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Abstract

The research activity reported in this thesis concerns the numerical study
of cavitating flows. Academic benchmark cases have been considered to an-
alyze the effectiveness of existing cavitation models.
Cavitation is a phenomenon that has to be avoided because it is the cause of
many negative effects, among them, vibrations, local damage to the struc-
ture can lead to total structural breakage and are a very important source
of noise. An analysis of the Rayleigh-Plesset equation and the stability
of the vapor bubble was initially performed analytically and numerically.
Having in mind the final application to cases of engineering interest, the
best approach in terms of computational cost to model the cavitation is the
mixture model, where the processes of condensation and vaporization are
treated through the two source terms in a trasport equation for the vapor
fraction, one for the condensation process and one for the vaporization one
respectively, for which a lot of different models exist in literature.
We compared the results obtained using four different cavitation models,
finding some differences among them. Then we propose a normalization
method for the evaluation of the empirical multiplying coefficients present
in every model by comparing the integral time scale Tref associated with
vaporization and condensation processes; the models were compared again
with the new normalized coefficients, finding some improvement in the com-
parison, especially considering the cavitation regime predicted. Since the
tip vortex cavitation was found to be the main source of noise in ship pro-
pellers, we studied the tip vortex cavitation considering it as an isolated
cavitating vortex. We analyzed the vortex forcing different natural modes
considering different configurations of the mesh, different values of the em-
pirical coefficients for the cavitation model, and for two-dimensional and
three-dimensional cases. The results obtained were in generally good agree-
ment with the analytical solution available in literature [Bosschers (2018)];
the results obtained show that the coefficients are not so important in flow-
driven cavitation, if they belong to a correct range, like that which occurs in
a vortex; moreover, the geometry and the mesh strongly affect the results,
inducing numerical instability and dissipation.
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Chapter 1

Introduzione

In this chapter, we give an overview of the physics of cavitation, its own
importance, some literature mathematical methods used for prediction pur-
poses, and the equations used to describe the dynamics of the vapor bubbles.

1.1 cavitation

Every substance in nature may appear in different phgysical states, and,
without entering the plasma or other more complicated physics the three
main states are, respectively solid, liquid and gas. The state of the sub-
stances depends on a number of factors, but mainly on temperature and
pressure; in particular, the evaporation process may occur due to an in-
crease of temperature, with the process called boiling, or may be due to
a reduction of pressure without a significant change of temperature. This
process is called cavitation, as shown in the water phase diagram in Figure
1.1.
Cavitation is a phenomenon that appears usually in high-speed flows when
the pressure, due to the energy equilibrium, drops under the vapor tension
value threshold leading to change of phase, from liquid to vapor.

Cavitation occurs in several engineering applications, among the others
in pipelines, especially near fitting, bottlenecks, or corners where local ac-
celerations develop or also in the case of water hammer. Cavitation may
also occur over ship propellers and in machinery that interacts with liquid
flows (pumps, turbines). The phenomenon is enhanced in case of turbulence
or vortex structures because every vortex introduces a local pressure drop
in the core of the vortex; this effect is identified, for example, in case of pro-
peller blades, and in particular in the tip vortex that is usually is generated
in the wake.

1



2 Introduzione

Figure 1.1: pressure-temperature phase diagram for water, with
the difference between boiling and cavitation. Image taken from:
https://www.researchgate.net/figure/From-French-Wikipedia-

The-well-known-phase-diagram-of-water-near-the-triple-

point_fig1_313882835

1.1.1 Cavitation types

The cause of the cavitation process is clear and its physics and dynam-
ics may be different in different situations. The first distinction is relative
to difference between traveling cavitation and fixed cavitation: The travel-
ing cavitation, depicted in Figure 1.2, is characterized, by vapor, usually a
bubble cloud with bubbles of various dimensions advected by the flow down-
stream until they find some higher pressure area and they condensate back
to the liquid phase. Within this kind of cavitation, we can identify bubble
cavitation (the vapor bubble travels along the track), or cloud cavitation
if the vapor phase is almost homogeneously distributed in the fluid in that
area.

This kind of cavitation is common where there is an almost homoge-
neous pressure drop, for example on the back of the propeller blade or in a
shrinkage.

On the other hand, fixed cavitation manifests itself with the presence of
a region dominated by the vapor phase, that remains in the same position,
attached to some solid structures or obstacles or releasing periodically small
portions of vapor. This kind of cavitation is usually related to the presence

https://www.researchgate.net/figure/From-French-Wikipedia-The-well-known-phase-diagram-of-water-near-the-triple-point_fig1_313882835
https://www.researchgate.net/figure/From-French-Wikipedia-The-well-known-phase-diagram-of-water-near-the-triple-point_fig1_313882835
https://www.researchgate.net/figure/From-French-Wikipedia-The-well-known-phase-diagram-of-water-near-the-triple-point_fig1_313882835
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Figure 1.2: Traveling cavitation on the back of a hydrofoil. Image taken
from: [Franc (2006)]

of obstacles or machinery; this kind of cavitation typically occurs within
pipelines or around obstacles, as, for example, hydrofoils with a high angle
of incidence.

1.1.2 cavitation for ship propellers

Cavitation is a significant problem for ship propellers and the phenomenon
may appear in all its own different patterns (see Figure 1.3 for a typical ex-
ample). For example, cavitation is usually found in the organized vorticity

Figure 1.3: Scheme to show the parts of a ship propeller. Image taken
from: https://innovationdiscoveries.space/how-propeller-works-

functions-of-propeller/

generated by the propeller; the main vortex structures are the tip vortex
released in the wake of the tip of the propeller blade or that released by

 https://innovationdiscoveries.space/how-propeller-works-functions-of-propeller/
 https://innovationdiscoveries.space/how-propeller-works-functions-of-propeller/
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the hub. this phenomenon can be correlated to the tip vortex or the back
of the blade, so we have tip vortex cavitation, or on the other side, near
the propeller hub, so we will have hub cavitation; traveling cavitation could
appear on the face of the blade, usually if it is working out from design
conditions or in this case the angle of the blade couldn’t be ideal and lead
to fixed cavitation from the blade edge, called sheet cavitation.

The goal is to design the best compromize for a propeller, in terms of
performance versus cavitation. In particular, propulsion performance should
be obtained without obtaining a severe reduction of pressure on the back of
the blade, which may lead to traveling bubble cavitation;

Also, even in case of the optimal propellers for a certain loading condi-
tion, in off-design conditions cavitation may develop, for example, in pres-
ence of rough sea, acceleration, or maneuvers where the velocity and direc-
tion of the flow do not match with the designed propeller conditions; these
situations may lead to development of separated flows on the trailing edge
of the blade and bring some sheet cavitation on the blade. On the tip of the
blades, due to the difference of pressure between the face and the back of the
blade, there will be a flow from the face to the back that generate a vortex
around the tip of the blade, this particular vortex usually generated by every
blade, with different intensity is called tip vortex. Sometimes, pressure in
the core of this helical vortex drops below the vapor tension and generates
or maintains the tip vortex cavitation. Other cavitation patterns may also
be present around ship propellers and are caused by the hub or off-design
conditions, as discussed above (see Figure 1.4 for an example).

1.1.3 problem of cavitation

Cavitation may represent a severe problem because of undesired effects;
apart the loss of performance due to the presence of the vapour phase,
problems could be related to the presence of the vapor, like the loss of per-
formance, or related to the bubble collapse, which brings the most severe
consequences.
In presence of a two-phase flow (liquid + vapor) the free-divergence (incom-
pressibility) condition of the velocity field is no more verified; so, in presence
of acceleration and associated reduction of pressure , cavitation takes place
mostly on the back of a blade and occupies a large fraction of volume con-
tributing to the reduction of the thrust causing a loss of performance of
the machinery. The second, and more severe, effect is related to the cavity
collapse, because usually, the condensation of vapor to liquid has almost the
same dynamics as the collapse of a single vapor bubble; in this case, the
bubble decreases in dimension, but when it is close to disappearing some
imperfection in its spherical shape brings the bubble to microscopic flow jet
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Figure 1.4: Schematic representation of the different cavitation types for
a ship propeller. Image taken from: https://www.theshipyardblog.com/
propeller-cavitation-explained/.

with velocity of hundreds of meters per seconds and very high values of pres-
sure, locally even of the order of hundreds of atmospheres; this implosion
dynamics is depicted in Figure 1.5.

Figure 1.5: Schematic representation of the formation of the jet flow during
the collapse of a vapor bubble. Image taken from: http://massflow.ir/

2018/08/14/post002

This phenomenon is relevant also because the cavitation, and the subse-
quent cavity collapse, usually occur near the solid walls thus creating local
erosion which sometimes brings to the collapse of the structure (see Figure
1.6).

 https://www.theshipyardblog.com/propeller-cavitation-explained/
 https://www.theshipyardblog.com/propeller-cavitation-explained/
http://massflow.ir/2018/08/14/post002
http://massflow.ir/2018/08/14/post002
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Figure 1.6: Erosion on a propeller blade under cavitation. Image taken from:
https://www.researchgate.net/publication/341131919_Numerical_

Modelling_and_Prediction_of_Cavitation_Erosion_Using_Euler-

Euler_and_Multi-Scale_Euler-Lagrange_Methods

Cavitation and the subsequent bubble collapse may also lead to vi-
brations and noise; cavitation creates noise through different mechanisms,
among them, we can identify the pressure waves related to the cavity im-
plosion, the dynamic of the cavity itself or also indirectly by the vibration
induced on the structure.

1.1.4 Evaluation of cavitation

Measurement and prediction of cavitation are in general difficult, due to
various problems, one of them being the different spatial and temporal scales
involved in the phenomenon; as an example, the temporal scale of a single
bubble is of the order of microseconds, and its characteristic dimension is of
the order of few micrometers or even below smaller in presence of rebounds
or implosion; The other problem when facing cavitation is the fact that it
occurs in presence of very low pressure, that is tipically associated to high-
speed flows in a turbulent regime, and this means that the flow is chaotic,
and so also the formation and the dynamics of the bubble.

 https://www.researchgate.net/publication/341131919_Numerical_Modelling_and_Prediction_of_Cavitation_Erosion_Using_Euler-Euler_and_Multi-Scale_Euler-Lagrange_Methods
 https://www.researchgate.net/publication/341131919_Numerical_Modelling_and_Prediction_of_Cavitation_Erosion_Using_Euler-Euler_and_Multi-Scale_Euler-Lagrange_Methods
 https://www.researchgate.net/publication/341131919_Numerical_Modelling_and_Prediction_of_Cavitation_Erosion_Using_Euler-Euler_and_Multi-Scale_Euler-Lagrange_Methods
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The dynamic of the vapor bubble depends on thermodynamic nonlinear
mechanisms depending. For the above mentioned reasons, is is nowadays
unpractical to afford cavitation by directly solving the dynamics of the single
bubbles in the flow.
The mathematical models so far developed to simulate the cavitation can
be classified into two main categories:

separated-flow methods, where the liquid phase and the vapor one are
treated separately and separated by the interface;

dispersed-flow methods, where the two phases are treated as a mixture
with spatial characteristics that change with the amount of gas present
within the mixture.
In separated-flow methods, the two fluids may be solved by adopting several
strategies, for example considering two separate domains, one for the liquid
phase and one for the vapor phase.
Accordingly, the interface in this case works as a boundary over which spe-
cific conditions need to be set. Specifically, the pressure jump between the
phases is correlated to the surface tension, while velocity is set to have the
correct mass transfer through the interface, due to condensation and vapor-
ization processes.

Also, a so-called continuous approach is suitable. In this case, one set
of equations is solved, however additional terms appear in the momentum
equation related to the vapor concentration. For example, introducing a
Dirac delta δs, with which the sharp interface is intercepted.
Other methods for treating the interface are: Interface tracking or Interface
capturing. Interface tracking is a Lagrangian approach where the interface
points are tracked according to the velocity of the phases on neighboring
cells: [Unverdi and Tryggvason (1992)]

∂Xi

∂t
= ui (1.1)

The Interface capturing method does not provide for a sharp interface. In-
deed, the latter may be identified as the diffused region where the flow grad-
ually moves from one phase to the other. In this model, interface motion is
evaluated by solving a transport equation:

∂Y

∂t
+∇ · (uY ) = 0 (1.2)

Several models are present in literature and differ on the modelling strategy
to determine the interface and on the meaning of the Y field ; if the Y field
represents the vapor concentration, we refer to the volume of fluids methods
[Brackbill et al. (1992)], if a scalar field determines the distance from the
interface , we have the level set methods [Sussman et al. (1994)], or if it
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is a potential of the phases we have the phase field methods [Jacqmin (1999)].

Over the years, source terms have been added to the transport equation
for every model to take into account interface effects, such as mass transfer
[Yang and Mao (2005), Sun et al. (2012)].

Using different fluids means tracking the liquid-vapor interface; this im-
plies that the dimension of the computational cell should be smaller than the
gas bubble dimension or the vapor structures, so these methods are widely
used to study isolated bubble dynamics and are not suitable for engineering
applications.

The other class of methods, called dispersed-flow methods, rely on the
assumption that the flow may be treated as a mixture.
Two main models can be identified, the Euler-Euler and the Euler-Lagrangian
model respectively. Recently, a merging of the two has been proposed
[Ghahramani et al. (2007)], where the inception is treated considering a
Lagrangian approach, while the macroscopic vapor mass dynamic is solved
within an Eulerian framework.

The Euler-Lagrangian approach considers the vapor or gas as a small
portion of the entire mixture so it solves the liquid problem with the Euler
approach, as in equation 1.3, where u is the velocity field, P is the pressure,
ρ is the density and µ is the viscosity;{

∇ · u = 0

ρ
(
∂u
∂t + u · ∇u

)
= −∇P + µ∇2u

(1.3)

while the vapor phase is treated with a Lagrangian approach: the forces on
the bubble related for example to drag, shear, and buoyancy, are evaluated
through the liquid-phase velocity and determine the particle trajectories.
Since the model can treat a limited number of particles, it is effective to
study problems related to bubble cavitation and incipient cavitation, but is
not suited for cavitating flows characterized by a large amount of vapor.

On the other hand, the Euler-Euler approaches are widely in use for
engineering applications.

These approaches consider the different fluids as mixed, being part of a
single mixture. The dynamic of the mixture can be evaluated by solving a
single set of Navier-Stokes equations, where the density and viscosity of the
mixture are weighed by the vapor concentration.

The dynamic of vapor may be defined through a state equation which
relates the density of the flow with the fluid dynamic pressure; these mod-
els are called barotropic models. The difference among these models is the
constitutive relation ρ = f(P ), we mention among others the work of Del-
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lannoy and Kueny, [Delannoy and Kueny (1990)], Rebound et al., [Rebound
et al. (1998)], Song and He [Song and He (1998)], Coutier-Delgosha et al.,
[Coutier-Delgosha et al. (2005)] and Qin et al. [Qin et al. (2003)]).

Otherwise, the vapor dynamics can be evaluated by the use of a transport
equation for the volume fraction of one phase. These models are based
on the use of a scalar field which indicates the vapor fraction. Indeed,
the characteristics of the mixture depend on the ratio between the vapor
volume Vv and the total volume, evaluated as the sum of the vapor and
liquid volume:

αv =
Vv

Vv + Vl
(1.4)

The mixture density ρ and viscosity ν usually are evaluated through the
vapor fraction αv.

ρ = ρvαv + ρl (1− αv) (1.5)

µ = µvαv + µl (1− αv) (1.6)

The transport equation accounts for the phase-change processes through
the proper source/sink terms indicated with ṁ.

∂αv

∂t
+∇ (uαv) = ṁ (1.7)

In Eq. 1.7, the source term ṁ represents the phase change between
liquid and vapor and vice versa. Since the two phenomena can be considered
independent, the ṁ term is expressed by two terms, one for condensation
and one for vaporization.

ṁ = ṁv − ṁc (1.8)

where the pedices v and c stand for vaporization and condensation respec-
tively; the model just needs two source and sink terms to consider the con-
tribution of the processes of vaporization and condensation: several models
have been developed to parametrize these processes as a function of resolved
variables; among them, we mention:

▶ The Merkle[Merkle et al. (1998)] model in which the source and sink
terms are related to the density variation, proportional to the dynamic
pressure:

ṁc = Cc
(1−αl)max(p−pv ,0)

1
2
ρvU2

∞t∞

ṁv = Cv
αl max(pv−p,0)

1
2
ρvU2

∞t∞

(1.9)

where p is the pressure, pv the vapor tension, U∞ and t∞ are charac-
teristic velocity and time scales for the specific study case, while Cc

and Cv are two empirical coefficients to optimize the model.
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▶ the Kunz model [Kunz et al. (2000)] which uses the same vaporiza-
tion source term as Merkle’s model and a simplified Ginzburg-Landau
potential for the condensation one; in this model too, the source and
sink terms are separated and depend on two empirical coefficients (Cv

and Cc respectively) and other fluid dynamic quantities, as the char-
acteristic velocity and time scales U∞, T∞ as in the previous model.

ṁc = Cc
ρ
ρl

α2
l (1−αl)
t∞

max(p−pv ,0)
|p−pv |

ṁv = Cv
ρ
ρ2l

αl max(pv−p,0)
1
2
U2
∞t∞

(1.10)

▶ The model of Saito [Saito et al. (2007)] evaluates the source terms
basing the formulation on the theory of evaporation and condensation
on a plane surface:

ṁc = Cc
ρ

ρlρv

α2
l (1−αl)

2 max(p−pv)√
2πRTg

ṁv = Cv
ρ
ρ2v

α2
l (1−αl)

2 max(pv−p)√
2πRTg

(1.11)

where R is the gas constant and Tg is the gas temperature

▶ Senocak and Shyy [Senocak and Shyy (2004)] used the mass-momentum
conservation equation at the interface to evaluate the source terms as
a function of known flow variables.

▶ Several methods base the source terms on the Rayleigh-Plesset equa-
tion for the dynamic of the bubble and are still different from each
other. Among them, we find the Schnerr and Sauer model [Schnerr
and Sauer (2001)] that bases the source and sink terms on the asymp-
totic solution of the equation for the dynamics of the bubble:

ṁc = Cc
3αl(1−αl)

Rb

√
2
3
max(p−pv ,0)

ρl

ṁv = Cv
3αl(1−αl)

Rb

√
2
3
max(pv−p,0)

ρl

(1.12)

where the bubble radius Rb has to be evaluated also. The models
contains two empirical constant to be calibrated on the particular case
under investigation.

▶ The Zwart model [Zwart et al. (2004)] which contains a source terms
dependent on the effective pressure, the vapor tension, the character-
istic of the gas bubble already present in the fluid, and in particular on
the concentration rnunc and the initial radius RB of the bubbles. As in
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other models, the present one contains two empirical coefficients Fe, Fc.

ṁ =

−Fe
3rnuncρv

RB

√
2
3
Pv−P
ρL

(1− α) P < Pv

Fc
3ρv
RB

√
2
3
Pv−P
ρL

α P > Pv

(1.13)

▶ The full cavitating model, developed by Singhal [Singhal et al. (1997)],
contains the source term which depends on the kinetic energy k of the
flow, on the surface tension σ, on the vapor density fraction fv := αv

ρl
ρ

and on two empirical coefficients Ce, Cc

ṁ =

−Cv
k
σρlρv

√
2
3
Pv−P
ρl

(1− fv) P < Pv

Cc
k
σρlρl

√
2
3
Pv−P
ρl

fv P > Pv

(1.14)

An important issue related to these models is the use of empirical co-
efficients, which is always needed since the terms describing the conden-
sation/vaporization processes are a simplified version of complex physical
relationships. Usually, these empirical parameters Cc and Cv are calibrated
for every specific problem, as for the study of the flow around a hydro-
foil [Roohi et al. (2013)] or a marine propeller [Morgut and Nobile (2012)];
usually, the calibration of the coefficients is performed using optimization
techniques [Zhou et al. (2019)], where the values of the coefficients are eval-
uated forcing the solution to obtain optimal values of some mean quantities,
such as the pressure coefficient or thrust and torque coefficients, the latter
in case of marine propellers.
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Chapter 2

Bubble dynamics

2.1 Fundamental theory for bubbles dynamics

The formation of vapor may be viewed as a set of nuclei dispersed in the
liquid (in the form of dissolved air) which react to external pressure by ex-
panding to form visible bubbles. The radius of each bubble adjusts according
to the force balance at the bubble interface. The underlying theory of bub-
ble dynamics is presented in the fundamental work of Raileygh [Rayleigh
(1917)], in which the balance of forces, internal and external to the bubble,
gives rise to an ordinary differential equation for the radius of the bubble.
The main assumption on which this theory is based is that the bubble re-
mains spherical during the entire motion. The equation reads as:

R
d2R

dt2
+

3

2

(
dR

dt

)2

− pv − p∞
ρl

= 0 (2.1)

where R is the bubble radius, ρl is the liquid density, and pv and p∞ are
the pressure for the bubble and the far-field respectively. Several authors
extended the seminal work of Rayleigh. The most popular model to date is
the one proposed by Plesset [Plesset (1949)], who introduced the effect of
the surface tension at the bubble interface σ:

R
d2R

dt2
+

3

2

(
dR

dt

)2

−
pv − p∞ − 2σ

R

ρl
= 0 (2.2)

Adding the term related to the liquid viscosity µl [Plesset and Prosperetti
(1977)], the equation reads as:

R
d2R

dt2
+

3

2

(
dR

dt

)2

−
pv − p∞ − 2σ

R

ρl
− 4µl

ρlR

dR

dt
= 0 (2.3)

The pressure inside the bubble is usually considered homogeneous and
composed of a part of vapor pv and a component of non-condensable pg gas

13
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that is ruled by the equation of state:

pg
(
R3
)k

= cost (2.4)

So the pressure inside the bubble can be expressed as:

PB = pv + pg,0

(
R0

R

)3k

(2.5)

where the parameter k depends on the thermodynamic transformation that
is considered inside the bubble: k = 1 for isothermal transformations, or
k = γ for adiabatic transformations, being γ the ratio between specific
heats. Equation (2.3) is the most complete equation for the isolated bub-
ble dynamic under the hypothesis of spherical symmetry, without thermal
effects and considering the surrounding flow as incompressible. Further ex-
tensions have been made to refine the Rayleigh-Plesset model, most of them
collected in the work of Brennen[Brennen (1995)], among others we mention
the more important for the evolution of the equation for water cavitation:
in particular, the compressible liquid hypothesis in the works of Prosperetti
[Prosperetti and Lezzi (1986)]; the equation for the bubble cluster proposed
by Kubota [Kubota et all. (1992)]; the introduction of thermal effect intro-
duced by Plesset and Zwicle [Plesset and Zwick (1952)].

2.2 Rayleight Plesset dimensionless equation

To investigate the dynamics of the bubble, and in particular its stability
under variation of the pressure, here we consider the dimensionless Rayleigh-
Plesset equation (Eq. (2.3); after neglecting thermal effects, some quantities
such as σ, pv, µ, ρl are constant characteristics of the fluid, so they can be
considered as constant parameters.
If we multiply the equation (2.3) by the constant value ρl

pv
we obtain

R

R0

R̈
pv

R0ρl

+
3

2

 Ṙ√
pv
ρl

2

= 1+
pg,0
pv

(
R0

R

)3k

−p∞
pv

− 2σ

pvR0

R0

R
+4

ν

R0

√
pv
ρ

R0

R

Ṙ√
pv
ρ

(2.6)
Now if define a reference radius R0, as the value occurring in the case the far-
field pressure is equal to the non-condensable pressure component pg−p∞ =
0.

R0 :=
2σ

pv
(2.7)
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We can define the non-dimensional quantities for the dynamic of the bubble
as:

r̈ := R̈
pv

R0ρl

, ṙ := Ṙ√
pv
ρl

, r := R
R0

,

σ∗ := σ
pvR0

, ν∗ := ν

R0

√
pv
ρl

,

P ∗
g,0 :=

pg,0
pv

, P ∗
∞ := p∞

pv

(2.8)

Now we can rewrite the Rayleigh-Plesset equation in a dimensionless form:

rr̈ +
3

2
ṙ2 = 1 + P ∗

g,0r
−3k − P ∗

∞ − 2σ∗

r
− 4

ν∗ṙ

r
(2.9)

We can determine the equilibrium Radius Req as the solution of the
steady case, thus setting Ṙ = R̈ = 0 in equation (2.3)

pv + pg,0

(
R0

Req

)3k

− p∞ − 2σ

Req
= 0 (2.10)

If we consider a non-condensable gas filling the bubble, the gas pressure at
equilibrium pg,e can be determined from the equation of state:

pg,eR
3k
eq = pg,0R

3k
0 (2.11)

from which we can define the dimensionless pressure at the equilibrium

P ∗
g,e :=

Pg,e

pv
=

Pg,0

pv

(
R0

Req

)3k

= P ∗
g,0R

∗
eq

−3k (2.12)

being R∗
eq =

Req

R0
the non-dimensional equilibrium radius. Remembering the

definition of R0 := 2σ
pv
, the equilibrium radius (eq. (2.10)) can be rewritten

in terms of non-dimensional pressure:

R∗
eq =

1

1 + P ∗
g,e − P ∗

∞
(2.13)

Considering the equation (eq. (2.13)) and the state equation (2.11) we can
define the equilibrium radius as a function of the far-field and equilibrium
nondimensional pressures R∗

eq = f
(
P ∗
g,e, P

∗
∞
)
.

From these considerations, we can study the equilibrium radius for the dif-
ferent values of pressures, considering constant values of σ, ρl, pv, ν that are
consistent with the case of water at a constant temperature and considering
the case of an isothermal transformation for the non-condensable gas.
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2.3 Static limits on P ∗
∞ for the parametric study

Considering equation (2.13), to have a positive value of the equilibrium
radius, the parameters have to satisfy the condition:

1 + P ∗
g,e − P ∗

∞ > 0 (2.14)

To determine whether the equilibrium is stable or unstable, the sign of the
second derivative of R needs to be evaluated for R close to Req. For a
position close to the equilibrium, the sign of R̈ should be opposed to the
movement, so the following condition needs to be verified:

R̈ = f
(
Ṙ, R

)
< 0 with Ṙ = 0, R = Req + ϵ and ϵ arbitrarily small

(2.15)

Linearization of the force terms in the Rayleigh-Plesset equation and eval-

uating it for
[
Ṙ = 0, R = Req + ϵ

]
, the condition (2.15) is equivalent to the

following constraint:

d

dR

(
1 + P ∗

g,e

(
Req

R

)3k

− 2σ

R

)∣∣∣∣∣
Req

< 0 (2.16)

This gives the condition:
2σ

Req
< 3kpg,e (2.17)

Considering the calculation of the equilibrium radius (eq. 2.13)), this can
be written as:

1 + P ∗
g,e − P ∗

∞ < 3kP ∗
g,e (2.18)

From the equation (2.14) and (2.18) we can define the limits for the param-
eter P ∗

∞ to be used in the parametric study, and these are:

1− (3k − 1)P ∗
g,e < P ∗

∞ < 1 + P ∗
g,e (2.19)

2.4 Stability analysis of a bubble

This section is dedicated to the stability analysis of the Rayleigh-Plesset
equation. From equation (2.10) or (2.13) we can evaluate the equilibrium
radius Req, once we set the values for P ∗

g,e and P ∗
∞. The equilibrium radius

Req is stable if it correspond to a minimum for the potential energy function:

ΦP :=

∫ R

R0

−4πR2

(
pv + pg,e

(
Req

R

)3k

− p∞ − 2σ

R

)
dR (2.20)
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Considering an isothermal behavior for the gas transformation k = 1, the
potential energy ΦP can be evaluated as:

ΦP := −4

3
π (pv − p∞)R3 − 4πpg,eR

3
eq log(

R

R0
) + 4πσR2 + C (2.21)

Defining the adimensional potential energy Φ∗
P = ΦP

pvR3
0
; from equation (2.21)

we can notice that{
limR→0Φ

∗
P = +∞

limR→+∞Φ∗
P = sign (P ∗

∞ − 1) |∞|
(2.22)

thus, if P ∗
∞ > 1, R∗

eq is always a stable equilibrium radius. Otherwise, when
P ∗
∞ < 1, R∗

eq is a point of local minimum if the condition for pressure (eq.
(2.18)) is verified. An example of the potential energy function for differ-
ent values of P ∗

g,e and P ∗
∞ is depicted in Figure 2.1; three significant radii

are highlighted: the equilibrium radius R∗
eq, the unstable equilibrium ra-

dius R∗
max related to the same bubble and the radius R∗

i,lim, defined as the
smallest radius having the same potential energy of R∗

max (eq. (2.1b)). We
point out that the value of R∗

max is the unstable equilibrium for the bubble
with the same value of P ∗

∞ and P ∗
g,0 but with another pressure value for the

non-condensable gas at the equilibrium P ∗
g,e. In the same way, we can no-

tice that for every unstable equilibrium condition, the bubble with the same
characteristics P ∗

∞ and pg,0 has also a stable equilibrium, with a different
value of pg,e.
We performed a parametric study on the possible values for the radii

R∗
max, R

∗
i,lim, varying the parameters P ∗

∞ and P ∗
g,e. Results are reported in

Figures 2.2a and 2.2b concerning Rmax/Req and Ri,lim/Req respectively.

We can note in Figures 2.2a and 2.2b that the energetic results have
iso-level curves that are all straight lines and they pass through the value(
P ∗
g,e = 0;P ∗

∞ = 1
)
. So the ratio between the maximum radius Rmax or the

initial radius Ri,lim with respect to the equilibrium radius Req are dependent
only on one parameter that can be evaluated from P ∗

∞ and P ∗
g,e

Rmax
Req

= f
(
1−P ∗

∞
P ∗
g,e

)
Ri,lim

Req
= f

(
1−P ∗

∞
P ∗
g,e

) (2.23)

In these plots, the value of P ∗
∞ is limited to 1 because for P ∗

∞ > 1 the
bubble has only a stable equilibrium radius and so R∗

max and R∗
i,lim are not

defined. In Figures 2.2a and 2.2b we can also note that the bottom left
corner of the contour is empty, since solutions of stable equilibrium are not
present for those pairs

(
P ∗
∞, P ∗

g,e

)
. Also, the top right corner in the Figure

2.2bdoes not have solutions because of the extreme small radius according
to the mathematical relation.



18 Bubble dynamics

(a) P ∗
∞ < 1− 2P ∗

g,e (b) 1− 2P ∗
g,e < P ∗

∞ < 1

(c) 1 < P ∗
∞ < 1 + P ∗

g,e

Figure 2.1: Potential energy function, for different values of P ∗
g,e and P ∗

∞.

(a) Rmax/Req (b) Ri,lim/Req

Figure 2.2: Ratio Rmax/Req and Ri/Req.

Finally, the relation among the three non-dimensional pressures P ∗
g,0,

P ∗
g,e, and P ∗

∞ was studied numerically with a parametric solution of the
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equation

P ∗
g,0 = P ∗

g,e

(
1 + P ∗

g,e − P ∗
∞
)−3k

(2.24)

considering the value of the k = 1 for an isothermal transformation for the
gas, and considering an interval of P ∗

g,0 ∈ [0, 100] , P ∗
∞ ∈ [1, 100]. In Figure

2.3 the isocurves of P ∗
g,0 are depicted.

Figure 2.3: P ∗
g,0 with respect to P ∗

g,e and P ∗
∞.

We noticed the limits pointed out previously with the condition on the
value of P ∗

∞ with respect to P ∗
g,e, (eq. (2.19)), indeed, the top left corner

doesn’t contain solutions because of the condition P ∗
∞ < 1 + P ∗

g,e for the
existence of the stable equilibrium radius. While in the lower part of the
figure we notice that for every value of P ∗

∞ there are two possible values of
P ∗
g,e for every line of P ∗

g,0; these two values represent the stable and unstable
solutions outlined in Fig. 2.1; in particular the unstable solution is the one
on the left, while the stable solution is the right one. The stable and un-
stable solutions are divided by the condition in equation (2.15), to be noted
that the line that represents this condition crosses every P ∗

g,0 isopressure
curve at his minimum value.
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2.5 Numerical solution of the Rayleigh-Plesset equa-
tion

In this section we describe the numerical method used for the solution of the
RP equation. For this purpose, we start considering the motion of a bubble
starting from a non-equilibrium situation. The first analysis concerns the
numerical scheme to be used. We consider the forward Euler, an approxi-
mation of backward Euler and Heun methods, respectively, as time advance
schemes.

The three methods are compared for a single bubble ruled by the Rayleigh-
Plesset equation. At this stage, viscous terms are neglected and constant
external pressure p∞ is considered.
The equation, thus, reduces to:

R
∂2R

∂t2
+

3

2

(
∂R

∂t

)2

=
pB − p∞ − 2σ

R

ρl
(2.25)

The term for the bubble internal pressure considered is such that it describes
the bubble as filled with non-condensable gas, considering isothermal trans-
formation (k = 1):

pB = pv + pg,0

(
R0

R

)3k

(2.26)

The Rayleigh-Plesset equation can be recast considering a function that
relates the acceleration of the radius R̈ to the radius itself R and its velocity
Ṙ

R̈ = f
(
R, Ṙ

)
=

pv + pg,0
(
R0
R

)3 − p∞ − 2σ
R

ρlR
− 3

2

1

R

(
∂R

∂t

)2

(2.27)

For the comparison of the three methods, the same parameters for the phys-
ical and numerical quantities were used, whose values are collected in Table
2.1

The first numerical method tested is the forward Euler, which computes
the quantity of interest with the following discrete form:

qn+1 ≈ qn +

(
∂q

∂t

)n

∆t (2.28)

Using this approximation, the set of equations for the solution of Rayleigh-
Plesset equation, assumes the form:

Rn+1 = Rn +
(
∂R
∂t

)n
∆t(

∂R
∂t

)n+1
=
(
∂R
∂t

)n
+
(
∂2R
∂t2

)n
∆t(

∂2R
∂t2

)n+1
= f

(
Rn+1,

(
∂R
∂t

)n+1
) (2.29)
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Symbol Value

Initial radius R0 2 ∗ 10−6 (m)
Time step ∆t 1 ∗ 10−8 (s)

Liquid viscosity νl 0 (m
2

s )

Liquid density ρl 1 ∗ 103 ( kg
m3 )

Tensile strength σ 1 ∗ 10−3 ( N
m2 )

Initial bubble pressure pg,0 3.17 ∗ 10−6 ( N
m2 )

External pressure p∞ 1 ∗ 10−8 ( N
m2 )

Table 2.1: Values of the physical quantities used for the comparison among
the numerical methods for the bubble dynamic.

The second method that has been tested is an approximation of the
backward Euler method, in which the values of the derivative for the suc-
cessive time step are not evaluated implicitly because of the complexity of
the equation, rather they are evaluated explicitly by using a prediction step

qn+1 ≈ qn +

(
∂q

∂t

)∗
∆t (2.30)

that uses the forward Euler method; so the numerical approximation, in
this case, is obtained as:

R∗ = Rn +
(
∂R
∂t

)n
∆t(

∂R
∂t

)∗
=
(
∂R
∂t

)n
+
(
∂2R
∂t2

)n
∆t(

∂2R
∂t2

)∗
= f

(
R∗,

(
∂R
∂t

)∗) (2.31)

and the real time-step that uses the predicted values for the next time as a
derivative is 

Rn+1 = Rn +
(
∂R
∂t

)∗
∆t(

∂R
∂t

)n+1
=
(
∂R
∂t

)n
+
(
∂2R
∂t2

)∗
∆t(

∂2R
∂t2

)n+1
= f

(
Rn+1,

(
∂R
∂t

)n+1
) (2.32)

The third method tested is the Heun method, which is an approximation
of the semi-implicit method of Crank-Nicolson, where part of the new time
step values is evaluated explicitly using a predictor step to evaluate the
first iteration of the unknown values. In this case, the Euler method was
adopted to evaluate the predictor step, so this method results to be the
average between the forward Euler and the approximate backward Euler.
In particular, the formulation in this case is:

qn+1 ≈ qn +
1

2

((
∂q

∂t

)n+1

+

(
∂q

∂t

)n
)
∆t (2.33)
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And so the time advancement is carried out as in Eq. (2.31) and then the
quantities are evaluated with the system:

Rn+1 = Rn + 1
2

((
∂R
∂t

)n
+
(
∂R
∂t

)∗)
∆t(

∂R
∂t

)n+1
=
(
∂R
∂t

)n
+ 1

2

((
∂2R
∂t2

)n
+
(
∂2R
∂t2

)∗)
∆t(

∂2R
∂t2

)n+1
= F

(
Rn+1,

(
∂R
∂t

)n+1
) (2.34)

The three different integration schemes were compared in the simulation of
the oscillation of a single bubble with the parameters of Table 2.1 and the
results are reported in Figures 2.4; we can notice that with the Euler method
the radius of the bubble, after some oscillations, diverge to an infinite value,
while the solution of the approximate backward method underestimates the
values, in fact the radius show a damped behavior in time; finally, the Heun
method, that represents the average of the first two methods, appears to
model very well the dynamic of the bubble with the parameters considered.

(a) Forward Euler (b) Approximate backward Euler

(c) Heun

Figure 2.4: Radius of the bubble during an interval using the different nu-
merical methods.
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To check the quality of the results obtained with the Heun method, an
energetic balance was computed to verify the amount of energy contained
in the domain during the numerical simulation. Using the hypothesis of
spherical symmetry and considering the fluid as incompressible, the radial
velocity at a distance r from the center of the bubble can be evaluated with
the equation:

ur (r) =
R2

r2
Ṙ (2.35)

So the total kinetic energy can be evaluated with the formula:

Ek = 1
2ρl
∫∞
R r2u(r)24πdr

= 2πρlR
3Ṙ2 (2.36)

The potential energy can be considered as the work made by the gas at the
interface during the motion from a reference radius R0 to the radius R; so
it can be evaluated as

Ep = −
∫ R
R0

(
pB − p∞ − 2σ

R

)
R24πdR

= −4
3π (pv − p∞)R3 − 4πpg,0R

3
0 log

(
R
R0

)
+ 4πσR2 + C

(2.37)

We can define the total energy budget as the sum of the kinetic and po-
tential energy Etot := Ek + Ep at each time. In absence of viscosity, the
total energy must remain constant. In Figure 2.5 we observe that the total
energy is almost constant during the simulation, except during the bubble
rebounds. During these moments the numerical solver introduced some nu-
merical errors because of the very high values of the derivatives. This errors
can lead to wrong predictions of the bubble dynamics in long-time simula-
tions.
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Figure 2.5: Dimensionless radius of the bubble and total energy during an
interval using Crank Nicolson method.



Chapter 3

2D - flow around a cylinder

This section is dedicated to the analysis of different cavitation models.
Specifically, we consider four mixture models as they are implemented in
the opensource software OpenFOAM, comparing the results obtained in the
case of a laminar flow around a cylinder. Standard coefficients for the con-
densation/vaporization terms are first considered; then, a physical-based
procedure to calculate the coefficients is proposed and applied to the cylin-
der case.

3.1 The Multiphase Model for Flow Cavitation

The homogeneous mixture model considers the fluid composed as a mixture
of two incompressible and homogeneously distributed phases. The govern-
ing equations that rule the dynamics of the mixture are the Navier-Stokes
equations, together with a vapor mass transfer equation that reads as a
transport equation for the vapor fraction alphav :

∂ρ

∂t
+∇ · (ρu) = 0 (3.1)

∂ρu

∂t
+∇ · (ρuu) = −∇p+ µ∇2u (3.2)

∂αv

∂t
+∇ · (uαv) = ṁv − ṁc (3.3)

where p and u are the pressure and velocity fields, and the two values of
ρ and µ are, respectively, the density and viscosity of the mixture and are
evaluated as follow:

ρ = ρvαv + ρl (1− αv) (3.4)

µ = µvαv + µl (1− αv) (3.5)

25
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where the subscripts l and v refer to liquid and vapor phases, respectively.
αv is defined as the ratio between the volume of vapor over the total volume:

αv =
Vv

Vl + Vv
(3.6)

It should be noted that in the momentum equation (3.2) the volume
force term is not considered, which is equivalent to consider the hydrody-
namic contribution only in the pressure term. This simplification does not
affect the cavitation process in case the flow field develops over a horizontal
plane. Hereafter the liquid volume fraction αl, defined as αl = 1 − αv is
used. An important issue related to the homogeneous mixture method is
modelization of the phase change, namely the vaporization and condensa-
tion processes, which are described by the source terms ṁv and ṁc, in the
transport equation of αv (eq.(3.3)).

Among the available models for the phase change mechanism, in the
present study we consider the following ones: the Kunz model [Kunz et al.
(2000)], the Merkle model [Merkle et al. (1998)], the Saito model [Saito
et al. (2007)] and the Schnerr-Sauer model [Schnerr and Sauer (2001)]. In
these models, the vaporization and condensation rates ṁv and ṁc are always
expressed as a function of the volume fraction and pressure. Saito’s model
was originally developed to be used in simulations where compressibility is
taken into account because this model requires the solution of the energy
equation as the terms of vaporization and condensation depend on temper-
ature. Since we wotk under the assumption of incompressible flow, we need
a transport equation model system without the energy equation; hence, we
assume that the temperature Tg, required in the Saito model is constant
both in space and time. The different expressions for the source terms of
equation(3.3) of the four models are shown in Table 3.1. Please note that
all terms are written for the non-conservative form of Equation(3.3).

In Table 3.1, the terms U∞ and t∞ are, respectively, the characteristic
velocity- and time-scale of the simulation, R is the gas constant and Rb is
the radius of the bubbles that is calculated runtime as a function of αl. Dif-
ferences among the models are evident and justified by the fact that they
derive from different physical, empirical, or analytical considerations. In
particular, we can note that except for the Schnerr-Sauer model, where the
source terms depend also on the radius Rb, the two source terms ṁv and
ṁc are polynomials of the variable αl, of different degrees and multiplied by
different coefficients. This makes the transport equation a non-linear partial
differential equation. The parameters Cv and Cc, which represent vaporiza-
tion and condensation coefficients, have standard literature values, (see for
example [Roohi et al. (2013), Gaggero and Villa (2017), Gnanaskandan and
Mahesh (2016)]). Usually, they are calibrated through optimization algo-
rithms or by direct comparison with results from specific experiments. This
may be considered a convenient although not physical-based, procedure; in-
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deed, the coefficients are calibrated according to the specific application,
to obtain the target value for some quantities. This procedure does not
guarantee the general good performance of the model.

Model ṁc ṁv

Kunz Cc
ρ
ρl

α2
l (1−αl)
t∞

max(p−pv ,0)
|p−pv | Cv

ρ
ρ2l

αl max(pv−p,0)
1
2
U2
∞t∞

Merkle Cc
ρ

ρlρv

(1−αl)max(p−pv ,0)
1
2
U2
∞t∞

Cv
ρ
ρ2v

αl max(pv−p,0)
1
2
U2
∞t∞

Saito Cc
ρ

ρlρv

α2
l (1−αl)

2 max(p−pv)√
2πRTg

Cv
ρ
ρ2v

α2
l (1−αl)

2 max(pv−p)√
2πRTg

Schnerr-Sauer Cc
3αl(1−αl)

Rb

√
2
3
max(p−pv ,0)

ρl
Cv

3αl(1−αl)
Rb

√
2
3
max(pv−p,0)

ρl

Table 3.1: Source terms for the non-conservative form of the transport Equa-
tion (eq. (3.3)), according to the cavitation models considered.

3.2 Simulation Set up

As a test case, we consider a two-dimensional laminar flow around a cylinder.
The choice of a laminar regime of a benchmark case was done to better
control the fluid dynamic results, avoiding the possible contamination due
to the presence of turbulence models, and with the aim to evaluate the effect
of the empirical parameters to the development of cavitation. A sketch of the
computational domain is shown in Figure 3.1 and details on the geometry
herein considered are collected in Table 3.2.

Figure 3.1: Schematic of the computational domain.

For the computational mesh, we use an unstructured grid, composed
of structured blocks, with about 260,000 cells. The spatial discretization
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Characteristic Symbol Value

Diameter D 1 (m)
Domain length total 32 (m)

Domain upstream length 7 (m)
Domain width 15 (m)

Table 3.2: Details on the computational domain.

is homogeneous except for stretching in the radial direction, close to the
cylinder. A picture of the detail of the refined mesh is reported in Figure
3.2.

Figure 3.2: Near body mesh used for the simulations.

All simulations are carried out considering an adjustable time step, to
keep the Courant number constant, but when considering the Merkle and
Kunz models; in this case it was necessary to decrease the value of the
Courant number, to avoid numerical instability [Lu (2008)]. We consider
Co = 0.3 for Merkle and Kunz models, and Co = 0.9 for Saito and Schnerr-
Sauer models.

As boundary conditions, we consider uniform velocity U∞ and zero pres-
sure gradient at the inlet section, on the left in Figure 3.1, while constant
pressure and zero gradients for velocity are set at the outlet of the domain,
on the right in Figure 3.1. Over the cylinder, a no-slip condition is imposed
for the velocity field together with a zero pressure gradient condition. Sym-
metry conditions are imposed at the lateral boundaries. A summary of the
boundary conditions of is reported in Table 3.3.

All simulations are performed in the laminar regime at Reynolds Re =
DU∞/ν = 200, based on the cylinder diameter D = 1 m and the uniform
inlet velocity U∞ = 1 m/s. At this value of Re, a Von Karman vortex
street is observable and characterized by a value of Strouhal number approx
0.2. The cavitation index is σ = (p0 − pv) /

/
(0.5ρlU

2
∞
)
= 0.7, where p0 is

the imposed output pressure; this corresponds to one of the cases analyzed
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Boundary αl u p

Inlet uniform 0.99 uniform (1, 0) m/s zero gradient
Outlet zero gradient zero gradient uniform 2650 Pa
Cylinder zero gradient uniform 0 m/s zero gradient

Lateral boundaries zero gradient zero gradient zero gradient

Table 3.3: Boundary conditions for the simulation of the two-dimensional
laminar flow around the cylinder.

in [Gnanaskandan and Mahesh (2016)]. Table 3.4 summarizes the physical
quantities considered in all simulations.

Characteristic Symbol Value

Reynolds number Re 200 (-)
Cavitation index σ 0.7 (-)
Liquid density ρl 1000 (kg/m3)

Liquid kinematic viscosity νl 0.005 (m2/s)
Vapor density ρv 0.023 (kg/m3)

Vapor kinematic viscosity νv 2.374 (m2/s)
Vapor pressure pv 2300 (Pa)
Input velocity U∞ 1 (m/s)

Output pressure p0 2650 (Pa)

Table 3.4: Fluid data considered in simulations.

Other parameters and coefficients which characterize the cavitation mod-
els (see Table 3.1 for the source terms description) are reported in Table 3.5.

Characteristic Symbol Value

Velocity U∞ 1 (m/s)
Reference time t∞ 1 (s)
Gas costant R 461.6 (J/(Kg K))
Temperature Tg 300 (K)

Free nuclei density n 1.6 ∗ 1013 (1/m3)
Free nuclei diameter dnuc 2 ∗ t10−6 (m)

Table 3.5: Set up of parameters contained in the cavitation models.

The simulations were performed using a serial version of the code, which
requires approximately 6 h of computer time for the 100 seconds of simula-
tions using the Schnerr-Sauer model.

Simulations were performed using OpenFOAM’s interPhaseChangeFoam
solver, which uses a PIMPLE algorithm; time derivatives are evaluated us-
ing an explicit Euler scheme while various numerical schemes are used for
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the spatial derivatives, the linear upwind scheme is used for the velocity di-
vergence and a Gauss-Van Leer scheme is used for the liquid volume fraction
divergence; non-orthogonal correction is considered within the Gauss linear
scheme for the computation of the Laplacian.

3.3 Results with standard coefficients

In this section, we compare the results of the simulations of the laminar flow
around the cylinder, obtained considering the four cavitation models with
some standard literature coefficients reported in Table 3.7; we compare our
results also with those of the laminar case at Re = 200 of the numerical
study of [Gnanaskandan and Mahesh (2016)].

We classify the cavitation types observed in our numerical experiments
in three regimes:

▶ Cyclic regime, occurring when the cavity periodically detaches from
the body at the shedding frequency;

▶ Fixed regime, occurring when the cavity at the rear of the cylinder is
stable and small vapor spots occasionally detach;

▶ Transitional regime, occurring when both previous regimes occur al-
ternatively.

In [Gnanaskandan and Mahesh (2016)], the authors observed both the
first and the third regime. In particular, the cyclic regime was observed
at σ = 1.0 and the transitional regime at σ = 0.7 and 0.5. The latter
regime is characterized by a low-frequency cavity detachment, in addition
to the shedding frequency. On the other hand, a flow around bluff bodies
exhibits also the fixed regime [Fry (1984), Matsudaira et al. (1992)]. In our
simulations, we rarely observe the cavity that forms behind the cylinder to
be completely attached to the body. However, it remains stable over time
in correspondence with the recirculation areas behind the cylinder.

Figure 3.3 shows snapshots of αl for the simulation carried out with the
Kunz model with the standard coefficients reported in Table 3.7. During
the simulation two alternative scenarios are identified; the first one is the
detached cavitation, as depicted in Figure 3.3a, characterized by two vapor
zones that oscillate downstream the cylinder; the second scenario is the for-
mation and collapse of an attached cavity at the rear of the cylinder, as
depicted in Figure 3.3b–h where downstrem advection of vapor spots is ob-
servable within the vortex cores. This scenario begins with the detachment
of cavities from the cylinder (Figure 3.3b), they are advected downstream
while new vapor forms near the cylinder (Figure 3.3c,d). The new cavities
merge into a single cavity at the rear of the cylinder (Figure 3.3e,f). The
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cavity slowly condenses maintaining the position near the cylinder but re-
ducing its extension (Figure 3.3f,g) until the occurrence of complete collapse
and the stable detached cavitation is recovered (Figure 3.3i).

(a) tD/U∞ = 43. (b) tD/U∞ = 59.

(c) tD/U∞ = 61. (d) tD/U∞ = 65.

(e) tD/U∞ = 68. (f) tD/U∞ = 70.

(g) tD/U∞ = 72. (h) tD/U∞ = 78.

(i) tD/U∞ = 83.

Figure 3.3: Contour plot of instantaneous liquid fraction obtained with Kunz
model and considering standard coefficients.
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The simulation carried out with the Merkle model (Figure 3.4) depicts
cavity dynamics comparable to that obtained with the Kunz model, except
for the cavity size, which is in general larger than that found with the Kunz
model (Figure 3.4a); the formation of the attached cavity is visible in Figure
3.4c,d and it appears larger than the one shown in Figure 3.3e–g.

(a) tD/U∞ = 81. (b) tD/U∞ = 83.

(c) tD/U∞ = 85. (d) tD/U∞ = 89.

(e) tD/U∞ = 94. (f) tD/U∞ = 95.

Figure 3.4: Contour plot of instantaneous liquid fraction, results obtained
with Merkle model and considering standard coefficients.

Figure 3.5 shows snapshots of the simulation performed with the Saito
model, considering the standard coefficients. In this case, the cyclic regime
is clear. Indeed, the regular formation of the attached cavity is ruled by vor-
tex shedding, which is nearly unaffected by the small amount of cavitation
produced by the model.

Figure 3.6 shows snapshots of the quantity αl for the simulation per-
formed with the Schnerr-Sauer model. The results show an alternating
vapor formation downstream of the cylinder as depicted in the snapshots
Figure 3.6a–c, and the occurrence of extended vaporization at the rear of
the body (Figure 3.6d–i). Figure 3.6d–f shows the development of the at-
tached cavity which occurs starting from the cylinder unlike the simulations
with the Kunz (Figure 3.3) and Merkle (Figures 3.4) models, where the cav-
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(a) tD/U∞ = 62. (b) tD/U∞ = 65.

(c) tD/U∞ = 68.

Figure 3.5: Contour plot of instantaneous liquid fraction, results obtained
with Saito model and considering standard coefficients.

ity is formed in the vortex cores. Figure 3.6g–i shows that the vapor cavity
at the rear of the cylinder, obtained with the Schnerr-Sauer model, is more
stable and remains attached to the cylinder for a longer period if compared
to the other models.

In Figure 3.7, contours of time-averaged αl are depicted. No particular
differences are detected in the shape of the mean cavity. However, the Saito
model and, to a minor extent the Kunz model, produces a smaller amount
of vapor compared to the other models.

Figure 3.8 contains the mean vapor fraction plotted along the center-
line, downstream the cylinder. The minimum of αl obtained with the Saito
model is about αl,min = 0.86. On the other hand, the Saito model produces
a longer attached cavity. This means that, unlike the other models, the low
condensation rate allows the flow to carry downstream the small amount of
vapor produced by the model. This behavior is expected since the vapor-
ization and condensation rates of the Saito model maintain in time a very
low value (see the αl growth and decrease in time, depicted in Figures 3.12).
The results obtained with Merkle and Schnerr-Sauer models are comparable
with each other, due to their similar vaporization and condensation rates.
Finally, the Kunz model stands in the middle between the Saito and the
others. Indeed, it does not produce a considerable amount of vapor.

Figure 3.9 shows the profile of ⟨u′u′⟩/U2
∞ evaluated along the center-

line, downstream the cylinder, being u′ = u − ⟨u⟩ the fluctuation of the
stream-wise velocity component with respect to the time-averaged value
(the brackets denote an averaging operation).All models exhibit the same
behavior, characterized by a single peak located roughly at the same posi-
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(a) tD/U∞ = 76. (b) tD/U∞ = 78.

(c) tD/U∞ = 81. (d) tD/U∞ = 32.

(e) tD/U∞ = 33. (f) tD/U∞ = 34.

(g) tD/U∞ = 50. (h) tD/U∞ = 54.

(i) tD/U∞ = 57.

Figure 3.6: Contour plot of instantaneous liquid fraction, results obtained
with SchnerrSauer model and considering standard coefficients.

tion, except for the Saito model which presents a peak slightly closer to the
cylinder. This is consistent with what was observed in [Gnanaskandan and
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Mahesh (2016)] since a cyclic regime exhibits a vortex shedding similar to
the single-phase case, in which the re-attachment point (where ⟨u′u′⟩/U2

∞ is
maximum) is closer to the cylinder in case of cavitation. Furthermore, at
the rear of the cylinder ⟨u′u′⟩/U2

∞ is similar for all models except for the
Saito one, which has a lower initial slope. This difference can be explained
by the cyclic cavitation regime, in which cavitation has little influence on
the vortex shedding, and occurs mainly in the vortex core; in the parametric
study of [Gnanaskandan and Mahesh (2016)] it is noted that as σ decreases
from σ = 1 to σ = 0.5 the space derivative of ⟨u′u′⟩/U2

∞ near the cylinder
increases, and the value of the peak changes from a value of about 0.035 to
0.1 with a peak position ranging from 3D to 7.5D; while for values of σ = 0.7
the authors find that the peak is at a position of 4.5 D with a maximum
value of about ⟨u′u′⟩/U2

∞ = 0.07. The results shown in Figure 3.9 are con-
sistent with the cavitation regimes depicted in the snapshots of the contour
of αl. Indeed the Saito model, which is the only one that exhibits a cyclic
regime, is the one with a lower peak, which is also closer to the cylinder,
than the other models. Conversely, the Schnerr-Sauer model, which is the
one producing the most stable attached cavity, has the peak of αl with the
highest value.

(a) Kunz model. (b) Merkle model.

(c) Saito model. (d) Schnerr-Sauer model.

Figure 3.7: Contour plot of time-averaged liquid fraction, results obtained
considering standard coefficients.

Figure 3.10 shows the spectra of the lift coefficient time-history, which
gives important information about the frequency of the vortex release. In
the present case, broad-band spectra appear and they differ from model to
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Figure 3.8: Mean liquid fraction downstream the cylinder along the center-
line, results obtained considering standard coefficients.

Figure 3.9: Variance of stream-wise velocity component downstream the
cylinder along the centerline, results obtained considering standard coeffi-
cients.

model. This is not surprising, since the dynamics of the cavity behind the
cylinder affect the flow field. We note that both the Kunz and Saito models
exhibit a well-defined main peak at St = fD/U∞ ∼ 0.15, which is smaller
than the value obtained in the single-phase regime; the Merkle and Schnerr-
Sauer models give higher values of St for the peak of CL and broad-band
spectra are evident that may be due to pressure fluctuations in the presence
of the attached cavity. Given the previous observations (especially about
the profile of the time-averaged αl depicted in Figure 3.8) this is reasonable,
in the sense that the low amount of vapor produced by the Kunz and Saito
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models, slightly affects the oscillatory pattern behind the cylinder.

In Figure 3.11, we report the mean pressure field evaluated over the
cylinder surface, related to the four models. We compare our results to those
reported in [Gnanaskandan and Mahesh (2016)]. In Figure 3.11 we refer to
the local σ, which is defined as σloc = (p̄− pv) /

(
0.5ρlU

2
∞
)
as a function of

θ, defined as the angular coordinate of the cylinder surface, where θ = 0 and
θ = 180 are the leading edge and the trailing edge, respectively. It appears
that in our simulations the incipient cavitation point is shifted a little further
upstream than in the reference case [Gnanaskandan and Mahesh (2016)].
It is also noted that the pressure value upstream the cylinder is slightly
different among the various cases and from the reference value. This may
be due to the fact that we use pressure boundary conditions different from
those of [Gnanaskandan and Mahesh (2016)], where the authors imposed
the free-stream pressure on all far-field boundaries; we recall that in our
cases the pressure is imposed at the outlet. In our simulations, we observe
significant pressure fluctuations making σloc positive, just a little further
downstream of the incipient cavitation point. The pressure fluctuations are
found to be associated with the collapse of vapor spots and the variation of
the cavity shape.

Figure 3.10: Lift coefficient, results obtained considering standard coeffi-
cients (Table 3.7).

To quantify the differences observed among the models, we consider the
length of the attached cavity, the length of the vortex formation, and the vor-
tex shedding frequency. The length of the attached cavity is defined as the
position along the centerline where the vapor fraction exceeds the threshold
value αl = 0.95. The length of the vortex formation is defined as the posi-
tion along the centerline where ⟨u′u′⟩/U2

∞ reaches the maximum value. The
vortex shedding frequency is defined as the frequency associated with the
main peak, considering the spectrum of the lift coefficient CL. All quantities
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Figure 3.11: Mean pressure on the cylinder surface, results obtained consid-
ering standard coefficients (Table 3.7).

are evaluated considering the results of Figures 3.8–3.10. In [Gnanaskandan
and Mahesh (2016)], the authors found that for σ = 0.7, the minimum value
of the mean liquid fraction is about 0.8 with an attached cavity length of
about 5D.In our study, we find that the length of the attached cavity varies
within the range [4.1D, 6.3D] being the minimum of mean liquid fraction
αl,max in the range [0.45, 0.85]. The variance exhibits peaks in the range(
⟨u′u′⟩/U2

∞
)
max

∈ [0.06, 0.17] , located at distances varying from 4.7D to
5.2D.

In Table 3.6, we report the length of the attached cavity, the vortex
formation length, and the vortex shedding frequency, related to the four
models.

Mean Length Vortex Vortex
Model of Attached Formation Shedding

Cavity Length Frequency

Kunz 4.17D 5.20D 0.149
Merkle 4.63D 5.15D 0.240
Saito 6.24D 4.68D 0.134

Schnerr-Sauer 5.98D 4.93D 0.165

Table 3.6: Length of the attached cavity, vortex formation length, and non-
dimensional vortex shedding frequency. Results obtained considering stan-
dard coefficients.

To summarize, results show that although the time-averaged liquid frac-
tion does not exhibit noticeable differences among models, the snapshots
and the other quantities above reported reveal a substantially different be-
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havior of the cavitation. The Saito model is characterized by low values of
vapor fraction which do not affect the flow field, rather they are affected
by it, being transported downstream. This is identified as a cyclic regime.
The Schnerr-Sauer model seems to be the one that has the most stable
attached cavitation alternating with periods of detached cavitation, exhibit-
ing a well-defined transitional regime. Merkle and Kunz models behave
similarly, having predominantly detached cavitation, with some phases of
attached cavitation but very unstable and of short duration.

3.4 Condensation/Vaporization Coefficients normal-
ization

A typical outcome of the transport equation models is that, using different
cavitation models with standard literature coefficients, the space-time distri-
bution of the vapor phase may differ from case to case, as clearly visible and
discussed in the previous section 3. In this section, we propose an analytical
computation of the multiplying factors Cc and Cv of the source terms of the
vapor transport equation that can be considered a normalization procedure.
Indeed, we consider a reference time scale for the vaporization-condensation
processes, to normalize the coefficients of the different models. In the mod-
els, the role of the coefficients Cc and Cv consists in accelerate or decelerate
the vaporization and condensation processes, thus the choice of a reference
integral time scale is needed as a condition for the calculation of these coeffi-
cients. Since we don’t have available experimental data for the vaporization
or condensation in a controlled environment, the reference integral time
scale Tref that we consider is obtained through the Schnerr-Sauer model,
by setting its coefficients Cc = Cv = 1. This aspect can be revised and
improved, for example by considering a reference time Tref obtained from
laboratory tests or taking advantage of literature research. We calculate the
coefficients Cc and Cv related to the three cavitation models (Kunz, Merkle,
and Saito) such that the transition time from α = 0.9 to α = 0.1 takes
place exactly in the time interval Tref . Doing that, the models are designed
to provide the same vaporization and condensation rate. From the theory
of the bubble dynamic, which is the basis for the Schnerr-Sauer model, the
two reference times for the condensation and the vaporization have the same
value; conversely, for example, in [Garamani et al. (2021)], the authors used
a condensation coefficient smaller than the vaporization one, because of dif-
ferent time scales of the two processes, based on experimental and empirical
consideration; so the choice of two different time scales may better represent
the processes.
The time evolution of α given by the different source terms is first an-
alyzed neglecting the advective term and considering a constant pressure
drop ∆p = p− pv = 1Pa. First, we show the time evolution of α obtained
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with the standard values of the coefficients (Table 3.7) used in the previ-
ous section 3 for comparison purposes; vaporization and condensation are,
respectively, in the left panel and the right panel of Figure 3.12.

Model Cc Cv

Kunz 1000 1000
Merkle 80 1 ∗ 10−3

Saito 0.1 0.1
Schnerr-Sauer 1 1

Table 3.7: Standard coefficients.

(a) Condensation process (b) Vaporization process

Figure 3.12: Condensation (left panel) and vaporization (right panel) pro-
cesses, evaluated with standard coefficients.

The models exhibit substantially different behavior. It is worth not-
ing the different values of the local time derivative, at cavitation inception
(looking at low values of α in the left panel) and at incipient condensa-
tion (α ∼ 1 in the right panel); even more important is the differences in
the time interval needed for a complete change of phase (either condensa-
tion or evaporation). To summarize, the standard values of the coefficient
used in the models produce different time scales for the complete condensa-
tion/vaporization processes. It should be noted that we use a semi-log plot
to better visualize all profiles, and even in this case, the vaporization for
the Kunz model is not visible in the plot, like also the condensation for the
Kunz model, and even more for the Saito model.

To obtain the reference time Tref needed for the coefficients normal-
ization, we integrate the simplified transport equation of αv in case of
u = 0 [m/s]. We define the time interval Tref = [t0, t1] such that the mix-
ture evolves from an initial vapor fraction α (t0) = α0 to his final value
α (t1) = α1; it’s worth noting that some models have dependencies on the
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vapor fraction that not allow considering the complete interval of α ∈ [0, 1];
so we decided to consider the interval, α0 = 0.1 and α1 = 0.9. It is important
to point out that the choice of the interval [α0, α1] is somewhat arbitrary,
and further studies are needed to investigate how the integration interval
may affect the results. Moreover, different intervals for the two phases, va-
porization and condensation, should be tested, because the two processes
may have different time scales.

We integrate the transport equation as follows:

Tref =

∫ α1

α0

(
1

ṁv − ṁc

)
dα (3.7)

Since in the mixture model the two terms ṁv and ṁc are not simulta-
neously active we can consider separately the computation of the reference
time scale for the vaporization and the condensation processes;

Tc,ref =
1

Cc

∫ α1

α0

1

mDest
dα (3.8)

Tv,ref =
1

Cv

∫ α1

α0

1

mProd
dα (3.9)

where we define the terms mDest and mProd such that

ṁc = CcmDest (3.10)

ṁv = CvmProd (3.11)

Finally, the coefficients read as:

Cc =

∫ α1

α0

1
mDest

dα

Tc,ref
(3.12)

Cv =

∫ α1

α0

1
mProd

dα

Tv,ref
(3.13)

The analytical results of the integral
∫ α1

α0

1
mDest

dα and
∫ α1

α0

1
mProd

dα for the
four models considered (Kunz, Merkle, Saito, and Schnerr-Sauer) are col-
lected in Table 3.8. In the Table k := ρl−ρv

ρv
just to write the equation more

clearly.

In our study, the reference times Tc,ref , Tv,ref related to condensation
and vaporization processes, required to evaluate the coefficients, are taken
from the Schnerr-Sauer model. In particular, equations (3.8) and (3.9) are
used to calculate the times Tc,ref and Tv,ref setting Cc = Cv = 1. The values
of Tc,ref and Tv,ref are then used in Equations (3.12) and (3.13) to calculate
the new coefficients for the other models.
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model
∫ α1

α0

1
mProd

dα∫ α1

α0

1
mDest

dα

Kunz
1
2
ρ2l U

2
∞t∞

ρv∆p [log (α)− log (kα+ 1)]α1
α0

ρlt∞
ρv

max(p−pv ,ε)
∆p

[
k2 log(kα+1)

k+1 − k log (α)− log(1−α)
k+1 − 1

α + log (α)
]α1

α0

Merkle
1
2
ρvU2

∞t∞
∆p [log (α)− log (kα+ 1)]α1

α0
1
2
ρlU

2
∞t∞

∆p

[
log(kα+1)−log(α−1)

k+1

]α1

α0

Saito ρ2v
√
2πRT

ρl∆P

[
1

1−α − 1
α − 2 log (1− α) + 2 log (α)

]α1

α0

ρv
√
2πRT
∆P

[
1

1−α − 1
α − 2 log (1− α) + 2 log (α)

]α1

α0

Schnerr-Sauer
√

ρl
6∆p

3

√
4
3πnnuc

[
−3 3

√
1
α − 1

]α1

α0√
ρl

6∆p
3

√
4
3πnnuc

[
−3 3

√
1
α − 1

]α1

α0

Table 3.8: Analytical integration of the reciprocal of the source terms in α.

After evaluation of the integrals of equations (3.12) and (3.13), reported
in Table 3.8, we obtain the values for the analytical-based values for the
coefficients that are reported in Table 3.9.

TO be noted that we consider a cavitation number |p−pv|/
(
0.5ρlU

2
∞
)
=

2 ∗ 10−3 given by the chosen pressure drop ∆p = |p− pv| = 1 [Pa].

Model Cc Cv

Kunz 4.11 ∗ 104 2.91 ∗ 106
Merkle 3.33 ∗ 101 1.55 ∗ 10−3

Saito 3.75 ∗ 105 8.66
Schnerr-Sauer 1 1

Table 3.9: Analytical-based coefficients.

The time evolution of the vapor fraction computed considering the nor-
malized coefficients reported in Table 3.9, with the simplified transport equa-
tion are depicted in Figure 3.13.

It can be observed that although the target values α0 and α1 are reached
at the same time Tc,ref and Tv,ref , still the time evolution of α depends on
the characteristics of the model. This makes clear the difficulty of obtaining
complete homogeneity between the various models even with this calibration
procedure.

It should be noted that the spatial distribution of the mean liquid frac-
tion and the variance of the stream-wise velocity component obtained with
the Saito model are closer to the results obtained numerically in [Gnanaskan-
dan and Mahesh (2016)] who used the same method in conjunction with a



Results of normalized coefficients 43

(a) Condensation process (b) Vaporization process

Figure 3.13: Condensation and vaporization processes with analytical-based
coefficients.

compressible-flow solver.

3.5 Results of normalized coefficients

We now discuss the results of the simulations performed considering the
coefficients Cc and Cv calculated as described in Section 3.4. We emphasize
that, since the Schnerr-Sauer model was taken as a reference to compute
the time scales Tc,ref and Tv,ref , results and observations concerning the
Schnerr-Sauer simulation are the same reported in the previous Section 3.

Snapshots of the liquid-vapor fraction αl obtained with the Kunz model
with calculated coefficients are depicted in Figure 3.14. We observe a tran-
sitional regime with predominantly detached cavitation (Figure 3.14a–c). It
is worth noting that, with the calculated coefficients, after the detachment
of the vapor zones an attached cavity originates directly from the cylinder
(Figure 3.14d) and extends downstream (Figure 3.14e,f) for a short period;
however the simulation does not reproduce a stable attached cavity at the
rear of the cylinder.

In Figure 3.15 we show snapshots of the liquid fraction obtained with the
Merkle model, considering calculated coefficients (Table 3.9). Both detached
(Figure 3.15a–c) and attached cavitation (Figure 3.15d–f) are visible. In this
case, the vapor spots appear narrower than those observed in Figure 3.4
obtained with the standard coefficients, producing a different profile of the
mean αl along the centerline, as it will be shown in the following. Regions of
attached cavities are still visible, albeit of smaller extension and for a shorter
period, but generated from the cylinder itself, and extending downstream
(Figure 3.15d–f); the shape of cavitation is very similar to that obtained
with the Kunz model with calculated coefficients.
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(a) tD/U∞ = 43. (b) tD/U∞ = 44.

(c) tD/U∞ = 45. (d) tD/U∞ = 82.

(e) tD/U∞ = 84. (f) tD/U∞ = 85.

Figure 3.14: Contour plot of instantaneous liquid fraction, results obtained
with Kunz model and considering analytical-based coefficients (Table 3.9).

Figure 3.16 shows snapshots of αl from the simulation performed with
Saito’s model with the calculated coefficients, reported in Table 3.9.

The new coefficient setup makes the cavity dynamics of the Saito model
similar to that observed with the other models, in particular with that of the
Schnerr-Sauer one. Indeed, the cyclic regime disappears, and both detached
and attached cavitation occur (see, respectively, Figures 3.16a–c and Figures
3.16d–f).

In Figure 3.17, the time-averaged liquid fraction αl is depicted. We
note that the behavior of the cavitation is similar for all models; the main
difference concerning the standard-coefficients case is observed for the Saito
model which, as expected, in this case, exhibits a more intense vapor phase.

Figure 3.18 shows the mean liquid fraction evaluated along the center-
line, downstream of the cylinder. The models of Merkle and Kunz behave
similarly to each other. Conversely, the models of Saito and Schnerr-Sauer
produce more vapor fraction than the others. The difference is due to the
cavitation regime reproduced by the models; in the case of Kunz and Merkle
it is transitional with a strong prevalence of the detached component mainly
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(a) tD/U∞ = 93. (b) tD/U∞ = 95.

(c) tD/U∞ = 97. (d) tD/U∞ = 80.

(e) tD/U∞ = 82. (f) tD/U∞ = 84.

Figure 3.15: Contour plot of instantaneous liquid fraction, results obtained
with Merkle model and considering analytical-based coefficients (Table 3.9).

distributed on the sides with respect to the centerline; the Saito and Schnerr-
Sauer models produce a transitional regime but with a more stable cavity
which occupies the central area at the rear of the cylinder and a higher
percentage of mean vapor.

Figure 3.19 shows the variance of the stream-wise component of the
velocity ⟨u′u′⟩/U2

∞. The figure shows that with the new coefficients, the
Saito model tends to give results more similar to those of the other models.
As observed in [Gnanaskandan and Mahesh (2016)], when cavitation moves
from a cyclic regime to a transitional one, the peak of ⟨u′u′⟩/U2

∞ moves
downstream, and their value increases, coherently with the cavitation regime
observed. The variance has practically the same behavior for all models in
the area immediately downstream of the cylinder and is characterized by a
linear increase. For this quantity, we note that the Kunz model produces
a peak a bit more downstream than the other models, although it behaves
similarly to the Schnerr-Sauer model in the far field.

Figure 3.20 shows the spectra of the lift coefficients. All models exhibit a
broad-band behavior, making the computation of the Strouhal number not
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(a) tD/U∞ = 64. (b) tD/U∞ = 66.

(c) tD/U∞ = 68. (d) tD/U∞ = 90.

(e) tD/U∞ = 92. (f) tD/U∞ = 95.

Figure 3.16: Contour plot of instantaneous liquid fraction, results obtained
with Saito model and considering analytical-based coefficients (Table 3.9).

straightforward. The Schnerr-Sauer model has the main peak not coincident
with those of the others, while all the other models have practically the same
value for the vortex shedding frequency. The values observed are consistent
with the literature, since the Strouhal number for the single-phase case is
St = 0.2, and it decreases as the cavitation number decreases.

Figure 3.21 shows the mean pressure over the cylinder; the analytical
evaluation of the coefficients leads to more similar values of pressure both
in the upstream stagnation point and in the downstream region, where all
models give pressure values in between the Schnerr-Sauer model and the
literature value [Gnanaskandan and Mahesh (2016)]. Furthermore, in this
case, we observe the presence of spots of the positive value of the mean σloc,
for θ ∈ [80, 120]; for this quantity as well, we note that the models with the
coefficients calculated analytically have more consistent behavior.

For all simulations, the length of the attached cavity, the length of vortex
formation, and the vortex shedding frequency were evaluated from the data
shown, respectively, in Figures 3.18–3.20. The quantities are collected in
Table 3.10.
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(a) Kunz model. (b) Merkle model.

(c) Saito model. (d) Schnerr-Sauer model.

Figure 3.17: Contour of time-averaged liquid fraction, results obtained con-
sidering analytical-based coefficients.

Figure 3.18: Mean liquid fraction downstream the cylinder along the cen-
terline, results obtained considering analytical-based coefficients.

As a final analysis, to quantify the differences among the results given by
the models before and after the computation of the coefficients, we calculate
the variance between the results for the three quantities, and the values
obtained are gathered in Table 3.11.

The variance of the length of vortex formation is a bit larger after the
direct calculation of the coefficients. On the other hand, for the length of the
attached cavity, and the mean vapor fraction downstream of the cylinder, it
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Figure 3.19: Variance of stream-wise velocity component downstream the
cylinder along the centerline, with analytical-based coefficients.

Figure 3.20: Lift coefficient spectrum with analytical-based coefficients.

can be observed that after computation of the coefficients, the models behave
much more similarly to each other, as can be observed from the comparison
between Figures 3.7 and 3.17. It is noted that the variance between the
results decreases by almost 70% once the coefficients are calculated directly
using the procedure suggested in the present paper. Moreover, we note that
with the new coefficients all models exhibit a broad-band behavior for the
spectra of the lift coefficient, and the vortex shedding frequency evaluated
appears much more similar among the models, which leads to a variance
that is one order of magnitude lower than that obtained for the standard
coefficients.

The results shown above indicate that the analytical evaluation of the
coefficients of the model improves the quality of the results. This is mostly
evident in the Saito model. The Kunz and Merkle models behave very sim-
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Figure 3.21: Mean pressure on the cylinder surface considering analytical-
based coefficients.

Model Mean Length Vortex Vortex
of Attached Formation Shedding

Cavity Length Frequency

Kunz 4.96D 5.60D 0.194
Merkle 4.66D 5.07D 0.195
Saito 5.10D 5.01D 0.195

Schnerr-Sauer 5.98D 4.93D 0.165

Table 3.10: Results of length of attached cavity, vortex formation length
and non-dimensional vortex shedding frequency with analytical-based coef-
ficients.

Mean length Vortex Vortex
of Attached Formation Shedding

Cavity Length Frequency

Standard Cc, Cv 0.766 0.042 1.64 ∗ 10−3

Analytical-based Cc, Cv 0.241 0.069 1.66 ∗ 10−4

Table 3.11: Variances for the results of the length of the attached cavity,
vortex formation length, and vortex shedding frequency for standard and
analytical-based coefficients.

ilarly and exhibit differences from the Schnerr-Sauer model. This may be
due to the derivative of α (see right panel of Figure 3.13) which changes
dramatically from the Kunz and Merkle models to the Saito and Schnerr-
Sauer models. Finally, we performed a grid-sensitivity test, considering a
grid coarser than that discussed in the present Section. The analysis (herein
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not described in detail) shows that the analytical evaluation of the coeffi-
cients provides some improvement in the results even in the presence of a
coarse mesh, although better results are obtained with a good quality mesh.

3.6 Concluding Remarks

In this section, we proposed an analytical approach to calculate the coef-
ficients of cavitation models, based on the reference time needed for va-
porization/condensation processes, from a volume fraction α0 to a value
α1, in an archetypal situation characterized by a constant pressure field
and neglecting advective transport. This approach was then tested for four
different models (Kunz, Merkle, Saito, and Schnerr-Sauer) considering the
two-dimensional laminar flow around a circular cylinder. The simulations
were performed earlier with standard literature coefficients and now with
the new values calculated using this new approach. The results were an-
alyzed and compared based on the consistency for the various models and
concerning a literature case [Gnanaskandan and Mahesh (2016)] as regards
various characteristics and physical quantities of the simulations; in particu-
lar, for each model, we first evaluated the cavitation regime reproduced and
successively we calculated the mean pressure over the cylinder, the length of
the attached cavity, the length of vortex formation and the vortex shedding
frequency. It was noticed that, as a result of the analytical evaluation of
the coefficients, for some models, there is a considerable improvement in the
results regarding the cavitation regime and the reference quantities above
reported, in particular for the Saito model; specifically the Saito model used
with the standard coefficients was found to predict a cyclic regime instead of
the transitional one reproduced by the other models; the same model, with
the analytically calculated coefficients predicts a transitional regime with a
more stable attached cavity, likewise the Schnerr-Sauer model, which in our
study has been taken as a reference for the evaluation of the reference times
for condensation/vaporization. Regarding the Kunz and Merkle models, it
was found that after the analytical evaluation of the coefficients the two
models behave similarly to each other, even if they behave differently from
the Schnerr-Sauer model, in that they are not able to develop the stable cav-
ity attached to the rear of the cylinder. Specifically, an attached cavity tries
to form in contact with the cylinder but it rapidly disappears. On the other
hand, the use of standard values of the coefficients leads to the development
of a cavitation region at the rear of the cylinder, from the vapor present in
the vortices and collapsing shortly after. Overall, this study shows that the
use of analytically based coefficients significantly improves the performance
of some models, in particular if the regime previously obtained was different,
while for others the improvement was not so evident; this may be due to
different reasons: among them, the range of values for the volume fraction
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used to calculate the coefficients, the fact that the condensation and evapo-
ration time scales are assumed to be the same, and, finally, the fact that the
reference model herein used (Schnerr-Sauer model) is already a simplified
model derived from the more complete and physical-based Rayleigh-Plesset
equation.
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Chapter 4

2D Cavitating vortex

As already pointed out in the Introduction (Chapter 1), the study of the tip
vortex released by the blades of the propeller, is gaining increasing interest,
especially if it’s associated with cavitating conditions; indeed, the tip vortex
cavitation has been often identified as the main source of noise from the
ship propeller, that is a major problem concerning units, like research and
passenger ships who are expected to be classified as ’silience shpis’ according
to the rules of Classification Societies [www.vesselfinder.com]. Here we focus
on the dynamics of an isolated cavitating vortex as the one presented in the
work of Bosschers [Bosschers (2018)].

4.1 Analytical results

In this chapter we use cylindrical coordinates (r, θ, z) with the vortex axis
coincident with the axes z, more suited than the Cartesian ones for the
present problem; in the two-dimensional case the coordinates reduced to
(r, θ). In [Bosschers (2018)] the author studied the dynamics of cavitating
vortexes considering the hypothesis of incompressible and laminar liquid
flow, and different vortex profiles were adopted in their analysis. To identify
the dynamics and the homogeneous oscillation mode the author used the
incompressible Navier-Stokes equations in polar coordinates

1
r

∂
∂r (ur) = 0,

∂u
∂t + u∂u

∂r − v2

r = −1
ρ
∂p
∂r +

µ
ρ

∂
∂r

[
1
r
∂(ur)
∂r

]
,

∂v
∂t + u∂v

∂r − uv
r = µ

ρ
∂
∂r

[
1
r
∂(vr)
∂r

] (4.1)

The interactions between the gas and the liquid is modeled through the
boundary conditions 

uc =
drc
dt = ṙc,

pc − 2µ
(
∂u
∂r

)
c
= pv,(

∂v
∂r

)
c
− vc

rc
= 0

(4.2)

53
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The theory presented by Bosschers reproduces a cavitating vortex and does
not consider mass transfer between the liquid and the vapor or any change
in the vapor pressure that is considered equal to pv.
To identify the cavity characteristics, different velocity profiles for the vor-
tex can be evaluated analytically; here we consider the vortex velocity as
expressed by the Burnham-Hallock [Burnham and Hallock (1982)] formula-
tion:

vθ (r) =
Γ∞r

2π (r2v + r2)
(4.3)

where Γ∞ is the far-field circulation of the vortex, rv is the viscous radius
while r is the distance from the center of the vortex. Considering the vortex
and the cavity in equilibrium condition, we can identify the radius r̄c :=
rp=pv which is the radius at which the fluid dynamic pressure is equal to the
vapor pressure; using equation (4.2), it can be evaluated as:

rc =

√√√√√ 1

(pref−pv)8π2

ρΓ2
∞

+

(
1

r2v+r2ref

) − r2v (4.4)

The natural frequency associated with the oscillation of the cavity can be
evaluated as:

ω =
1

rc

√√√√√ pref − pv

1
2ρ

[
1 +

(
rv
rc

)2]
ln
(
rref
rc

) (4.5)

4.2 Numerical settings

The present section aims to reproduce the dynamics of the two-dimensional
cavitating vortex using numerical approaches commonly used in engineering
applications. As for the previous section, we use the opensource software
OpenFOAM, considering the interPhaseChangeFoam solver. This solver
adopts the hypothesis of two incompressible and immiscible fluids with
phase-change and the PIMPLE algorithm to solve the Navier-Stokes equa-
tions and the volume fraction transport equation; the model used in these
simulations for the cavitation vaporization-condensation processes is that of
Schnerr-Sauer.

In the simulations, we consider a circular domain coaxial with the axis
of the vortex. The grid adopted is unstructured but composed of structured
blocks, in particular, the blockMesh utility was adopted to build a (mostly)
axial-symmetrical grid.
The mesh is made of four different concentric regions, from the center to
the external boundary the grid is built as follows: Internal region, the inter-
mediate region, the interface region, and the external region. An Internal
Region (depicted in Figure 4.1a) covers the vortex core with Cartesian cells;
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an Interface Region (depicted in Figures 4.1b and 4.1c) is accurately refined
in order to capture the small-amplitude oscillations of the cavity interface;
an Intermediate and External Regions (depicted in Figures 4.1b and 4.1d),
are opportunely stretched along the radial direction, in order to optimize
the whole grid point distribution.

(a) Internal region (b) Intermediate e Interface regions

(c) Interface region (d) External region

Figure 4.1: Plot of the evolution of the cavity with the previous setting.

The dimension of the regions used to build the mesh and the stretching
adopted are collected in Table 4.1 To initialize the field we started consid-

region characteristic value

Internal region Length dimension 0.01 (m)

Intermediate region Maximum radius 0.015 (m)
Stretching 0.1 (−)

Interface region Maximum radius 0.02 (m)

External region Maximum radius 1 (m)
Stretching 800 (−)

Table 4.1: Mesh dimension and characteristics.

ering a single phase (liquid) with homogeneous field for velocity, pressure,
and volume fraction. In particular, the steps adopted are the following:

▶ we impose the velocity field on the domain according to the equation
(4.3),
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▶ we let the solver adjusting the pressure field with a short simulation
of 3 iterations without considering phase change,

▶ starting from the field obtained in step 2, where the flow pressure falls
below the vapor pressure (p <= pv) we set αv = 0.99 and p = pv:

αv,new = 0.99 if p <= pv (4.6)

pnew = pv if p <= pv (4.7)

As boundary conditions on the far field, we use a constant value for the
pressure and a zero gradient for the velocity and the volume fraction fields.
Initially, a zero gradient condition was tested also for the pressure field, but
with this condition, the simulation resulted unstable. The details of the
simulation settings are collected in Table 4.2. Note that we consider an
inviscid flow.

Property Symbol Value

Vortex circulation Γ∞ 1 (m2/s)
Viscous radius rv 0.01 (m)

Reference pressure pref 30000 (kg/ms2)
Liquid density ρl 1000 (kg/m3)
Liquid viscosity νl 0 (m2/s)
Vapor density ρv 0.02308 (kg/m3)
Vapor viscosity νv 0 (m2/s)
Vapor pressure pv 2300 (Kg/ms2)
Bubble density n 1.6 ∗ 1013 (1/m3)
Nucleus radius dNuc 2 ∗ 10−6 (m)

Condensation coefficient Cc 1
Vaporization coefficient Cv 1

Table 4.2: Fluid, flow and simulation properties.

4.3 Results

The first test to evaluate the the solver’s accuracy was carried out in ab-
sence of forcing external pressure, and we monitored the time evolution of
the radius and the total mass of the phases in the domain. We considered
the case where the pressure at the boundary is equal to the original value
p = 30000Pa
The evolution of the radius for the cavitating flow, depicted in Figure 4.2a,
shows that the simulation computes correctly the period of the oscillation.
This oscillatory motion has to be associated with the imposed initial field
that, does not match exactly the equilibrium condition. Indeed, the Fig-
ure shows a small amplitude oscillation oscillation with an amplitude of
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≈ 4 ∗ 10−5(m), and a small shift of radius during the simulation indicating
the presence of the initial non-equilibrium condition. Also, check on the con-
servation properties of the solver was carried out considering the mass flow
rate in the far field and the derivative of the mass over the entire domain, as
depicted in Figure 4.2b. We can see that they have the same behavior, also
if there is a peak during the first iterations, that confirm the fact that the
initial condition, although not perfect, is good for the simulation and that
the solver has good conservation properties.

(a) Radius evolution (b) Mass flow

Figure 4.2: Results of the simulation without pressure variation.

To simulate the oscillation of the cavity, after the initialization of the
simulation with the reference pressure, it was imposed on all the far-field
boundaries as the 99% of its initial value, which means that the value was
set equal to pref = 29700Pa to start from a non-equilibrium initial field.

The first test we carried out was aimed to identify and study the effect
of the mesh on the quality of the results of the oscillation of the cavity; we
considered three different meshes with the same dimensions and stretching
factor reported in Table 4.1, and changing the number of radial and tangen-
tial cells; also, each mesh has twice as many cells in each direction compared
with the previous coarse one. Table 4.3 reports the number of cells used for
each mesh.

Characteristic Coarse Middle Fine

Radial cells Intermediate region 50 100 200
Radial cells interface region 100 200 400
Radial cells external region 150 300 600

Tangential cells 60 120 240

Table 4.3: Characteristics of computational grids.
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(a) Radius (b) Oscillation period

(c) Oscillation amplitude

Figure 4.3: Results of the two-dimensional cavitating vortexes for the para-
metric study on the mesh refinement.

The time evolution of the radius id depicted in Figure 4.3a for the com-
putational grids employed.

We observe that the coarsest mesh is not fine enough to simulate cor-
rectly the evolution of the cavity, since the amplitude of the radius is quite
smaller than those obtained with finer meshes. It is also worth noting that
the average radius during the simulation with the coarsest mesh decreases,
showing that the simulation does not conserve the mass of the cavity in
time. Increasing the grid refinement, this undesirable effect is less and less
present. In Figure 4.3a this effect is highlighted by comparing the data ob-
tained with increasing mesh size.

The analysis of the oscillation periods (Figure 4.3a), show that increas-
ing the grid size reduces the error, from the 10% of the coarsest mesh to
less than 5% for our finer mesh. The simulation with the coarse mesh
underestimates the amplitude of the radius, while the intermediate and the
finest meshes overestimate the oscillation amplitude by about the same value
roughly equal to 4 ∗ 10−5[m]. This error is that of the oscillation in equilib-
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rium consitions, as visible in Figure 4.2a; so this small contribution can be
related to the mentioned problem with the initial condition.
The mesh herein employed share the weakness to be quite coarser in the
tangential direction with respect to the radial direction. The mesh that we
will use in the next test has the same radial discretization of the intermedi-
ate mesh and a tangential discretization finer than the finer mesh. The cells
discretization used in the new mesh is reported in Table 4.4.

Characteristic Value

Radial cells Intermediate region 100
Radial cells interface region 200
Radial cells external region 300

Tangential cells 400

Table 4.4: Characteristics of standard mesh.

The second test was carried out to evaluate the sensitivity of the results
on the time step used in the simulations; the time steps adopted are reported
in Table 4.5.

Tested value

dt = 1 ∗ 10−5

dt = 2 ∗ 10−5

dt = 3 ∗ 10−5

dt = 4 ∗ 10−5

dt = 1 ∗ 10−4

Table 4.5: Time steps employed in the simulations the free oscillation of the
cavity.

The time evolution of the radius, the period and the amplitude of the
oscillation are depicted in Figure 4.4. We observe that the time step of the
simulation affects the predicted oscillation period, since it varies from case
to case, with an error within 10% when compared to the analytical value.
The oscillation amplitude is less sensitive to the time step, and, also in this
case, it is about 4− 5 ∗ 10−5[m] higher than the analytical expectation, due
to the initialization problem already mentioned.

The third test regards the comparison of the results obtained changing
the value of the coefficients of the cavitation model Cc and Cv, as reported
in Table 4.6.

The results of this test are collected in Figure 4.5
The simulation with the coefficients set equal to zero Cc = Cv = 0 is
the only one without any change in the cavity radius, because this setting



60 2D Cavitating vortex

(a) Radius (b) Oscillation period

(c) Oscillation amplitude

Figure 4.4: Results of the time evolution of the two-dimensional cavitating
vortex under variation of the time step.

doesn’t allow the phase change and the radius remains constant over a time
window period that ends with a numerical instability of the simulation.
This happens because setting the coefficients to zero prevent the cavity
from expanding, but since the forcing pressure remains, and since the solver
is implicit in the pressure, the simulation manages to continue until some
symmetry is maintained, but small numerical variations after a while lead
to the simulation instability. On the other hand, the two simulations with
the higher values Cc = Cv = 30, 100 are unstable and the simulations

cannot run neither for a complete single cavity oscillation and are not
visible in the graph 4.5a. For all the other coefficient values we can notice
that the radius, depicted in Figure 4.5a does not change much from case to
case with small differences in the amplitude (Figure 4.5b). Also, the error
in the period of the oscillation (Figure 4.5c) remains within the 10%

Finally, in all simulatoins we note the drifting of the mean radius in time
(Figure 4.5c and Figure 4.5d) with larger values in presence of higher value
of coefficients.
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Tested values

Cc = Cv = 0
Cc = Cv = 0.1
Cc = Cv = 0.3
Cc = Cv = 1
Cc = Cv = 3
Cc = Cv = 10
Cc = Cv = 30
Cc = Cv = 100

Table 4.6: Vaporization and condensation coefficients considered in the sim-
ulations.

FInally, we noticed that increasing the value of the coefficients may lead to
small instabilities and damping of the mean radius. This effect of numerical
damping is visible also if the simulation is stable with results reasonably
accurate.

4.4 Cartesian mesh

So far, we analyzed the dynamics of an isolated vortex using an axial-
symmetrical mesh characterized by a refinement on the interfacial region.
However, for common engineering applications, this type of grid is not fea-
sible, due to both the number of grid points needed and for the specific
cylindrical shape. This is the reason why the previous mesh is not suited for
the analysis of industrial processes, where geometry complexities are the rule
and computational cells are often of hexahedral or polyedral shape. So we
decided to test the simulation of the two-dimensional homogeneous pulsating
cavity vortex using a Cartesian mesh; in particular, we used a circular mesh
for the far-field vortex and a Cartesian core region that contains completely
the cavity. An example of mesh is depicted in Figure 4.6. Different meshes
were considered. Vortex dynamic is analyzed and results are compared with
previous data, obtained for the axial-symmetric grid. The parameters for
the grids herein adopted are collected in Table 4.7. The different levels of

Characteristic Symbol Value

Radius of the domain Rmax 1 (m)
Length of the Cartesian core lcore 0.05 (m)

Stretching 50

Table 4.7: Characteristics of the Cartesian meshes.

refinement of the mesh are controlled by the number of cells contained in
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(a) Radius (b) Oscillation amplitude

(c) Oscillation period (d) Oscillation damping

Figure 4.5: Results of the two-dimensional cavitating vortex for the para-
metric study on the coefficients for the cavitation model.

Figure 4.6: Geometry of coarser mesh tested to simulate the vortex.

the Cartesian core region. Table 4.8 summarizes the levels of refinement
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considered.

Mesh ncell along lcore
Mesh 0 10
Mesh 1 20
Mesh 2 45
Mesh 3 100
Mesh 4 200
Mesh 5 450
Mesh 6 1000

Table 4.8: Number of cells along the length of the core region for the different
levels of refinement.

To be noted that the different levels of refinement of the internal Carte-
sian region affects the smoothness of the circular cavity. A picture showing
the initial shape of the cavity is reported in Figure 4.7, concerning Mesh0,
Mesh1, Mesh2, Mesh3, and Mesh4.

(a) Mesh 0 (b) Mesh 1

(c) Mesh 2 (d) Mesh 3

Figure 4.7: Initial liquid volume fraction field for the cavity detail for some
square grids.

The simulation with the coarsest mesh, as depicted in Figure 4.8, shows
the oscillatory pattern of the cavity together with (4.8a-4.8e) a constant
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reduction of the cavity region (Figures 4.8e-4.8h). The mean radius de-
creases due to the insufficient number of cells used to simulate the cavity
in conjunction with a mesh geometry not suited for axial-symmetric prob-
lems. This is particurarly true when comparing the results with the almost
perfect oscillatory motion previously observed in the simulation with the
axial-symmetrical and refined mesh.

(a) t = 0s (b) t = 0.015s (c) t = 0.03s (d) t = 0.045s

(e) t = 0.060s (f) t = 0.120s (g) t = 0.180s (h) t = 0.240s

Figure 4.8: Dynamicc of the vapor cavity for the simulation Mesh0.

The simulation Mesh1, depicted in Figures 4.9 shows the same behavior
of the previous simulation Mesh0 but with a less relevant collapse of the
cavity.
The first period of oscillation, is hardly visible in the Figures (4.9a-4.9e)
while the reduction of the radius is visible in the Figures (4.9e-4.8h)

(a) t = 0s (b) t = 0.015s (c) t = 0.03s (d) t = 0.045s

(e) t = 0.060s (f) t = 0.120s (g) t = 0.180s (h) t = 0.240s

Figure 4.9: Dynamic of the vapor cavity for the simulation Mesh1.

The simulation Mesh2, as shown in Figure 4.10 gives results in good
agreement with the analytic ones, depicted in Figure 4.10a-4.10e, and the
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reduction of the mean radius is not clearly visible after four oscillations,
as shown in Figures 4.10e-4.10h; However, letting the simulation run, some
spurious values of velocity are visible at the interface (see Figure 4.10h);
later on, these spurious values appear also inside the cavity and lead to the
simulation instability.

(a) t = 0s (b) t = 0.015s (c) t = 0.03s (d) t = 0.045s

(e) t = 0.060s (f) t = 0.120s (g) t = 0.180s (h) t = 0.240s

Figure 4.10: Dynamics of the vapor cavity for the simulation Mesh2.

The simulation Mesh3 is in a good agreement with reference data for the
first oscillatory cycle, however spurious numerical noise develops within the
cavity (Figures 4.11a-4.11e), leading to an irregular shape cavity after only
four oscillations, as depicted in Figure 4.11h.

(a) t = 0s (b) t = 0.015s (c) t = 0.03s (d) t = 0.045s

(e) t = 0.060s (f) t = 0.120s (g) t = 0.180s (h) t = 0.240s

Figure 4.11: Dynamics of the vapor cavity for the simulation Mesh3.

Increasing the number of cells improves the accuracy of the results dur-
ing the first oscillation of the cavity (Figures 4.12a-4.12e); However, the
symmetrical shape is missed soon, as reported in Figures 4.12e-4.12h
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(a) t = 0s (b) t = 0.015s (c) t = 0.03s (d) t = 0.045s

(e) t = 0.060s (f) t = 0.120s (g) t = 0.180s (h) t = 0.240s

Figure 4.12: Dynamics of the vapor cavity for the simulation Mesh4.

To study the dynamics of the cavity we analyzed also the evolution of
the radius of the cavity in time (Figure 4.13a). We can identify two different
unphysical issues related to the mesh shape. In particular, the damping of
the radius during the oscillation of the cavity, and the numerical instability
represented by the deformation of the liquid-vapor interface from the circular
shape to an irregular one.
The reduction of the area of the mean cavity (Figure 4.13b) decreases with
the increasing number of cells of the mesh. On the other hand, increasing
the number of cells brings the simulation to have some numerical instability
and modify the shape of the interface toward a non-axial-symmetrical shape;
in this case, the use of higher order numerical schemes may be helpful to
increase the quality of the results.

4.5 Concluding Remarks

In this Chapter, we reproduced numerically and analyzed the case of a two-
dimensional cavitating vortex, and the results were compared with the ana-
lytical solution available in literature [Bosschers (2018)]. In particular, the
dynamics simulated is the homogeneous pulsating cavity, where the oscil-
latory motion was forced with a pressure jump at the boundary. Different
numerical configurations were adopted and compared; in particular, differ-
ent levels of mesh refinement, time steps, and coefficients for the cavitation
model were adopted using a grid mesh properly designed for such class of
simulations; later on a Cartesian grid mesh was tested to better represent
the typical mesh adopted in engineering applications.
Results obtained with the axial-symmetric mesh pointed out that a too-
coarse mesh produces cavity oscillations with a reduced amplitude and a
numerical damping; the coefficients of the cavitation model seemed to have
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Figure 4.13: Dynamic of the mean average radius and damping the simula-
tion with square mesh.

no particular influence on the reproduction of the correct dynamics, unless
they are too high; in this latter case, they lead to numerical damping and
instability. During the analysis of the Cartesian meshes different refine-
ment types were adopted for the same numerical setting. The use of coarse
meshes leads to a damping of the radius in time; this effect decreases with
the refinement of the grid. However, highly-refined meshes let to numerical
instability and unphysical oscillations of the cavity interface.
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Chapter 5

3D Cavitating vortex

In this chapter we present a study on the dynamics of a three-dimensional
vortex. First, the pulsating vortex is reproduced, which differs from the 2D
case as there is now an axial velocity. Then, following the work of Bosschers,
first oscillating modes are considered and we compare the results with the
analytical solution. The tangential velocity of the 3D vortex is the one
described by the Burnham-Hallock formula (eq. (4.3)), as in the 2D case.

5.1 Homogeneous pulsating mode

The first case analysed is the homogeneous vortex as in the simulations of the
previous Section. After the initialization of the vortex with the imposition
of the vapor phase in the core of the vortex, (i.e. where the vortex pressure
given by the analytical single-phase vortex drops below the vapor pressure),
three different simulations were carried out. The first simulation is relative
to the cavity without variation of reference pressure and phase change; the
second simulation is for the vortex without variation in the far-field pressure
but allowing the phase change; in this case the two coefficients of the Schnerr-
Sauer model are set to Cc = Cv = 1; the third simulation is the case with
mass-transfer and with a change of pressure in the far-field, with a value that
is the 99% of the original value. The value of the far field pressure and the
coefficients are collected in Table 5.1 The dynamics of the three simulations

simulation far-field pressure cavitation coefficients

Case 1 pref = 30000Pa Cc = Cv = 0
Case 2 pref = 30000Pa Cc = Cv = 1
Case 3 pref = 29700Pa Cc = Cv = 1

Table 5.1: Setting for the simulation of the 3D homogeneous vortex.

are depicted in Figure 5.1. As expected, different behaviors are observed; in
particular, switching-off the phase-change and without varying the reference

69
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pressure, the radius is stable in time. On the other hand, allowing change
of phase and imposing a jump in pressure at the external boundary, excite
the vortex oscillation. The oscillation period is the same observed in the
previous two-dimensional cases and, likewise, we noticed that in the first
time steps there are a cavity compression, even if the external pressure
should produce an expansions. This phenomenon, induced by a numerical
slight unbalance of the initial conditions, induces an initial oscillation also
in the case without any pressure variation, that should be stationary.
Case 2, characterized by mass transfer but without the forcing pressure
variation shows an oscillation with an amplitude equal to the one already
identified in the two-dimensional simulations.

Figure 5.1: Radius dynamics for the three dimensional homogeneous simu-
lations.

5.2 Helicoidal natural mode

As reported in Bosschers, natural modes can be excited by considering an
initial condition for the cavity shape so as to be non-symmetrical in the tan-
gential direction and non-homogeneous in the axial direction. The cavity
radius herein considered changes along the axial direction, thus, to monitor
its own evolution correctly we have placed several probes at different loca-
tions, both in the axial direction and in the radial direction, considering a
single value for the tangential angle θ, since the problem is axial-symmetric.
A draft of the sets of probes considered is depicted in Figure 5.2.

5.2.1 Analytic vortex

Every natural mode can be described by two parameters. The first one
represents the length of the oscillation in the axial direction namely the
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Figure 5.2: Location of the probes to evaluate the cavity interface, for the
three-dimensional natural helicoidal modes of the vortex.

axial wavenumber kz that in a domain with length ∆z is expressed as:

kz =
nz2π

∆z
(5.1)

with nz the number of oscillations in the axial direction. The second pa-
rameter is the number of oscillations in the tangential direction nθ, and this
value has to be an integer. Once the mode is defined by the pair nz , nθ, the
cavity dynamics is determined. In particular, the distance of the interface
from the vortex axes for each point (θ, z, t) is described by:

rc (θ, z, t) = rc,0 + η0e
(kzz+nθθ+ωt) (5.2)

A sketch of the natural modes with nz, nθ ⊂ [0, 1, 2] is depicted in the
Figure 5.3. Each natural mode of the vortex is characterized by its own
frequency.
We note that the tangential perturbation (i.e. when considering nθ > 0)
provides for two natural frequencies, related to two different directions of
propagation of the perturbation. The analytical formulation of the frequen-
cies was found by Bosschers[Bosschers (2018)]:

ω± (kz, nθ) = Wckz +Ωnθ ±
W∞
rc

√
Kσ

√√√√−krrcH
(1)′

nθ (krrc)

H
(1)
nθ

Tω (5.3)
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(a) Draft of the natural mode
nz = 0, nθ = 0

(b) Draft of the natural mode
nz = 0, nθ = 1

(c) Draft of the natural mode
nz = 0, nθ = 2

(d) Draft of the natural mode
nz = 1, nθ = 0

(e) Draft of the natural mode
nz = 1, nθ = 1

(f) Draft of the natural mode
nz = 1, nθ = 2

(g) Draft of the natural mode
nz = 2, nθ = 0

(h) Draft of the natural mode
nz = 2, nθ = 1

(i) Draft of the natural mode
nz = 2, nθ = 2

Figure 5.3: Drafts of some natural modes for the three-dimensional vortex
cavitation.

where the terms with subscript c are relative to the cavity, Wc is the axial
velocity near the cavity interface, W∞ is the axial velocity in the far-field,
Ω = Vθ(rc)

rc
is the angular velocity in correspondence of the cavity; Kσ is a

term that represents the stiffness of the problem and is defined as:

Kσ =
(p∞ − pv)

1
2ρW

2
∞

r2c
r2c + r2v

(5.4)

The term Tω represents the surface tension contribution and is evaluated
through the equation

Tω = (kz, nθ) =

√
1 +

1

KσWe

(
n2
θ + k2zr

2
c + 1

)
(5.5)
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where We = ρW 2
∞rc
σ is the Weber Number. H

(1)
nθ and H

(1)′

nθ are the Hankel
function and its derivative respectively. The last term in equation (5.3) is
the value of the radial wave length kr that is related to the axial wavelength
and nθ through the relation:

k2r =
1

c2
(ω −Wkz)

2 − k2z (5.6)

In our case, since we are considering an incompressible flow, the speed of
sound c → ∞ and the radial wave number reduces to:

kr = ikz (5.7)

5.2.2 Numerical settings

The simulation of these natural modes is developed with a three-dimensional
mesh characterized by different regions:

▶ core region, almost Cartesian;

▶ inner cavity region, to match the core region and the interface re-
gion, through a stretching of the cells in the radial direction with cells
smaller on the outer part as shown in Figure 5.4;

▶ Interfacial region, an area with very small cells, without stretching and
a perfectly axial-symmetrical mesh;

▶ external region, perfectly axial-symmetrical region with cells relaxed
along the radial direction to allow setting the external boundary far
enough from the vortex core.

(a) external region (b) piece of mesh used for the
vapor cavity

(c) mesh detail 2

Figure 5.4: Pictures of the mesh used to simulate the 3D vortex with heli-
coidal perturbation.

The detail of the mesh used are collected in Table 5.2.
To correctly set the initial shape of the cavity, we set the vapor fraction

αl considering equation (5.2); in particular, we set:

αl = 0.01 if r (r, θ, z) < rc (θ, z) (5.8)
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Characteristics Value

Max radius mesh 1 (m)
Radius external/interface region 0.02 (m)

Radius interface/inner cavity regions 0.015 (m)
Half core-region length 0.0025 (m)

Axial length 0.1 (m)

Table 5.2: Characteristics of the mesh used for the simulations.

where the local radius rc is evaluated considering a perturbation equal
to 0.02% of the analytical value of the equilibrium radius of the cavity:
η0 := 0.02 ∗ rc,0 and the natural mode associated to the pair nθ = 2, nz = 1
was chosen for the simulations. The parameters of the simulations are sum-
marized in Table 5.3

Characteristic Symbol Value

Vortex circulation Γ∞ 1 (m2/s)
viscous radius rv 0.01 (m)

Reference pressure pref 30000 (kg/ms2)
Liquid density ρl 1000 (kg/m3)
Liquid viscosity νl 0 (m2/s)
Vapor density ρv 0.02308 (kg/m3)
Vapor viscosity νv 0 (m2/s)
Vapor pressure pv 2300 (Kg/ms2)

Number of tangential perturbations nθ 2
Number of axial perturbations nz 1

Interface perturbation η0
r̄c

0.02

Bubble density n 1.6 ∗ 1013 (1/m3)
Nucleus radius dNuc 2 ∗ 10−6 (m)

Condensation coefficient Cc 1
Vaporization coefficient Cv 1

Table 5.3: Fluid and field characteristic for the simulations with the heli-
coidal perturbation.

For this problem, three different values of axial velocity are considered,
respectively [1, 10, 200]m/s; Figure 5.5 shows how the frequencies associated
to homogeneous mode and the natural mode considered (nθ = 2, nz = 1)
change as function of the axial velocity of the flow; in Figure 5.5 the three
vertical dots lines represent the three axial velocities considered for the sim-
ulations.
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Figure 5.5: Analytical value of the frequencies as a function of the axial
velocity for the natural mode [nz = 1, nθ = 2].

5.2.3 Axial velocity W = 1m/s

The first simulations carried out are those where the axial velocity was set
equal to W = 1m/s. Note that in this case the pulsating frequency is close
to the first rotational frequency. Two different simulations with this setting
were carried out, one with mass transfer,(setting Cc = Cv = 1) and the other
without mass transfer, thus setting the coefficients Cc = Cv = 0. These two
simulations were run to identify the effect of the cavitation source terms on
the dynamics of the vortex. Using the sets of probes as previously described
and shown in Figure 5.2 the radius of the interface was evaluated at several
axial-positions and at each time step rc (z, t). Specifically, at each time step
we calculate the mean radius along the axial direction r̄c (t), so that we can
define the local perturbation as:

η (z, t) = rc (z, t)− r̄c (t) (5.9)

To study the dynamics of the vortex, both values of the radius of the
cavity and the perturbation were analyzed through a Fourier analysis and the
results were compared with the analytical values of the expected frequencies.
The first simulation analyzed is that with an axial velocity equal to W =
1 m/s and with mass transfer. We report in Figure 5.6a the spectra of η
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and rc related to the different z-locations. Vertical dashed lines indicate
the frequencies calculated analytically ω0, ω

−
1 and ω+

1 . Peak is visible in
correspondence of the pulsating frequency ω0 , which in this case is very
close to the lower rotational frequency ω−

1 . Also, a small peak at the higher
rotational frequency ω+

1 is present. Noteworthy is the broadband profile
in the low-frequency range, which is due to the effect of the homogeneous
pulsation. Indeed, looking at the spectra of the perturbation η, Figure 5.6b,
a clear tonal behavior is observed, for every location z.
Moreover, in this case all frequencies of the signal emerge more clearly, as
well as some sub/super-harmonics. These harmonics may be due to the
presence of higher/lower modes which are excited by the initial conditions.
The second simulation carried out is the one with the axial velocity W =

(a) Time spectra of the radius rc (z, t) evalu-
ated for several axial position z.

(b) Time spectra of the perturbation η eval-
uated for several axial position z.

Figure 5.6: Spectra of the radius r and the perturbation η for the simulation
with Cc = Cv = 1 and W = 1m/s.

1m/s but without mass transfer, and this effect was imposed by setting to
zero the coefficients controlling the mass transfer model Cc = Cv = 0: in this
case, as visible in the plots 5.7a and 5.7b, the radius and the perturbation
spectra have very well visible peaks on the frequencies related to the natural
mode imposed as initial condition. There are no substantial differences
between the two Figures, meaning that the cavity volume doesn’t change
in time and the frequency related to the homogeneous pulsating mode is
not visible, in fact the homogeneous mode is related to the variation of the
cavity volume.

5.2.4 Axial velocity W = 10m/s

Since in the first cases (W = 1m/s) the frequency of the homogeneous
pulsating mode ω0 is very close to the lower rotational frequency ω−

1 , two
simulations with a different axial velocity were carried out. In fact, the
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(a) Time spectra of the radius rc (z, t) evalu-
ated for several axial position z.

(b) Time spectra of the perturbation η eval-
uated for several axial position z.

Figure 5.7: Spectra of the radius r and the perturbation η for the simulation
with Cc = Cv = 0 and W = 1m/s.

variation of the axial velocity produces different values of ω±
1 , as reported

in the previous Figure 5.3.
The same analysis of the previous case is performed. Specifically, we evaluate
the time-spectra of rc and η, considering mass transfer (Cc = Cv = 1) in
Figure 5.8 and deactivating it (Cc = Cv = 0), Figure 5.9.
The peaks related to the values of ω±

1 are well evident in all spectra. We
notice that the increased axial velocity gives rise to a signal dominated by the
rotation of the helical shape, in spite of a minor effect due to the pulsation.
In case of mass transfer, and when considering the radius signal (Figure
5.8a) we still observe a broad-band behavior at very low frequencies. Some
aspects still needs further investigations, such as the appearance of other
harmonics when deactivating the mass transfer (Figure 5.9).

5.2.5 Axial velocity W = 200m/s

The third axial velocity tested is W = 200m/s. As the previous cases, we
run the case with Cv = Cc = 1, as reported in the time-spectra of Figures
5.10; in these plots the modes related to the rotating helicoidal shape have
the dominant and well visible peaks. Only in the radius spectra, depicted in
Figure 5.10a, also an other high value appears, and it is the one related to
the variation of the mean radius in time, in fact it isn’t present in the plot
for the perturbation, visible in Figure 5.10b.
The last simulation is the one with a high value of axial velocity W =

200m/s but without mass transfer, Cc = Cv = 0. During this simulation
the results for the radius and the perturbation are the same between each
other, as depicted in Figure 5.11, and the spectra show very well defined
and visible peaks for the helicoidal mode.
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(a) Time spectra of the radius rc (z, t) evalu-
ated for several axial position z.

(b) Time spectra of the perturbation η eval-
uated for several axial position z.

Figure 5.8: Spectra of the radius r and the perturbation η for the simulation
with Cc = Cv = 1 and W = 10m/s.

(a) Time spectra of the radius rc (z, t) evalu-
ated for several axial position z.

(b) Time spectra of the perturbation η eval-
uated for several axial position z.

Figure 5.9: Spectra of the radius r and the perturbation η for the simulation
with Cc = Cv = 0 and W = 10m/s.

To summarize, we can say that the dynamics of the cavitating vortex
has been correctly reproduced. The natural modes associated to the pul-
sating oscillation and to the rotation of an helicoidal shaped cavity have
been observed. Also, with higher values of the axial velocity we observed
a dominant contribution from the rotational motion. Finally, the pulsating
mode has been associated to the phase-change process, mostly visible in the
low-axial-velocity case.
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(a) Time spectra of the radius rc (z, t) evalu-
ated for several axial position z.

(b) Time spectra of the perturbation η eval-
uated for several axial position z.

Figure 5.10: Spectra of the radius r and the perturbation η for the simulation
with Cc = Cv = 1 and W = 200m/s.

(a) Time spectra of the radius rc (z, t) evalu-
ated for several axial position z.

(b) Time spectra of the perturbation η eval-
uated for several axial position z.

Figure 5.11: Spectra of the radius r and the perturbation η for the simulation
with Cc = Cv = 0 and W = 200m/s.

5.3 Concluding Remarks

In this Chapter, we reproduced numerically and analyzed the case of an ide-
alized cavitating vortex, comparing the results with the analytical solution
available in literature [Bosschers (2018)]. Different numerical and physical
configurations were considered and analyzed, under the hypothesis of incom-
pressible and inviscid flow. In particular, the study concerns the analysis
of an isolated cavity forced to oscillate in an axial-homogeneous pulsating
mode (analogous to the two-dimensional vortex case) or forced to oscillate
with higher modes related to both axial and tangential wavenumbers; the
study of the homogeneous pulsating mode was carried out by imposing a
pressure jump at the boundary to force an initial non-equilibrium condi-
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tion. It should be noted that the grid was built specifically to accurately
capture the interface, optimized after several tests on different mesh types.
When using coarse meshes, the cavity exhibited a damping of the mean
radius in time; this behavior was observed also when increasing the param-
eters Cc and Cv of the cavitation model. Other tests were performed on the
influence of these parameters, and numerical instability was experienced for
high values of Cc and Cv.
A three-dimensional helicoidal natural mode of the isolated cavitating vortex
was simulated with three different values for the axial velocity and consider-
ing the simulation with and without mass transfer between the two phases.
Results showed a generally good agreement with the analytical solution,
that we used to evaluate the characteristic frequencies of the motion. When
considering a low axial velocity, the pulsating mode is dominant, in case
the mass transfer is switched on. In this regard, we should note that the
model presented by Bosschers does not account for mass transfer, but rather
it includes cavity compressibility. Thus, the oscillating pattern we observe
comes from different physical constraints. We believe that this point may
deserve further study. For higher values of axial velocity and/or in general
switching the mass transfer model off, the rotational frequencies related to
the helicoidal shape are well represented. In all cases herein investigated,
we observed that volume oscillation of the cavity related to the pulsating
mode is an important process that can be accurately reproduced using the
mixture model even under the assumption of incompressible flow.



Conclusions

This thesis was devoted to the analysis of different aspects of the cavitation
modelling. SInce the dynamics of the cavitation is strictly related to the
dynamics of vapor bubbles dispersed in water, we started the analysis in-
vestigating the stability of a bubble using the equation of Rayleigh-Plesset
[Plesset and Prosperetti (1977)], Specifically, we analized the stability condi-
tions and the equilibrium of the bubble with a parametric study considering
the values of the pressure of the non-condensable gas and the external liquid
pressure. This study can be useful to improve standard cavitation models,
as, for example, the Schnerr-Sauer model [Schnerr and Sauer (2001)] that
considers the bubbles under the hypothesis of asymptotic growth. Then
we analyzed four different cavitation models, available in literature, which
rule the phase-change within the mass transfer approach. The analysis was
performed considering the case of a two-dimensional laminar flow around a
cylinder. The results obtained in this study clearly showed that the cavity
dynamics may largely vary depending on the specific model considered. In
particular, the choice of the model influences the amount of vapor obtained
in the simulation as well as the cavitation regime predicted. This may de-
pend on the empirical and, somewhat arbitrary choice of the constants. To
overcome this problem we developed an analytical, physical-based method
to normalize the coefficients of vaporization and condensation, forcing them
to develop or slump a specific amount of vapor over a characteristic time
scale of the process, considering an archetypal situation for the transport
equation.
The four models were tested using, first, the standard coefficients and , suc-
cessively, using the normalized coefficients. We found that the the use of the
normalized coefficients made the models to behave in a more physical way,
predicting better the cavitation regime and the amount of vapour released.
In the last part of this thesis we performed a numerical study to analyze the
dynamics of a cavitating vortex. The importance of this part relies on the
practical importance of the freely evolving vortices in hydrodynamic appli-
cations. In fact, the idealized vortex can be a convenient representation of
the tip vortex which forms downstream a ship propellers, and its study may
be important for the noise emission problems associated to cavitating pro-
pellers. Two and three dimensional vortex structures were considered. We
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simulated and analyzed the oscillatory dynamics of the vortex with a pulsat-
ing mode, comparing the results with the analytic results found in literature
[Bosschers (2018)] and valuating the effect of the numerical configuration in
terms of the mesh characteristics and refinement, coefficients for the cavita-
tion model and time step; The study pointed out that the coefficients do not
influence the dynamics of the vortex. An important conclusion highlighted
by these results can be that the variation of the coefficients is very important
in the case of cloud or sheet cavitation and less relevant in the case of flow-
driven cavitation. However, high values for the condensation/vaporization
coefficients led to numerical damping and instability. Also the mesh was
found to be very important in this kind of simulations; a too coarse mesh
induced damping of the cavity radius, while a too fine mesh led to numerical
instability. Also, the use of typical cartesian shaped grids in the region of the
interface may lead to spurious interfacial velocities. The optimal grid shape
is axial symmetric in the region of interface between the cavity and the liq-
uid phase. As final step a helicoidal natural mode of the three-dimensional
cavitating vortex was simulated considering three different axial velocities
and considering the cases with and without mass transfer: during these sim-
ulation we noted that the forced mode was found always visible. We also
noted that, when the mass transfer model is active, the pulsating mode may
be dominant for the low axial velocity cases. The results of this study may
be applied to the analysis of tip vortex cavitation often present in the wake
of ship propellers.
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