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Hemispheric specialization influences stimulus processing and behavioural
control, affecting responses to relevant stimuli. However, most sensory
input is irrelevant and must be filtered out to prevent interference with
task-relevant behaviour, a process known as habituation. Despite habitu-
ation’s vital role, little is known about hemispheric specialization for this
brain function. We conducted an experiment with domestic chicks, an elite
animal model to study lateralization. They were exposed to distracting
visual stimuli while feeding when using binocular or monocular vision.
Switching the viewing eye after habituation, we examined if habituation
was confined to the stimulated hemisphere or shared across hemispheres.
We found that both hemispheres learned equally to ignore distracting
stimuli. However, embryonic light stimulation, influencing hemispheric
specialization, revealed an asymmetry in interhemispheric transfer of the
irrelevant information discarded via habituation. Unstimulated chicks exhib-
ited a directional bias, with the right hemisphere failing to transfer
distracting stimulus information to the left hemisphere, while transfer
from left to right was possible. Nevertheless, embryonic light stimulation
counteracted this asymmetry, enhancing communication from the right to
the left hemisphere and reducing the pre-existing imbalance. This sharing
extends beyond hemisphere-specific functions and encompasses a broader
representation of irrelevant events.
1. Introduction
Hemispheric specializations can influence how stimuli are processed and
behaviour is controlled, which in turn affects how an animal responds to
relevant stimuli in its environment [1,2]. In a prototypical example, a toad
will flee at the sudden appearance of a predator in the left visual field, whereas
it will capture prey entering the right visual field [3]. It is also known that the
left hemisphere shares information with the right one, whereas the opposite
happens to a lesser degree [4,5]. Such extreme hemispheric-spatial specializ-
ation is seen in responses to relevant stimuli, but animals spend much of
their lifetime dealing with irrelevant events. Given their irrelevance, these
stimuli must be filtered out to prevent them from interfering with any ongoing
task-relevant behaviour, a capacity manifested by the phenomenon of habitu-
ation [6]. Despite the importance of habituation, which is widespread among
animal species, there is no evidence about the influence of hemispheric special-
ization on habituation [7–9]. Therefore, we took advantage of our knowledge of
habituation [10] and lateralization [11] in young domestic chickens (Gallus
gallus) and exposed them repeatedly to a visual distracting stimulus while
they were feeding binocularly or using one eye only. We explored whether
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habituation depends preferentially on one hemisphere or is
implemented bilaterally in the brain. In addition, by switch-
ing the viewing eye after habituation had occurred
monocularly, we investigated whether habituation was con-
fined to the originally stimulated hemisphere or whether it
was evident also in the other hemisphere, which would
entail an interhemispheric transfer of distracting information.
In particular, we addressed this issue by manipulating an epi-
genetic factor, light stimulation applied during embryonic
development, which is known to interact with genetically
determined asymmetries in hemispheric crosstalk [12,13].
2. Material and methods
(a) Participants
We incubated 188 eggs (ROSS-308 Gallus gallus) from day 0 to
hatching either in complete darkness (dark, N = 93) or exposed
to 60W LED-light stimulation from day 18 to hatching (light,
N = 95). Chicks were raised in same-sex pairs of comparable
weight to ensure each chick had a social companion while avoid-
ing any imbalances in behaviors. Food and water were available
ad libitum, and food deprivation was introduced on the night of
day 2 post-hatching.
(b) Stimuli, apparatus and procedure
On day 3, a single chick entered a confining box and foraged for
crumbles through a frontal circular head-only window for 30 s
(figure 1a) either binocularly (BIN; figure 1b) or with a monocu-
lar eye-patch (LE, RE; figure 1b). When foraging, the distractor
appeared: a train of three flashes (of 200 ms each with an inter-
flash interval at 150 ms, for a total of 900 ms) of blue LED-light
(1W), centred on the circular window and 15 cm from the confin-
ing box, controlled by a computer via an Arduino Uno circuit.
The distractor appeared 16 times: from Trial 1 to 15 every 15 s
(habituation); Trial 16 (recovery) occurred after 45 s during
which the chick was removed from the confining box and (1) if
BIN, an eye-patch was briefly applied to one or the other eye
and immediately removed to control for possible arousing effects
of the manipulation; (2) if LE or RE, the eye-patch was shifted to
cover the eye previously in use (LE-RE; RE-LE). While foraging
again, chicks received the last distractor. The duration of the
orienting reflex triggered by each distractor was measured in
milliseconds, starting from when the chick lifted its head off
the food tray in response to the distractor until it resumed peck-
ing. If the chick was not pecking at the food during the
scheduled distractor presentation, the distractor was delayed
for a maximum of 1 min. Trials where the chick had just lifted
its head before the distractor was delivered were excluded
from the analysis. Chicks’ performance was automatically
scored from video recordings using Boris [14].
(c) Statistical analysis
Data were analysed using linear mixed effects models with
subject-specific slope and intercept, as described by [15]. These
models were also used to perform an initial outlier analysis,
where responses deviating beyond ±2.5 standard deviations
from the predicted values were identified and subsequently dis-
carded from further analysis. The linear models used to analyse
the distribution of responses during habituation included
the chicks’ incubation condition (dark- and light-incubated
chicks), the eye in use (BIN, LE-RE and RE-LE), the number of
trials (Trial 1 to 15), and their interactions in both fixed and
random effect structures. For the analysis of recovery, only
2

Trials 15 and 16 were considered, together with the incubation
condition, the eye in use, and their interaction.

Post-hoc analyses of interactions were performed using
Welch’s t-tests with Tukey correction. All statistical analyses
were conducted in R v. 3.5.1 [16]. We used the lmer() function
from the lmerTest package [17] to fit the linear models and
the testInteraction() function from the phia package [18] for the
post-hoc analyses.

As inferential statistical measures, we provide p-values for the
estimates of the fixed effects of the linearmixed effects model, with
Satterthwaite approximation used to adjust the denominator
degrees of freedom in the F-tests. Additionally, we present the hp
values as estimates of significant ( p < 0.050) effect size of F-tests
and Cohen’s d values as estimates of significant effect size of
post-hoc t-tests.

We conducted a sensitivity analysis with G*Power 3.1 [19] on
our sample size with α err. prob. = 0.05, power (1–β err. prob.) =
0.95 to establish the minimal detectable effects for our experimen-
tal design. The results of the sensitivity analysis indicated that the
minimal detectable effects were in the small-to-medium range for
both the model used to analyse habituation (with a critical F = 1.28
and h2

p ¼ 0:01) and the model used to analyse recovery (with a
critical F = 2.26 and h2

p ¼ 0:01).
3. Results
We analysed a total of 2552 responses, discarding 76 outliers
from the initial pool (less than the 3% of the overall responses).
The linear mixed effects model used to assess habituation
revealed a main effect of the trial (F1, 173.24 = 56.85, p < 0.001,
h2
p ¼ 0:25). Specifically, the duration of the chicks’ orienting

response decreased from Trial 1 to Trial 15 at a negative
linear rate of β =−73.58 ms (t31.41 =−3.18, p = 0.003), in line
with habituation. No other main effect or interaction was sig-
nificant (all p > 0.050). The results suggest that all groups of
chicks habituated equally to the distractor.

By contrast, chicks’ recovery of response changed across
conditions. The model used to assess recovery revealed a
main effect of trial (F1, 160.92 = 10.28, p = 0.002, h2

p ¼ 0:06),
a two-way interaction between trial and eye in use (F2,
160.79 = 4.5420, p = 0.012, h2

p ¼ 0:05), a two-way interaction
between trial and incubation condition (F2, 164.88 = 4.49, p =
0.013, h2

p ¼ 0:05), and a three-way interaction between trial,
eye in use, and incubation condition (F2, 160.79 = 3.4926, p =
0.032, h2

p ¼ 0:04). Specifically, the orienting reflex recovered
in dark-incubated chicks habituated with the left eye when
the distractor was presented to the right eye (LE-RE group),
showing no transfer of the distractor information from the
right to the left hemisphere (figure 1d, difference from Trial
15 to 16, t155 =−5.32, p < 0.001, Cohen’s d =−0.20). The dur-
ation of the orienting reflex elicited via the right eye was
significantly longer than that previously elicited via the left
eye (figure 1d, difference from Trial 1 to 16 for LE-RE
chicks t144 = 2.61, p = 0.020), and comparable to the response
elicited via the right eye on the first trial in the other group
of dark-incubated chicks (difference from Trial 1 for RE-LE
chicks to Trial 16 for LE-RE chicks t295 = 0.07, p = 0.944).

Conversely, dark-incubated animals that learned to ignore
the distractor via the right eye showed no recovery of the
orienting response after the eye switch (figure 1e, dark-
incubated RE-LE chicks, t153 =−1.02, p = 0.308), showing trans-
fer of distractor representation from the left to the right
hemisphere. The same holds true for both right- and left-viewing
light-incubated groups (figure 1d, light-incubated LE-RE
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Figure 1. (a) Layout of the apparatus. (b) Depiction of the eye patch applied to obtain sham blindfold for BIN chicks and monocular occlusion in RE and LE chicks.
(c) BIN (N = 63; females = 34) chicks’ performance in response to the light flashes. (d ) Performance of dark- (N = 30; females = 14) and light-incubated chicks
(N = 32; females = 15) trained with LE in use and then tested for transfer of filtering with the RE. (e) Performance of dark- (N = 31; females = 15) and light-
incubated chicks (N = 32; females = 16) trained with RE in use and then tested for transfer of information with the LE. ( f ) Contrast of duration of the OR in all
groups from training to transfer trial. BIN, binocular; LE, left eye in use; RE, right eye in use; OR, orienting reflex; *** p < 0.001.
chicks t175 =−0.58, p= 0.562; figure 1e, light-incubated RE-LE
chicks, t163 =−1.32, p= 0.185). Simple arousing induced by
removal and re-application of the eye patch on the new eye
is unlikely to elicit a similar response recovery, as binocular
chicks still effectively filter out the distractor even after a
comparable manipulation (figure 1c, dark-incubated BIN
chicks, t130 = 0.02, p = 0.985; light-incubated BIN chicks,
t163 = 0.25, p = 0.800). The results were confirmed also when
the average of the last three habituation trials, as a measure
of the asymptote of the habituation curve [20], were contrasted
with trial 16 (figure 1f, difference in the mean orienting reflex
from Trials 11–15 to 16 for LE-RE dark-incubated chicks,
t175.94 = 5.35, p < 0.001, Cohen’s d =−0.30, for all other
conditions p > 0.050).

No sex difference was observed (for all effects involving
chicks’ sex, p > 0.050).
4. Discussion
The ability to habituate to irrelevant or harmless stimuli that
appear on either side of the body is crucial for an animal’s
survival. Advantageously, both hemispheres exhibit compar-
able efficiency in ignoring the irrelevant distractor either
under monocular or binocular view. Although embryonic
light stimulation does not affect the overall habituation
capacity of each hemisphere [21], crucially it significantly
impacts interhemispheric transfer. Specifically, a directional
bias in cross-talk transmission of distractor information is
present in dark-incubated chicks, meaning that the right
hemisphere is unable to transfer the to-be-filtered information
3

to the left hemisphere. However, the same transfer is possible
after light exposure.

In other words, our data showed that the naturally biased
visual experience has potentiated communication from the
right to the left hemisphere, improving access to contralateral
visual information [12,13,21] about distracting events, and
annulling pre-established asymmetries [13,22]. It is not the
first time that ontogenetic plasticity has been revealed to
benefit the unstimulated hemisphere, thus allowing that
hemisphere to participate in the control of behaviour [12],
but with our contribution we both exemplify how an environ-
mental factor (light) reduces an inherent asymmetry when
lateralization is not beneficial and enhances the understand-
ing of what is shared between left and right hemispheres
[1,23]. We demonstrate that this sharing extends beyond the
information specific to each hemisphere’s pivotal functions
and includes a more general representation of the irrelevant
events. According to one model of habituation [24], we
posit that what is transferred, in the very least, from the habi-
tuating hemisphere to the other is the neural representation
of the stimulus. This transferred representation can then be
used by the receiving hemisphere to predict the upcoming
events. Interestingly, considering the lack of response recov-
ery, it could be speculated that the degree of response
suppression achieved by the initial hemisphere could also
be shared with the other hemisphere. It is indeed established
that various commissures within the pigeon brain assume an
asymmetrical role in interhemispheric transfer at different
levels of visual processing (e.g. anterior commissure: [25];
tectal commissure: [26]; supraoptic commissure: [27]). In
the chicken brain, intact tectal and posterior commissures



suppress lateralized responses to non-rewarding beads [28].
In the latter study, environmental stimulation was not con-
trolled, though it is reasonable to assume that light was
applied at some point in the commercial hatchery, which
aligns with the findings obtained in our present work. This
hypothesis paves the way for studying further both the
kind of information transferred and the neuroanatomical
and physiological basis of the phenomenon we observed.
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