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D-Ser(tBu)-L-Phe-L-Trp is described as a self-assembling tripeptide that yields

nanofibrillar hydrogels at physiological conditions (phosphate buffer at pH 7.4). The

peptide is characterized by several spectroscopic methods, such as circular dichroism

and fluorescence, oscillatory rheometry, and transmission electron microscopy.

Single-crystal X-ray diffraction reveals supramolecular packing into water-bound

channels and allows the visualization of the intermolecular interactions holding

together peptide stacks.
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1 | INTRODUCTION

In the last two decades, minimalistic peptides have raised great inter-

est for their capability of self-assembling into nanostructured hydro-

gels for a variety of applications.1 The vast majority,2,3 but not all,4–7

of peptide gelators employ amphipathic sequences that typically fea-

ture Phe residues to promote the spontaneous organization at low

concentrations in water.8 In particular, sequences as short as two to

three amino acids are attractive for their low cost and simplicity of

production and for the possibility of easily scaling-up their synthesis

also in the liquid phase.9 Numerous dipeptide and tripeptide gelators

exploit N-capping groups to increase their hydrophobicity and

promote their self-organization in water into hydrogels,10,11 and

examples of gelling dipeptides and tripeptides with free termini are

considerably less frequent.12–14

Our group has explored the use of heterochiral sequences to

modulate the spatial orientation of the sidechains of hydrophobic

amino acids and to enable the segregation between hydrophilic and

hydrophobic groups on opposite sides of the peptide backbone,

toward the formation of amphiphilic gel superstructures in water.15,16

In general, we found that dipeptide gels are less durable than those

formed by tripeptide analogs, for instance, in cell culture conditions,

thus finding more limited applicability.12 Furthermore, tripeptides

offer a greater diversity of sequence design, also toward the attain-

ment of bioactivity, because, on average, they display the ideal num-

ber of non-hydrogen atoms (i.e., 25), for maximal efficacy of

interactions as ligands with their receptors' counterparts.17 Indeed,

taking into account that, on average, an amino acid has 8.3 of such

atoms, a tripeptide accounts for 24.9.17 To increase the chemical

diversity of this type of gelators, which typically are based on the

Phe-Phe motif,18 in this manuscript, we report the supramolecular

behavior of D-Ser(tBu)-L-Phe-L-Trp, with free termini and a protect-

ing group on the Ser sidechain that was required to gain sufficient

hydrophobicity for gelation. Furthermore, the inclusion of Trp might

endow the gel with luminescent properties,19 although this is not a

given, considering that several mechanisms could lead to

quenching.20–22 The tripeptide sequence was thus chosen taking into

consideration all these factors, and the order and identity of the
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aromatic residues were dictated by Reches' and Gazit's observations

that Phe-Trp, but neither Trp-Phe nor Trp-Trp, maintained the ability

to self-assemble into nanotubes manifested by the original peptide

sequence Phe-Phe.18

2 | MATERIALS AND METHODS

2.1 | Materials and general methods

Merck (Milan, Italy) provided all the reagents and solvents, which were

employed without further purification. 2-Chlorotrytil chloride resin

was purchased from GL Biochem (Shanghai, China). All buffers and

aqueous solutions were made with pure water that was dispensed

from a Millipore MilliQ-system RiOs/Origin (St. Louis, MS, USA) by

setting a resistivity >18.2 MΩ�cm at 25�C. 1H- and 13C-NMR spectra

were acquired on a Varian Innova spectrometer at 400 and 100 MHz,

respectively, and liquid chromatography coupled to mass spectrome-

try (LC-MS) data were recorded using an Agilent 6120 Infinity.23

UV–visible (UV–Vis) spectra were measured using a quartz cell

(0.1 mm) on an Agilent-Cary 5000 UV–Vis over the range of

wavelengths from 350 to 200 nm, with a resolution of 1 nm.

Fourier-transformed infrared (FT-IR) spectra were registered on a

Varian Cary 660 spectrometer as previously described.23

2.2 | D-Ser(tBu)-L-Phe-L-Trp preparation

The tripeptide was prepared by solid-phase peptide synthesis, using

Fmoc-protection strategy and 2-chlorotrytil chloride resin, using a

standard protocol.24 The crude was purified by high-performance LC

(HPLC) in reverse phase (Agilent 1260 Infinity) on a C-18 column

(Phenomenex Kinetex, 5 μm, 100 Å, 250 � 10 mm), employing a

gradient of acetonitrile (MeCN)/water with 0.05% trifluoroacetic acid

(TFA) as follows: t = 0–2 min 30% MeCN; t = 18 min 70% MeCN;

t = 20–22 min 95% MeCN (tR = 8.9 min). The product was

freeze-dried into a white powder. 1H- and 13C-NMR spectra and

ESI-MS spectra confirmed product identity and purity (Supporting

Information S1).

2.3 | Hydrogelation and oscillatory rheology

D-Ser(tBu)-L-Phe-L-Trp (60 mM) was dissolved in sodium phosphate

(0.1 M at pH 13.0), with the assistance of ultrasounds (Branson soni-

cator bath 3800, 10 min, 40�C). Subsequent cooling down to room

temperature yielded hydrogels (30 mM) at a pH of 7.3 ± 0.1 by adding

an identical volume of slightly acidic sodium phosphate buffer (0.1 M,

pH 5.9). Oscillatory rheology was carried out using a Kinexus Ultra

Plus rheometer, with parallel-steel plates (20 mm flat) at 5 Pa and

1 Hz. Kinetics were studied for 60 min by forming the gel directly

onto the rheometer plate. Frequency ramps were recorded at 5 Pa,

and stress ramps employed a frequency of 1 Hz.

2.4 | Circular dichroism

Samples for circular dichroism (CD) were prepared in quartz cells

(0.1 mm) using the procedure described above. CD spectra were

immediately recorded at 25�C on a Jasco J-815 with 1 nm resolution

and a scanning rate of 50 nm/min. Spectra shown are the average of

at least five measurements. CD spectra were also acquired on the

peptide in solution by dissolving it at 1 mM in milliQ water and using

NaOH 0.1 M to adjust the pH to 7.0.

2.5 | Fluorescence studies

Fluorescence studies were performed in solution and in the gel phases

using a Tecan 1000 Infinity. In solution, various peptide concentra-

tions were used to prepare samples in milliQ water, and the pH was

adjusted to neutrality by adding NaOH 0.1 M. Samples (150 μL) were

placed in a Nunclon 96-well plate (polystyrene, black), and excitation

spectra were recorded using an emission λ = 350 nm, whereas emis-

sion spectra were obtained with an excitation λ = 280 nm at 25�C,

with a resolution of 2 nm. Thioflavin-T studies were performed as pre-

viously described.23

2.6 | Crystallization

The tripeptide was dissolved (3 mM) in a solution consisting of 80%

milliQ water and 20% methanol in a small glass vial with a screwtop

slightly open. Slow evaporation at room temperature yielded needle

crystals over a month. Details of single-crystal X-ray diffraction (XRD)

can be found in Supporting Information S1.

2.7 | Transmission electron microscopy (TEM)

TEM micrographs were recorded on a JEM 2100 (Jeol, Tokyo, Japan)

with a voltage set to 100 kV on freshly prepared samples that were

carefully transferred onto carbon-lacey grids, previously charged using

a UV-Ozone Procleaner Plus for 360 s and dried in vacuo. Contrast

was obtained by adding a drop of potassium phosphotungstate at 2%

at pH 7.2. Image analyses were performed using ImageJ2 software

freely available from FIJI (https://imagej.net).

3 | RESULTS AND DISCUSSION

3.1 | D-Ser(tBu)-L-Phe-L-Trp preparation and
characterization

The tripeptide D-Ser(tBu)-L-Phe-L-Trp (Figure 1A) was prepared in

solid phase using a standard protocol with Fmoc as N-protecting

group and 2-chlorotrytil chloride resin.24 Purification by HPLC in

reverse phase yielded the pure tripeptide as supported by
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electrospray-ionization MS (ESI-MS) and 1H- and 13C-NMR spectros-

copy (see Supporting Information S1). The photophysical properties of

D-Ser(tBu)-L-Phe-L-Trp were probed by UV–Vis absorption spectros-

copy (Figure 1B), CD (Figure 1C), and fluorescence (Figure 1D). The

peptide absorbed UV–Vis light with two maxima at 219 and 280 nm

and two shoulders at 272 and 288 nm (Figure 1B), which are classical

features of the aromatic residues Phe and Trp, although the latter has

a significantly higher extinction coefficient than the former, thus being

responsible for the observed absorption. The CD spectrum displayed

a positive first (at longer wavelengths) and negative second (at shorter

wavelengths) Cotton effects in the 200–240 nm region, with a

positive maximum at 227 nm and a negative minimum at 203 nm

(Figure 1C). These features are indicative of a positive exciton

coupling, which arises when the long axes of the two interacting units

constitute a clockwise screw sense.25 Fluorescence excitation spectra

of the tripeptide solutions showed a maximum centered at 283 nm

(Figure 1D). Emission spectra (λex280) of more diluted samples

(0.1 mM) displayed a maximum at 355 nm, and those of more concen-

trated samples (0.5–1.0 mM) manifested a 2 nm blueshift to 353 nm.

3.2 | D-Ser(tBu)-L-Phe-L-Trp self-assembly and
supramolecular packing

Self-assembly was probed in sodium phosphate buffer, by first dissol-

ving the tripeptide in its anionic form at alkaline pH and then lowering

the pH to neutral to trigger hydrogelation of the zwitterions

(Figure 2A). Stable hydrogels were obtained with a minimum gelling

concentration of 30 mM (see also Figure S5), which was used for

further studies (vide infra). Interestingly, under these conditions, fluo-

rescence emission spectra (Figure 2B) displayed a marked blueshift

relative to the peptide at lower concentrations (Figure 1D), with a

broad and asymmetric maximum at 325 nm. Blueshifts in Trp

fluorescence to λ < 330 nm are indicative of the localization of the

amino-acid sidechain in buried, hydrophobic environments,26 as

expected as a result of the self-organization.

CD spectra were acquired in sodium phosphate solution during

self-assembly (Figure 2C) and revealed the appearance of new

features compared with the spectrum in solution shown in Figure 1C.

In particular, in the far-UV range, the CD signal evolved with

self-assembly over the first hour to a spectrum reminiscent of that

reported for gelling D,L-tripeptides, with two positive peaks centered

at 201 and 210–216 nm, which had been assigned to a population of

β structures.23 FT-IR measurements in the amide I region revealed the

presence of two main signals at 1677 and 1644 cm�1 (see Figure S6).

We inferred that self-assembly was associated with an alteration of

the conformational distribution toward those that could self-associate

into gelling fibers. Furthermore, the region above 240 nm, which

was featureless in the CD spectrum in solution (Figure 1C), with

self-assembly displayed two other positive maxima at 240 and

299 nm, likely a result of the confinement of the aromatic residues

within the supramolecular architecture. These peaks were assigned to

contributions from the aromatic sidechains of Phe and Trp, respec-

tively.27 For proteins, this region corresponds to the tertiary structure

F IGURE 2 (A) Photographs of the peptide solution (left) and
hydrogel formed through pH-triggered self-assembly (right) under
ultraviolet-light irradiation (λ ≥ 254 nm). (B) Fluorescence emission
spectra of the hydrogels (λex280). (C) Circular dichroism spectra
evolution during self-assembly. (D) Single-crystal X-ray diffraction
packing (CCDC 2254368) along the a crystallographic direction
identifies hydrophilic (light blue) channels with bound water,
surrounded by hydrophobic regions (yellow). Peptide molecules are
represented as sticks and solvent (water and methanol) molecules as
spheres. (E) Peptide stacks are held together by H-bonds (black
dashed lines represent H-bonds with distances <3 Å).

F IGURE 1 (A) Chemical structure of D-Ser(tBu)-L-Phe-L-Trp.
(B) Ultraviolet–visible light absorption spectra at 1 mM (black line and
5� enlargement as dotted line). (C) Circular dichroism spectra at
1 mM. (D) Fluorescence excitation (dotted lines) and emission (solid
lines) of peptide solutions (0.1, 0.5, and 1.0 mM).
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fingerprint.28 In particular, the near-UV absorption of Trp derives from
1La and

1Lb transitions, the former involving the NH group centered at

�280 nm and highly sensitive to the environment's polarity.26 Con-

versely, the latter usually occurs at 290 nm; it involves only hydropho-

bic components, and it is less sensitive to the polarity of the

surroundings.29 The presence of a notable redshifted positive signal at

299 nm suggested that the Trp sidechain was located in a hydropho-

bic and rigid environment, as a result of self-assembly. Conversely, the

Phe maximum that normally occurs at 250–260 nm displayed a

marked blueshift that could indicate its exposure to hydrophilic

surroundings.30

Interestingly, single-crystal XRD analysis unveiled a supramolecu-

lar packing that confirmed these features (Figure 2D and Supporting

Information S1). In particular, piles of parallel peptides along the

a crystallographic direction define hydrophilic water-bound channels

(depicted in light blue in Figure 2D), whereby the N- and C-termini of

different peptides face each other with the interposition of water

molecules and the hydroxyl group of methanol molecules. The peptide

stacks are held together through hydrophilic interactions (hydrogen

bonds and salt bridges) involving the charged termini, the carbonyl

oxygen and the amide nitrogen of the phenylalanine residue, and two

water molecules (Figure 2E). These water-bound channels are

surrounded by hydrophobic regions (depicted in yellow in Figure 2D),

held together by weak hydrophobic interactions between the

aromatic moieties, the tert-butyl substituent of the serine residue, and

the methyl group of the methanol molecule.

3.3 | D-Ser(tBu)-L-Phe-L-Trp nanostructured
hydrogel characterization

The viscoelastic behavior of the tripeptide hydrogels was probed by

rheology (Figure 3). In particular, gelation occurred within 6 min as

observed by naked eye, in agreement with the rheological kinetics

study, with the storage (G') and loss (G") moduli reaching 17.0 and

0.7 kPa, respectively, within an hour (Figure 3A). Frequency ramps

confirmed the gel stability, with both G' and G" not being affected by

changes in the applied frequency interval of 0.1–10 Hz (Figure 3B).

Lastly, stress ramps revealed a linear viscoelastic range up to 10 Pa

and a transition from gel to sol at �70 Pa (Figure 3C). Upon heating,

the hydrogels started their transition to a solution at 55�C, and further

heating to 94�C was required to completely dissolve the tripeptide,

and upon cooling down to room temperature, only aggregates were

attained (Figure 3D). Therefore, these hydrogels are not thermorever-

sible, contrarily to others composed of heterochiral tripeptides with

free termini.16,23,31

TEM analyses of the gels revealed a dense network of fibers

(Figure 3E), with an average diameter of 58 ± 19 nm (n = 100;

Figure 3F), indicative of an amyloid nature, confirmed by a positive

Thioflavin T binding assay. This well-known dye binds to hydrophobic

grooves that are present on β-stacks,32 and the consequent impeded

rotation between the two aromatic constituents of Thioflavin T

results in fluorescence.33 This phenomenon can be used for the

qualitative and quantitative assessment of amyloids, and it enabled us

to derive the critical aggregation concentration of the tripeptide,34

which corresponded to �2 mM (Figure 3G).

4 | CONCLUSIONS

In conclusion, this work reports the characterization of D-Ser(tBu)-L-

Phe-L-Trp as a self-assembling tripeptide that yields nanofibrillar

hydrogels with amyloid character, responsive to fluorescence mea-

surements. The single-crystal XRD structure showed an amphipathic

packing with water-bound channels and features that are consistent

with the spectroscopic behavior of the hydrogel, thus suggesting simi-

lar packing in the gel phase. Given that the inclusion of the D-residue

may endow the gel with increased resistance against protease-

F IGURE 3 (A–C) Oscillatory rheology of the hydrogel: (A) time
ramp, (B) frequency ramp, and (C) stress ramp. (D) Photographs of the
peptide gel upon heating and cooling down to room temperature (RT).
(E) Transmission electron microscopy (TEM) micrographs of the
nanostructures present in the gel after drying on the TEM grid.
(F) Fiber diameter distribution derived from TEM analyses (n = 100
counts). (G) Thioflavin T (ThT) fluorescence assay to calculate the
critical aggregating concentration (cac).

4 of 6 PARISI ET AL.

 10991387, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/psc.3524 by C

ochraneItalia, W
iley O

nline L
ibrary on [29/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



mediated degradation and that heterochiral short peptides displayed

good cytocompatibility in vitro,23 this type of hydrogel may find useful

applications as a biomaterial. For instance, inclusion of bioactive

motifs could be used to guide cell fate and promote cellular adhesion

and growth35 or to attain antimicrobial hydrogels.36 Furthermore,

coassembly in the presence of drugs could be employed in therapy for

topical use, as recently demonstrated for heterochiral, self-assembling

tripeptides combined with anti-inflammatory37 or antitumoral

agents.38 Indeed, peptide-based hydrogel applications in the

biomedical field are vast39–41 and range from wound healing42 to

tumor therapy,43 drug delivery,44,45 tissue engineering,46 hemostatic

activity,47 vaccine formulations,48 bioimaging,49 microarray

bioassays,50 and theranostics.51,52
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