pairs of nodes appear together in the same community across
different trials.

The function filters out invalid trials based on the valid column in the ssp$data
dataframe. It then computes the co-occurrence matrix D by iterating through each
trial and identifying pairs of nodes that belong to the same community. The
contribution of each trial to the co-occurrence matrix is weighted by the median
values in the ssp$data dataframe, normalized by the total sum of medians.

For each valid trial, the function identifies the nodes that belong to the same
community and increments their co-occurrence count. The co-occurrence matrix D
is symmetric, reflecting the fact that if one node co-occurs with another, the reverse
is also true. The diagonal entries are set to 1 to indicate perfect self-co-occurrence
for each node. The function accepts the following arguments:

ssp A list containing the solution space, including the community membership ma-
trix M and associated dataframe, as generated by the solution_space function.

Return value: A symmetric matrix CO where each entry represents the weighted
co-occurrence count of node pairs across all trials.

Usage:

g <- make_ring_of_cliques(3, 5, add_bridges = TRUE)

ssp <- solutions_space(g, algorithm = "LV", trials = 50)

ssp <- quality_check(ssp)

D <- co_occurrence(ssp)
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5.3.b Function: consensus_communities

The consensus_communities function identifies consensus communities from a co-
occurrence matrix, grouping nodes into communities based on a threshold p for
pairwise co-occurrence. It also calculates an uncertainty coefficient (gamma) for each
node, reflecting how confidently each node belongs to its community. The function
accepts the following arguments:

D A symmetric co-occurrence matrix where each entry represents the pairwise
co-occurrence of nodes across multiple trials.

p A numeric threshold for defining communities. Nodes are considered to be in
the same community if their pairwise co-occurrence value is greater than p.

group_outliers A logical value indicating whether single-node communities (out-
liers) should be grouped together. Default is FALSE.

verbose A logical value indicating whether to print detailed progress information.
Default is FALSE.

Return value: A dataframe containing the following columns:

• name The name of each node.
• cons_comm_label The consensus community label assigned to the node.
• gamma The uncertainty coefficient for each node, calculated as 1 - mean(di)

over all nodes that co-occur at least once in the same community.
• comm_size The size of the community to which the node belongs.
• single A boolean indicating whether the node is part of a single-node com-

munity (outlier).

Usage:

g <- make_ring_of_cliques(3, 5, add_bridges = TRUE)

ssp <- solutions_space(g, algorithm = "LV", trials = 50)

ssp <- quality_check(ssp)

D <- co_occurrence(ssp)

consensus_partition <- consensus_communities(

D,

p = 0.5,

group_outliers = FALSE)
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5.4 Functions for analysing community structure

5.4.a Function: make_community_network

The make_community_network function constructs a new network where each node
represents a community within the original network. Edges between nodes repre-
sent the aggregated connections between those communities.

The function accepts the following arguments:

g An igraph object representing the original network to be analyzed. The network
must include the following attributes: V(g)$community, an integer vector
representing the community assignment for each node, and E(g)$wA numeric
vector representing edge weights. If the network is unweighted, set E(g)$w
to 1.0 for all edges.

Return value: An igraph object representing the community network with the
following attributes:

• V(Gc)$membership Community labels corresponding to the ones in the orig-
inal network.

• E(Gc)$w Edge weights representing the sum of edge weights between com-
munities in the original network.

• V(Gc)$size The number of nodes from the original network G that belong to
each community in Gc.

Usage:

# Create a community network from the original iGraph object

community_network <- make_community_network(g)

5.4.b Function: comm_label_as_strongest

The comm_label_as_strongest function assigns community labels to nodes based
on the strongest edge (i.e., the highest-weight edge) connecting each node. This
approach helps assign nodes to communities based on their most significant inter-
action. The function accepts the following arguments:

g An igraph object representing the network.

Return value: A vector of community labels for each node in the graph.
Usage:
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# Example of assigning community labels based on strongest edge

community_labels <- comm_label_as_strongest(g)

5.5 Functions for visualization

5.5.a Function: plot_solutions

The plot_solutions function generates plots of all the solutions in the solution space
of a given network. Plots are arranged in a grid layout, allowing for the visualization
and comparison of solutions in a single frame. Each solution is plotted using the
Fruchterman-Reingold layout to ensure consistent node positioning across all plots.
Communities in each solution are highlighted based on the membership matrix
sol_space$M. If the device is set to "png", the function saves the plot as a .png file,
otherwise, the plot is rendered on the screen.

Arguments:

g An igraph object representing the network graph to be plotted. Each node
corresponds to an entity, and edges represent relationships between them.

sol_space A list containing the solution space with the following components:

data A matrix, where each row corresponds to a distinct solution (e.g., a commu-
nity detection result).

M A matrix of node memberships for each solution. Each column corresponds to
a different solution, and each entry specifies the community to which a node
belongs in that solution.

device A string indicating where the plot should be rendered. Possible values are
"screen" (default) to display the plot, or "png" to save the plot to a .png file.

filename A string specifying the filename for saving the plot if device = "png".
The default is NULL.

width An integer specifying the width of the .png file in pixels. The default value
is 1600.

height An integer specifying the height of the .png file in pixels. The default value
is 1600.

res An integer specifying the resolution of the .png file in DPI. The default value
is 300.
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Return value: NULL. The function does not return any values. It creates plots either
on the screen or in a .png file, depending on the specified device parameter.
Usage:

# plot to screen:

plot_solutions(g, sol_space)

# save the plot as a PNG file:

plot_solutions(g,

sol_space,

device = "png",

filename = "solutions.png")

5.5.b Function: layout_distance_comm

The layout_distance_comm function calculates a layout for graph visualization
that emphasizes the distances between communities. This layout helps visually
differentiate between communities based on their structure and connections. The
function accepts the following arguments:

g An igraph object representing the network.

membership A vector of community memberships.

eps A small threshold to determine proximity between nodes.

Return value: A matrix of node positions for plotting the network.
Usage:

# Example layout based on distances between communities

distances <- layout_distance_comm(g, membership, eps = 0.15)



6 Innovation patterns within a re-
gional economy

This chapter is largely taken from the paper "Innovation patterns within a regional economy
through consensus community detection on labour market network" [59].

—
Universities and research centres play a crucial role in generating and dissemi-

nating knowledge through education, research, spin-offs, technology transfer and
participation in open innovation processes, as discussed in chapter 1. While con-
nections between companies have been widely analysed through the concept of
"clusters" based on spatial proximity, industrial similarity, or competition [75], this
chapter introduces another knowledge dissemination mechanism: worker mobility
between employers.

The use of labour market data to study inter-links between companies is based on
the observation that when employees change jobs, they move to another employer
geographically close, requiring similar skills and offering better conditions [7]. The
analysis can be global, such as [68], which uses labour market data from the social
network LinkedIn, or regional, such as [54], which use data from Italy’s regional
labour market observatories.

In this thesis, anonymized data from the Friuli Venezia Giulia labour market of-
fers the opportunity to study knowledge transfer within the region with a network-
based analysis. Broadly, the workflow starts by constructing a network, examining
its fundamental structure through components, centrality indicators, and commu-
nities. Given that multiple valid solutions may exist within the solution space, a
consensus approach is employed, with uncertainty coefficients helping to identify
key organizations.

The results highlight the prominent role of research institutions in Friuli Venezia
Giulia’s innovation landscape. These institutions lead extensive communities within
the network and maintain strong connections with industrial organizations, under-
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scoring their significance in regional innovation dynamics.

6.1 Innovation in Friuli Venezia Giulia region

The case study presented in this chapter is focused on Friuli Venezia Giulia because
both Area Science Park and the University of Trieste are interested in understanding
the region’s innovation dynamics, and a relevant dataset on the regional labour
market is available.

Friuli Venezia Giulia (FVG) is a region in northeastern Italy, bordered by Austria,
Slovenia, and the Adriatic Sea. Despite its relatively small size, the region plays a
significant role in Italy’s economy and innovation landscape.

The regional economy is driven by a dynamic ecosystem of small and medium-
sized enterprises (SMEs) known for their innovation and high-value-added activ-
ities. These SMEs form the backbone of the regional economic structure, comple-
menting the presence of several large, globally recognized enterprises. Notable
companies include Danieli, a leader in steelmaking technology, and Fincantieri,
one of the world’s largest shipbuilding groups. These firms not only generate
substantial economic activity but also drive innovation through advanced research
and development. Other prominent players such as Generali Italia, Electrolux, and
Biofarma Group further bolster the region’s reputation as a hub of industrial and
technological excellence.

Despite its modest population and geographic size compared with other Ital-
ian regions, FVG exerts an influence in innovation. The region places a strong
emphasis on research and development, particularly in advanced manufacturing,
biotechnology, and information technology. This focus is supported by a network
of research institutions and universities, fostering a fertile environment for scientific
and technological advancement.

Its status as an autonomous region allows for tailored support of economic de-
velopment and innovation initiatives. A prime example of this is the Scientific
and Innovation System of Friuli Venezia Giulia (SiS FVG), a collaborative initiative
designed to enhance the region’s scientific and technological capacities. SiS FVG is
supported by partnerships between the Friuli Venezia Giulia Autonomous Region,
the Italian Ministry of Foreign Affairs, and the Italian Ministry of University and
Research, aiming to promote socio-economic growth through innovation. Another
example of the impact of regional authonomy and border position is the con-
struction of relevant cross-border innovation initiatives, such as the NAHV project
discussed in chapter 7.

SiS FVG includes a diverse array of institutions that collectively contribute to
the region’s robust scientific and innovation ecosystem. Among its members are
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the University of Trieste, the University of Udine, the International School for Ad-
vanced Studies (SISSA), national research institutions such as Area Science Park,
the National Institute of Oceanography and Experimental Geophysics (OGS), the
regional sections of Italian National Research Council (CNR) National Institute
for Astrophysics (INAF), and National Institute of Nuclear Physics (INFN). Addi-
tionally, international research institutes like Elettra - Sincrotrone Trieste S.C.p.A,
and the International Centre for Genetic Engineering and Biotechnology (ICGEB),
the Abdus Salam International Centre for Theoretical Physics (ICTP), TWAS - The
Academy of Sciences for the Developing World are integral to the system.

According to the European Innovation Scoreboard (EIS) [33], Friuli Venezia Giu-
lia ranks among the higher-performing regions in Europe, classified as a Strong
Innovator. EIS is an annual report that offers a comparative assessment of the inno-
vation performance of EU Member States, other European countries, and regional
neighbors. Its objective is to assist countries in identifying areas for improvement
and fostering innovation policies.

The region’s smart specialization areas include agrifood and bioeconomy, metal
mechanics and integrated housing systems, smart health, maritime and shipbuild-
ing, as well as cultural and creative industries and tourism.

6.2 Data and methodology

The labour market refers to the supply and demand for labor, where employers seek
to hire workers and individuals offer their skills and services in exchange for wages.
It encompasses all economic activities related to employment, such as hiring, job
transitions, and contract terminations. In this context, labor market data provide
a comprehensive view of employment dynamics, capturing both the creation and
cessation of jobs across various sectors.

Labour market data encodes the information as events that can be either the be-
ginning of a new employment contract, or its termination. Each event is associated
with a date, an employee, an employer, a professional profile and a location. The
full dataset includes 1155342 events involving 74317 local units of companies of
all sectors and sizes, as well as universities and research centres, that have either
started or terminated an employment contract in the Friuli Venezia Giulia region
between 2014 and 2021.

Before analysis, the raw data requires cleaning and completion (e.g., adding
implicit contract terminations). It is also processed to standardize certain aspects,
such as replacing the employer name with the actual workplace in cases involving
employment agencies.

Using the entire network of all professional groups would offer limited insight
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Figure 6.1: A map of European regions classified according to the Eoropean Innovation
Scoreboard. The EIS categorizes countries and regions into four groups based on their
innovation performance relative to the EU average. Innovation Leaders exhibit performance
above 125% of the EU average. Strong Innovators score between 100% and 125%, Moderate
Innovators range from 70% to 100%, and Emerging Innovators fall below 70%.

into innovation. The assumption is made that certain professional groups are more
relevant to "knowledge transfer. To address this, a subset of professional groups is
selected based on the International Standard Classification of Occupations [28], a
system developed by the International Labour Organization (ILO) to classify and
organize jobs within a standardized framework, to allow comparison of occupa-
tional statistics across countries and regions. Specifically, the subset is based on
ISCO 2008 calssification, and the selected professional groups are ISCO-21 (science
and engineering occupations) and ISCO-25 (information and communication tech-
nology occupations). This results in a refined dataset containing approximately
60,164 events, involving 1890 employers and 16474 employees.

The network is built following the concepts discussed in Chapter 2. Vertices
encode employers and edges encode the transition of an employeeP from employer
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A to employer B.
Transitions are assigned a weight which represents the relevance of the connec-

tion between A and B. The basic option is to assign a weight W = 1.0 to each
transition; although this leads to valid results, we argue that it does not exploit the
potential of the data. In this study, the weights are assigned under the assumption
that the experience gained by P while working for A is transferred to B. Our data
cannot capture the intrinsic economic value of each transfer, so we have chosen
to approximate it with a non-linear parameter W . Let DA

P be the duration of the
contracts of P with A, DB

P be the duration of the contracts of P with B (both ex-
pressed in years), and maxW be a threshold that model the fact that experience
gained in previous workplaces is no longer relevant. Our analysis assumes that
W = min(DA

P , D
B
P ,maxW ) where maxW = 5.0.

The resulting network, after simplification through the removal of loops, multiple
edges, and the pruning of isolated vertices, consists of 1084 nodes (representing
employers) and encodes 1641 transitions as edges. The next steps in the analysis
involve analysis of components, centrality measures and community detection.

6.3 Results and discussion

6.3.a analysis of components

Nevertheless, a dominant component emerges, consisting of 734 nodes, which ac-
counts for the majority of the network’s actors. The following figure illustrates the
distribution of these components. In the main component, all nodes are intercon-
nected, with some significantly larger, reflecting their higher prominence within the
network. The remaining components are notably smaller; remarkably, the majority
of components (128) consist of only 2 nodes.

The division into components is crucial for understanding the distribution of
knowledge flows for innovation across the network. Since information flows along
the network’s edges, it remains confined within the boundaries of each component.
Therefore, organizations within larger components, particularly the main one, are
better positioned to engage in knowledge exchange and collaboration, enhancing
their potential for innovation. In contrast, organizations that belong to smaller,
isolated components are effectively excluded from the main innovation flows.

6.3.b centrality measures in main component

Centrality measures are the second step for understanding the role and influence of
organizations within the network. Two key centrality measures used in this context
are coreness and strength, as defined in Chapter 2
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Figure 6.2: Components of the Labour Market Network. The network consists of 1084
nodes and 1641 edges, with the main component comprising 734 nodes. Node size is
proportional to strength. Information and knowledge flow within individual components.
Research organizations, highlighted in red, are all located within the main component.

The plot 6.3 visually represents each organization in the labor market network as
a dot. The x-coordinate is the logarithm of the organization’s strength, capturing
the intensity its connections. The y-coordinate represents coreness, indicating an
organization’s position in the network’s core-periphery structure. It is important to
note that strength in this model is represented on a logarithmic scale: strength val-
ues below zero correspond to 100 = 1, meaning these organizations have exchanged
experience worth less than 1 year.

The plot is divided in two quadrants, on the right the main component, and
on the left all other components. The analysis reveals that nodes belonging to
minor components have both low coreness and low strength, indicating that these
organizations are less influential and have little access to the main knowledge flows,
at least from the perspective of this network model. This isolation likely limits
their access to critical information, collaborations, and opportunities available to
organizations in the main component.

All research organizations in the network show high coreness and strength, in-
dicating their central position in the flow of knowledge. Their strong connections
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Figure 6.3: Strength vs. coreness for organizations in the labor market network. The x-axis
shows the logarithm of strength, and the y-axis represents coreness. Organizations in the
main component are on the right, while those in minor components are on the left. The red
dots refer to universities and research centres.

likely enable them to play a key role in both disseminating and acquiring knowl-
edge.

6.3.c community detection

The third step of the analysis involves community detection, which identifies co-
hesive groups within the network—specifically, groups of organizations that have
participated in knowledge transfer through the movement of employees.

As discussed in Chapter 4, community detection algorithms should not be ex-
pected to produce a single definitive partition of the network but rather one of many
possible partitions. Each partition can be viewed as a point within the broader so-
lution space, representing a different possible configuration of communities within
the main component. Hence a key step of the analysis is to explore the solution
space, and identify a single solution through consensus. Outliers are present in
this case, and two alternative strategies are showcased: gorup and highlight, as per
Section 3.3.

The selected algorithm is LV (as per section 2). Since the solutions vary with each
run, the solution space is explored over 100 iterations, yielding 99 independent
solutions. To refine the analysis, pruning can be applied—for instance, removing
weaker edges sharpens the identification of communities while preserving the most
relevant ones. This process involves removing edges below a certain threshold,
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Figure 6.4: Solution space after pruning with a threshold of w < 1.0, displaying the top 20
communities. Despite pruning, 51 solutions remain, with the most frequent one occurring
in a probability range of 0.1 to 0.25.

followed by the removal of isolated nodes, to obtain a more treatable problem.
The figure displays the solution space after pruning with a threshold of w < 1.0.

To enhance clarity, only the top 20 communities are shown. Despite pruning, the
solution space remains multiple, now with 51 solutions. Some solutions repeat,
with the most frequent one occurring with a probability interval of 0.1 to 0.25.

According to the taxonomy expressed in 4 this is a "multiple" solution space.
It can be reduced to a single solution using a consensus procedure, a method
implemented by the communities library, as detailed in Chapter 5.

Figure 6.5: Consensus procedure applied to reduce the multiple solution space into a single
partition, which is composed of 70 communities,and 7 singletons.

As a result, the final solution is shown in Figure 6.5: a single partition of 70
communities and 7 singletons, that reflects the underlying community structure
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within the main component of the labor market network.
A different view of the community structure of the Labour Market Network is

shown in Figure 6.6, with two options. On the left, all communities and singletons
are displayed, corresponding to the "Highlight" option for managing outliers. On
the right, following the "Group" option for managing outlier setting a threshold of
3 nodes. This reduces the number of relevant communities to 42, simplifying the
results and improving interpretability.

Figure 6.6: Comparison of community structure in the Labour Market Network. On the
left, all communities and singletons are shown with the ’Highlight’ option for outlier
management. On the right, the ’Group’ option is applied with a threshold of 3 nodes,
reducing the number of relevant communities to 42 and simplifying the visualization. The
blue square represents the group of singletons and small communities (threshold set at 3
nodes).
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6.3.d Uncertainty coefficients

Consensus analysis derives an "uncertainty coefficient" in the range (0, 1) for each
node, as described in Chapter 4. A coefficient of 0 indicates that the node has
consistently been assigned to the same community across all trials. Conversely, a
coefficient of 1 indicates that the node changes community with every iteration.
This measure is critical for interpretation.

A low uncertainty coefficient implies a strong and stable community assignment,
suggesting that the node is firmly associated with its community. In contrast, a high
uncertainty coefficient reflects a more ambiguous assignment, which may indicate
that the node participates in multiple communities. This is especially important for
understanding knowledge transfer, as high uncertainty suggests the node’s role in
facilitating knowledge flow between different groups. In such cases, the node acts
as a bridge, enhancing connections across various communities.

Figure 6.7: Uncertainty coefficient values for each node, indicating the stability of com-
munity assignments across multiple trials. Lower coefficients reflect consistent community
membership, while higher values suggest nodes that act as bridges between multiple com-
munities.
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6.3.e Analysis of communities

Communities consist of vertices (i.e. employers) with stronger links to each other
than to other communities. In terms of innovation patterns, this can be interpreted
as knowledge transfer being more relevant among members of the same community
than from one community to another. The fact that research centres are at the
heart of their respective communities shows that the transfer of staff is an effective
means of transferring knowledge, experience and innovation between academia
and industry. Applying the above methodology to in Friuli Venezia Giulia region,
we observed that communities are generally characterized by a central vertex (a
large company, university or research center), a few prominent elements with a
high proportion of membership and a large number of smaller companies.

At this point, the analysis can focus on discussing each individual community.
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Below are the key details of the four main communities:

Community 1 This community consists of highly interconnected research institu-
tions, including Università degli Studi di Trieste, Università degli Studi di
Udine, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS),
and Istituto Nazionale di Fisica Nucleare. In addition to these academic enti-
ties, there are significant industrial players, such as Cimolai S.p.A., Calzavara
S.p.A., Rhoss S.p.A., and the innovative startup EnecoLab S.r.l., which focuses
on research and development activities in natural sciences and engineering.
The role of this community within the network (members with higt coreness)
demonstrates a strong capacity for knowledge exchange, positioning it as a
key hub for innovation.

Community 2 Primarily composed of industrial companies in the maritime sector,
this community exhibits high centrality and plays a crucial role in specialized
knowledge transfer. It is led by two major industrial players, Fincantieri S.p.A.
and Fincantieri Oil & Gas S.p.A. Other key companies include RINA Services
S.p.A., Monte Carlo Yachts S.p.A., and CETENA S.p.A. (Centro per gli Studi
di Tecnica Navale), all of which contribute significantly to the community’s
influence within the maritime industry.

Community 3 This community represents another key innovation hub for the re-
gional economy, particularly in the mechanical and automation industries. It
includes large industrial companies such as Danieli & C. Officine Meccaniche
S.p.A., Friul Intagli Industries S.p.A., and Modulblok S.p.A. Additionally,
CAFC S.p.A. (Acquedotto Friuli Centrale), which is involved in digitaliza-
tion and large-scale infrastructure investments, plays a significant role. Other
important members of this community include S.P. Automation S.R.L., Flu-
idodinamica S.R.L., and Acciaieria Arvedi S.p.A.

Community 4 This community is heavily research-oriented, with a strong presence
of prominent research institutions. These include Elettra-Sincrotrone Trieste
SCPA, SISSA (Scuola Internazionale Superiore di Studi Avanzati), Istituto
Officina dei Materiali - Consiglio Nazionale delle Ricerche, CERIC-ERIC, and
Area Science Park. Alongside these research institutions, there is also an
industrial presence, most notably Wärtsilä Italia S.p.A. and several SMEs.

As highlighted in Figure 6.9 research institutions play a prominent role in the
regional labour market, as expressed by the high coreness values and their role
within their community. Specifically, the two universities operating in the region
(University of Trieste and University of Udine) belong to the largest community
(labelled as Community 1, size 89), have comparable values of coreness and largely
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surpass other large enterprises. Other major research institutions (namely Elettra
Sincrotrone Trieste and the National Institute of Oceanography and Applied Geo-
physics - OGS) belong to the same community as the universities, with comparable
strength and significantly lower values of coreness, possibly due to their sectoral
specialization.
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(a) Community 1 (b) Community 2

(c) Community 3 (d) Community 4

Figure 6.8: Some examples of communities. The size of vertices is proportional to their
strength; colors reflect the type of organization (research organizations are in light blue,
others in red). Most communities have one or a few central nodes of high coreness and
strength.
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(a) Community 5 (b) Community 6 (c) Community 7

% Adjust vertical space between the rows if needed

(d) Community 8 (e) Community 9 (f) Community 10

Figure 6.9: Further examples of communities. The size of vertices is proportional to their
strength.





7 Mapping leadership and commu-
nities in EU-funded research

A significant portion of this Chapter is adapted from the paper "Mapping leadership and
communities in EU-funded research through network analysis" [60], currently under peer
review by Open Research Europe, the open access publishing platform for Horizon 2020 and
Horizon Europe-funded research.

—

7.1 Horizon programmes

Horizon 2020 and Horizon Europe are flagship programs of the European Union
designed to support research and innovation while fostering collaboration among
companies, academic institutions, and research organizations.

Horizon 2020, launched in 2014, built on the legacy of previous European Frame-
work Programmes such as FP7, FP6, and earlier initiatives dating back to 1984.
Horizon Europe succeeds Horizon 2020, covering the period from 2021 to 2027, and
introduces a mission-oriented, impact-driven approach. Its focus is on address-
ing major global challenges such as adaptation to climate change, cancer research,
health, climate-neutral and smart cities, oceans, seas, and inland waters.

The program is mission-oriented, i.e. it aims to generate research outcomes that
translate into tangible societal benefits and inform policy-making, with specific and
measurable goals to be achieved by 2030.

Horizon funding is made available through open calls published on the "Funding
and Tenders Portal" [32]. Calls are organized around three pillars: excellent science,
global challenges and European industrial competitiveness and innovative Europe,
and covers a wide range of Technology Readiness Levels (TRLs) [37], from early-
stage research to close-to-market innovation. Project proposals are submitted by
consortia of organizations and must address the specific challenges and expected

87
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outcomes defined in each call. The selection process is highly competitive, with
success rates remaining low due to the rigorous evaluation criteria. Nonetheless,
participation remains substantial: in 2023, over 43,000 organizations participated
in Horizon-funded consortia, contributing to projects with a total value of approx-
imately =C20.9 billion [34].

Projects encompass a broad range of disciplines, from natural sciences to en-
gineering, medicine, and social sciences and humanities (SSH). Recently, these
disciplines have been classified using the EuroSciVoc taxonomy [77].

A novel feature of Horizon Europe is the integration of Open Science practices to
enhance transparency, reproducibility, and societal engagement, following a "data
as open as possible, as closed as necessary" approach to research data. This is
further discussed in Appendix A

All Horizon programmes are thoroughly documented, with open access to project
data provided via the data portal data.europa.eu, ensuring wide dissemination of
research outcomes.

Horizon programmes are specifically designed to create long-term collabora-
tion and foster innovation among companies, academic institutions, and research
organizations across multiple countries. Consortia delivering Horizon projects gen-
erally consist of at least three organizations, although larger consortia involving a
dozen or more are common. The composition of these groups varies according to
the specific requirements of the project and sector, often including research insti-
tutions, universities, industry partners, and small and medium-sized enterprises
(SMEs). Project durations typically range between three and five years.

Although Horizon projects aim to establish these collaborations, the complex-
ity of the resulting interactions remains challenging to capture using traditional
observational methods. For instance, the approach used in [5] applies a survey-
based method to analyze such collaborations, offering subjective insights into the
perceived effectiveness of these partnerships.

In contrast, this thesis proposes a complementary data-driven methodology to
investigate collaboration patterns. By utilizing data from the CORDIS database
and applying advanced community detection algorithms, the proposed approach
provides a scalable and objective framework for analyzing organizational interac-
tions, community formation, and leadership roles.

7.2 The ’hydrogen energy’ sector and NAHV project

A “Hydrogen Valley” is a geographical area where several hydrogen applications
are combined into an integrated ecosystem that produces, exchanges, and con-
sumes a significant amount of hydrogen, covering the entire hydrogen value chain:
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production, storage, distribution, and final use [70].
Currently, over 80 hydrogen valleys are either operational or in development

across Europe and beyond [91], with most in Europe funded by the Clean Hydrogen
Partnership [69]. However, because these initiatives are relatively new [53], few
studies have been conducted to evaluate their long-term impact on regions or track
their development over time. In 2023, a Polish research team addressed this gap by
applying bibliographic methods and quantitative analysis to examine the existing
literature on hydrogen valleys [43]. They identified 284 publications on the topic,
showing a steady increase in the number of citations. A deeper analysis revealed
that the most frequently cited works focus on technological solutions and concepts
for hydrogen valley development. This research highlights a significant gap in the
study of how hydrogen valleys are created and evolve. Other studies, such as [72],
have concentrated on the techno-economic assessment of green hydrogen valleys,
examining their impacts on multiple end-users and their life-cycle assessments
(LCA) [20].

The North Adriatic Hydrogen Valley or NAHV project [35] is one of the first
transnational hydrogen valleys developed in Europe. It embraces the EU territories
of Croatia, Slovenia and the Italian region Friuli Venezia Giulia and involves 37
partners based mainly on those countries. The project is co-financed by Horizon
Europe programme and supported by the Clean Hydrogen Partnership [27].

Hydrogen valleys operate under two main innovation paradigms introduced in
Chapter 1. The first is the open innovation model, which encourages knowledge
exchange among different stakeholders involved in the valley [16]. The second is
the Triple Helix model (academia, industry, government) expanded to Quintuple
Helix by incorporating civil society and environmental concerns into the innovation
process [12, 13].

Innovation, in the context of hydrogen valleys, is inherently driven by collabo-
ration, particularly through partnerships between industry and academia, which
combine diverse approaches and cover the entire Technology Readiness Level (TRL)
scale. However, a quantitative assessment of collaborations remains elusive. the
methodology proposed in this thesis seeks to address this issue by providing a
methodology to identify and gauge collaboration, offering insights into the mecha-
nisms that support innovation and the dynamics of innovation ecosystems.

From the perspective of individual organizations, understanding the dynamics
of collaborations at the regional or international level can be a good opportunity.
Consider, for example, an organization involved in a new hydrogen valley project:
it must not only focus on the development of its own project activities, but it
may benefit from identifying partners and competitors that are engaged in other
hydrogen valleys. This broader awareness may help identifying synergies, risks,
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and market opportunities.
Policymakers adopt yet another perspective. They have a strategic vision to align

local, national, and European resources, aiming for medium- and long-term impact
of the innovation ecosystems. Achieving this requires a clear understanding of how
collaborations emerge between industry and research, who the key stakeholders are,
and how these collaborations evolve over time.

In both cases, two research questions are essential:

1. Which organisations are the most influential in driving research and innova-
tion? Identifying these key players — whether companies, academic insti-
tutions, or research organisations — is important for other organisation that
want to be in contact with them in future projects. Moreover, policy makers
may be interested in assessing whether the policy put in place in their territory
has produced an improvement of leadership roles over the years.

2. Are EU-funded projects fostering partnerships that extend beyond the dura-
tion and scope of individual projects? If such long-term communities exist,
they serve as vital indicators of the open innovation and quintuple helix mod-
els effectiveness. Stable communities suggest robust exchanges of ideas and
collaboration, which are essential for sustaining innovation and achieving the
long-term goals of hydrogen valleys.

Key requirements of this approach are that results must be independent of con-
tingent factors (such as software implementation or ordering of the input data)
and tested for validity. Additionally, when multiple algorithmic options are avail-
able, the selection must be data-driven and performance-oriented, ensuring that
the chosen algorithm yields the most interpretable and reliable outcomes.

7.3 Data acquisition

The source of data for this study is CORDIS (Community Research and Develop-
ment Information Service), the European Commission’s primary public repository
and portal to disseminate information on all EU-funded research projects and their
outcomes [31]. It provides open access to comprehensive data on projects, includ-
ing objectives, participants, funding details, and results. For the purpose of this
study, two datasets have been extracted: Horizon 2020 (projects starting from 2014
to 2020) [29] and Horizon Europe (projects starting from 2021 to 2027) [30]. The
two datasets have the same structure, composed of several tables, the most relevant
being the organisations table denoted as O and the projects table denoted as P.

Each project is characterized by a unique identifier (projID), its acronym, title,
start date, end date. Moreover, each project is associated with a long textual
field, describing its objectives, and with structured categorical information on the
call and funding scheme. A separated table associates each project with one or
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more topics, encoded according to the European Science Vocabulary (EuroSciVoc),
the multilingual taxonomy representing scientific fields developed by the EU’s
Publications Office.

There is a many-to-many relationship between organisations and projects (i.e.
a project has several organisations, and an organisation can be part of several
projects). In table O∗ each organisation is identified by a unique identifier (orgID),
a name, detailed geolocation information. In addition, the table records the role
of each organisation in each project (coordinator, participant, or associated part-
ner), as well as the total costs incurred by the organisation within each project
(totalCost) and the corresponding eligible contribution from the Horizon pro-
gramme (netEcContribution).

Data representation can be optimized by merging the corresponding tables for
Horizon 2020 and Horizon Europe, to obtain the following core data structures:

• table P∗ listing all projects, their projID, start and end dates, reference to
the Horizon calls for proposal, keywords, and a long textual descriptions of
project objectives;

• table O∗ listing all organisations, their orgID location, their role in the project,
and monetary values totalCost and netEcContribution;

• table T∗ associating each project in P to one or more keywords of the Eu-
roSciVoc taxonomy.

7.4 Data preparation

The initial step in data preparation involves identifying the subset of projectsP ⊂ P∗

on which we aim to focus, based on the topics from that are relevant for the
objectives of the analysis. Consequently, the other tables can be filtered to ensure
that only pertinent data is retained in the form of O ∈ O∗ (organisation name
and location). The core information for our analysis the weights table denoted
as W, which encodes the annual effort each organisation o ∈ O puts into each
project p ∈ P in a given year. A proxy for the values in W can be derived from
either netEcContribution or totalCost. The former indicates the total amount
of public funding received by an organisation upon project completion and serves
as a useful proxy for how much the Horizon grant promotes collaboration. The
latter reflects the total cost incurred by the organisation to complete the project. For
non-profit organisations involved in research projects, these values often coincide,
as the Horizon grant may cover 100% of the costs. However, for private companies
investing in pilot projects, such as in the NAHV project, the two values can differ
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significantly, sometimes by an order of magnitude. In the case study presented in
section 7.5, the weight is based on netEcContribution, expressed in thousands of
euros.

The data is then segmented on a yearly basis. Denoting by Wy the matrix for
a given year y, it is a rectangular matrix of size |projID| × |orgID|. The value of
each project is assumed to be equally distributed over its duration, from its start
date to its end date. Consequently, the contribution of a project to the matrix Wy is
divided proportionally across the years during which the project is active.

Textual fields in table P contain valuable information, but in a format unsuitable
for network analysis. The project objectives are typically described in hundreds
of words, and user-defined keywords lack a standardized vocabulary. To make
this information usable, the last step in data preparation involves creating Boolean
attributes for each project. These attributes encode relevant information in a simpli-
fied format, such as whether the project is focused on technology or market uptake,
or whether hydrogen is a primary focus or one of several applications. This was
accomplished using a script that interacts with the API of a Large Language Model,
which processes the lengthy textual fields and generates a dataframe, indexed with
projID and one or more Boolean variables, which can be merged with P.

7.5 Results

This section presents the results obtained applying the methodology outlined in
Chapter 4 to a subset of hydrogen-related projects, including the NAHV project
from 2015 to 2029. The analysis aims to investigate leadership roles, community
structures, and their evolution over time. Furthermore, the analysis demonstrates
how AI-generated keywords can be integrated to provide additional insights into
the distinction between market-oriented and technology-oriented projects.

The data has been prepared using the EuroSciVoc topic hydrogen energy, and the
AI-generated categories are market vs technology, as explained in Section 7.4. The
family of networks {G2015 . . . G2024} has a remarkable evolution over time. G2015 is
composed of 83 organisations, and the number steadily increases to 648 by 2024. The
number of collaborations, represented by the network’s edges, grew proportionally
during this period, and the total value of projects, measured by the sum of weights
in the network, saw an even more significant increase, rising from 547 to 6628.
Looking ahead to the period from 2025 to 2029, the future of collaborations will
be shaped by contracts currently in operation and influenced by upcoming calls
and new projects. As shown in Figure 7.1, after 2024 the number of partners and
collaborations decreases, while the total investment remains stable for the next two
years.
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Figure 7.1: Size of the networks Gy represented by the number of organisations (horizontal
axis) and the number of collaborations (vertical axis) and total investment per year (bubble
size). Between 2016 and 2024 there is an increase in the number of organisations from 83 to
648 and a proportional rise in collaborations as represented by weights, rising from 547 to
6628. Current data for projects continuing in years 2025 to 2029 suggest further growth in
the total value of projects.

Leadership roles
The methodology for AI-generated categories, discussed in 7.4, is applied to

the hydrogen projects dataset. This classification approach distinguishes between
projects focused on market development — encompassing policy, market uptake,
business models, and hydrogen valleys — and those centred on technological devel-
opment. The NAHV project clearly falls into the former category. This classification
enables the creation of two distinct families of networks, denoted as GM

y and GT
y .

The total value of the projects in each group is shown in Figure 7.2, revealing an in-
teresting trend: while investment in market-oriented projects has been consistently
present since 2016, there is a notable increase in such investments starting in 2023.

Figure 7.3 illustrates how centrality measures and AI-generated categories pro-
vide insights into the roles of organisations in hydrogen-related innovations, high-
lighting differences between those engaged in market-oriented and technology-
oriented projects.

The figure shows in grey the range of values found each year, and highlights or-
ganisations participating in the NAHV project. The diagrams provide an overview
of the evolution of coreness in GM

y (left) and GT
y (right). The grey shaded area

represents the range of coreness values observed each year. The organisations in-
volved in the NAHV project are highlighted with coloured dots, connected by lines
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Figure 7.2: Comparison between technology-oriented and market-oriented project. The
value is measured by netEcContribution; groups are identified by the AI generated labels:
GM

y and GT
y

that illustrate their progression over time. A notable observation is that, while all
NAHV partners are part of GM

y (which is expected, given NAHV’s classification as
a market project), only a few are involved in GT

y .
Coreness values can fluctuate over time: an increase suggests that an organisation

is gaining influence through participation in relevant projects, while a decrease
may indicate that, following the completion of a project, the organisation has not
yet initiated a new one within the Horizon framework. The analysis also includes
the years 2024 to 2029, reflecting ongoing projects that are scheduled to conclude
during this period. It is important to note that this is not a forecast, but rather a
record of existing projects with future completion dates.

Moreover, centrality of all organisations can be visualized in a degree-coreness
plane, where each organisation is represented by a bubble. Degree serves as a proxy
for an organisation’s capacity to form partnerships with many other organisations,
while coreness reflects its ability to partner with influential organisations. Although
coreness is limited by degree, the size of the bubble represents the organisation’s
strength, which serves as a proxy for its capacity to attract substantial funding and
invest in large projects. An example is shown in figure 7.7, which also includes an
information about communities.

Communities In the context of this paper, communities refer to relevant sub-
groups of organisations that exhibit strong collaborative ties. The focus is on
analysing a single partition and its evolution over time. The analysis is conducted
on the family of complete networks, Gy.
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Figure 7.3: Coreness of organisations involved in the NAHV project, shown in comparison
with the range of coreness values for each year (grey background).

Figure 7.4: Number of solutions |Sy| generated by different community detection algo-
rithms.

As explained in Chapter 4, the first step involves exploring the solution space SA
y

in terms of completeness, the number of solutions, and their validity across various
algorithms. The tested algorithms include Louvain (LV) [9], Leiden (LD) [90], Label
Propagation (LP) [79], Edge Betweenness (EB) [65], Leading Eigenvector (EV) [64],
Walktrap (WT) [74], and Infomap (IM) [83]. The tests were conducted in R [78],
using the iGraph [21] and communities [57] libraries.

The number of solutions
⃓⃓
SA
y

⃓⃓
are illustrated in 7.4: most algorithms produced

multiple solutions across most years, with the exceptions of 2015 and 2029, where
the networks were simpler. Interestingly, WT consistently provided a unique solu-
tion. However, EB had a different issue, generating partitions that were not similar
to each other, with similarity coefficients often below 0.5. EV produced multiple
valid solutions in most years but failed to find a partition in 2024.

A more in-depth observation of the solution space for 2024 (the most critical
year) reveals additional details, as shown in 7.5. LV generates a large set of solu-
tions with |SLV

2024| = 69, which are also highly diverse, as evidenced by the similarity
plot showing a bimodal distribution with peaks around 0.6 and 0.9. Moreover, ap-
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proximately one-third of the solutions are invalid due to containing one or more
internally disconnected communities. This is a well-documented issue of the al-
gorithm, as discussed in the literature. LD, specifically designed to address the
problem of disconnected communities, also produced invalid solutions for this net-
work: its partition consists of a few large communities and a high proportion of
singletons, with a mixing parameter exceeding 0.5, indicating that nodes within a
community were more connected to nodes outside their community than to those
within it.

LP generates a different solution with each run; in this case, with t = 100, there
are 96 valid and distinct solutions, while 4 are invalid due to internally disconnected
communities. Better results can be achieved with IM that produces |SIM | = 1 in
most years, and a dominant one solution in the most complex cases such as 2024.
Overall, WT is the only algorithm that consistently provided valid results across
all years, with valid partitions and |SWT | = 1, consequently, it will be used for
community detection and temporal evolution analysis.

The selected partition Py can be represented as a network in which nodes be-
longing to the same community are grouped and coloured to distinguish between
communities. For example, the result for P2018 is shown in Figure 7.6. Some com-
munities appear disconnected from the others; these consist of organisations that,
in that year, participated in only one project and thus form a separate component.

Community detection can be integrated with centrality measures to provide a
more comprehensive understanding of network structure.

Figure 7.7 illustrates the results for P2018. In this visualisation, each bubble
represents an organisation, with its position determined by coreness and degree
centrality. Bubble colours correspond to the community, and bubble size is pro-
portional to the strength (the total weight of its connections in the given year). The
diagram clearly demonstrates that degree is the upper limit for coreness, as no
points appear above the line with a slope of 1. In practical terms, this indicates that
an organisation that participates in many projects (high degree) is not necessarily
the most influential in the network. Strength, which reflects the total weight of
an organisation’s connections, remains independent of both degree and coreness,
meaning that large bubbles can appear anywhere on the graph. This means that
some organisations, despite having relatively few connections (low degree), are
linked to relevant partners (high coreness) and stand out for their ability to secure
significant EU research funding (high strength).

Evolution of communities Temporal evolution was calculated as described in
Chapter 4, using the WT algorithm to ensure the robustness of the results. In
the diagram shown in Figure 7.8, the horizontal axis represents time, with each
community depicted as a coloured rectangle. The height of each rectangle is pro-
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portional to the sum of the strengths of its members. For the purpose of clarity,
only the six largest communities are represented. The analysis reveals a significant
pattern: initially a large number of small communities is formed, and their config-
uration changes rapidly. This reflects the fact that in Horizon 2020 public funding
was primarily allocated to technology-oriented research projects, and partnerships
changed rapidly. However, with the onset of Horizon Europe, and specifically
the Clean Hydrogen partnership, three large communities emerge, and are set to
continued collaboration through 2029.

The significant size of the largest communities reflects the increasing allocation of
resources to Horizon Europe projects in the hydrogen sector. This growth is driven
by the development of hydrogen valleys, which have fostered long-term, stable
partnerships, contributing to both the stability of collaborations and the continued
expansion of these communities.
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Figure 7.5: Solution space diagrams. Left: frequency and confidence intervals for the
solutions identified by each algorithm. In the case of LV and LP only the 10 most frequent
solutions are shown. Middle: distribution of community size for each solution. Proper
communities are represented as black circles, single-node communities are represented as
blue diamonds. Right: pairwise similarity between solutions.

Figure 7.6: NetworkG2018, with communities grouped and highlighted in different colours.
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Figure 7.7: Centrality measures of all organisations in G2024. Each bubble represents an
organisation in the degree-coreness plane. Degree is a proxy for the organisation’s ability to
win projects and attract funding, while coreness reflects its capacity to partner with other
influential organisations. The largest bubbles in the top-right of the diagram highlight
organisations that excel in both areas.

Figure 7.8: Evolution of the largest communities from 2015 to 2029. For clarity, only the six
largest communities are displayed.





Conclusions

The research presented in this thesis contributes to the advancement of community
detection in complex networks, specifically addressing the challenges of stability
and reproducibility. Through the development and application of a novel method-
ology, based on the concepts of solution space and consensus, this work moves be-
yond the traditional single-solution approach. Moreover, the proposed consensus
methodology introduces a taxonomy for outliers (incorporate, highlight or group)
and anuncertainty coefficient associated with each node of the network, which cap-
tures the inherently fuzzy nature of community structures in complex networks
and offers a more nuanced view of the network.

To validate this paradigm, a series of tests were conducted on artificial networks,
using benchmarks like the RC and LFR models. These experiments demonstrated
the effectiveness of the proposed workflow in overcoming limitations such as input-
order bias, variability of solutions, and the presence of outliers.

Aligned with open science principles, the full code and datasets underlying this
research are disclosed, alongside the development of an R library, communities,
which provides tools for the generation of benchmark networks, solution space
exploration, and consensus community detection.

The research is grounded in the practical question of demonstrating how net-
work analysis can provide useful insights into collaborations that lead to innovation,
specifically identifying leading organisations, cohesive groups and their evolution
over time.

Two case studies were used as practical demonstrations of this approach. The
first case study, focused on the labour market network in Friuli Venezia Giulia,
demonstrated how regional collaboration networks between firms, universities, and
research centres can reveal key players in innovation and track their evolving roles
over time. Through network analysis, we identified which organizations were most
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central to fostering innovation and how communities of collaborators formed and
dissolved, reflecting the dynamic nature of regional innovation ecosystems. The
second case study applied the same methodology to the Horizon-funded hydro-
gen energy sector. Here, the analysis revealed the collaborative structures within
EU-funded research projects, illustrating how partnerships between industries and
research institutions extended beyond individual projects to form lasting innova-
tion communities. This finding supports the open innovation model discussed in
Chapter 1, where external collaborations between various actors drive technological
advancements and the diffusion of knowledge.

Policy Recommendations

From an applied perspective, the methodology presented in this thesis offers valu-
able tools for policymakers, especially those involved in the Hydrogen Valley
project, as discussed in Chapter 7. Policymakers across regions such as Friuli
Venezia Giulia, Croatia, and Slovenia can use this approach to monitor the en-
gagement and collaboration of organizations within their territories. As the initial
Hydrogen Valley projects (launched in 2022-2023) conclude and new Horizon calls
become available, policymakers will be equipped to assess whether today’s lead-
ing organizations are forming new partnerships and maintaining their leadership
roles. Additionally, at the European level, this methodology can offer insights into
the evolution of research and innovation communities, helping policymakers gauge
the openness of these communities to newcomers and the stability of collaboration
between industrial and academic partners.

Moreover, institutions such as Area Science Park can apply the methodology
to further case studies on diverse topics, particularly pandemic preparedness and
electron microscopy—two areas of interest for Area Science Park that have been
explored in the published dataset Horizon Projects Network 2024 [58].

Finally, policymakers should consider enhancing their evaluation frameworks
by linking the results of network analysis proposed in this thesis, with the de-
tailed textual information on project deliverables available on the CORDIS plat-
form. Deliverables are linked to projects and organizations, hence to a temporal
and geographical framework; each provides valuable insights into ongoing inno-
vations carried out by local companies or research centres, as well as emerging
innovation trends in competing regions. This approach supports evidence-based
decision-making, helps identify synergies, prioritize funding opportunities, and
update regional Smart Specialisation Strategies (S3).
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Methodological Developments

This thesis opens the door to further research in several areas, including further
testing and validation of the methodology for solution space exploration and con-
sensus, enhanced software implementation, and its application to diverse domains.

Expanding tests to larger, denser networks, with artificial or real-world topolo-
gies, will provide a comprehensive evaluation of algorithm performance and may
reveal potential limitations or challenges. The inclusion of additional algorithms
would further enhance the understanding of the robustness of the methodology.
While this work focuses on widely used methods such as LV, LD, IM, LP, and WT,
incorporating approaches based on Edge Betweenness and Eigenvector methods
could offer new perspectives on community structures.

A further extension of the testing and benchmarking set should be focused on the
capacity (or tendency) of each algorithm to generate a specific type of solution space.
This can be done initially on simulating controlled benchmark networks, such as a
*Ring of Cliques* with varying parameters (e.g., clique numbers nc ranging from 2
to 20 and clique sizes cs ranging from 3 to 30), while maintaining consistent random
seeds, will support systematic comparisons and performance evaluations.

Testing the proposed methodology on complex synthetic networks is essential to
validate its robustness and applicability to real-world systems. LFR networks are
particularly suitable as they generate realistic community structures by incorpo-
rating overlapping communities and power-law distributions of node degree and
community size. By varying the network size (e.g., n = 1000 or larger), would allow
to evaluate the methodology’s scalability and performance under increasing levels
of complexity and heterogeneity.

Additional simulations using models that closely mimic real-world interactions,
yet remain under controlled conditions, should also be tested. Examples include
Small-World networks, characterized by high clustering and short path lengths,
which reflect systems where localized connections coexist with long-range links
(e.g., social or biological networks), and Preferential Attachment models, which
produce scale-free networks where highly connected nodes attract more links over
time, mirroring growth dynamics in systems such as social networks or the internet.

The proposed methods, which primarily rely on R and the iGraph library, are
flexible but notoriously slow. Exploring the solutions spaces scales the computa-
tional effort linearly with the maximum number of iterations, which can typically
reach stability after about 50 iteration for a Single solution, and may well exceed
300 for a Sparse solution space. While this overload may be negligible in controlled
test settings, it could pose severe challenges when applied to large networks, and
raises an obvious question of performance, which must be thoroughly tested and
optimized.
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Software implementation can help with performance: re-implementing key com-
ponents in high-performance languages such as C++ could substantially reduce ex-
ecution time and improve scalability, enabling applications to large-scale networks.

To extend accessibility, developing a Python library equivalent to the current R
implementation would cater to a broader user base in data science, network analysis,
and machine learning. Furthermore, it should be considered to develop a version
compatible with other network analysis libraries, notably NetworkX for R and for
Python to further facilitate integration into existing workflows.

Finally, the methodology proposed in this thesis can also be applied to vari-
ous domains, such as social networks (to uncover patterns of influence, opinion
dynamics, and organizational behaviour), citation networks (to identify influen-
tial publications, collaborative trends, and emerging research communities), and
mobility networks (to detect geographical or temporal patterns as communities).
Exploring these and similar domains will further demonstrate the method’s utility
for both academic research and practical applications.



A Appendix: Open Science

Open Science is an approach to scientific research that emphasizes transparency,
accessibility, and collaboration. Its main objective is to make the process and results
of research widely available, to ensure that scientific findings can be reproduced
and validated by the global research community. It encompasses several key prac-
tices: FAIR data management, open access to publications, data and software.
Open Science also encourages early sharing of results, including preprints and data
in open repositories, which accelerates the pace of discovery and fosters greater
collaboration among scientists, policymakers, and the public. The European Com-
mission strongly advocates for Open Science practices, integrating them into its
major funding programs, such as Horizon Europe.

In this thesis, Open Science principles have been embraced, with particular focus
on the open access to data and code.

A.1 FAIR principles

The FAIR principles (Findable, Accessible, Interoperable, and Reusable) provide a
framework for ensuring data management practices align with open science princi-
ples [92, 55]. FAIR principles guide researchers in making data more discoverable,
accessible, and reusable by both humans and machines. Below is a summary of the
key aspects of each principle:

Findable Data must be easily findable by both humans and machines. This is
crucial for ensuring that datasets can be located through standard search
mechanisms. Findability can be achieved through persistent identifiers (such
as DOIs), rich metadata that describe the data, and all necessary details about
its content, origin, and conditions for reuse. Moreover, datasets should be
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registered in searchable repositories so they can be discovered by common
search engines or specialized research portals.

Accessible Once the data is found, it must be accessible, meaning that users should
be able to retrieve it and clearly understand the conditions under which it can
be accessed and utilized. Access protocols should be standardized and trans-
parent. Authentication protocols should ensure that data access is controlled
and secure. However, some types of data may justifiably remain inaccessible,
such as personal information, medical records, or trade secrets. Addition-
ally, certain data may be temporarily embargoed, as in the case of patents.
This principle is often summarized as: "As open as possible, as closed as
necessary." Even when data is restricted, the corresponding metadata should
always remain available.

Interoperable Data should be interoperable with other datasets and systems, so
it can be integrated with other research outputs. Standardized formats and
vocabularies should ensure consistency across different fields of research.

Reusable Open science advocates for making data reusable to replicate scientific
results and enable the reuse of data for different research purposes. Clear
licenses must define the terms of reuse, including any restrictions or condi-
tions.

The data used and generated in this thesis complies with the FAIR prin-
ciples, ensuring it is findable, accessible, interoperable, and reusable. It has been
published in Zenodo [66], the data repository funded by the European Commission
through the OpenAIRE project. Zenodo is fully compliant to FAIR principles, pro-
viding an open-access platform to store, share, and publish datasets, software, and
research outputs.

Findability is further enhanced by using persistent identifiers that connect
datasets (via DOIs) to individual researchers. ORCID (Open Researcher and Con-
tributor ID) provides a unique and permanent identifier for researchers, ensuring
accurate attribution of their work across various platforms. The Author’s ORCID
iD is 0000-0002-2034-2951.

A.2 Open publication

Open Publication refers to the practice of making research outputs freely accessi-
ble to everyone, eliminating barriers such as paywalls or subscription fees. This
approach ensures that research results can be reviewed, replicated, and expanded

https://orcid.org/0000-0002-2034-2951
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upon by a wide and diverse audience, including other researchers, policymakers,
and the general public.

Open Research Europe (ORE) [36] is an open publication platform dedicated
exclusively to the dissemination of research results funded by the European Com-
mission. Key features of ORE include free access for authors, full compliance with
FAIR principles, rapid publication, and a transparent open peer review process.
Manuscripts are made publicly available shortly after submission, with the peer
review process commencing post-publication. The identities of reviewers and their
reports are published alongside the articles, promoting accountability and provid-
ing readers with further valuable information.

A.3 Open access to data

Open access to data is a core Open Science practice, according to FAIR principles.
This section provides information on open access to both the underlying data and
the data generated throughout this thesis.

Underlying Data

The underlying data for this research is openly available through data.europa.eu,
the official portal for European data. Specifically, data are accessible from the
following links:

Horizon 2020 https://data.europa.eu/data/datasets/cordish2020projects

Horizon Europe https://data.europa.eu/data/datasets/cordis-eu-research-projects-
under-horizon-europe-2021-2027

Extended Data

The data generated for this thesis area available under the terms of the Creative
Commons Attribution 4.0 International license (CC-BY 4.0), in Zenodo. Developed
by CERN under the European OpenAIRE program, Zenodo is an open-access repos-
itory for sharing and preserving research outputs. It is FAIR-by-design, ensuring that
data are Findable, Accessible, Interoperable, and Reusable through comprehensive
metadata, persistent identifiers and open access policies.

Repository: Horizon Projects Network
DOI: https://doi.org/10.5281/zenodo.13765372
The project contains 3 case studies, each focused on a specific topic, selected

using the EuroSciVoc taxonomy: hydrogen energy (analysed in chapter 7), electron
microscopy, and pandemics. Each case stusy contains the following files:

data.europa.eu
https://data.europa.eu/data/datasets/cordish2020projects
https://data.europa.eu/data/datasets/cordis-eu-research-projects-under-horizon-europe-2021-2027
https://data.europa.eu/data/datasets/cordis-eu-research-projects-under-horizon-europe-2021-2027
https://zenodo.org/
 https://doi.org/10.5281/zenodo.13765372
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• O.csv: Contains organisations’ unique identifiers and attributes.
• P.csv: Contains projects’ unique identifiers and attributes.
• W.csv: Describes the participation of each organization in a project in each

specific year. The participation is weighted according to the "total cost" of the
project, shared proportionally based on the project’s duration within the year.

• activity_type.csv provides a description of the codes used to define the activ-
ity types associated with each organization.

• 2015.graphml, 2016.graphml, ..., 2029.graphml: a set of files representing
network model for collaboration between organizations in any given year
from 2015 to 2029. Each graph encodes the centrality measures (degree,
strength, coreness) and community labels.

• format-info.txt provides information on the format of .csv and .graphml files
used in this dataset.

• sample-networks-hydrogen-energy.pdf showcases a visual representation of
the networks from 2015 to 2029.

GraphML (Graph Markup Language) is an open XML-based format specifically
designed to describe networks. It is based on XML (eXtensible Markup Language),
a text-based machine-readable format. GraphML format supports directed, undi-
rected, and mixed graphs, node and edge attributes as well as hypergraphs. A
detailed description of the GraphML format is available in the official GraphML
website [19] and documented for example by [10].

A.4 Open access to code and software

All software used for this thesis is available under the principles of open science.

The code for this project has been developed using the R programming
language [78], a widely-used open-source language designed for statistical com-
puting and data analysis, that provides a powerful environment for manipulating
data, conducting statistical analyses, and producing high-quality visualizations.

Network analysis in this project is done with the R-igraph package
[21], that offers a comprehensive set of functions for creating, manipulating, and
visualizing networks.

The development version of the code used for this project is available trough
GitHub https://www.github.org an open platform for hosting, sharing, and col-
laborating on software development projects built on the Git distributed version
control system. development. The following repositories are available:

https://www.github.org/
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CCD package The CCD package, developed as part of this research, to implement
the first version of consensus community detection as published in [59] and
[62].

Available at: https://github.com/fabio-morea/CCD

Communities package The communities package [57], developed as part of this
research, to implement the final version of solution space exploration and
consensus community detection.

Available at https://github.com/fabio-morea/communities

Horizon intelligence code for data preparation, enrichment and network analysis
on the Horizon case study in Chapter 7.

Available at https://github.com/fabio-morea/horizon-intelligence.

https://github.com/fabio-morea/CCD
https://github.com/fabio-morea/communities
https://github.com/fabio-morea/horizon-intelligence




Acknowledgments

The author gratefully acknowledges the Regional Observatory on Policies and the
Labour Market of the Friuli Venezia Giulia Region for providing the data used in
the Labour Market network analysis presented in Chapter 5.

The case study on Hydrogen Energy has been developed as part of the North
Adriatic Hydrogen Valley (NAHV) project. The project received support from
the European Union under grant agreement 101111927. The views and opinions
expressed in this paper are solely those of the author(s) and do not necessarily
reflect the official positions of the European Union or the Clean Hydrogen Joint
Undertaking. Neither the European Union nor the granting authority assumes
responsibility for the content presented.

111





Bibliography

[1] Edo Airoldi et al. “Mixed membership stochastic blockmodels”. In: Advances
in neural information processing systems 21 (2008).

[2] ARWA Aldabobi, AHMAD Sharieh, and RIAD Jabri. “An improved Louvain
algorithm based on Node importance for Community detection”. In: Journal
of Theoretical and Applied Information Technology 100.23 (2022), pp. 1–14.

[3] Vladimir Batagelj and Matjaz Zaversnik. “An O(m) Algorithm for Cores De-
composition of Networks”. In: ArXiv cs.DS/0310049 (2003). url: https://
api.semanticscholar.org/CorpusID:15799869.

[4] Stefano Benati et al. “Overlapping communities detection through weighted
graph community games”. In: PLOS ONE 18.4 (Apr. 2023), pp. 1–35. doi: 10.
1371/journal.pone.0283857. url: https://doi.org/10.1371/journal.
pone.0283857.

[5] Takwa Benissa and Anish Patil. “Drivers for Clustering and Inter-Project
Collaboration—A Case of Horizon Europe Projects”. In: Administrative Sci-
ences 14.5 (2024). issn: 2076-3387. doi: 10.3390/admsci14050104. url: https:
//www.mdpi.com/2076-3387/14/5/104.

[6] Alberto Bertello, Paola De Bernardi, and Francesca Ricciardi. “Open innova-
tion: status quo and quo vadis - an analysis of a research field”. In: Review
of Managerial Science 18.2 (2024), pp. 633–683. issn: 1863-6691. doi: 10.1007/
s11846-023-00655-8. url: https://doi.org/10.1007/s11846-023-00655-
8.

[7] M. Bjelland et al. “Employer-to-employer flows in the United States: estimates
using linked employer-employee data”. In: Journal of Business and Economic
Statistics 29.4 (2011), pp. 493–505.

113

https://api.semanticscholar.org/CorpusID:15799869
https://api.semanticscholar.org/CorpusID:15799869
https://doi.org/10.1371/journal.pone.0283857
https://doi.org/10.1371/journal.pone.0283857
https://doi.org/10.1371/journal.pone.0283857
https://doi.org/10.1371/journal.pone.0283857
https://doi.org/10.3390/admsci14050104
https://www.mdpi.com/2076-3387/14/5/104
https://www.mdpi.com/2076-3387/14/5/104
https://doi.org/10.1007/s11846-023-00655-8
https://doi.org/10.1007/s11846-023-00655-8
https://doi.org/10.1007/s11846-023-00655-8
https://doi.org/10.1007/s11846-023-00655-8


114 BIBLIOGRAPHY

[8] Vincent Blondel, Jean-Loup Guillaume, and Renaud Lambiotte. “Fast un-
folding of communities in large networks: 15 years later”. In: Journal of
Statistical Mechanics: Theory and Experiment 2024.10 (Oct. 2024), 10R001. doi:
10.1088/1742-5468/ad6139. url: https://dx.doi.org/10.1088/1742-
5468/ad6139.

[9] Vincent D Blondel et al. “Fast unfolding of communities in large networks”.
In: Journal of statistical mechanics: theory and experiment 2008.10 (2008), P10008.

[10] Ulrik Brandes et al. “Graph Markup Language (GraphML)”. In: Handbook of
Graph Drawing and Visualization. Ed. by Roberto Tamassia. Boca Raton, FL:
CRC Press, 2013, pp. 517–541. url: https://www.uni-konstanz.de/mmsp/
pubsys/publishedFiles/BrEiLe10.pdf.

[11] Matthew Burgess, Eytan Adar, and Michael Cafarella. “Link-prediction en-
hanced consensus clustering for complex networks”. In: PloS one 11.5 (2016),
e0153384.

[12] Elias G. Carayannis and David F.J. Campbell. “Triple Helix, Quadruple Helix
and Quintuple Helix and how knowledge, innovation, and the environment
relate to each other: A proposed framework for a trans-disciplinary analysis
of sustainable development and social ecology”. In: International Journal of
Social Ecology and Sustainable Development (ĲSESD) 1.1 (2010), pp. 41–69. doi:
10.4018/978-1-4666-0882-5.ch3.8.

[13] Andreana Casaramona, Antonia Sapia, and Alberto Soraci. “How TOI and
the quadruple and quintuple helix innovation system can support the de-
velopment of a new model of international cooperation”. In: Journal of the
Knowledge Economy 6.3 (2015), pp. 505–521.

[14] Tanmoy Chakraborty et al. “Constant communities in complex networks”. In:
Scientific reports 3.1 (2013), p. 1825.

[15] Tanmoy Chakraborty et al. “Ensemble Detection and Analysis of Communi-
ties in Complex Networks”. In: 1.1 (Mar. 2020). issn: 2691-1922. doi: 10.1145/
3313374. url: https://doi.org/10.1145/3313374.

[16] Henry Chesbrough and Marcel Bogers. “3Explicating Open Innovation: Clari-
fying an Emerging Paradigm for Understanding Innovation”. In: New Frontiers
in Open Innovation. Oxford University Press, Nov. 2014. isbn: 9780199682461.
doi: 10 . 1093 / acprof : oso / 9780199682461 . 003 . 0001. eprint: https :
//academic.oup.com/book/0/chapter/148736254/chapter- ag- pdf/

44989927/book\_5676\_section\_148736254.ag.pdf. url: https://doi.
org/10.1093/acprof:oso/9780199682461.003.0001.

https://doi.org/10.1088/1742-5468/ad6139
https://dx.doi.org/10.1088/1742-5468/ad6139
https://dx.doi.org/10.1088/1742-5468/ad6139
https://www.uni-konstanz.de/mmsp/pubsys/publishedFiles/BrEiLe10.pdf
https://www.uni-konstanz.de/mmsp/pubsys/publishedFiles/BrEiLe10.pdf
https://doi.org/10.4018/978-1-4666-0882-5.ch3.8
https://doi.org/10.1145/3313374
https://doi.org/10.1145/3313374
https://doi.org/10.1145/3313374
https://doi.org/10.1093/acprof:oso/9780199682461.003.0001
https://academic.oup.com/book/0/chapter/148736254/chapter-ag-pdf/44989927/book\_5676\_section\_148736254.ag.pdf
https://academic.oup.com/book/0/chapter/148736254/chapter-ag-pdf/44989927/book\_5676\_section\_148736254.ag.pdf
https://academic.oup.com/book/0/chapter/148736254/chapter-ag-pdf/44989927/book\_5676\_section\_148736254.ag.pdf
https://doi.org/10.1093/acprof:oso/9780199682461.003.0001
https://doi.org/10.1093/acprof:oso/9780199682461.003.0001


BIBLIOGRAPHY 115

[17] Julien Chiquet et al. R package aricode: Efficient Computations of Standard Cluster-
ing Comparison Measures. R package version 1.0.1. 2022. url: https://CRAN.R-
project.org/package=aricode.

[18] Aaron Clauset, Cristopher Moore, and Mark EJ Newman. “Hierarchical struc-
ture and the prediction of missing links in networks”. In: Nature 453.7191
(2008), pp. 98–101.

[19] Graph Drawing Community. GraphML: The Graph Markup Language. Accessed:
2024-9-20. 2021. url: http://graphml.graphdrawing.org/.

[20] Giulia Concas et al. “Life Cycle Analysis of a Hydrogen Valley with Multiple
End Users”. In: Journal of Physics: Conference Series 2385 (2022), p. 012035. doi:
10.1088/1742-6596/2385/1/012035.

[21] Gabor Csardi et al. igraph: Network Analysis and Visualization in R. InterJournal,
2023. url: https://igraph.org.

[22] Leon Danon et al. “Comparing community structure identification”. In: Jour-
nal of Statistical Mechanics: Theory and Experiment 2005.09 (Sept. 2005), p. 9008.

[23] Abdelhani Diboune et al. “A comprehensive survey on community detection
methods and applications in complex information networks”. In: Social Net-
work Analysis and Mining 14.1 (2024), p. 93. doi: 10.1007/s13278-024-01246-
5. url: https://doi.org/10.1007/s13278-024-01246-5.

[24] Duy Hieu Do and Thi Ha Duong Phan. An improvement on the Louvain algorithm
using random walks. 2024. arXiv: 2403.08313 [cs.SI]. url: https://arxiv.
org/abs/2403.08313.

[25] Daniel Edler, Anton Holmgren, and Martin Rosvall. The MapEquation software
package. https://mapequation.org. 2023.

[26] Henry Etzkowitz and Loet Leydesdorff. “The dynamics of innovation: from
National Systems and “Mode 2” to a Triple Helix of university–industry–government
relations”. In: Research Policy 29.2 (2000), pp. 109–123. issn: 0048-7333. doi:
https://doi.org/10.1016/S0048-7333(99)00055-4. url: https://www.
sciencedirect.com/science/article/pii/S0048733399000554.

[27] European Commission. Call HORIZON-JTI-CLEANH2-2022-2 - Horizon Eu-
rope Joint Technology Initiative on Clean Hydrogen. https : / / www . clean -
hydrogen.europa.eu/call- proposals- 2022_en. Accessed: 2024-08-26.
url: %7Bhttps://www.clean- hydrogen.europa.eu/call- proposals-
2022_en%7D.

[28] European Commission. Commission Recommendation of 29 October 2009 on the
use of the International Standard Classification of Occupations (ISCO-08). Official
Journal of the European Union. 2009.

https://CRAN.R-project.org/package=aricode
https://CRAN.R-project.org/package=aricode
http://graphml.graphdrawing.org/
https://doi.org/10.1088/1742-6596/2385/1/012035
https://igraph.org
https://doi.org/10.1007/s13278-024-01246-5
https://doi.org/10.1007/s13278-024-01246-5
https://doi.org/10.1007/s13278-024-01246-5
https://arxiv.org/abs/2403.08313
https://arxiv.org/abs/2403.08313
https://arxiv.org/abs/2403.08313
https://mapequation.org
https://doi.org/https://doi.org/10.1016/S0048-7333(99)00055-4
https://www.sciencedirect.com/science/article/pii/S0048733399000554
https://www.sciencedirect.com/science/article/pii/S0048733399000554
https://www.clean-hydrogen.europa.eu/call-proposals-2022_en
https://www.clean-hydrogen.europa.eu/call-proposals-2022_en
%7Bhttps://www.clean-hydrogen.europa.eu/call-proposals-2022_en%7D
%7Bhttps://www.clean-hydrogen.europa.eu/call-proposals-2022_en%7D


116 BIBLIOGRAPHY

[29] European Commission. CORDIS: EU Research Projects under Horizon 2020.
URL: https://data.europa.eu/data/datasets/cordish2020projects Accessed:
Sept. 2024. url: %5Curl%7Bhttps://data.europa.eu/data/datasets/
cordish2020projects%7D.

[30] European Commission. CORDIS: EU Research Projects under Horizon Europe
2021-2027. URL: https://data.europa.eu/data/datasets/cordis-eu-research-
projects-under-horizon-europe-2021-2027 Accessed: Sept. 2024. url: %5Curl%
7Bhttps : / / data . europa . eu / data / datasets / cordis - eu - research -

projects-under-horizon-europe-2021-2027%7D.

[31] European Commission. CORDIS: EU Research Results. URL: https://cordis.europa.eu
Accessed: Sept. 2024. url: %5Curl%7Bhttps://cordis.europa.eu%7D.

[32] European Commission. EU Funding & Tenders Portal: Calls for Proposals. Ac-
cessed: 2023-10-20. 2023. url: https://ec.europa.eu/info/funding-
tenders/opportunities/ portal/screen/opportunities/calls- for-

proposals.

[33] European Commission. European Innovation Scoreboard 2023. European Com-
mission, Directorate-General for Internal Market, Industry, Entrepreneur-
ship and SMEs. Accessed: 2024-10-22. 2023. url: https://ec.europa.eu/
innovation-scoreboard.

[34] European Commission. Horizon Europe Performance - Programme Performance
Statements. Accessed: 2023-10-20. 2023. url: https://commission.europa.
eu/strategy- and- policy/eu- budget/performance- and- reporting/

programme-performance-statements/horizon-europe-performance_en.

[35] European Commission. North Adriatic Hydrogen Valley - project website. https:
//cordis.europa.eu/project/id/101111927. Accessed: 2024-08-26. url:
https://cordis.europa.eu/project/id/101111927.

[36] European Commission. Open Research Europe. https://open- research-
europe.ec.europa.eu. Accessed: 2024-10-29. 2024.

[37] European Commission. Technology Readiness Levels (TRL): Extract from the Hori-
zon 2020 Work Programme 2014-2015. Accessed: 20-Oct-2024. 2014. url: https:
//ec.europa.eu/research/participants/data/ref/h2020/wp/2014_

2015/annexes/h2020-wp1415-annex-g-trl_en.pdf.

[38] Bojan Evkoski, I Mozetič, and Petra Kralj Novak. “Community evolution with
ensemble louvain”. In: Complex networks (2021), pp. 58–60.

[39] Bojan Evkoski et al. “Community evolution in retweet networks”. In: PLOS
ONE 16.9 (Sept. 2021). Ed. by Chantal Cherifi, e0256175. doi: 10 . 1371 /
journal.pone.0256175.

%5Curl%7Bhttps://data.europa.eu/data/datasets/cordish2020projects%7D
%5Curl%7Bhttps://data.europa.eu/data/datasets/cordish2020projects%7D
%5Curl%7Bhttps://data.europa.eu/data/datasets/cordis-eu-research-projects-under-horizon-europe-2021-2027%7D
%5Curl%7Bhttps://data.europa.eu/data/datasets/cordis-eu-research-projects-under-horizon-europe-2021-2027%7D
%5Curl%7Bhttps://data.europa.eu/data/datasets/cordis-eu-research-projects-under-horizon-europe-2021-2027%7D
%5Curl%7Bhttps://cordis.europa.eu%7D
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/calls-for-proposals
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/calls-for-proposals
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/calls-for-proposals
https://ec.europa.eu/innovation-scoreboard
https://ec.europa.eu/innovation-scoreboard
https://commission.europa.eu/strategy-and-policy/eu-budget/performance-and-reporting/programme-performance-statements/horizon-europe-performance_en
https://commission.europa.eu/strategy-and-policy/eu-budget/performance-and-reporting/programme-performance-statements/horizon-europe-performance_en
https://commission.europa.eu/strategy-and-policy/eu-budget/performance-and-reporting/programme-performance-statements/horizon-europe-performance_en
https://cordis.europa.eu/project/id/101111927
https://cordis.europa.eu/project/id/101111927
https://cordis.europa.eu/project/id/101111927
https://open-research-europe.ec.europa.eu
https://open-research-europe.ec.europa.eu
https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf
https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf
https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf
https://doi.org/10.1371/journal.pone.0256175
https://doi.org/10.1371/journal.pone.0256175


BIBLIOGRAPHY 117

[40] Santo Fortunato and Marc Barthelemy. “Resolution limit in community de-
tection”. In: Proceedings of the national academy of sciences 104.1 (2007), pp. 36–
41.

[41] Santo Fortunato and Darko Hric. “Community detection in networks: A user
guide”. In: Physics Reports 659 (2016), pp. 1–44.

[42] Santo Fortunato and Mark EJ Newman. “20 years of network community
detection”. In: Nature Physics 18.8 (2022), pp. 848–850.

[43] M. Frankowska and K. Cheba. “Exploring the Research Landscape of Hydro-
gen Valleys: A Bibliometric Analysis”. In: Journal of Sustainable Development of
Transport and Logistics 8.2 (2023), pp. 348–359. doi: 10.14254/jsdtl.2023.8-
2.27.

[44] Benjamin H. Good, Yves-Alexandre de Montjoye, and Aaron Clauset. “Per-
formance of modularity maximization in practical contexts”. In: Phys. Rev.
E 81 (4 Apr. 2010), p. 046106. doi: 10.1103/PhysRevE.81.046106. url:
https://link.aps.org/doi/10.1103/PhysRevE.81.046106.

[45] Economist Impact. Open Innovation. https : / / impact . economist . com /
projects/open-innovation. Accessed: 2024-10-14. 2024.

[46] Economist Impact. Open Innovation Briefing Paper.https://impact.economist.
com/projects/open-innovation/Open%20Innovation%20Briefing%20Paper.

pdf. Accessed: 2024-10-14. 2024.
[47] Di Jin et al. “A survey of community detection approaches: From statisti-

cal modeling to deep learning”. In: IEEE Transactions on Knowledge and Data
Engineering 35.2 (2021), pp. 1149–1170.

[48] Faiza Riaz Khawaja et al. “Exploring community detection methods and their
diverse applications in complex networks: a comprehensive review”. In: Social
Network Analysis and Mining 14.1 (June 2024), p. 115. issn: 1869-5469. doi:
10.1007/s13278-024-01274-1. url: https://doi.org/10.1007/s13278-
024-01274-1.

[49] Yi-Xiu Kong et al. “k-core: Theories and applications”. In: Physics Reports
832 (2019). k-core: Theories and Applications, pp. 1–32. issn: 0370-1573. doi:
https://doi.org/10.1016/j.physrep.2019.10.004. url: https://www.
sciencedirect.com/science/article/pii/S037015731930328X.

[50] Andrea Lancichinetti and Santo Fortunato. “Consensus clustering in complex
networks”. In: Scientific reports 2.1 (2012), p. 336.

[51] Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. “Benchmark
graphs for testing community detection algorithms”. In: Physical review E 78.4
(2008), p. 046110.

https://doi.org/10.14254/jsdtl.2023.8-2.27
https://doi.org/10.14254/jsdtl.2023.8-2.27
https://doi.org/10.1103/PhysRevE.81.046106
https://link.aps.org/doi/10.1103/PhysRevE.81.046106
https://impact.economist.com/projects/open-innovation
https://impact.economist.com/projects/open-innovation
https://impact.economist.com/projects/open-innovation/Open%20Innovation%20Briefing%20Paper.pdf
https://impact.economist.com/projects/open-innovation/Open%20Innovation%20Briefing%20Paper.pdf
https://impact.economist.com/projects/open-innovation/Open%20Innovation%20Briefing%20Paper.pdf
https://doi.org/10.1007/s13278-024-01274-1
https://doi.org/10.1007/s13278-024-01274-1
https://doi.org/10.1007/s13278-024-01274-1
https://doi.org/https://doi.org/10.1016/j.physrep.2019.10.004
https://www.sciencedirect.com/science/article/pii/S037015731930328X
https://www.sciencedirect.com/science/article/pii/S037015731930328X


118 BIBLIOGRAPHY

[52] Clement Lee and Darren J Wilkinson. “A review of stochastic block models
and extensions for graph clustering”. In: Applied Network Science 4.1 (2019),
pp. 1–50.

[53] A. Majka et al. “Hydrogen Valley as a Hub for Technological Cooperation
Between Science, Business, Local Government and NGOs: An Overview of
Approaches in Europe”. In: Torun International Studies 1.17 (2023), pp. 5–15.
doi: 10.12775/TIS.2023.00.

[54] G. Menardi and D. De Stefano. “Density-based clustering of social networks”.
In: arXiv preprint arXiv:2101.08334 (2021).

[55] Barend Mons et al. “The FAIR Principles: First Generation Implementation
Choices and Challenges”. In: Data Intelligence 2.1-2 (Jan. 2020), pp. 1–9. issn:
2641-435X. doi: 10.1162/dint_e_00023. eprint: https://direct.mit.
edu/dint/article-pdf/2/1-2/1/1893425/dint\_e\_00023.pdf. url:
https://doi.org/10.1162/dint%5C_e%5C_00023.

[56] Atefeh Moradan et al. “Ucode: Unified community detection with graph
convolutional networks”. In: Machine Learning 112.12 (2023), pp. 5057–5080.

[57] Fabio Morea. https://github.com/fabio-morea/communities. Version v
1.0. Aug. 2024. doi: 10.5281/zenodo.13594210.

[58] Fabio Morea. Horizon Projects Network Dataset. Dataset, DOI: https://doi.
org/10.5281/zenodo.13765372. 2024. doi: 10.5281/zenodo.13765372. url:
https://zenodo.org/record/13765372.

[59] Fabio Morea and Domenico De Stefano. “Innovation Patterns within a Re-
gional Economy through Consensus Community Detection on Labour Mar-
ket Network”. In: Proceedings of the Statistics and Data Science Conference (2023).
url: https://arts.units.it/handle/11368/3046559.

[60] Fabio Morea, Alberto Soraci, and Domenico De Stefano. Mapping leadership
and communities in EU-funded research through network analysis. version 1; peer
review: awaiting peer review. 2024. doi: 10.12688/openreseurope.18544.1.
url: https://doi.org/10.12688/openreseurope.18544.1.

[61] Fabio Morea and Domenico De Stefano. Beyond One Solution: The Case for a
Comprehensive Exploration of Solution Space in Community Detection. 2024. arXiv:
2410.19495 [cs.SI]. url: https://arxiv.org/abs/2410.19495.

[62] Fabio Morea and Domenico De Stefano. Enhancing Stability and Assessing Un-
certainty in Community Detection through a Consensus-based Approach. Preprint,
DOI: https://doi.org/10.48550/arXiv.2408.02959. 2024. arXiv: 2408.
02959 [cs.SI]. url: https://arxiv.org/abs/2408.02959.

https://doi.org/10.12775/TIS.2023.00
https://doi.org/10.1162/dint_e_00023
https://direct.mit.edu/dint/article-pdf/2/1-2/1/1893425/dint\_e\_00023.pdf
https://direct.mit.edu/dint/article-pdf/2/1-2/1/1893425/dint\_e\_00023.pdf
https://doi.org/10.1162/dint%5C_e%5C_00023
https://github.com/fabio-morea/communities
https://doi.org/10.5281/zenodo.13594210
https://doi.org/10.5281/zenodo.13765372
https://doi.org/10.5281/zenodo.13765372
https://doi.org/10.5281/zenodo.13765372
https://zenodo.org/record/13765372
https://arts.units.it/handle/11368/3046559
https://doi.org/10.12688/openreseurope.18544.1
https://doi.org/10.12688/openreseurope.18544.1
https://arxiv.org/abs/2410.19495
https://arxiv.org/abs/2410.19495
 https://doi.org/10.48550/arXiv.2408.02959
https://arxiv.org/abs/2408.02959
https://arxiv.org/abs/2408.02959
https://arxiv.org/abs/2408.02959


BIBLIOGRAPHY 119

[63] M. E. J. Newman and M. Girvan. “Finding and evaluating community struc-
ture in networks”. In: Phys. Rev. E 69 (2 2004), p. 026113.

[64] Mark EJ Newman. “Finding community structure in networks using the
eigenvectors of matrices”. In: Physical Review E—Statistical, Nonlinear, and Soft
Matter Physics 74.3 (2006), p. 036104.

[65] Mark EJ Newman and Michelle Girvan. “Finding and evaluating community
structure in networks”. In: Physical review E 69.2 (2004), p. 026113.

[66] OpenAIRE. Zenodo. 2013. doi: 10.25495/7GXK-RD71. url: https://about.
zenodo.org/.

[67] Gergely Palla et al. “Uncovering the overlapping community structure of
complex networks in nature and society”. In: nature 435.7043 (2005), pp. 814–
818.

[68] J. Park, I.B. Wood, and E. et al. Jing. “Global labor flow network reveals the
hierarchical organization and dynamics of geo-industrial clusters”. In: Nature
Communications 10 (2019), p. 3449. doi: 10.1038/s41467-019-11380-.

[69] Clean Hydrogen Partnership. Clean Hydrogen Partnership. https : / / www .
clean-hydrogen.europa.eu. Accessed: 2024-10-20.

[70] Clean Hydrogen Partnership. Hydrogen Valleys: Insights into the emerging hydro-
gen economies around the world. https://www.clean-hydrogen.europa.eu/
system/files/2021-06/20210527_Hydrogen_Valleys_final_ONLINE.pdf.
2021.

[71] Paolo Perlasca et al. “Multi-resolution visualization and analysis of biomolec-
ular networks through hierarchical community detection and web-based
graphical tools”. In: PLOS ONE 15.12 (Dec. 2020), pp. 1–28. doi: 10.1371/
journal.pone.0244241. url: https://doi.org/10.1371/journal.pone.
0244241.

[72] Mario Petrollese et al. “Techno-economic Assessment of Green Hydrogen
Valley Providing Multiple End-users”. In: International Journal of Hydrogen
Energy 47.57 (2022), pp. 348–359.

[73] Alexander Ponomarenko, Leonidas Pitsoulis, and Marat Shamshetdinov. “Over-
lapping community detection in networks based on link partitioning and
partitioning around medoids”. In: PLOS ONE 16.8 (Aug. 2021), pp. 1–43.
doi: 10.1371/journal.pone.0255717. url: https://doi.org/10.1371/
journal.pone.0255717.

https://doi.org/10.25495/7GXK-RD71
https://about.zenodo.org/
https://about.zenodo.org/
https://doi.org/10.1038/s41467-019-11380-
https://www.clean-hydrogen.europa.eu
https://www.clean-hydrogen.europa.eu
https://www.clean-hydrogen.europa.eu/system/files/2021-06/20210527_Hydrogen_Valleys_final_ONLINE.pdf
https://www.clean-hydrogen.europa.eu/system/files/2021-06/20210527_Hydrogen_Valleys_final_ONLINE.pdf
https://doi.org/10.1371/journal.pone.0244241
https://doi.org/10.1371/journal.pone.0244241
https://doi.org/10.1371/journal.pone.0244241
https://doi.org/10.1371/journal.pone.0244241
https://doi.org/10.1371/journal.pone.0255717
https://doi.org/10.1371/journal.pone.0255717
https://doi.org/10.1371/journal.pone.0255717


120 BIBLIOGRAPHY

[74] Pascal Pons and Matthieu Latapy. “Computing communities in large networks
using random walks”. In: Computer and Information Sciences-ISCIS 2005: 20th
International Symposium, Istanbul, Turkey, October 26-28, 2005. Proceedings 20.
Springer. 2005, pp. 284–293.

[75] M. E. Porter. “Location, competition, and economic development: Local clus-
ters in a global economy”. In: Economic Development Quarterly 14.1 (2000),
pp. 15–34.

[76] Valérie Poulin and François Theberge. “Ensemble clustering for graphs: com-
parisons and applications”. In: E. Appl Netw Sci 4, 51 (2019). doi: https:
//doi.org/10.1007/s41109-019-0162-z.

[77] Publications Office of the European Union. EuroSciVoc - European Science Vo-
cabulary. https://cordis.europa.eu/article/id/430940-euroscivoc.
Accessed: 2024-09-24.

[78] R Core Team. R: A Language and Environment for Statistical Computing. Vienna,
Austria: R Foundation for Statistical Computing, 2022. url: https://www.R-
project.org.

[79] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. “Near linear
time algorithm to detect community structures in large-scale networks”. In:
Physical review E 76.3 (2007), p. 036106.

[80] Bruce S. Rawlings and Simon M. Reader. “What Is Innovation?: A Review
of Definitions, Approaches, and Key Questions in Human and Non-Human
Innovation”. In: The Oxford Handbook of Cultural Evolution. Oxford University
Press, 2024. isbn: 9780198869252. doi: 10.1093/oxfordhb/9780198869252.
013.11. url: https://doi.org/10.1093/oxfordhb/9780198869252.013.11.

[81] André Luis Rossoni, Eduardo Pinheiro Gondim de Vasconcellos, and Renata
Luiza de Castilho Rossoni. “Barriers and facilitators of university-industry
collaboration for research, development and innovation: a systematic review”.
In: Management Review Quarterly 74.3 (2024), pp. 1841–1877. issn: 2198-1639.
doi: 10.1007/s11301- 023- 00349- 1. url: https://doi.org/10.1007/
s11301-023-00349-1.

[82] M. Rosvall, D. Axelsson, and C. T. Bergstrom. “The map equation”. In: The
European Physical Journal Special Topics 178.1 (Nov. 2009), pp. 13–23. doi: 10.
1140/epjst/e2010-01179-1. url: https://doi.org/10.1140%2Fepjst%
2Fe2010-01179-1.

[83] Martin Rosvall and Carl T Bergstrom. “An information-theoretic framework
for resolving community structure in complex networks”. In: Proceedings of
the national academy of sciences 104.18 (2007), pp. 7327–7331.

https://doi.org/https://doi.org/10.1007/s41109-019-0162-z
https://doi.org/https://doi.org/10.1007/s41109-019-0162-z
https://cordis.europa.eu/article/id/430940-euroscivoc
https://www.R-project.org
https://www.R-project.org
https://doi.org/10.1093/oxfordhb/9780198869252.013.11
https://doi.org/10.1093/oxfordhb/9780198869252.013.11
https://doi.org/10.1093/oxfordhb/9780198869252.013.11
https://doi.org/10.1007/s11301-023-00349-1
https://doi.org/10.1007/s11301-023-00349-1
https://doi.org/10.1007/s11301-023-00349-1
https://doi.org/10.1140/epjst/e2010-01179-1
https://doi.org/10.1140/epjst/e2010-01179-1
https://doi.org/10.1140%2Fepjst%2Fe2010-01179-1
https://doi.org/10.1140%2Fepjst%2Fe2010-01179-1


BIBLIOGRAPHY 121

[84] Martin Rosvall and Carl T. Bergstrom. “Maps of random walks on complex
networks reveal community structure”. In: Proceedings of the National Academy
of Sciences 105.4 (2008), pp. 1118–1123. doi:10.1073/pnas.0706851105. eprint:
https://www.pnas.org/doi/pdf/10.1073/pnas.0706851105. url: https:
//www.pnas.org/doi/abs/10.1073/pnas.0706851105.

[85] Subhajit Sahu. “Addressing Internally-Disconnected Communities in Leiden
and Louvain Community Detection Algorithms”. In: arXiv preprint arXiv:2402.11454
(2024).

[86] Joseph A. Schumpeter. The Theory of Economic Development: An Inquiry into
Profits, Capital, Credit, Interest, and the Business Cycle. Cambridge, MA: Harvard
University Press, 1934.

[87] Fernanda Rosalina da Silva Meireles, Ana Cláudia Azevedo, and João Maurí-
cio Gama Boaventura. “Open innovation and collaboration: A systematic liter-
ature review”. In: Journal of Engineering and Technology Management 65 (2022),
p. 101702. issn: 0923-4748. doi: https://doi.org/10.1016/j.jengtecman.
2022.101702. url: https://www.sciencedirect.com/science/article/
pii/S0923474822000327.

[88] Blaž Škrlj, Jan Kralj, and Nada Lavrač. “Embedding-based Silhouette com-
munity detection”. In: Machine Learning 109 (2020), pp. 2161–2193.

[89] Daniela Stoltenberg, Daniel Maier, and Annie Waldherr. “Community de-
tection in civil society online networks: Theoretical guide and empirical as-
sessment”. In: Social Networks 59 (2019), pp. 120–133. issn: 0378-8733. doi:
https://doi.org/10.1016/j.socnet.2019.07.001. url: https://www.
sciencedirect.com/science/article/pii/S0378873318301138.

[90] Vincent A Traag, Ludo Waltman, and Nees Jan Van Eck. “From Louvain to
Leiden: guaranteeing well-connected communities”. In: Scientific reports 9.1
(2019), p. 5233.

[91] U. Weichenhain et al. GOING GLOBAL: An update on Hydrogen Valleys and
their role in the new hydrogen economy. Clean Hydrogen Partnership, 2021. isbn:
978-92-9246-394-6. url: https://www.clean-hydrogen.europa.eu/system/
files/2021-06/20210527_Hydrogen_Valleys_final_ONLINE.pdf.

[92] Mark D. Wilkinson et al. “The FAIR Guiding Principles for scientific data
management and stewardship”. In: Scientific Data 3.1 (2016), p. 160018. issn:
2052-4463. doi: 10.1038/sdata.2016.18. url: https://doi.org/10.1038/
sdata.2016.18.

[93] Wayne W Zachary. “An information flow model for conflict and fission in
small groups”. In: Journal of Anthropological Research 33.4 (1977), pp. 452–473.

https://doi.org/10.1073/pnas.0706851105
https://www.pnas.org/doi/pdf/10.1073/pnas.0706851105
https://www.pnas.org/doi/abs/10.1073/pnas.0706851105
https://www.pnas.org/doi/abs/10.1073/pnas.0706851105
https://doi.org/https://doi.org/10.1016/j.jengtecman.2022.101702
https://doi.org/https://doi.org/10.1016/j.jengtecman.2022.101702
https://www.sciencedirect.com/science/article/pii/S0923474822000327
https://www.sciencedirect.com/science/article/pii/S0923474822000327
https://doi.org/https://doi.org/10.1016/j.socnet.2019.07.001
https://www.sciencedirect.com/science/article/pii/S0378873318301138
https://www.sciencedirect.com/science/article/pii/S0378873318301138
https://www.clean-hydrogen.europa.eu/system/files/2021-06/20210527_Hydrogen_Valleys_final_ONLINE.pdf
https://www.clean-hydrogen.europa.eu/system/files/2021-06/20210527_Hydrogen_Valleys_final_ONLINE.pdf
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18

	Abstract
	Abstract (italiano)
	Acronyms and symbols
	Introduction
	 Innovation
	Knowledge diffusion and innovation
	Collaboration as a driver for innovation
	Innovation Networks

	Fundamentals of Network Analysis
	Network definition and notation
	Centrality Measures
	Components
	Communities
	Partitions
	Temporal Network Analysis in Longitudinal Data
	Community detection algorithms
	Benchmark networks

	 Limitations of community detection
	Variability
	Validity of results
	Outliers
	Input ordering bias

	 Enhancing stability of community detection
	Solution Space
	Consensus Community Detection
	Performance of CCD

	R-package 'communities'
	Functions to generate benchmark networks
	Functions for solution space and quality check
	Functions for consensus community detection
	Functions for analysing community structure
	Functions for visualization

	 Innovation patterns within a regional economy
	Innovation in Friuli Venezia Giulia region
	Data and methodology
	Results and discussion

	 Mapping leadership and communities in EU-funded research
	Horizon programmes
	The 'hydrogen energy' sector and NAHV project
	Data acquisition
	Data preparation
	 Results

	Conclusions
	 Appendix: Open Science
	FAIR principles
	Open publication
	Open access to data
	Open access to code and software

	Acknowledgments
	Bibliography



