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Abstract. In this paper we propose a discrete time model, based on
dynamic programming, to price GLWB variable annuities under the
dynamic approach within a stochastic mortality framework. Our set-up is
very general and only requires the Markovian property for the mortality
intensity and the asset price processes. We also show the validity of the
bang-bang condition for the set of discrete withdrawal strategies of the
model. This result allows to drastically reduce the computational time
needed to search the optimal withdrawal in the backward recursive step
of our dynamic algorithm and provides, as a by-product, an interesting
contract decomposition.
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1 Introduction

Variable annuities (VAs) are very flexible life insurance investment products that
package living and death benefits endowed with a number of possible guaran-
tees in respect of financial or biometric risks. A rider that can be included in
a VA contract in order to provide a post-retirement income is the Guaranteed
Lifelong Withdrawal Benefit (GLWB), that offers a lifelong withdrawal guaran-
tee. There has been a number of papers dealing with pricing of the VA products.
Most of them are focused on pricing VA guarantees under the static policyholder
behaviour (see e.g., [1]), meaning that the policyholder always withdraws exactly
the guaranteed amount, and never surrenders the contract. Some studies include
pricing under the dynamic approach, when the policyholder optimally decides
the amount to withdraw at each withdrawal date depending on the informa-
tion available at that date (see, e.g., [2]). According to whether withdrawals are
assumed to occur continuously or discretely, the optimal withdrawal problem
under the dynamic approach is generally solved using, respectively, stochastic
control and dynamic programming [3]. In this paper we propose a discrete time
model, based on dynamic programming, to price VAs with GLWB under the
dynamic approach within a stochastic mortality framework. Our set-up is very
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general and only requires the Markovian property for the mortality intensity
and the asset price processes. Another contribution of our paper is the verifica-
tion of the bang-bang condition for the set of discrete withdrawal strategies of
the GLWB model. This means that the set of the optimal withdrawals consists
of three choices only: zero withdrawal, withdrawal at the contractual amount,
complete surrender. This result, proven in our discrete time framework, is par-
ticularly remarkable as in the insurance literature either the existence of optimal
bang-bang controls is assumed or it requires suitable conditions (see e.g., [4]).
The bang-bang condition, beyond drastically reducing the computational time
needed to search the optimal withdrawal in the backward recursive step of our
dynamic algorithm, allows to clearly separate the various contract components.

The remainder of this paper is organized as follows. In Sect. 2 we describe the
structure of the VA contract. In Sect. 3 we introduce our valuation framework
and define the optimal withdrawal problem. In Sect. 4 we first define the dynamic
programming equations that allow to solve the problem, then we introduce the
bang-bang condition and outline the proof of its validity, and after we present
the contract decomposition. Finally, Sect. 5 concludes the paper.

2 The Contract Structure

In this section we describe the GLWB rider in our variable annuity contract. At
time 0 (contract inception), the policyholder, aged x, pays a single premium P
which is entirely invested in a well-diversified and non-dividend paying mutual
fund of her own choice. We denote by St the market price at time t of each unit
of this fund, that drives the return on the investment portfolio built up with
the policyholder’s payment. The value at time t of such portfolio, that is called
‘personal account’, is denoted by Wt. The GLWB rider gives the policyholder the
right to make periodical withdrawals from her account at some specified dates
for the whole life, even if the account value is reduced to zero. The cost of the
guarantee is financed by periodical proportional deductions from the personal
account value, while the guaranteed withdrawal amount is calculated as a fixed
proportion g of the ‘benefit base’, denoted by At, which is initially set equal to
the single premium. In addition, the benefit base can be adjusted upward via the
‘roll-up’ feature, that applies when no withdrawal is made on a specified with-
drawal date. Both the complete surrender of the policy and the policyholder’s
death are events that cause the closure of the contract. The value that remains
in the personal account when the policyholder dies is paid to the beneficiary as
a death benefit. In particular, from now on we assume that: (i) withdrawals are
allowed on a predetermined set of equidistant dates and we take the distance
between two consecutive dates as unit of measurement of time; (ii) the death
benefit is paid to the beneficiary on the next upcoming withdrawal date. Let τ
denote the time of death of the policyholder, so that withdrawals are allowed
only at times i = 1, 2, . . . , provided that τ > i. The guaranteed amount that can
be withdrawn at time i is equal to gAi, and the return on the reference fund over
the interval [i − 1, i] is Ri = (Si/Si−1) − 1, i = 1, 2, . . . . We denote by yi the
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actual withdrawal made by the policyholder at time i and, under our dynamic
approach, we assume that the set of possible withdrawals at this time is given by
the interval [0,max{gAi,Wi}]. If the policyholder does not withdraw anything
at time i, the benefit base is proportionally increased according to the roll-up
rate, that we denote by bi (with 0 < bi < 1), while, if the withdrawal exceeds
gAi, it is proportionally reduced according to the so called ‘pro-rata’ adjustment
rule. Then the benefit base evolves as follows:

Ai+1 = fA
i+1(Wi, Ai, yi) =

⎧
⎪⎪⎨

⎪⎪⎩

Ai(1 + bi) if yi = 0,

Ai if 0 < yi ≤ gAi,

Ai
Wi − yi

Wi − gAi
if gAi < yi ≤ Wi

, i = 1, 2, . . . , (1)

with A1 = P . Moreover, in case of withdrawals exceeding the guaranteed
amount, there is also a proportional penalization on the surplus according to
a penalty rate, that we denote by ki (such that 0 < ki < 1). Therefore, the net
amount (cash-flow) received by the policyholder at time i is given by

B
(s)
i = f

(s)
i (yi, Ai) = yi − ki max{yi − gAi, 0}, i = 1, 2, . . . . (2)

The policy account value evolves according to the following equation:

Wi+1 = fW
i+1(Wi, Ri+1, yi) = max{Wi−yi, 0}(1+Ri+1)(1−ϕ), i = 0, 1, . . . , (3)

where ϕ (such that 0 < ϕ < 1) is the insurance fee rate, W0 = P and y0 = 0.
Note that 0 is an absorbent barrier for W because, once it becomes null, it
remains so for ever. The contract, however, continues while At > 0 (and the
insured is still alive). Finally, in case of death in the time interval (i − 1, i], the
death benefit, paid at time i, is

B
(d)
i = Wi, i − 1 < τ ≤ i , i = 1, 2, . . . . (4)

In case of surrender at time i, i.e., when yi = Wi > gAi, the contract is auto-
matically closed because (1) and (3) imply At = Wt = 0 for all t > i, hence no
further withdrawals are admitted, nor a death benefit will be paid.

3 The Valuation Framework

In this section we introduce our valuation framework and define the optimal
withdrawal problem. Consider a filtered probability space (Ω,F ,F, Q) support-
ing all sources of financial and biometric uncertainty, where all random variables
and processes are defined. The filtration F = (Ft)t≥0 satisfies the usual condi-
tions of right continuity and completeness, and is such that F0 is Q-trivial. Q is
a risk-neutral probability measure selected by the insurer, for pricing purposes,
among the infinitely many equivalent martingale measures existing in incomplete
arbitrage-free markets. In this setting, the residual lifetime of the policyholder τ
is a stochastic F-stopping time and let μt := μx+t(t) be the mortality intensity
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which determines the probability of death at time t conditional on survival for
the policyholder aged x at time 0. Moreover, we suppose there is independence
between financial- and biometric-related variables. In this general framework we
can consider for μ any (reasonable) Markovian process and denote by

pi(μi) = Q (τ > i + 1 | τ > i, μi) = E
Q

[
e− ∫ i+1

i
μu du |μi

]
, i = 0, 1, . . . , (5)

the probability of survival up to i + 1 for the policyholder still alive at age x + i
given the mortality intensity’s values up to i. Consequently, qi(μi) = 1−pi(μi) is
the probability of death before i + 1 conditional on survival at time i. Concern-
ing the financial uncertainty, we assume the instantaneous interest rate to be
deterministic and constant, and denote it by r. The reference price S, instead,
can be any Markovian process whose discounted value is a martingale under Q.
Consider now a withdrawal strategy y = (yi)i∈N+ , where yi denotes the actual
withdrawal made at time i (in case of survival). This is a stochastic process,
adapted to the filtration F, because at each withdrawal date the policyholder
takes her withdrawal decision once she knows the values of all state variables.
This strategy is admissible if it belongs to the set of admissible withdrawal
strategies Y = (Yi)i∈N+ , where Yi = [0, max{Wi, gAi}]. Then we define the
initial value of the GLWB variable annuity as the solution of the following opti-
mization problem:

V0 = sup
y∈Y

E
Q

[ ∞∑

i=1

e−ri
(
1{τ>i}f

(s)
i (yi, Ai) + 1{i−1<τ≤i}Wi

)
]

, (6)

where the account value and the benefit base satisfy (3) and (1) respectively.
Hence the policyholder is assumed to maximize the present expected value, under
Q, of all the future cash-flows generated by the VA contract.

4 Dynamic Programming

In this section we implement a dynamic programming algorithm for discrete
stochastic control problems to solve (6). In particular, as we act in a Marko-
vian framework, for each i we denote by Vi(Wi, Ai, μi) the contract value
at time i (before the periodic withdrawal) and by vi(Wi, Ai, μi) the contract
value at the same time when, moreover, the policyholder is then alive. Clearly
Vi(Wi, Ai, μi) = 1{τ>i}vi(Wi, Ai, μi) and V0 = V0(P, P, μ0) = v0(P, P, μ0).

Since the algorithm proceeds backward, we need a starting point. To this end,
we assume that there is an ultimate age for the policyholder beyond which her
survival probability is null. We denote by ω this age, that typically is in the range
110-120 years, and let n = max{i ∈ N : ω −x ≤ i+1}, hence n < ω −x ≤ n+1.
Then Eq. (5) is valid only for i < n, while pi(μi) ≡ 0 for i ≥ n. Therefore, the
optimal problem (6) can be rewritten as

V0 = sup
y∈Y

E
Q

[
n∑

i=1

e−ri
(
1{τ>i}f

(s)
i (yi, Ai) + 1{i−1<τ≤i}Wi

)
+ e−r(n+1)1{τ>n}Wn+1

]

(7)
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We take n + 1 as starting point of our backward dynamic algorithm, and define
the following terminal condition:

vn+1(Wi, Ai, μi) ≡ 0. (8)

Then we proceed backward and, for i = n, n − 1, . . . , 1, we define the Bellman
recursive equation of the problem as follows:

vi(Wi, Ai, μi) = sup
yi∈Yi

(

f
(s)
i (yi, Ai) + qi(μi)max{Wi − yi, 0}(1 − ϕ) + (9)

E
Q

[
e− ∫ i+1

i
μu duvi+1

(
fW

i+1(Wi, Ri+1, yi), fA
i+1(Wi, Ai, yi), μi+1

)
e−r|Wi, Ai, μi

]
)

.

Finally, the initial contract value is given by

v0(P, P, μ0) = q0(μ0)P (1 − ϕ) + E
Q

[
e− ∫ 1

0 μu duv1(P (1 + R1)(1 − ϕ), P, μ1)e−r
]
.

(10)

4.1 Bang-Bang Analysis

At each time step i = n, n − 1, . . . 1, Eq. (9) requires to solve a real-valued
optimization problem where the domain of yi is the whole interval Yi =
[0, max{Wi, gAi}]. Moreover, this problem must be solved for every possible
triplet of state variables (Wi, Ai, μi). Then the computational effort could be
substantial. A property that drastically reduces this effort is the bang-bang con-
dition, which states that the set of the optimal withdrawals consists of three
choices only: zero withdrawal, withdrawal at the contractual amount, complete
surrender. Such a condition is satisfied for our problem, indeed the optimal solu-
tion of (9) is yi = 0, or yi = gAi, or yi = Wi.

Now we outline the proof, that can be made by backward induction. First
of all, through tedious computations it is easy to show that the function to
maximise at step n is a continuous linear spline, defined in the closed inter-
val Yn, with a single knot given by min{Wn, gAn}, and that its maximizer
belongs to the set {Wn, gAn}. In addition, the value function at this step
takes the form vn(Wn, An, μn) = Cn(μn)Wn + Dn(μn)gAn, where Cn and Dn

are two (constant) functions such that 0 ≤ Cn(μn) < 1 and Dn(μn) > 0.
Then, assuming vi+1(Wi+1, Ai+1, μi+1) = Ci+1(μi+1)Wi+1 + Di+1(μi+1)gAi+1

for i = n − 1, . . . , 1, with 0 ≤ Ci+1(μi+1) < 1 and Di+1(μi+1) > 0 (almost
surely), it is easy to show that the function to maximize at step i is a linear
spline defined in the closed interval Yi. This function is discontinuous at 0, where
it takes a value strictly greater than its right limit, and continuous in the (only)
knot given by min{Wi, gAi}. Hence the conclusion is that its maximizer belongs
to the set {0, Wi, gAi} and also at this step the value function takes the form
vi(Wi, Ai, μi) = Ci(μi)Wi + Di(μi)gAi, with 0 ≤ Ci(μi) < 1 and Di(μi) > 0.
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4.2 Contract Decomposition

It is clear that the valuation algorithm aimed at producing the contract value
under the dynamic approach can be used to obtain, as simplified cases, also
the contract values under alternative policyholder behaviours, namely under the
static and the mixed1 approaches. To obtain the value under the static approach
it is sufficient to fix yi = gAi for any i = 1, 2, . . . , n, without searching any
maximum, while to obtain the value under the mixed approach the search of the
maximum must be restricted to the subset {gAi, Wi}. To distinguish between
these three different values we denote them, respectively, by V dynamic

0 , V static
0

and V mixed
0 . Then we can see the dynamic contract as the combination of three

components: the basic GLWB contract, i.e., the static one, the surrender option
(with value given by V surrender

0 := V mixed
0 − V static

0 ), and the roll-up option
(whose value is V rollup

0 := V dynamic
0 − V mixed

0 ):

V dynamic
0 = V static

0 + V surrender
0 + V rollup

0 .

5 Conclusion

In this paper we have proposed a discrete time model, based on dynamic pro-
gramming, to price GLWB variable annuities under the dynamic approach within
a stochastic mortality framework. We have verified, by backward induction, the
bang-bang condition for the set of discrete withdrawal strategies of the model,
and offered an interesting contract decomposition. We have considered a quite
general set-up, only requiring the Markovian property for the mortality intensity
and the asset price processes. However, to keep the curse of dimensionality of our
valuation algorithm manageable, we have assumed constant interest rates. Our
next step is the numerical implementation of the model by focussing on a square
root process for the mortality intensity and an exponential Lévy process for the
asset price. Moreover, the inclusion of stochastic interest rates is a challenging
topic for future research.
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