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Abstract. This paper addresses the ever-prominent issue of how to eval-
uate and forecast future longevity dynamics. Indeed, studying the evo-
lution of mortality and/or the cost of longevity risk is a major task for
both demographers and actuaries. In contrast to the usual period-based
evaluation, we consider the problem of approximating the distribution
of future life expectancy with a cohort-based perspective. In particular,
we suggest an application of the Least-Squares Monte Carlo approach,
which allows to overcome the straightforward nested simulations method.
The method is applied to the family of CBDX models, and results and
comparisons between different models, males and females, and period
and cohort approaches, are presented.
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1 Introduction

The analysis of mortality, and consequently of the evolution of various longevity
indices, is always under study by demographers and actuaries. Indeed, policy
makers need to quantify and manage the risks deriving from unexpected changes
in mortality, which would have major implications for the financial stability and
solvability of insurance companies and pension providers.

In contrast to the usual period-based approach, this paper addresses the prob-
lem of approximating the distribution of future life expectancy, and provides a
simulation scheme with a cohort-based perspective that depends on the future
evolution of mortality obtained by relying on extrapolative methods. In this
regard, one contribution can be found in [7], where the so-called SCOPE app-
roach to forecast future life expectancy levels, i.e., by conditioning on specific
future mortality scenarios, is introduced. Indeed, forecasting longevity indices
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with a cohort-based method requires the computation of conditional expecta-
tions for which explicit solutions often do not exist. A simple way to solve this
problem would be to rely on a nested simulations approach, which unfortunately
becomes readily unmanageable and computationally intensive, especially when
life expectancy estimates are needed for different cohorts and when stochas-
tic mortality models with multiple factors are considered. To overcome this
drawback, [3] proposes a Taylor-series approximation of the involved conditional
expectations.

This work, instead, suggests an application of the well-known Least-Squares
Monte Carlo (LSMC) approach firstly introduced in the financial field (e.g., see
[6]) and then extensively adopted in the actuarial one. The main idea is to approx-
imate conditional expectations by linear combinations of some basis functions
depending on the relevant factors that affect the quantity of interest. Among the
most important advantages of this method, we can mention its generality and flex-
ibility; indeed, it can be used with any mortality model, regardless of its complex-
ity. Essentially, the methodology proposed in this paper is based on that described
in [1], where the problem of evaluating future life annuities is addressed. Even if
here we focus on just life expectancy, this methodology may be adopted also for
approximating other longevity measures at future dates for which cohort-based
estimations are often replaced by period ones for computational simplicity.

The remainder of the paper is structured as follows: Sect. 2 states the problem
and briefly explains the proposed methodology, Sect. 3 illustrates some numerical
results and finally, in Sect. 4, we draw some conclusions.

2 Life Expectancy and Computational Framework

The objective of this paper is to analyse the evolution of future life expectancy
levels. Indeed, even if previous studies have broadly addressed this problem, the
majority of them exploited a period approach, therefore neglecting future mortal-
ity improvements. To fill this gap, we propose a methodology that allows to adopt
a cohort based perspective without increasing the computational complexity.

To this end, let μx,t be the instantaneous death rate for an individual aged x
at time t. Then, following [2], we assume that the force of mortality is constant
over each year of age and calendar. Hence, denoting by mx,t the central death
rate at age x in year t, and px,t the 1-year survival probability of an individual
aged x at time t, it follows that mx,t = μx,t and px,t = e−μx,t = e−mx,t .

Now, we are interested in estimating the residual lifespan of an individual
aged x at a future time T > 0. We define the period life expectancy measure as
follows:

ep
x,T =

1
2

+
ω−x∑

i=1

ipx,T , (1)
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where ipx,T = e− ∑i−1
k=0 mx+k,T represents the i-th years survival probability for an

individual aged x at time T , computed by considering the age-specific mortality
rates at time T , and ω is the ultimate age. It is clear from Eq. (1) that further
mortality improvements after time T are ignored.

Therefore, to describe the actual life course of an individual aged x at time
T > 0, let us introduce the concept of cohort life expectancy defined as

ec
x(T ) =

1
2

+
ω−x∑

i=1

ipx(T ), (2)

where ipx(T ) = ET

[
e− ∑i−1

k=0 mx+k,T+k

]
represents the (conditional) i-th years

survival probability for an individual aged x at time T , and ET [·] is the con-
ditional expectation given the information available at the future date T . As
already mentioned, cohort life expectancy is not as commonly evaluated, unlike
its period counterpart, since it requires the calculation of a conditional expec-
tation. Note that both Eqs. (1) and (2) are the discrete versions of period and
cohort life expectancy measures given, for instance, in [5].

Forecasting life expectancy at future times requires projections of mortality
onto the future. For this reason, we introduce the computational framework on
which we build some numerical results. In particular, we make use of stochastic
mortality models in order to capture the possible time evolution of mortality,
and in this regard we consider the recently introduced CBDX family (see [4]).
Hence, let Dx,t denote the number of deaths at age x and calendar year t, which is
assumed to be Poisson distributed with parameter Ex,tmx,t, where Ex,t denotes
the central exposure. Then, according to [4], the central death rate at age x and
calendar year t can be modelled as

log mx,t = αx +
N∑

i=1

f (i)(x)κ(i)
t + γt−x,

where αx is a static age parameter, κt =
(
κ
(1)
t , . . . , κ

(N)
t

)
is the time index, γt−x

incorporates the cohort effects, and f (i)(x) is a known age-modulating function.
In particular, [4] considers the case of N ∈ {1, 2, 3} (named CBDX1, CBDX2
and CBDX3, respectively), and proposes as modulating functions f (1)(x) =
1, f (2)(x) = (x − x̄) and f (3)(x) =

[
(x − x̄) − σ2

x

]
, where x̄ and σ2

x represent
the mean and variance of the ages in the data. To project mortality into the
future, the time indices are assumed to follow a multivariate random walk with
drift, while the cohort effect is modelled as a univariate ARIMA model.

2.1 Valuation Procedure

Computing the quantity in Eq. (2) is not a trivial task since explicit expressions
do not always exist. In particular, this is the case of the valuation framework
previously introduced. For this reason, a straightforward solution would be a
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nested simulations scheme. The latter is computationally challenging since it
requires a huge number of simulations. An alternative methodology has been
proposed by [3], which consists in approximating conditional expectations by
Taylor-series expansions. However, also this approach would be time-demanding
since multiple simulations sets are needed in order to estimate the involved
coefficients. For this reason, on the basis of [1] we adopt a very flexible tool for
approximating conditional expectations, i.e. the LSMC method. Indeed, to the
best of our knowledge, this methodology has been extensively used in many fields
but it has not yet been proposed in the demographic context. The main idea is
to express conditional expectations through linear combinations of some basis
functions (e.g. simple or orthogonal polynomials) depending on the relevant risk
factors that affect the evolution of mortality (in our case, the time indices κt

and γt−x), and use regression across simulations against those factors. Hence,
we will evaluate Eq. (2) by regression. Moreover, we refer the readers to [1] for
more details.

3 Numerical Results

In this Section we provide some numerical results based on the previously intro-
duced framework. In particular, we analyse the evolution of life expectancy with
both cohort and period life tables. The analysis considers males and females in
England and Wales population. The models have been calibrated on the mortal-
ity data over the period 1965–2018 and range of ages 60–89, obtained from the
Human Mortality Database, excluding the first and last 5 cohorts to avoid over-
fitting. We assume that year 2018 is time 0, and that life tables are closed using
a log-linear procedure up to the ultimate age ω = 120. Finally, all computations
are based on n = 20000 trajectories, and the LSMC algorithm exploits as basis
functions simple polynomials of order p = 2. Under this setting, we analyse the
evolution of life expectancy of both males and females aged x = 65 at different
future times T = 2019, . . . , 2053 (35 years).

Table 1 reports a summary of the distributions of future cohort life
expectancy for females at different future times T , obtained by exploiting the
different stochastic mortality models. From the table, we can see that each of
the proposed models suggests, as expected, an ever increasing life expectancy.
In particular, the CBDX1 model provides more optimistic results, while the
opposite happens for the CBDX2 model. Moreover, we can appreciate how the
uncertainty increases as time passes1. All these features can be seen in Fig. 1
that compares the future cohort male and female life expectancy distributions.
Figure 1 highlights, first, the increasing uncertainty characterizing the evolution
of the longevity metric, and second, gender differences. Indeed, in line with the
existing literature, our results depict future life expectancy levels for females
constantly above those for males. Finally, in Table 2 we compare cohort and

1 Similar results were obtained for males, not reported here for space considerations.
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period2 approaches. The table shows how, unsurprisingly, the latter approach
persistently under-estimates the desired quantities. What is important to notice
is, instead, the magnitude of such under-estimation, which may lead public social
systems and life insurance companies to under-estimate the related risks.

Table 1. Summary of the future cohort life expectancy distributions for females aged
x = 65 at (future) times T . LSMC based on 20000 × 1 simulations with monomials of
degree p = 2.

T Model Mean Std. dev. Skew. Kurt. 10th Perc. Median 90th Perc.

2019 CBDX1 23.535 0.284 −0.104 3.058 23.170 23.541 23.900

CBDX2 21.838 0.273 0.026 3.007 21.489 21.835 22.191

CBDX3 23.215 0.283 0.085 3.081 22.859 23.211 23.580

2039 CBDX1 25.788 1.154 −0.030 3.031 24.305 25.790 27.256

CBDX2 23.515 1.194 0.063 3.006 21.999 23.495 25.050

CBDX3 25.292 1.221 0.026 3.028 23.741 25.286 26.863

2053 CBDX1 27.347 1.453 −0.084 2.981 25.467 27.361 29.202

CBDX2 24.666 1.571 0.072 3.010 22.668 24.646 26.707

CBDX3 26.700 1.557 0.031 3.012 24.717 26.690 28.714

Fig. 1. Distribution of future life expectancy for a cohort of females (red) and males
(blue) aged x = 65 at (future) times T ∈ {2019, . . . , 2053}. Stochastic mortality models:
CBDX1 (left), CBDX2 (centre), CBDX3 (right). LSMC based on 20000×1 trajectories
with monomials of degree p = 2. Dotted lines represent the 90% prediction intervals.

2 Period life expectancy estimates have been obtained through a simple Monte Carlo
(MC) scheme based on 20000 simulations.
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Table 2. Expected future cohort and period life expectancy for females aged x = 65
at (future) times T . LSMC (cohort) based on 20000 × 1 simulations and monomials of
order p = 2. MC method (period) based on 20000 trajectories.

T Approach CBDX1 CBDX2 CBDX3

2019 Period 21.584 21.501 21.530

Cohort 23.535 21.838 23.215

2039 Period 24.001 22.373 23.680

Cohort 25.788 23.515 25.292

2053 Period 25.510 23.401 25.084

Cohort 27.347 24.666 26.700

4 Conclusion

In this paper we addressed the ever-prominent issue of how to evaluate and fore-
cast future longevity dynamics, and in particular we focused on life expectancy.
We proposed the LSMC approach that allows to adopt a cohort based perspective,
rather than a period one, without increasing the computational complexity. Our
results proved to be in line with those already presented in literature. To conclude,
we want to strengthen the idea that this methodology can be used to estimate any
other longevity measure involving conditional arguments, where cohort measure-
ments are often replaced by period ones for computational simplicity.
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