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A R T I C L E I N F O A B S T R A C T

Editor: R. Gregory We investigate an extension of the Generalized Uncertainty Principle (GUP) in three dimensions by modifying 
the three dimensional position and momentum operators in a manner that remains coordinate-independent and 
retains as much of the standard position-momentum commutators as possible. Moreover, we bound the physical 
momentum which leads to an effective minimal length in every coordinate direction. The physical consequences 
of these modified operators are explored in two scenarios: (i) when a spherically-symmetric wave function is 
‘compressed’ into the smallest possible volume; (ii) when the momentum is directed in a single direction. In case 
(ii), we find that the three dimensional GUP exhibits interesting phenomena that do not occur in one dimension: 
the minimal distance in the direction parallel to a particle’s momentum is different from the minimal distance in 
the orthogonal directions.
1. Introduction

The Generalized Uncertainty Principle (GUP) and its associated min-

imal length scale, or maximum energy-momentum scale, are considered 
fruitful phenomenological approaches to quantum gravity [1–9]. The 
GUP approach to quantum gravity has led to testable predictions and 
observations, e.g. explanations for photon dispersion in vacuum [10]

and in various table-top laboratory experiments [11,12]. While many 
works mention the three dimensional generalization of the position-

momentum commutators and the associated three dimensional uncer-

tainty relationships, they generally restrict their GUPs to one spatial 
dimension. There are a few exceptions including [7] and more recently 
the work in [13], which looked at a fully relativistic GUP in four space-

time dimensions.

In this work, we want to explore the GUP in three spatial dimen-

sions and note some new features which are present in three spatial 
dimensions, but are absent in a single spatial dimension. This is similar 
to the theory of special relativity where boosts were introduced in only 
one spatial dimension and later expanded to three dimensions. Look-

ing at special relativity in three spatial dimensions leads not only to 
a more complex form for the boosts, but also gives rise to the mixing 
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of boost transformations, rotations, and related effects such as Thom-

son precession. In a similar way to Lorentz boosts, we find that certain 
variations of three dimensional GUPs lead to an interplay between the 
different coordinate directions, resulting in different minimal distances 
in the directions orthogonal to the direction of momentum.

It is interesting to notice that a similar behavior has already been 
observed in the context of string inspired noncommutative geometry 
[14–16]. Noncommutative relations determine a foliation of the space-

time in noncommutative planes. If, on the one hand, the foliation is an 
invariant character, on the other hand, on each of such planes the mini-

mal length transforms like a antisymmetric second rank tensor, i.e., the 
Kalb-Ramond field – see e.g. [17].

2. Minimal lengths in one dimension

In this section we will review the general construction of a one di-

mensional GUP, and introduce a specific form of the GUP that we will 
focus on in this work. The specific GUP studied here will modify the 
position and momentum operators, while trying to retain the standard 
commutator between conventional position and momentum.
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Most works on GUP start with a modified commutator of the form

[�̂�, 𝑃 ] = 𝑖ℏ𝐹

(
�̂�

𝑥𝑚
,
�̂�

𝑝𝑀

)
, (1)

where 𝐹
(

�̂�

𝑥𝑚
,

�̂�

𝑝𝑀

)
is a function of the canonical position and momen-

tum operators which satisfy [�̂�, �̂�] = 𝑖ℏ; and the capitalization on �̂� and 
𝑃 is used to denote the modified operators. The constants 𝑥𝑚 (𝑝𝑀 ) 
set the small distance (large momentum) cut-off scale. When Δ𝑥 ≫ 𝑥𝑚

and/or Δ𝑝 ≪ 𝑝𝑀 , the ansatz function has the limit ⟨𝐹 (
�̂�

𝑥𝑚
,

�̂�

𝑝𝑀

)⟩ → 1, 
and the modified commutator becomes the standard one for large dis-

tances and/or small momenta. A common example of such a modified 
commutator is one from [7] where 𝐹

(
�̂�

𝑥𝑚
,

�̂�

𝑝𝑀

)
= 1 + 𝛽�̂�2 = 1 + �̂�2

𝑝2
𝑀

, with 

𝛽 ≡ 𝑝−2
𝑀

.

With a modified commutator defined, it is necessary to define corre-

sponding modified quantum operators that lead to that modified com-

mutator. An acceptable modification would be to modify the operators 
in momentum space to have the form

�̂� = 𝑖ℏ𝐺

(
�̂�

𝑥𝑚
,
�̂�

𝑝𝑀

)
𝜕𝑝 and 𝑃 =𝐻

(
�̂�

𝑥𝑚
,
�̂�

𝑝𝑀

)
�̂� , (2)

and choose 𝐺 and 𝐻 so as to yield (1).

A concrete example of the above comes from reference [7], where 
the various ansatz functions are 𝐹

(
�̂�

𝑥𝑚
,

�̂�

𝑝𝑀

)
= 𝐺

(
�̂�

𝑥𝑚
,

�̂�

𝑝𝑀

)
= 1 + 𝛽�̂�2, 

and 𝐻
(

�̂�

𝑥𝑚
,

�̂�

𝑝𝑀

)
= 1. This leads to the following modified operators: 

�̂� = 𝑖ℏ(1 +𝛽𝑝2)𝜕𝑝 and 𝑃 = �̂� = 𝑝.1 The position operator is modified while 
the momentum operator is not.

One subtle issue is that one can obtain the same 𝐹
(

�̂�

𝑥𝑚
,

�̂�

𝑝𝑀

)
with 

different 𝐺
(

�̂�

𝑥𝑚
,

�̂�

𝑝𝑀

)
and 𝐻

(
�̂�

𝑥𝑚
,

�̂�

𝑝𝑀

)
. For example, the modified op-

erators - �̂� = �̂� = 𝑖ℏ𝜕𝑝 and 𝑃 = 𝑝 
(
1 + 1

3𝛽𝑝
2
)

from [18], give the same 
right hand side of the modified commutator in (1) as [7]. However, the 
momentum uncertainty will be different in these two cases. It will be 
Δ𝑝, with unmodified momentum, for the case from [7], while for the 
case from [18] it will be Δ𝑃 , with modified momentum. Thus the way 
the generalized uncertainty principle plays out will be different for [7]

versus [18]. There are still other examples where the momentum oper-

ator is modified in a way that leads to the modified commutator being 
in terms of the modified momentum operator. Reference [19] proposed 
the modified operators �̂� = �̂� = 𝑖ℏ𝜕𝑝 and 𝑃 = 1√

𝛽
tan(

√
𝛽𝑝). This led to 

𝐹
(

�̂�

𝑥𝑚
,

�̂�

𝑝𝑀

)
= 1 + 𝛽𝑃 2 i.e. the modified commutator is in terms of the 

modified momentum.

To summarize the previous paragraph – for general operators �̂� and 
�̂� the uncertainty relationship is Δ𝐴Δ𝐵 ≥

1
2 |⟨[�̂�, �̂�]⟩|. Applying this to 

the GUPs from [7] versus [18] we see that the right hand side of (1) is 
1 + 𝛽�̂�2 with the standard momentum. However, the uncertainty in the 
momentum is different – for the GUP from [7] it is Δ𝑝 (i.e. in terms of 
the standard momentum) while for the GUP from [18] it is Δ𝑃 (i.e. in 
terms of the modified momentum).

In this work we follow reference [20] and take the ansatz functions 
𝐺 and 𝐻 in (2) such that �̂� and 𝑃 satisfied the standard commutator 
relationship

[�̂�, 𝑃 ] = 𝑖ℏ. (3)

𝐻 was chosen such that when 𝑝 ≪𝑝𝑀 , 𝑃 = 𝑝 𝐻
(

𝑝

𝑝𝑀

)
≈ 𝑝; and such that 

when 𝑝 ≫𝑝𝑀 , 𝑃 = 𝑝 𝐻
(

𝑝

𝑝𝑀

)
≈ 𝑝𝑀 , to cap momentum at 𝑝𝑀 .

For the ansatz function 𝐺
(

𝑝

𝑝𝑀

)
, we require 𝐺

(
𝑝

𝑝𝑀

)
→ 1 for Δ𝑝 ≪

𝑝𝑀 . The limit of 𝐺
(

𝑝

𝑝𝑀

)
for 𝑝 ≫ 𝑝𝑀 is fixed below by requiring that 

1 From this point onward we will not be overly careful about distinguishing 
2

the operator, �̂�, from 𝑝.
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the modified position and momentum operators still satisfy the stan-

dard commutator (3). These choices for the ansatz functions still give a 
minimum in position because of the following:

(i) The general form of the ansatz function 𝐻 gives 𝑃 ≤ 𝑝𝑀 .

(ii) Since 𝐺
(

𝑝

𝑝𝑀

)
and 𝐻

(
𝑝

𝑝𝑀

)
are fixed to maintain [�̂�, 𝑃 ] = 𝑖ℏ, this 

yields the standard uncertainty principle Δ𝑋Δ𝑃 ≥
ℏ

2 .

(iii) Finally, this leads to a minimum uncertainty in position, Δ𝑋 ≥
ℏ

2𝑝𝑀
.

Now, one obtains a condition on 𝐺 and 𝐻 ,

𝐺

(
𝑝

𝑝𝑀

)
𝜕𝑝

[
𝐻

(
𝑝

𝑝𝑀

)
𝑝

]
= 1. (4)

To fix the functions 𝐺
(

𝑝

𝑝𝑀

)
and 𝐻

(
𝑝

𝑝𝑀

)
, using the above constraints, 

we follow reference [20], and start by determining the momentum 
function 𝐻

(
𝑝

𝑝𝑀

)
. Once the momentum ansatz function is fixed the con-

dition (4) fixes the position ansatz function 𝐺
(

𝑝

𝑝𝑀

)
. For the modified 

momentum function we want something for which 𝐻(𝑝) ∼ 𝑐𝑜𝑛𝑠𝑡. for 
𝑝 ≪ 𝑝𝑀 and 𝐻(𝑝) ∼ 1

𝑝
for 𝑝 ≫ 𝑝𝑀 . Recall, that the modified momentum 

is 𝑃 ∼ 𝑝𝐻(𝑝), so for the modified momentum this gives 𝑃 ∼ 𝑝 for 𝑝 ≪𝑝𝑀
and 𝑃 ∼ 𝑐𝑜𝑛𝑠𝑡. for 𝑝 ≫ 𝑝𝑀 . This behavior for the modified momen-

tum can be obtained by choosing 𝐻(𝑝) ∼ 1
𝑝
tanh(𝑝) or 𝐻(𝑝) ∼ 1

𝑝
arctan(𝑝). 

These conditions can be satisfied by the following, non-unique two sets 
of ansatz functions

𝐺

(
𝑝

𝑝𝑀

)
= cosh2

(
𝑝

𝑝𝑀

)
and 𝐻

(
𝑝

𝑝𝑀

)
=
𝑝𝑀
𝑝

tanh
(

𝑝

𝑝𝑀

)
, (5)

and

𝐺

(
𝑝

𝑝𝑀

)
=

[
1 +

(
𝜋𝑝

2𝑝𝑀

)2
]

and 𝐻

(
𝑝

𝑝𝑀

)
=

2𝑝𝑀
𝜋𝑝

arctan
(

𝜋𝑝

2𝑝𝑀

)
.

(6)

The functions 𝐺
(

𝑝

𝑝𝑀

)
in (5) and (6) were fixed via the condition in (4).

In both cases, the modified operators, �̂� and 𝑃 , formulated by us-

ing the 𝐺’s and 𝐻 ’s in (2) satisfy the standard commutator [�̂�, 𝑃 ] = 𝑖ℏ, 
and the related standard uncertainty Δ𝑋Δ𝑃 ≥

ℏ

2 . One might think re-

covering the standard commutator (3) would not lead to a minimum 
length, but due to the modified behavior of 𝑃 , and therefore Δ𝑃 , one 
still finds a non-zero minimum distance. In conclusion, the crux of the 
question is if operators are capped or not. Physical operators must dis-

play ultraviolet convergence/finiteness. Uncapped operators have only 
a mathematical meaning, although can be used as auxiliary variables in 
calculations. The algebra of operators is per se irrelevant to discriminate 
the short distance nature of observables.

3. Generalizing to three dimensions

In this section, we generalize the above construction from one spa-

tial dimension to three spatial dimensions. The modified operators 
must now become three-vector operators – �̂� → �̂�𝑖 and 𝑃 → 𝑃𝑖, where 
𝑖 = 1, 2, 3. This can be done by applying different conditions to the ansatz 
functions, 𝐺 and 𝐻 as we now discuss in detail.

For the hyperbolic ansatz functions of (5), one could try letting 
𝐻

(
𝑝

𝑝𝑀

)
= 𝑝𝑀

𝑝𝑖
tanh

(
𝑝𝑖
𝑝𝑀

)
, which gives a modified momentum of the 

form 𝑃𝑖 = 𝑝𝑖𝐻
(

𝑝

𝑝𝑀

)
= 𝑝𝑀 tanh

(
𝑝𝑖
𝑝𝑀

)
. This would have a low momen-

tum limit of 𝑃𝑖 ≈ 𝑝𝑖, and a high momentum limit of 𝑝𝑀 in the di-

rection of 𝑝𝑖. The vector character of the modified position operator 
arises through 𝜕𝑝 → 𝜕𝑝𝑖 , and the ansatz function becomes 𝐺

(
𝑝𝑖
𝑝𝑀

)
=

cosh2
(

𝑝𝑖
𝑝𝑀

)
. In order to satisfy (4), the cosh2 term for the modified po-
sition operator has to have the same functional dependence as the tanh
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term in the modified momentum operator. Note that condition (4) be-

comes 𝐺
(

𝑝𝑖
𝑝𝑀

)
𝜕𝑝𝑖

[
𝑝𝑗𝐻

(
𝑝𝑗

𝑝𝑀

)]
= 𝛿𝑖𝑗 in this three dimensional case.

This approach has a fundamental problem, though. 𝐺 and 𝐻 are 
functions of 𝑝𝑖, which spoils the rotational symmetry of the modified 
position and momentum operators, as discussed in section 6.2 of [7].

In order to preserve rotational symmetry and still retain the feature 
that the momentum operators have upper bounds of the form given in 
section 2, we need ansatz functions of the form

𝐺

( |𝑝|
𝑝𝑀

)
= cosh2

( |𝑝|
𝑝𝑀

)
and 𝐻

( |𝑝|
𝑝𝑀

)
=
𝑝𝑀|𝑝| tanh

( |𝑝|
𝑝𝑀

)
, (7)

or for the arctan modification

𝐺

( |𝑝|
𝑝𝑀

)
=

[
1 +

(
𝜋|𝑝|
2𝑝𝑀

)2
]

and 𝐻

( |𝑝|
𝑝𝑀

)
=

2𝑝𝑀
𝜋|𝑝| arctan

(
𝜋|𝑝|
2𝑝𝑀

)
.

(8)

These ansatz functions in (7) and (8) lead to modified three dimensional 
position and momentum operators of the form

�̂�𝑖 = 𝑖ℏ cosh2
( |𝑝|
𝑝𝑀

)
𝜕𝑝𝑖 and 𝑃𝑖 = 𝑝𝑖 𝐻

( |𝑝|
𝑝𝑀

)
= 𝑝𝑖

𝑝𝑀|𝑝| tanh
( |𝑝|
𝑝𝑀

)
,

(9)

or for the arctan modification

�̂�𝑖 = 𝑖ℏ

[
1 +

(
𝜋|𝑝|
2𝑝𝑀

)2
]
𝜕𝑝𝑖 and

𝑃𝑖 = 𝑝𝑖 𝐻

( |𝑝|
𝑝𝑀

)
= 𝑝𝑖

2𝑝𝑀
𝜋|𝑝| arctan

(
𝜋|𝑝|
2𝑝𝑀

)
.

(10)

The modified position and momentum operators in (9) and (10) are 
the three dimensional generalizations of (5) and (6), which satisfy rota-

tional symmetry and still have capped momentum.

We will now show that the position and momentum operators’ de-

pendence on |𝑝| causes the standard commutator (i.e., [�̂�𝑖, 𝑃𝑗 ] = 𝑖ℏ𝛿𝑖𝑗 ) 
to no longer necessarily be maintained in all directions. The standard 
commutator can be maintained in one direction but at the cost of alter-

ing the commutator in the two orthogonal directions, resulting in there 
being different minimal distances in different directions. In one dimen-

sion, the condition for the commutator to retain its standard form was 
given by (4). To generalize (4) to three dimensions one would like to 
require

𝐺

( |𝑝|
𝑝𝑀

)
𝜕𝑝𝑖

[
𝑝𝑗 𝐻

( |𝑝|
𝑝𝑀

)]
?
= 𝛿𝑖𝑗 , (11)

where the question mark indicates we are asking if it is possible for the 
left hand side to equal the right hand side.

The complication that arises with (11), that is not found in (4), 
is that the momentum derivative operates on all the components of 
momentum “hidden” in the function in square brackets due to the |𝑝|
dependence of 𝐻 . This leads to 𝑝𝑖 and 𝑝𝑗 terms that are not found in 
the one dimensional case.

For instance, for the tanh modification of the momentum, condition 
(11) becomes

𝐺

( |𝑝|
𝑝𝑀

)
𝜕𝑝𝑖

[
𝑝𝑗 𝐻

( |𝑝|
𝑝𝑀

)]
=
[
𝑝𝑀|𝑝| sinh

( |𝑝|
𝑝𝑀

)
cosh

( |𝑝|
𝑝𝑀

)(
𝛿𝑖𝑗 −

𝑝𝑗𝑝𝑖|𝑝|2
)
+
𝑝𝑗𝑝𝑖|𝑝|2

]

= 𝛿𝑖𝑗 +

(|𝑝|2
𝑝2
𝑀

)
, (12)

and the arctan modification of the momentum, condition (11) becomes( |𝑝| ) [ ( |𝑝| )]

3

𝐺
𝑝𝑀

𝜕𝑝𝑖 𝑝𝑗 𝐻 𝑝𝑀
Physics Letters B 847 (2023) 138263

=

[(
1 +

(
𝜋|𝑝|
2𝑝𝑀

)2
)

2𝑝𝑀
𝜋|𝑝| arctan

(
𝜋|𝑝|
2𝑝𝑀

)(
𝛿𝑖𝑗 −

𝑝𝑗𝑝𝑖|𝑝|2
)
+
𝑝𝑗𝑝𝑖|𝑝|2

]

= 𝛿𝑖𝑗 +

(|𝑝|2
𝑝2
𝑀

)
. (13)

In the second lines of (12) and (13), we expanded the functions in 
square brackets on the right hand side to first order in |𝑝|∕𝑝𝑀 . To first 
order, one can recover the standard commutators in three dimensions. 
However, to second order, there is a difference with the one dimen-

sional case, and the expressions in (12) and (13) are no longer equal to 
solely 𝛿𝑖𝑗 .

Using the modified position and momentum from (9) and (10), and 
the results of (12) and (13), we find that the modified commutator for 
the tanh modification, to second order, is

[�̂�𝑖, 𝑃𝑗 ] ≈ 𝑖ℏ

[
𝛿𝑖𝑗 +

|𝑝|2
2𝑝2

𝑀

(
𝛿𝑖𝑗 −

𝑝𝑗𝑝𝑖|𝑝|2
)]

. (14)

For the arctan modification there is a bit if a subtlety. From (13), the 
term we want to expand is of the form (1 + 𝑥2) arctan(𝑥)

𝑥
, with 𝑥 ≡ 𝜋|𝑝|

2𝑝𝑀
. 

Due to the 𝑥 in the denominator of this expression, one needs to expand 
arctan to (𝑥3) namely arctan(𝑥) ≈ 𝑥 − 𝑥3

3 . In this way (13) to (𝑥2) is

[�̂�𝑖, 𝑃𝑗 ] ≈ 𝑖ℏ

[
𝛿𝑖𝑗 +

2
3

(
𝜋|𝑝|
2𝑝𝑀

)2(
𝛿𝑖𝑗 −

𝑝𝑗𝑝𝑖|𝑝|2
)]

. (15)

The second order approximations in (14) and (15), are similar to the 
modified commutators in [7] that the modifications are quadratic in |𝑝|. 
However, unlike the one dimensional case, one can no longer recover 
the standard commutator (3) with the modified operators from (9) and 
(10).

4. Physical consequences of three dimensional GUP

We now want to investigate the physical consequences of the mod-

ified commutators of the previous section on the resulting uncertainty 
principle. The left hand side of the uncertainty principle will be the 
product of the variation of the modified position and momentum op-

erators, Δ𝑋𝑖Δ𝑃𝑗 , where for a general operator �̂� the variation is Δ𝐴 =√⟨�̂�2⟩− ⟨�̂�⟩2. The right hand side of the uncertainty relationship in-

volves taking the expectation of the right hand side of (12) or (13). 
However, the presence of the hyperbolic functions in (12) or the in-

verse tangent function in (13) makes it hard to take the expectation 
values and get an analytical form. In order to more easily calculate the 
expectation values, we will instead use the second order commutators 
given in (14) and (15). Even after this, we will need to make another 
approximation to obtain the final form of the uncertainty principle.

We will look at two different cases for evaluating the physical con-

sequences of the 3D GUP: (a) We assume a spherically symmetric wave 
function so that the average of the modified momentum and position 
operators is zero so that Δ𝑋𝑖 =

√⟨�̂�2
𝑖
⟩, and Δ𝑃𝑗 =

√⟨𝑃 2
𝑗
⟩. (b) We 

assume that the system has a non-zero, average momentum in one di-

rection (e.g. the 𝑖 = 1 direction) so that ⟨𝑃𝑖⟩ ≠ 0).

For both cases, the minimum distance will be proportional to the in-

verse of the cut-off scale Δ𝑋𝑚𝑖𝑛 ∝ 1
𝑝𝑀

, up to numerical factors of (1). 
For the second case, with an average momentum in one direction, we 
find that the minimum position uncertainty in the direction of the mo-

mentum is smaller than in the two perpendicular directions.

4.1. Spherically symmetric case

In this subsection we study the case where the wave function is 
spherically symmetric in momentum space. We use this to explore how 
focused/concentrated a stationary particle can get in position space in 
these theories. We utilize the spherical symmetry to make the substitu-
tion ⟨𝑝𝑗𝑝𝑖⟩ = 𝛿𝑖𝑗⟨𝑝2𝑖 ⟩.
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Starting with the hyperbolic case (14), the modified uncertainty re-

lationship is

Δ𝑋𝑖Δ𝑃𝑗 ≥
ℏ

2

(
𝛿𝑖𝑗 +

𝛿𝑖𝑗

2𝑝2
𝑀

⟨|𝑝|2 − 𝑝2𝑖 ⟩
)

= ℏ

2
𝛿𝑖𝑗

(
1 +

⟨𝑝2⟂⟩
2𝑝2

𝑀

)
, (16)

where ⟨𝑝2⟂⟩ = ⟨|𝑝|2 − 𝑝2
𝑖
⟩ is the expectation of the square of the per-

pendicular part of the momentum. We can use the symmetry to write ⟨𝑝⟂⟩2 = (𝑑 − 1)⟨𝑝2
𝑖
⟩, where 𝑑 is the number of spatial dimensions. In this 

case, 𝑑 = 3 and |𝑝⟂|2 = 2|𝑝𝑖|2 so (16) becomes

Δ𝑋𝑖Δ𝑃𝑗 ≥
ℏ

2
𝛿𝑖𝑗

(
1 +

⟨|𝑝𝑖|2⟩
𝑝2
𝑀

)
. (17)

Next, we need to estimate Δ𝑃𝑗 ,

Δ𝑃𝑗 =
√⟨(𝑃𝑗 )2⟩− ⟨𝑃𝑗⟩2 ≤√⟨(𝑃𝑗 )2⟩ =

√√√√⟨
�̂�2
𝑗
𝑝2
𝑀|𝑝|2 tanh2

( |𝑝|
𝑝𝑀

)⟩
(18)

where we take ⟨𝑃𝑗⟩ = 0; and bounding tanh2(𝑥) ≤ 𝑥2, equation (18)

yields

Δ𝑃𝑗 ≤
√⟨

�̂�2
𝑗

⟩
=Δ𝑝𝑗 , (19)

where the uncertainty of the modified momentum is bound by the un-

certainty of the canonical momentum. Combining (17) and (19) gives a 
Δ𝑋𝑖 of

Δ𝑋𝑖 ≥
ℏ

2

(
1

Δ𝑝𝑖
+

Δ𝑝𝑖
𝑝2
𝑀

)
. (20)

The minimum of (20) occurs at Δ𝑝𝑖 = 𝑝𝑀 which then gives

Δ𝑋𝑚𝑖𝑛
𝑖 = ℏ

𝑝𝑀
. (21)

The structure for this 3D GUP given by (17) (20) and (21) is very similar 
to, but not exactly identical to, the original KMM model [7].

One could also do a rougher, but simpler, approximation and get 
close to the same result as (21): instead of (17), simply take Δ𝑋𝑖Δ𝑃𝑗 ≥
ℏ

2 𝛿𝑖𝑗 ; and instead of (19) one could take Δ𝑃𝑗 ≤ 𝑝𝑀 . This yields Δ𝑋𝑚𝑖𝑛
𝑖

=
ℏ

2𝑝𝑀
which is of the same order as (21). There is not a big difference 

between this rough estimate for Δ𝑋𝑚𝑖𝑛
𝑖

and the more refined one in 
(21).

We now repeat this analysis for the arctan modification given by 
(13). At first glance, it seems this is straightforward, but there is a subtle 
issue as compared to the previous tanh case. For the tanh modification, 
in going from (12) to the approximation in (14), we note that the right 
hand side of (14) is a lower bound to (12), thus in (16) we are justi-

fied in using ≥. However since the expansion for arctan has alternating 
signs, the approximation in (15) is not always a lower bound on (13). 
This makes getting the uncertainty relationship coming from (13) more 
complicated.

One could make a similar approximation to the rough approxima-

tions mentioned after (21). Note that the (1 + 𝑥2) arctan(𝑥)
𝑥

term from (13)

(here 𝑥 = 𝜋|𝑝|
2𝑝𝑀

) has a lower bound of 1, i.e. (1 + 𝑥2) arctan(𝑥)
𝑥

≥ 1. Re-

placing this term in (13) by 1 gives [𝑋𝑖, 𝑃𝑗 ] = 𝑖ℏ𝛿𝑖𝑗 , which then gives 
Δ𝑋𝑖Δ𝑃𝑗 ≥ 𝛿𝑖𝑗

ℏ

2 . As was for the tanh modification, the modified mo-

mentum uncertainty for the arctan modification has Δ𝑃𝑗 ≤ 𝑝𝑀 , which 
then gives the same minimum as for the tanh modification. Namely, 
Δ𝑋𝑚𝑖𝑛

𝑖
= ℏ

2𝑝𝑀
. The fact that this rough estimate for Δ𝑋𝑚𝑖𝑛

𝑖
is the same 

for both tanh and arctan modification is not surprising. To this level of 
approximation, the right hand side of the commutator is the standard 
one, 𝑖ℏ𝛿𝑖𝑗 . Δ𝑋𝑚𝑖𝑛

𝑖
ultimately comes from the cut-off in the momentum 

uncertainty, which is the same in both cases, namely Δ𝑃𝑗 ≤ 𝑝𝑀 .

To get a better estimate for Δ𝑋𝑚𝑖𝑛
𝑖

, we need a finer lower bound 
4

on (1 + 𝑥2) arctan(𝑥)
𝑥

. This is given by the function (1 + 𝑥2)1∕2, i.e. (1 +
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𝑥2) arctan(𝑥)
𝑥

≥ (1 + 𝑥2)1∕2. The fact that (1 + 𝑥2)1∕2 provides a lower bound 
to (1 + 𝑥2) arctan(𝑥)

𝑥
is not obvious (there are other possible functions that 

may provide a tighter lower bound), but can be verified by expanding 
both functions, or by graphing them.

In any case, replacing (1 + 𝑥2) arctan(𝑥)
𝑥

by (1 + 𝑥2)1∕2 in (13) and ex-

panding to second order in 𝑥 = 𝜋|𝑝|
2𝑝𝑀

gives

[�̂�𝑖, 𝑃𝑗 ] ≈ 𝑖ℏ

[
𝛿𝑖𝑗 +

1
2

(
𝜋|𝑝|
2𝑝𝑀

)2(
𝛿𝑖𝑗 −

𝑝𝑗𝑝𝑖|𝑝|2
)]

. (22)

The commutator in (22) yields the following uncertainty relationship

Δ𝑋𝑖Δ𝑃𝑗 ≥
ℏ

2

(
𝛿𝑖𝑗 +

𝛿𝑖𝑗𝜋
2

8𝑝2
𝑀

⟨|𝑝|2 − 𝑝2𝑖 ⟩
)

= ℏ

2
𝛿𝑖𝑗

(
1 +

𝜋2⟨𝑝2⟂⟩
8𝑝2

𝑀

)
. (23)

In going from the (22) to (23) we have again used spherical symme-

try to write the expectation of the last term in (22) as 𝜋
2⟨𝑝𝑗𝑝𝑖⟩
8𝑝2

𝑀

= 𝛿𝑖𝑗
𝜋2⟨𝑝2

𝑖
⟩

8𝑝2
𝑀

, 
such that the expectation is zero unless 𝑖 = 𝑗; and as before, we define ⟨𝑝2⟂⟩ = ⟨|𝑝|2 −𝑝2

𝑖
⟩. From (23) we now repeat all the steps going from (17)

to (19) to obtain the following expressions for the arctan modification

Δ𝑋𝑖 ≥
ℏ

2

(
1

Δ𝑝𝑖
+
𝜋2Δ𝑝𝑖
8𝑝2

𝑀

)
, (24)

The minimum of (20) occurs at Δ𝑝𝑖 = 𝑝𝑀 which then gives

Δ𝑋𝑚𝑖𝑛
𝑖 = 𝜋ℏ

2
√
2𝑝𝑀

. (25)

Equations (24) and (25) are the arctan modification analogs of (20)

and (21), only they differ by factors of order 1. Notice, there is not 
that big a difference between the minima from (21) and (25), and the 
rougher estimate obtained when the minimum in position uncertainty 
which came entirely from Δ𝑃𝑖 being bounded by 𝑝𝑀 , where Δ𝑋𝑚𝑖𝑛

𝑖
=

ℏ

2𝑝𝑀
.

4.2. Case with momentum in one direction

We now look at the physical consequences on the modified uncer-

tainty relationship when the system has some overall average momen-

tum in one direction, e.g. 𝑝 = (𝑝1, 0, 0). For this choice in momentum, 
the right hand side of (12) and (13) simply becomes 1 when 𝑖 = 𝑗 = 1, 
which gives the standard commutator [𝑋1, 𝑃1] = 𝑖ℏ for both cases. In the 
1 direction, the uncertainty relationship becomes Δ𝑋1Δ𝑃1 ≥

ℏ

2 , which is 
just the standard uncertainty but constructed with modified operators.

For both tanh and arctan modifications, one has Δ𝑃1 ≤ 𝑝𝑀 ; the same 
position uncertainty minimum in the 1 direction of Δ𝑋𝑚𝑖𝑛

1 ≥
ℏ

2𝑝𝑀
. Note 

that this minimum in the 1-direction is the same for both types of mod-

ified operators when the right hand side is bounded by the standard 
commutator.

We now turn to the uncertainty in the two orthogonal directions 2
and 3. For the modified operators �̂�𝑗 and 𝑃𝑗 with 𝑗 = 2 or 3 for the tanh
modification, the commutator becomes

[�̂�𝑗 , 𝑃𝑗 ] = 𝑖ℏ

[
𝑝𝑀|𝑝| sinh

( |𝑝|
𝑝𝑀

)
cosh

( |𝑝|
𝑝𝑀

)]
= 𝑖ℏ

[
cosh2

( |𝑝|
𝑝𝑀

)
𝑝𝑀|𝑝| tanh

( |𝑝|
𝑝𝑀

)]
.

(26)

The associated uncertainty is then

Δ𝑋𝑗Δ𝑃𝑗 ≥
ℏ

2

⟨
𝑝𝑀|𝑝| sinh

( |𝑝|
𝑝𝑀

)
cosh

( |𝑝|
𝑝𝑀

)⟩
≥
ℏ

2

(
1 +

⟨|𝑝|2⟩
2𝑝2

𝑀

)
, (27)

where in the last step we expanded the hyperbolic functions to second 
order. For the 1-direction modified momentum uncertainty, we take the 

rough estimate that the momentum uncertainties in the 2, 3-directions 
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are bounded by 𝑝𝑀 , i.e. Δ𝑃𝑗 ≤ 𝑝𝑀 . Again, we assume ⟨𝑝𝑗⟩ = 0 and ⟨𝑃𝑗⟩ =
0. With this, the modified position uncertainty minimum is

Δ𝑋𝑚𝑖𝑛
𝑗 = ℏ

2𝑝𝑀

(
1 +

⟨|𝑝|2⟩
2𝑝2

𝑀

)
≥

ℏ

2𝑝𝑀

(
1 +

𝑝21

2𝑝2
𝑀

)
. (28)

In the last expression in (28), we used ⟨|𝑝|2⟩ ≥ 𝑝21 since we assume that 
the momentum is all in the 1-direction. This leads to the conclusion that 
the minimum uncertainty for the modified position in the 1-direction is 
smaller than in the orthogonal, 2, 3-directions; such that Δ𝑋𝑚𝑖𝑛

2,3 >Δ𝑋𝑚𝑖𝑛
1 .

We now repeat the above calculations for the arctan modification. 
In the 1-direction one has as before Δ𝑋𝑚𝑖𝑛

1 = ℏ

2𝑝𝑀
, by taking the rough 

bound Δ𝑃1 ≤ 𝑝𝑀 . Now for the two orthogonal directions, 𝑗 = 2, 3 the 
commutator becomes

[�̂�𝑗 , 𝑃𝑗 ] = 𝑖ℏ

[(
1 +

(
𝜋|𝑝|
2𝑝𝑀

)2
)

2𝑝𝑀
𝜋|𝑝| arctan

(
𝜋|𝑝|
2𝑝𝑀

)]
. (29)

This commutator in (29) now gives the modified uncertainty relation-

ship for 𝑗 = 2, 3

Δ𝑋𝑗Δ𝑃𝑗 ≥
ℏ

2

⟨(
1 +

(
𝜋|𝑝|
2𝑝𝑀

)2
)(

2𝑝𝑀
𝜋|𝑝|

)
arctan

(
𝜋|𝑝|
2𝑝𝑀

)⟩

≥
ℏ

2

⟨√√√√(
1 +

(
𝜋|𝑝|
2𝑝𝑀

)2
)⟩

≥
ℏ

2

(
1 +

𝜋2⟨|𝑝|2⟩
8𝑝𝑀

)
. (30)

In going from the first line to the second line in (30), we have em-

ployed the previously used non-obvious lower bound (1 + 𝑥2) arctan(𝑥)
𝑥

≥√
1 + 𝑥2, and taken a Taylor expansion 

√
1 + 𝑥2 ≈ 1 + 1

2𝑥
2. If we again 

take the rough bound of Δ𝑃𝑗 ≤ 𝑝𝑀 for the modified momentum in the 
two orthogonal directions we obtain a minimum in the modified posi-

tion uncertainty of

Δ𝑋𝑚𝑖𝑛
𝑗 = ℏ

2𝑝𝑀

(
1 +

𝜋2⟨|𝑝|2⟩
8𝑝𝑀

)
≥

ℏ

2𝑝𝑀

(
1 +

𝜋2𝑝21
8𝑝𝑀

)
. (31)

Again, we have used ⟨|𝑝|2⟩ ≥ 𝑝21 in arriving at the last expression in (31).

As for the tanh modification, the term in parentheses in (31) is 
greater than 1. So, as before, the uncertainty in the orthogonal 2, 3-

directions is larger than in the 1-direction - the direction of the momen-

tum of the system. This can be compared to when the electric field of a 
boosted, charged particle is stronger in the directions orthogonal to the 
momentum of the particle.

5. Summary and conclusions

In this paper we formulated 3D GUP models based on earlier 1D 
GUP models studied in [18,20,21]. Our aim in 1D was to find a GUP 
model which gave a minimal length which only modified the position 
and momentum operators, while leaving the commutator of these mod-

ified operators unmodified. In section 2, we summarized the 1D GUP 
models. In section 3, we extended these 1D models to 3D GUP models 
so that they were rotationally invariant (coordinate-independent) by 
requiring the modifications to be functions of the total momentum |𝑝|. 
Consequently, the 3D commutator must be modified in at least one di-

rection. This can be seen explicitly in (14) and (15) via the second order 
corrections to the position-momentum commutators which had a form 
∝ 𝛿𝑖𝑗 −

𝑝𝑗 𝑝𝑖|𝑝|2 . In 1D GUP models, the term 𝛿𝑖𝑗 −
𝑝𝑗 𝑝𝑖|𝑝|2 is always zero. We 

then investigated the uncertainty relationships produced by the modi-

fied 3D operators and modified commutators. In general, we found that 
the minimum uncertainty in position was approximately Δ𝑋𝑚𝑖𝑛

𝑖
∼ ℏ

𝑝𝑀
-

essentially the same result as in 1D.

We also considered the minimum distance in two cases. In the first 
case, we used spherically-symmetric wave functions to analyze how 
small of a volume the wave function could be compressed; we found 
5

that it was the minimal distance cubed, up to a factor of order one. 
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In the second case, we considered a system with a large, non-zero mo-

mentum in some particular direction. Here we found that the minimum 
distance in the direction of the average momentum was different from 
the minimum distance in the orthogonal directions. For either the tanh
and arctan GUPs, the positional uncertainty in the orthogonal directions 
was larger than in the direction of the non-zero momentum. A simi-

lar result occurs in the GUP model in reference [7] i.e. Δ𝑋𝑚𝑖𝑛
2,3 >Δ𝑋𝑚𝑖𝑛

1 . 
This difference in the uncertainties in different directions could have in-

teresting consequences on the momentum-position phase space, which 
in turn would impact on the thermodynamic properties of a system of 
particles. This modification of the phase space could also potentially im-

pact the calculation of the cosmological constant. There has been some 
preliminary work in this direction [22], but we hope to explore the ef-

fect of the anisotropic position uncertainties on the thermodynamics of 
systems of particle more in future work.

The difference between the minimum position uncertainties in the 
second case above hints that there may be a violation of Lorentz symme-

try. Moreover, the existence of minimal distances would naively imply 
violation of Lorentz symmetry. However in [20], a GUP model was 
formulated which gave a minimal length and preserved the special rel-

ativistic energy and momentum relationship, 𝐸2 − |𝑝|2 = 𝑚2, and thus 
preserved some aspects of the Lorentz symmetry. A complementary is-
sue is the connection of our work to a breaking of the isotropy of space, 
as observed for other GUP models [23]. In future work, we plan to study 
the issue of the fate of the Lorentz symmetry of these modified position 
and momentum operators.

The standard Lorentz algebra is generated by the angular momen-

tum operators and boost operators in terms of the time-position opera-

tors and energy-momentum operators. One major question to address is 
how the modified position and momentum operators affect the observ-

ables associated with modified angular momentum and boost operators. 
To obtain the modified boost operators we will need to also define 
modified time and energy operators that fit in with the tanh or arctan
operators of equations (9) and (10).

Another related issue is the modification of commutation relations 
of position and momentum operators among themselves. The stan-

dard result is [�̂�𝑖, ̂𝑥𝑗 ] = 0 and [�̂�𝑖, �̂�𝑗 ] = 0. While this is still true for the 
modified momentum operators (9) and (10), it is no longer true for 
the modified position operators i.e., [𝑃𝑖, 𝑃𝑗 ] = 0 but [�̂�𝑖, �̂�𝑗 ] ≠ 0. This 
non-commutativity of the modified position operators provides a poten-

tial link between GUP models and non-commutative geometry models 
[24,25] which is another approach to minimal lengths.

Also, the modified position operators from (9) and (10) satisfy 
[�̂�𝑖, �̂�𝑗 ] ∝ 𝜖𝑖𝑗𝑘𝑙𝑘, so that the commutators are proportional to the an-

gular momentum operators. For the related uncertainty relationships, 
this implies that Δ𝑋𝑖Δ𝑋𝑗 ∝ 𝜖𝑖𝑗𝑘⟨𝑙𝑘⟩; the uncertainty in area is related to 
the expectation of the angular momentum operator. This provides a po-

tential connection between the 3D GUP models in this work and spin 
foam models [26,27] which have a similar connection between area 
and angular momentum.

We leave both of these questions – the modification of the Lorentz 
algebra and the connection of 3D GUP models to non-commutative ge-

ometry and spin foam models – for a subsequent, companion paper.
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