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In this work, we use the coherent WaveBurst (cWB) pipeline enhanced with machine learning (ML) to
search for binary black hole (BBH) mergers in the Advanced LIGO-Virgo strain data from the third
observing run. We detect, with equivalent or higher significance, all gravitational-wave (GW) events
previously reported by the standard cWB search for BBH mergers in the third GW Transient Catalog. The
ML-enhanced cWB search identifies five additional GW candidate events from the catalog that were
previously missed by the standard cWB search. Moreover, we identify three marginal candidate events not
listed in third GW Transient Catalog. For simulated events distributed uniformly in a fiducial volume, we
improve the sensitive hypervolume with respect to the standard cWB search by approximately 28% and
34% for the stellar-mass and intermediate mass black hole binary mergers respectively, detected with a
false-alarm rate less than 1=100 yr−1. We show the robustness of the ML-enhanced search for detection of
generic BBH signals by reporting increased sensitivity to the spin-precessing and eccentric BBH events as
compared to the standard cWB search. Furthermore, we compare the improvement of the ML-enhanced
cWB search for different detector networks.

DOI: 10.1103/PhysRevD.105.083018

I. INTRODUCTION

The Advanced LIGO [1] and Advanced Virgo [2]
network of detectors detected 11 gravitational-wave
(GW) candidates during the first two observing runs (O1
and O2) [3], 44 GW candidates in the first half of the third
observing run (O3a) [4,5], and 35 GW candidates during
the second half of the third observing run (O3b) [6]. These
detections were identified by the different search pipelines
employed by the LIGO-Virgo-KAGRA (LVK) collabora-
tion, including GstLAL [7–9], PyCBC [10–12], MBTA
[13], and coherent WaveBurst (cWB) [14,15].
cWB is a search algorithm that looks for excess power in

the time-frequency domain to identify GW signals in the
LIGO-Virgo strain data [14–18]. Unlike matched-filter
based pipelines, cWB does not explicitly use signal wave-
form models, making it a minimally modeled search. Thus,
the cWB pipeline is expected to play an integral role in the
detection of poorly modeled or unexpected GW sources.
Historically, cWB was crucial for the discovery of the first
binary black hole (BBH) merger GW150914 [19], which
initiated the era of GW astronomy. More recently, cWB
contributed in the identification of higher multipoles for

GW190814 [20,21], an event associated with the coales-
cence of a binary system with the most unequal mass ratio
yet measured with gravitational waves. cWB was also
instrumental to the first direct detection of an intermediate
mass black hole (IMBH) GW190521 [22,23], which is the
most massive and distant black hole merger observed via
GWs. Overall, the cWB pipeline has contributed to the
detection of 32 BBH events in the O1, O2, and O3
observing runs [3,4,6].
The cWB algorithm has been recently used in combi-

nation with machine learning (ML) algorithms for various
studies [24–27]. In this paper, the standard cWB pipeline
sensitivity to BBH mergers is enhanced by using the ML
method as described in Ref. [28]. We reanalyze the publicly
available strain data from O3 [29] using the ML-enhanced
cWB pipeline for the two-fold detector network consisting
of LIGO Hanford and LIGO Livingston (HL). We optimize
the ML-enhanced cWB search for the three-fold detector
network consisting of LIGO Hanford, LIGO Livingston,
and Virgo (HLV), where we analyze limited data from O3
to compare the performance with the two-fold detector
network and discuss possible causes for suboptimality of
the three-fold detector network.
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The paper is organized as follows. In Sec. II, we
introduce the ML-enhanced cWB search pipeline and
discuss the updates to the method. Section II B describes
the data used to train and test our ML algorithm. We present
the results of the O3 data reanalysis with the ML-enhanced
cWB in Sec. III. Section III A reports the updated signifi-
cance of BBH events detected during the O3 run.
Section III B discusses the marginal events found in this
reanalysis, followed by the comparison of search sensitivity
of the ML-enhanced cWB search against the sensitivity of
the standard cWB search in Sec. III C. The tests of
robustness of the ML method are given in Sec. III D and
Sec. III E compares the performance of the ML method on
different network configurations. Finally, in Sec. IV, we
state the conclusions of the ML-enhanced cWB search for
binary mergers on O3.

II. METHOD

A. Coherent WaveBurst

The cWB pipeline searches for transient GW signals by
identifying events with excess power in the time-frequency
domain. cWB reconstructs coherent events in multiple
detectors with minimal assumptions on the signal model
[14,15]. The time-frequency domain data is built from the
detector strain data by using the Wilson Daubechies Meyer
(WDM) wavelet transform [30]. The algorithm identifies
events by clustering the nearby WDMwavelets with excess
power above the average fluctuations of the detector noise.
The pipeline generates an event for each selected cluster
and reconstructs the signal waveform using the constrained
maximum likelihood method [15]. The cWB pipeline
estimates various summary statistics for each event,
describing the time-frequency structure, signal strength,
and coherence across the detector network. The standard
cWB detection statistic used to identify the GW events has
been updated with respect to previous searches as given
below:

η0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ec

1þ χ2ðmaxð1; χ2Þ − 1Þ

s

; ð1Þ

Here, χ2 is given by χ2 ¼ En=Ndf where En is the estimated
residual noise energy, andNdf is the number of independent
wavelet amplitudes describing the event. The χ2 factor is
close to unity for genuine GWevents and penalizes the non-
Gaussian noise contribution. The coherent energy Ec, is
estimated by cross-correlating the reconstructed signal
waveforms across different detectors. In the standard
cWB analysis, the significance of GW events is increased
by removing the excess background with a priori defined
veto conditions on a set of summary statistics generated for
each event [4,23,31]. Although this method works well, it
may entirely remove the borderline GW events which do
not pass the veto thresholds. The veto conditions need to be

manually tuned for each observing run and detector net-
work. Moreover, designing these veto conditions in the
multidimensional space of the summary statistics is chal-
lenging. Using the ML method, allows us to automate and
enhance the separation of signal and noise events while
simultaneously increasing the sensitivity of the search [28].
In the ML-enhanced cWB pipeline, we define the reduced
detection statistic given by:

ηr ¼ η0 ·WXGB; ð2Þ

where WXGB is the penalty factor provided by the ML
algorithm [28].
In the standard cWB search, we employ two different

search configurations to improve the search sensitivity: the
BBH configuration targeting stellar-mass BBH mergers
(Mtot ≲ 100 M⊙) and the IMBH configuration targeting
intermediate mass black hole (IMBH) binary mergers
(Mtot ≳ 100 M⊙). The corresponding GW signals observed
in the LIGO frequency band are quite different for the two
systems. A GW signal originating from the stellar-mass
BBH merger and observable in the LIGO bandwidth
usually exhibits the entire inspiral-merger-ringdown wave-
form. In contrast, GW signals from IMBH binary mergers
are short in duration and contain mostly the merger-ring-
down waveform, with the inspiral signal buried inside the
low-frequency seismic noise. A specialized search for
IMBH mergers helps to constrain the PISN mass gap
[32] and possible formation channels [33] for massive
binaries.
The estimated central frequency f0 of a GW signal is

inversely proportional to the redshifted total mass of the
binary system. As a result, IMBH binaries are expected to
merge at lower frequencies than the stellar-mass BBH
mergers. So, we select events with 60 Hz< f0 < 300 Hz
for the BBH search configuration and events with f0 <
200 Hz for the IMBH search configuration. Since the two
search configurations overlap in the frequency bands, we
combine them in accordance with the rules explained in
Table 1 of Ref. [23].

B. Data

We analyze publicly available strain data from Advanced
LIGO and Advanced Virgo’s third observational run [29].
In order to train and test a supervised ML algorithm, we
generate two types of data: noise events (background) and
signal events (simulations). We accumulate the background
data by time-shifting the data from one detector with
respect to other detectors in the network. For data segments
corresponding to live times of approximately 10 days, as
many asOð100; 000Þ time shifts are performed where each
time shift is selected to be a multiple of one second. The
time-shifted data is analyzed with the cWB pipeline to
estimate the characteristics of the background events. To
generate the simulation data, we inject simulated GW
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signals into the detector data and recover these signals
using the cWB pipeline. In this study, we use four sets of
simulations: (i) a spin-aligned stellar-mass BBH set with
quasicircular orbit approximation, (ii) a numerical relativity
(NR) IMBH binary set, (iii) an eccentric BBH set, and (iv) a
precessing BBH set with quasicircular orbit approximation.
The binary orientation parameters (sky location, inclination
angle) for every simulated waveform are randomly drawn
from uniform distributions in all four cases. The redshift z
is drawn from a uniform distribution in comoving volume,
assuming Planck 2015 cosmology [34]. Simulation sets (i)
and (ii) are used to train and test the ML algorithm, whereas
the remaining two sets are only used to test the robustness
of the ML implementation.
In the simulation set (i), the component black hole

masses are drawn from models representing the stellar-
mass BBH population [35,36]. The source frame total mass
for these simulations ranges from approximately 5 M⊙ to
100 M⊙, and the mass ratios range from 1 to 1=4. We use
the SEOBNRv4 [37] waveform approximant to generate
the simulations. The spins of the component black holes are
drawn from a uniform, aligned spin distribution in the range
−0.99 to 0.99. The binary source distance is randomly
drawn, assuming the uniform density in comoving volume.
For simulation set (ii), we use NR waveforms, including

higher-order harmonics, as the representative models for
IMBH binary set. We consider 17 mass bins, as described
in Ref. [38], ranging in the source frame total mass from
120 M⊙ to 800 M⊙, and with mass ratios ranging from 1
to 1=10.
In simulation set (iii), we also use NR waveforms for the

high mass, eccentric BBH set [39,40]. We consider 28 mass
bins ranging in total mass from 100 M⊙ to 250 M⊙, with
mass ratio equal to 1, and eccentricities ranging from 0.01
to 0.96.
For the simulation set (iv) involving precessing stellar-

mass BBH, we use the SEOBNRv4PHM [41] waveform
approximant, which includes precession and the higher-
order harmonic modes. The source frame total mass ranges
from 4 M⊙ to 200 M⊙, with mass ratios ranging from 1 to
1=20. The spins of the component black holes are isotropi-
cally distributed.
The amount of simulation and accumulated background

data used for training and testing the ML algorithm is
described in Table I.

C. XGBoost

We describe the procedure followed to train the ML
algorithm and discuss updates on the method described in
Ref. [28]. Here, we use an ensemble learning, boosted
decision-tree based ML algorithm called XGBoost [42].
We start by selecting the subset of the cWB summary
statistics used as the list of input features for training and
testing the XGBoost algorithm. The data is split into
training and testing as defined in Table I, and we train

two different models over the entire O3 run for the HL
network: BBH search configuration and IMBH search
configuration. For the detector network comparison dis-
cussed in Sec. III E, we train a BBH search configuration
model for the HLV network with half of the limited data
(GPS: 1241011102.0 to GPS: 1242485126) which corre-
sponds to approximately 7 days of live time, given in
Table III. We test the trained models on the remaining
background and simulation data for each search type, apply
these models to the GW candidate events in O3, and present
the results in Sec. III.
The ML training and testing method utilized in this paper

is consistent with the one presented in Ref. [28] except for
the following changes: change in the subset of summary
statistics used as the input features for XGBoost, the values
of the XGBoost hyperparameters used for training the
models, the introduction of the standardized sample weight.
These updates to the existing method are discussed in
Appendix.

III. RESULTS

In this section, we discuss the results of the ML-
enhanced cWB search on O3 data. We first report the
detections in Sec. III A, followed by the discussion of
marginal events in Sec. III B. In Sec. III C, the improve-
ment in the search sensitivity is discussed. We include tests
of robustness to check the ML implementation in Sec. III D.
Lastly, we compare the performance of searches with
different detector networks in Sec. III E.

A. Search results

We train two separate models over the entire O3 run, one
for the BBH search configuration and the other for the
IMBH search configuration. The trained models are used to
calculate the WXGB, which is required for the estimation of
the reduced detection statistic ηr [defined in Eq. (2)] for all
candidate events. The detection statistic provides the

TABLE I. Amount of accumulated background data (given in
years) and the number of simulated events used for training and
testing. We consider the third observing run (O3) for the two
detector network (HL), search configurations (BBH, IMBH), and
additional simulation cases from O3a to test the model robustness
(Eccentric BBH, Precessing BBH). For the network study, we
also consider limited BBH data (corresponding to 7 days of live
time in the O3 run) for the three detector network (HLV).

Background (yr) Simulation (events)

O3 Dataset Training Testing Training Testing

BBH 2000 28527 20077 110861
IMBH 2000 28535 19801 192626
Eccentric BBH � � � 19101 � � � 974576
Precessing BBH � � � 19093 � � � 17483
Network Study 550 639 1998 1992
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ranking of detected events and allows the calculation
of the false-alarm rate (FAR), which is used to assign
the significance of a candidate event. The FAR value is
estimated by counting the number of background events
with an equal or higher value of the detection statistic than
for the given candidate event, divided by the total available
background time.
Table II reports the BBH candidates identified by the

ML-enhanced cWB search in the O3 observing run.
We identify with equivalent or higher significance all
15þ 10 (O3aþ O3b) BBH candidates previously reported
by the standard cWB search [4,6]. Moreover, the ML-
enhanced cWB search detected GW190513, GW190707,
GW190728, GW190929, and GW191127 with FAR of
<1 yr−1, which were previously vetoed in the standard
cWB search, but detected by the other search pipelines [4,6].

Three cWB-only marginal candidate events, not listed in the
LVK catalogs, were also found by the ML-enhanced cWB
search over O3 and are discussed in subsection III B. For all
theGWandmarginal candidate events inO3,we compute the
corresponding probabilities of astrophysical origin (Pastro)
assuming that the terrestrial and astrophysical events occur as
independent Poisson processes [6,43].

B. Marginal candidate events

In GWTC-3, the cWB search had reported three mar-
ginal events, namely 190804_083543, 190930_234652,
and 200214_224526 [6]. These events were identified by
the standard cWB pipeline and are consistent with noise
artifacts found around their GPS times. The ML-enhanced
cWB search also identifies these events but assigns them a
lower significance: 190804_083543 with a FAR of 28 yr−1,

TABLE II. O3 ML-enhanced cWB search results compared with the standard cWB results. We report all
detections with FAR ≤ 1 yr−1 and present in the catalog papers [4,6]. The estimated significance is limited by the
accumulated background data and is indicated with a ‘<’ entry. For the ML-enhanced cWB search, the background
data used for training the ML model has been removed from the total available accumulated background data. We
estimate the Pastro and report it along with the SNR reconstructed by the cWB pipeline for the GW events.

Standard cWB ML-enhanced cWB

Event FAR (yr−1) FAR (yr−1) SNR Pastro

GW190408_181802 <9.5 × 10−4 <1.0 × 10−3 14.8 0.999
GW190412 <9.5 × 10−4 <1.0 × 10−3 19.7 0.999
GW190421_213856 3.0 × 10−1 1.8 × 10−2 9.3 0.997
GW190503_185404 1.8 × 10−3 <9.9 × 10−4 11.5 0.999
GW190512_180714 3.0 × 10−1 1.8 × 10−1 10.7 0.941
GW190513_205428 � � � 1.0 × 10þ0 11.5 0.703
GW190517_055101 6.5 × 10−3 6.2 × 10−4 10.7 0.999
GW190519_153544 3.1 × 10−4 <1.0 × 10−4 14.0 1.000
GW190521 2.0 × 10−4 <1.0 × 10−4 14.4 1.000
GW190521_074359 <1.0 × 10−4 <1.0 × 10−4 24.7 0.999
GW190602_175927 1.5 × 10−2 <8.8 × 10−4 11.1 0.999
GW190701_203306 5.5 × 10−1 1.1 × 10−2 10.2 0.997
GW190706_222641 <1.0 × 10−3 <1.1 × 10−3 12.7 0.999
GW190707_093326 � � � 1.1 × 10−1 11.2 0.976
GW190727_060333 8.8 × 10−2 3.4 × 10−3 11.4 0.998
GW190728_064510 � � � 2.6 × 10−2 10.5 0.993
GW190828_063405 <9.6 × 10−4 <1.1 × 10−3 16.6 0.999
GW190915_235702 <1.0 × 10−3 <1.1 × 10−3 12.3 0.999
GW190929_012149 � � � 7.7 × 10−1 9.2 0.542
GW191109_010717 <1.1 × 10−3 <1.2 × 10−3 15.6 0.999
GW191127_050227 � � � 2.1 × 10−1 8.6 0.957
GW191204_171525 <8.7 × 10−4 <9.6 × 10−4 17.1 0.999
GW191215_223052 1.2 × 10−1 <9.6 × 10−4 9.8 0.998
GW191222_033537 <8.9 × 10−4 <9.8 × 10−4 11.1 0.999
GW191230_180458 5.0 × 10−2 2.0 × 10−3 10.3 0.998
GW200128_022011 1.3 × 10þ0 2.2 × 10−2 8.8 0.985
GW200219_094415 7.7 × 10−1 2.7 × 10−1 10.4 0.887
GW200224_222234 <8.8 × 10−4 <9.7 × 10−4 18.8 0.999
GW200225_060421 <8.8 × 10−4 <9.7 × 10−4 13.1 0.999
GW200311_115853 <8.2 × 10−4 <8.9 × 10−4 16.2 0.999
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190930_234652 with a FAR of 8 yr−1, and 200214_
224526 with a FAR of 17 yr−1. The significance of these
events is below the analysis threshold of FAR< 1 yr−1,
and hence, they are not included in this paper. Instead, in
Table III, we report the GW candidate events that are not
present in the GW Transient Catalog papers but were
detected by the ML-enhanced cWB search with
FAR< 1 yr−1. The lowest-ranked event 190904_174910
is detected with a FAR of 0.85 yr−1 and reconstructed SNR
of 8.5. The event 190904_174910 is not reconstructed by

the cWB pipeline when reanalysed with the sub60 Hz clean
data (conditioned for the 60 Hz instrumental noise).
Therefore, the event is likely to be associated with the
instrumental noise produced around the 60 Hz line by the
coupling of the low-frequency seismic noise [44–46].
The other two cWB-only events, 190421_012633 and

191223_151007 are marginal events detected with the FAR
of <0.44 yr−1 and <0.43 yr−1 and reconstructed SNR of
9.6 and 7.5, respectively. The time-frequency wavescan
spetrograms [47] of these events are shown in Fig. 1.

TABLE III. Marginal cWB-only events were found in O3 with the ML-enhanced cWB search compared with the standard
cWB analysis. We report all detections with FAR< 1 yr−1 not present in the catalog papers. We estimate the Pastro, cWB source
frame total mass (McWB) and report it along with the SNR reconstructed by the cWB pipeline for the marginal events. We report the
median and 90% symmetric credible intervals for the one-dimensional marginal posterior distributions of the source total mass M, and
the source component masses: m1 and m2. *190904_174910 is likely to be produced by the up-conversion of seismic noise and the
60 Hz power line.

Event
Standard cWB
FAR (yr−1)

ML-enhanced
cWB FAR (yr−1) SNR Pastro McWB ðM⊙Þ M ðM⊙Þ m1 ðM⊙Þ m2 ðM⊙Þ

190421_012633 7.1 × 10þ0 4.4 × 10−1 9.6 0.833 160 155þ65
−32 111þ61

−38 44þ25
−20

190904_174910* � � � 8.5 × 10−1 8.1 0.573 � � � � � � � � � � � �
191223_151007 � � � 4.3 × 10−1 7.5 0.742 141 206þ55

−39 153þ43
−38 54þ27

−19

L1 - 190421_012633 L1 - 191223_151007

H1 - 190421_012633 H1 - 191223_151007

FIG. 1. Time-frequency wavescan spetrograms [47] of 190421_012633 (LEFT) and 191223_151007 (RIGHT), in the L1: Livingston
(TOP) and H1: Hanford (BOTTOM) detectors. The marginal events occur at Time ¼ 0 s in the plots and are highlighted by white
dashed circles.
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We follow the XGBoost parameter estimation technique
described in Ref. [27] and use their trained model to
estimate the source frame total mass (McWB). The highest-
ranked event 191223_151007 is estimated to have the
McWB of 141 M⊙ with the Pastro value of 0.742. The
standard cWB analysis had previously removed this event
as it had failed the a priori defined veto thresholds on the
event summary statistics. The event 190421_012633 was
reconstructed in the standard cWB analysis with a FAR
7.1 yr−1, and it was promoted by the ML-enhanced cWB
search to a marginal event with a lower FAR. This event is
estimated to have theMcWB of 160 M⊙ with the Pastro value
of 0.833.
In order to extract the source properties of the two

marginal events, we perform the coherent Bayesian param-
eter estimation [48–50]. In this analysis, we model the GW
signal as represented by a precessing quasicircular wave-
form IMRPhenomXPHM [51–54]. We report the median
and 90% symmetric credible intervals for the one-dimen-
sional marginal posterior distributions of the source total
mass M and the source component masses m1 and m2 in
Table III. The source frame total masses for both events are
in agreement with the cWB estimated total masses. The
secondary mass components fall within the stellar mass
BBH range for both events, whereas the primary mass

components fall in the IMBH range with the source masses
greater than 100 M⊙.
The sky localization area for the 190421_012633 and

191223_151007 marginal events are shown in Fig. 2. Here,
the 90% credible sky area estimated by cWB [55] is
consistent with the sky area inferred from the Bayesian
posterior distribution. Although the low significance of
these events is insufficient to claim confident detection, we
have not identified them with any common instrumental
noise origin.

C. Search sensitivity

The detection efficiency is calculated by taking the
number of detected simulated events with FAR equal to
or less than a given threshold and dividing it by the
total number of recovered simulation events. From the
detection efficiency vs FAR in Fig. 3, for FAR< 1 yr−1

(<1=100 yr−1), we observe an 18% (16%) improvement

FIG. 2. The 90% and 50% credible sky localization area
estimated by cWB [55] (Blue) vs the LAL Inference (LI)
posterior distributions (Red), plotted for the marginal events
190421_012633 and 191223_151007.

FIG. 3. Top: detection efficiency vs FAR for the O3 observing
run. Bottom: detection efficiency for events identified with FAR
less than 1 yr−1 as a function of the central frequency f0 for O3.
Solid lines correspond to the BBH configuration, while dotted
lines represent the IMBH configuration. Red curves represent the
sensitivity of the ML-enhanced cWB search, and black curves
represent the sensitivity of the standard cWB search with the veto
method.
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for both the BBH and IMBH configurations as compared to
the standard cWB search. For simulated events detected
with FAR< 1 yr−1, in Fig. 3 we plot the detection
efficiency as a function of the central frequency f0. The
overall ML-enhanced search is more sensitive than the
standard search over the entire BBH mass range accessible
by LIGO.
We compare the sensitivity of the ML-enhanced cWB

pipeline with the other search pipelines by computing the
sensitive hypervolume V in units of volume × time [4].
For this study, we choose the POWER LAW + PEAK model
[4], which is a fiducial BBH population model with a
high posterior probability in the population analysis of
GW Transient Catalog 2 [32]. Given a local merger rate
Rðz ¼ 0Þ and the observed number of detections Ndet
at a given significance threshold, we estimate the effec-
tive hypervolume V by following the relation Ndet ¼
VRðz ¼ 0Þ, where Ndet is calculated by counting the
number of injections detected by the search pipeline above
a threshold at FAR 2 yr−1. The effective hypervolume for

each search for the given signal population is given in
Table IV.
We note that the ML-enhanced cWB search improves the

sensitive hypervolume by approximately 21% compared to
the standard cWB search in Table IV. In the O3a run, the
ML-enhanced cWB sensitive hypervolume is comparable
to the MBTA search pipeline [4]. Figure 4 shows the
sensitive hypervolume against FAR for the ML-enhanced
cWB search and the standard cWB search for the O3a and
O3b runs.
For the case of IMBH simulations, we do not use any

IMBH population models and the injections are done over a
uniform fiducial volume for different IMBH masses (II B).
While we cannot quote the sensitive hypervolume for
the IMBH search, we note that the fractional change in
the sensitive hypervolume is approximately the same as the
increase of detection efficiency with respect to injections.
At FAR less than 1=100 yr−1, the percentage increase in the
sensitive hypervolume with the ML-enhanced cWB search
is approximately 28% for the BBH search and 34% for the
IMBH search as compared to the standard cWB search. The
percentage gain for the BBH and IMBH search configu-
rations with the ML-enhanced cWB search is reported for
different FAR thresholds in Table V.

D. Test of robustness

The ML implementation is designed such that we
maintain the model independent nature of the cWB search.
The ML-enhanced search sensitivity is not limited to the
simulations present in the training set [28]. In order to
check this, we analyze the performance of the ML-
enhanced search on simulated waveforms outside the
training set. We train the ML model on quasi-circular
binaries and test the ML-enhanced IMBH search sensitivity

TABLE IV. The effective hypervolume V for the POWER LAW + PEAK population model injections over the O3 run,
estimated at a FAR of 2 yr−1. We compute the V for the standard and ML-enhanced cWB searches over the O3a and
O3b data. We compare the O3a hypervolumes for all the searches, including GstLAL, MBTA, PyCBC, and PyCBC
BBH searches found in Ref. [4].

Sensitive hypervolume V (Gpc3 yr)

Run Standard cWB ML-enhanced cWB GstLAL MBTA PyCBC PyCBC BBH

O3a 0.676 0.822 1.22 0.885 0.914 1.20
O3b 0.627 0.757 � � � � � � � � � � � �

FIG. 4. Sensitive hypervolume V plotted against FAR for O3
cWB searches using the BBH POWER LAW + PEAK simulations.
Solid lines correspond to the O3b run, while dotted lines
represent the O3a run. Red curves represent the sensitivity of
the ML-enhanced cWB search, and black curves represent the
sensitivity of the standard cWB search. The corresponding
shaded regions denote the respective 1-σ confidence intervals
on the FAR.

TABLE V. Percentage gain in the sensitive hypervolume (V) by
the ML-enhanced cWB search at FAR< 1 yr−1, <0.1 yr−1, and
FAR< 0.01 yr−1 for the BBH and IMBH search configurations.

Percentage gain in V with ML-enhanced cWB (%)

Search FAR< 1 yr−1 FAR < 0.1 yr−1 FAR< 0.01 yr−1

BBH 23.0 26.4 27.8
IMBH 26.5 30.3 34.2
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on high mass BBH systems with highly eccentric orbits
(simulation set iii).
A similar test was conducted using precessing BBH

systems (simulation set iv). The ML model is trained on
simulated waveforms with the (2,2) harmonic mode,
aligned spins, and low mass ratio (1–1/4). The testing
set consists of simulated waveforms with higher-order
modes, precessing spins, and a higher mass ratio (1–1/20).
In Fig. 5, we observe that the ML-enhanced search is

more sensitive to the high mass eccentric BBH mergers and
precessing BBH mergers despite the ML model being
trained only on the quasicircular IMBH waveforms and
BBH waveforms respectively. These results exhibit that the
ML-enhanced search does not compromise the robustness
of the standard search but rather improves the sensitivity of
the search for BBH signals lying outside the training
simulation set.

E. HL vs HLV

The Advanced Virgo detector joined the GW detector
network in the later part of the O2 run. The addition of the
Advanced Virgo detector to the existing two detector
network (HL) allowed more precise sky localization of

the GW events. While ideally, adding a third detector is
expected to improve the sensitivity, this is not usually the
case seen in the cWB pipeline with the HL and HLV
networks. With their common orientation, the LIGO
detectors select a well-defined GW polarization state; that
feature is exploited by cWB to mitigate their glitches. In
contrast, the Virgo detector orientation differs considerably
from that of the LIGO detectors so that glitches in Virgo
data cannot be mitigated as efficiently by cWB. Therefore,
the three-fold network including Virgo, with its current
sensitivity level, is usually less sensitive than the HL
network.
We test the ML-enhanced cWB search on limited data of

the HLV network with the BBH search configuration. We
train a model by using the accumulated background data
and recovered simulations for the HLV network, on the
limited data with live time interval—GPS:1241011102.0 to
GPS:1242485126.0 which corresponds to ∼7 days of live
time taken from the first half of O3. For the HLV network,
we use 550 years of background data for training. We end
up with ∼640 background years of the HLV network for
testing the performance of the ML model. For the HL
network, we use the BBH configuration trained model on
the limited data. This exercise considers the total number of
common injections made in the limited data live time for
both the detector networks and compares their performance
based on the recovered simulations at a given FAR as
reported in Table VI. For the set of common injections in
the HL (HLV) network, the ML-enhanced cWB search
recovers around 23% (31%) more injections than the
standard cWB search at FAR< 1 yr−1.
In Fig. 6, the detection efficiency is calculated as the ratio

of the number of recovered simulations below a given FAR
threshold to the total number of injections made in the
limited data live time. We observe that the ML-enhanced
cWB search improves the sensitivity for both HL and HLV
networks. The HL network shows better performance and
recovers ∼7.7% more simulated events at FAR< 1 yr−1 as
compared to the HLV network. In order to assess the
performances of these two networks, we combine the HL
and HLV network search results by applying a trial factor
to the significance of events to check the HLþ HLV
network performance. We find that the joint search
HLþ HLV network recovers ∼3.0% more simulations at

FIG. 5. Detection efficiency vs FAR for a high mass, eccentric
BBH simulation set (solid lines), and a precessing BBH set
(dotted lines) recovered with the cWB IMBH configuration, and
BBH configuration respectively. The red curve represents the
sensitivity of the ML-enhanced cWB search, and the black curve
represents the sensitivity of the standard cWB search.

TABLE VI. Comparison of the number of recovered simulations by the ML-enhanced cWB search at FAR<
1 yr−1 and FAR< 0.01 yr−1 with respect to the total number of common injections made in limited data
(corresponding to 7 days of live time in the O3 run) for both the HL and HLV detector networks.

Recovered with Standard cWB Recovered with ML-enhanced cWB

Network Injections FAR< 1 yr−1 FAR< 0.01 yr−1 FAR< 1 yr−1 FAR< 0.01 yr−1

HL 5628 1475 1115 1818 1371
HLV 5628 1285 957 1688 1221
HLþ HLV 5628 1548 1121 1873 1336
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FAR< 1 yr−1 than the HL network, and ∼11.0% more
simulations at FAR< 1 yr−1 than the HLV network. While
adding Virgo to the HL network allows us to detect more
events, the addition also increases the detector network’s
background noise, leading to a lower sensitivity at higher
significance. For example, the HL network recovers ∼2.6%
more simulations at FAR< 0.01 yr−1 than the HLþ HLV
network. With the current cWB implementation and with
Virgo lower sensitivity with respect to the LIGO detectors,
it is still not beneficial to use the three-fold network for
detection purposes. However, an improvement on the
algorithmic side and/or on Virgo sensitivity, as well as
the extension to a fourth detector, such as KAGRA, may
soon change this condition. As a result, we utilize the best
available (most sensitive) two-fold detector network.

IV. CONCLUSIONS

In this paper, we have successfully utilized the ML-
enhanced cWB pipeline to search for BBH mergers in the
third observing run (O3) of the Advanced LIGO-Virgo.
The ML-enhanced cWB search consistently improves the
search sensitivities, as previously presented in Ref. [28].
For simulated events with FAR< 1=100 yr−1, the sensitive
hypervolume is improved by 28% for the stellar-mass BBH
search configuration and by 34% for the IMBH search
configuration. We recover with equivalent or higher sig-
nificance, all the 15þ 10 (O3a+O3b) BBH events reported
in the third GW Transient Catalog [6] that were previously
detected by the standard cWB pipeline. The FAR assigned
to the IMBH event GW190521 detected in the ML-
enhanced cWB search is limited by the amount of available

accumulated background data, and it is two times more
significant than the standard cWB search. Additionally,
5 GW events were detected by the ML-enhanced cWB
search that were previously missed by the standard cWB
search but detected by other search pipelines. Moreover,
we detect three cWB-only candidate events with FAR<
1 yr−1 that are not present in the GW Transient Catalogs:
190904_174910, 190421_012633, and 191223_151007.
The event 190904_174910 is found to be consistent with
the instrumental noise produced around the 60 Hz line by
the up-conversion of low-frequency seismic noise. The
other two events, 190421_012633 and 191223_151007 are
marginal IMBH candidates with their source frame total
masses >100 M⊙ lying in the IMBH range. We find broad
agreement between the inferred source frame total masses
and the cWB estimatesMcwb for these two marginal events.
Significant overlap in the 90% credible sky localization
area estimated by cWB and given by the marginal poste-
riors is observed. While we have not identified any possible
instrumental noise origin for these two events, the signifi-
cance is insufficient to claim confident GW detection.
We also test the robustness of the ML implementation by

training the ML models on quasicircular orbit binaries data
and testing it on eccentric orbit binaries data, and precess-
ing BBH data. We conclude that the ML-enhanced cWB
search does not adversely affect the model independent
nature of the cWB pipeline and improves the sensitivity of
the pipeline to signals outside the training set.
Lastly, we perform a detector network comparison test,

where we establish that the ML-enhanced cWB search
enhances the search sensitivity for different detector net-
works. However, we also note that the HL detector network
recovers ∼7.7% more simulated events at FAR<1 yr−1

than the HLV network. Plausible reasons for this are that
the Virgo detector orientation differs considerably from that
of the LIGO detectors and that the spectral amplitude noise
has been about a factor 2 higher for Virgo with respect
to LIGO.
As a future outlook, the ML-enhanced cWB pipeline will

be used in the upcoming fourth observing run of LIGO, and
further studies are being done to include this method in the
low latency cWB search.
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APPENDIX: XGBOOST MODEL TRAINING
UPDATES

In this section, we discuss all the updates made to the
existing ML method as described in Ref. [28]. In order to
account for the different detector networks, we replaced the
summary statistic that described the quality of the like-
lihood fit (Ec=L) with (S0=L) for the two detector network
(HL), and with (S0=L and S1=L) for the three detector
network (HLV). The summary statistics gives the ratio of
the square of the SNR of the reconstructed waveform for
each detector (S0, S1) to the likelihood (L). This allows us
to increase the sensitivity of the ML algorithm to different
detector networks. The detailed list of selected summary
statistics and their definitions can be found in the Appendix
of Ref. [28].
The XGBoost hyperparameters, listed in Table VII, were

carefully selected to avoid overfitting and for optimal
performance with O3a data for both the BBH and
IMBH search configurations. In this study, we first start
by setting all XGBoost hyperparameters to be the same
as used for O1 and O2 analysis. We then select a priori,
the max_depth to 13 as we use 13 cWB summary
statistics in the list of input features. We also set the
colsample_bytree to 1, a priori, which ensures that
all the features are used while building each tree in the
ensemble, during training. Then we perform a short grid
search over 9 combinations of XGBoost hyperparameters
with respect to the precision-recall area under the curve
(AUC PR) metric [60], and fix the subsample and
gamma as reported in Table VII. The total number of trees
generated is optimized by using a method known as early
stopping, where a small fraction of the training data set is
set aside for validation, and the training ends when the
validation score with respect to AUC PR metric stops

improving with additional trees. This prevents overfitting
of the XGBoost algorithm to the training data.
The ML algorithm is computationally efficient and the

entire training and testing procedure is completed within
minutes, using one CPU core. In order to get rid of excess
background with minimal or no loss of simulated events, we
employ a cutoff on the η0 statistic with the threshold set at
η0 > 6.5. Before we use this summary statistic as an input
feature for XGBoost training, we cap the statistic at η0 ¼ 20
(which was earlier set to 8 because of the previous η0
definition in the paper [28]) such that any event with a higher
η0 value is assigned a value of 20. The capping prevents the
algorithm from being affected by high SNR background
events, which fall steeply with the increase in η0.
In addition to using η0 as an input feature for XGBoost,

we also apply a η0 dependent sample weight on the
background events to minimize the importance given by
the algorithm to low SNR glitches. A standardized sample
weight has been proposed in this work as compared to the
one reported in Ref. [28]. All the simulation events are
assigned a sample weight of 1. In contrast, for the noise
events, we first divide simulation events in the interval
6.5< η0 < 20 into nbins ¼ 100 percentile bins such that
the number of simulation events in each bin is the same.
Then, we apply the sample weight per bin as follows:

wBðiÞ ¼
NSðiÞ
NBðiÞ

elnðAÞð1− i
nbinsÞq ; ðA1Þ

where, i ¼ 0; 1;…; nbins is a given bin, NSðiÞ and NBðiÞ
are the number of simulation and background events in the
ith bin. (q, A) are weight options, where A is called the
balance parameter and it sets the class balance (NB=NS) for
the first bin at η0 ≥ 6.5 (for instance A ¼ 100 implies that
the weighted background is 100 times more than the
simulation in the first bin), q is called the slope parameter
that controls the rate of change of the weighted background

TABLE VII. Entries for XGBoost hyperparameters. †:
n_estimators is optimized using early stopping, where
the training stops when the validation score stops improving.
Bold entries indicate the optimal choice.

XGBoost hyperparameter Entry

objective binary:logistic
tree_method hist
grow_policy lossguide
n_estimators 20; 000†
max_depth 13
learning_rate 0.03
min_child_weight 10.0
colsample_bytree 1.0
subsample 0.4, 0.6, 0.8
gamma 2.0, 5.0, 10.0

FIG. 7. Weighted event distribution as a function of η0 for O3a
run BBH search configuration data. The weight options are set to
q ¼ 5 and A ¼ 40.
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distribution. For all events with η0 ≥ 20, the number of
simulation events is resampled such that it matches the
number of background events to attain a perfect class
balance (NB=NS ¼ 1). For a given combination of (q, A)
values, we can achieve any monotonic distribution of our
choice, starting with a class balance of A at η0 ¼ 6.5 and

ending with a perfect class balance at η0 ¼ 20. In this study,
the weight options were fixed to be q ¼ 5 and A ¼ 40,
resulting in a weighted distribution as shown in Fig. 7. This
weight distribution enables the ML model to differentiate
high SNR events into noise and signal, while at the same
time being sensitive to low SNR events.
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