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Clinical application of tumour-in-normal
contamination assessment from whole
genome sequencing

Jonathan Mitchell1,8, Salvatore Milite 2,3,8, Jack Bartram 4, Susan Walker1,
Nadezda Volkova1, Olena Yavorska1, Magdalena Zarowiecki1, Jane Chalker5,
Rebecca Thomas4, Luca Vago 6, Alona Sosinsky1,9 &
Giulio Caravagna 3,7,9

The unexpected contamination of normal samples with tumour cells reduces
variant detection sensitivity, compromising downstream analyses in canonical
tumour-normal analyses. Leveraging whole-genome sequencing data available
at Genomics England, we develop a tool for normal sample contamination
assessment, which we validate in silico and against minimal residual disease
testing. From a systematic review of 771 patients with haematological malig-
nancies and sarcomas, we find contamination across a range of cancer clinical
indications and DNA sources, with highest prevalence in saliva samples from
acute myeloid leukaemia patients, and sorted CD3+ T-cells from myeloproli-
ferative neoplasms. Further exploration reveals 108 hotspot mutations in
genes associated with haematological cancers at risk of being subtracted by
standard variant calling pipelines. Our work highlights the importance of
contamination assessment for accurate somatic variants detection in research
and clinical settings, especially with large-scale sequencing projects being
utilised to deliver accurate data from which to make clinical decisions for
patient care.

In popular experimental designs for cancer bulk DNA sequencing—
whole-exome sequencing (WES) or whole-genome sequencing (WGS)
—individual tumour samples are matched with a reference “normal”
sample from the samepatient, usually obtained fromperipheral blood,
saliva, or a skin biopsy1,2. Analysis is performed by first detecting var-
iants with respect to the human reference genome in both normal and
tumour samples, followed by subtraction of the patient-specific var-
iants from the tumour to select variants that are private to the tumour
sample3. However, this experimental design is only effective if the
matched normal sample is free of contaminating tumour cells, an

assumption not often emphasised (Fig. 1a, b)4,5. When DNA derived
from the normal sample is contaminated by tumour DNA, standard
bioinformatics pipelines can mistakenly subtract genuine somatic
mutations from the set of mutations identified in the tumour sample
due to evidence for a mutation being present in the normal sample,
resulting in a reduction in sensitivity for true somatic mutations (i.e.
higher number of false negatives). Based on the clonal evolution
model6, the probability of false negative increases with the fraction of
cells harbouring the mutation (due to a higher likelihood that the
variant will be present in the sequencing data for the normal sample),
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resulting in a bias towards erroneous subtraction of somatic variants at
high allele frequency in the tumour. High allele frequency variants are
of the greatest importancebecause they trigger tumour formation and
determined the subsequent clonal evolution patterns7.

More recently, in order to adapt the canonical bioinformatics
somatic analysis approach to accommodate tumour in normal (TIN)
contamination, amodel for normal contaminationwas introduced into
somatic variant calling algorithms4. However, these tools require an
estimate of the TIN contamination level as an input parameter, and
only support low contamination levels. Computationally, only one tool
is available to assess tumour contamination of normal samples8. At
high levels of TIN, however, the only alternative to a canonical tumour-

matched-normal design is currently a tumour-only pipeline, using
population germline frequency databases to filter likely germline var-
iants from the set of putative somatic mutations. This approach
attempts to minimise the rate of false negatives, a fundamental
requirement for clinical reporting where the failure to identify
actionable somatic mutations can be detrimental to patient care, but
leaves many ultra-rare germline variants of indeterminate origin.

Herewe present TINC, a computationalmethod to assess the level
of TIN contamination applicable for tumour and matched normal
pairs, leveraging state-of-the-art tools for measuring clonal evolution
from WGS. We demonstrate the performance of TINC with simulated
data and by comparison with orthogonal minimal residual disease
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(MRD) test data for 70 leukaemia patients. By applying TINC to
sequencing data from 771 participants in the Genomics England
100,000GenomeProject28, including617 patientswith haematological
malignancies, we detect tumour contamination in normal samples
from different germline sources across several tumour types. Assess-
ment of sample quality is essential in clinical reporting where treat-
ment decisions are based on genomic data. The level of contamination
predicted by TINC provides reassurance for clinicians and clinical
scientists for the accuracy of variant detection in the somatic analysis,
and can highlight the risk that clinically relevant variants may not have
been reliably detected. Therefore, we propose that TIN is an essential
metric for clinical analysis and reporting of WGS data.

Results
The TINC method
We have developed TINC, an approach for tumour-in-normal con-
tamination assessment, leveraging the concept of tumour clonal evo-
lution. It is freely available as an open-source R package (Data
Availability). TINC uses the variant allele frequencies (VAFs) of somatic
single nucleotide variants (SNVs) detected in tumour and normal
samples to identify clonal somatic mutations (i.e. those detected in all
tumour cells sampled) and evaluate their level in the normal sample.
From the observed VAFs, TINC determines scores for the percentage
of tumour cells in the tumour (usually referred to as tumour purity)
and in the normal sample, which are called Tumour in Tumour (TIT)
and Tumour in Normal (TIN) scores respectively. These scores can be
expressed as units of read fractions (i.e., percentage of reads in the
sequencing data for the normal sample that are derived from the
tumour).

TINC first identifies high-confidence clonal somatic mutations in
the tumour sample (grey, yellow and red lineages in Fig. 1c–e), which
are then used to estimate tumour purity (TIT score). Support for these
clonal variants is then assessed in the normal sample to determine the
level of tumour-in-normal contamination (TIN score, Fig. 1e). Specifi-
cally, TINC targets the ancestor of the tumour cells found in both the
tumour and normal samples, i.e., the most recent common ancestor
(MRCA) of the sequenced cells (yellow and grey lineages in Fig. 1c–e)
which can not be directly sampled or sequenced. Due to sampling
differences, private mutations are anticipated in the different tumour
cell lineages present in the tumour and the normal samples (red and
blue lineages in Fig. 1c–e). Note that clonal somatic mutations can be
mistakenly labelled as private tumour mutations due to the difference
in sequencing read depth between tumour (about 100x) and normal
(about 30x), as well as sequencing noise that obscure support for
clonal somatic mutations in normal samples. Therefore, the assess-
ment of clonal mutations in the normal sample is impacted by the
tumour architecture and data quality at variant sites. Building from the
expected tumour architecture, we are able to model the anticipated
data distribution in both samples for somatic variants of the various
cell lineages (Fig. 1e).

Using TINC, clonal mutations are identified with the MOBSTER
machine learning model for subclonal deconvolution from WGS9.
MOBSTER integrates population genetics and machine learning to
cluster somatic variants based on their VAF, decoupling clones that
undergo positive selection from neutral mutations. Read counts for
high-confidence clonal somatic mutations identified by MOBSTER are
then fitted to a Binomial mixture in thematched normal sample. From
the analysis of the tumour and normal samples, TINC obtains the
information to compute TIT and TIN scores (Online Methods).

TINC can also utilise allele-specific tumour Copy Number Altera-
tion (CNA) calls to retain SNVs in a subset of genomic intervals with the
copy number state (e.g. heterozygous diploid or tetraploid) spanning
the largest proportion of the tumour genome. By incorporating CNAs
in the logic, TINC normalises the observed VAFs in the tumour sample
for chromosome copy number and therefore is resilient to con-
founding effects of CNAs. Incorporation of copy number data is only
performed for tumours for which the most extensive copy number
state is one of 1:0 (loss of heterozygosity, LOH), 1:1 (heterozygous
diploid), 2:0 (copy-neutral LOH), 2:1 (triploid) or 2:2 (tetraploid gen-
ome-doubled), representing the majority of copy number states
observed for cancer genomes10. For such cases, only SNVs residing
within regions of themost prevalent copy number state are used in TIN
estimation. The SNV-only analysis (i.e. not incorporating CNA data)
requires that the tumour genome does not harbour a high number of
CNAs as otherwise the value of VAF is cofounded by copy number
variations10.

In silico validation of TINC performance
The performance of TINC was assessed using WGS data generated by
Genomics England for participants recruited as a part of 100,000
Genomes Project28. Synthetic test data were generated by artificially
contaminating normal BAM files with sequencing reads sampled from
the corresponding tumour BAM file (Methods). Variant calling of the
synthetic samples was performed using the Genomics England bioin-
formatics pipeline and the generated SNV and CNA calls analysed with
the TINC package (Fig. 2a).

Synthetic TINC test data were generated using high-quality WGS
data derived from seven patients diagnosed with haematological
malignancies (acute lymphoid leukaemia, ALL; acute myeloid leukae-
mia, AML; multiple myeloma, MM) and five patients diagnosed with
lung cancer (adenocarcinoma or squamous cell carcinoma), for whom
the normal sample sequenced was not affected by tumour con-
tamination. In total, artificially contaminatedWGSdatawere generated
for thirty-nine haematological tumour-normal pairs and thirty lung
cancer tumour-normal pairs, with a range of TIN contamination from
0% to 25%.

TINC successfully estimated the correct level of contamination
for the majority of synthetic WGS samples, in both haematological
and lung cancers (Fig. 2b, c, R2 =0:95;p <2:2× 10�16 and R2 =0:85;
p <3:3 × 10�13, correspondingly). These data demonstrated the benefit

Fig. 1 | TINCmethod. a Cellular composition of a bulk tumour and normal sample
(e.g. peripheral blood, saliva, or skin biopsy). Ideally, there would be no cross-
contamination between tumour and normal samples (pink and teal cells show
perfect separation). In reality, all tumour samples contain normal cells. For a paired
analysis, challenges in somatic variant detection arise when the normal sample is
contaminated with tumour cells, resulting in subtraction of true somatic variants
and a decrease in variant detection sensitivity. b The level of contamination of a
bulk sample can be defined as the fraction of tumour cells in the sample. With
perfect sampling tumour purity (TIT score) equals 1, and tumour-in-normal con-
tamination (TIN score) equals 0; formost real-life samples, TIT < 1. TIN>0 innormal
sample with tumour contamination. c Tumour cell phylogeny showing cell divi-
sions as a tree representing the evolutionary relationship between sampled tumour
cells. Colours represent distinct Most Recent Common Ancestors (MRCAs) of the
tumour cells, according to sampling. With TIN contamination, phylogenetically

related tumour cells are found in both samples (yellow and grey trunk). Tumour
cells found in the tumour and the normal carry common as well as private muta-
tions (red for the tumour and blue for the normal). TIN and TIT are determined
using the mutations accrued up to the yellow MRCA, an ancestral cell common to
the tumour cells present in both samples. d Summary phylogenetic tree for the cell
divisions in (c) shows a branching effect that describes a lineagedivision and spatial
sampling bias. e Expected cell fraction distribution for tumour cells in tumour and
normal samples carrying ancestral (yellow and grey) and private (blue and red)
mutations for a case with TIT = 75% and TIN = 25%. Somatic mutations common to
tumour cells found in both samples including the key tumour truncal driver
mutations, which are frequently subtracted in tumour-normal analysis, are the
yellow and grey cluster.Mutations only found in the tumour cells within the normal
sample (shown in blue) have no read support in the tumour and are not considered
by standard somatic variant callers.
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of incorporating CNAs, particularly for cancers with high chromoso-
mal instability, where failing to account for CNAs can result in over-
estimation of TIN contamination (Supplementary Fig. S1a, b). Notably,
the lung cancer samples usedhere showed a high level of copy number
variation, with an average of 78% of the genome covered by CNAs
(Supplementary Fig. S2). For a number of cases, the level of con-
tamination was underestimated at higher levels of TIN contamination.
This decrease in performance was attributed to the impact of high
levels of TIN contamination on somatic variant detection. At high
levels of TIN contamination, the somatic variants with the highest VAF

in the normal sample are likely to be subtracted from the somatic
variant set. This results in an underestimate of the TIN score since the
variant set used for the estimation of TIN score is biased towards
variants with lower VAF in the normal sample. This effect is illustrated
in Figs. 2b, c by the gradient colour representing the decreasing frac-
tion of clonal mutations used in TIN score estimation for increasing
levels of TIN contamination. This limitation is unlikely to impact clin-
ical reporting in practice, as the effect is only significant for samples
with a level of TIN far higher than would be considered acceptable for
clinical-grade analyses. At very high levels of TIN contamination the

a
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majority of clonal somatic variants are subtracted during the somatic
variant calling, leaving only subclonal variants which can lead to a
strong underestimation of TIT score. However, the implementation of
appropriate quality control thresholds can be used to prevent this
scenario resulting in high TIN contamination going undetected.

To further assess TINC’s performance, we compared out-
comes with the only alternative method available to assess
tumour contamination of normal samples, DeTiN8. DeTiN was
found to perform well with WGS data, generating results similar
to TINC (R2 scores exceeding 0.9 for both cohorts, note that R2

score is calculated for TIN/TIT ratio) (Fig. 2d, e, and Supple-
mentary Fig. S1). However, TINC is more flexible as it can process
copy number segments regardless of which CNA caller has been
used. In contrast, DeTiN requires mean allele fraction of minor
parental allele at each segment and two centred segment copy
ratio data. In addition, TINC generates absolute TIN and TIT
values which are directly compatible with orthogonal minimal
residual disease (MRD) tests used in clinical practice. The DeTIN
ratio can be converted to absolute TIN value if a separate calcu-
lation for the tumour purity estimate (TIT score) is performed
using copy number calling data and used for calibration. How-
ever, TINC is able to estimate absolute TIN value without resort-
ing to any additional external inputs.

Experimental validation of TINC performance
To further validate TINC, contamination estimates for a cohort of
participants in the 100,000 Genomes Project with haematological
cancers (see Contamination analysis of clinical samples) were com-
pared eitherwithmolecularMinimalResidualDisease (MRD) test using

real-time PCR assessment of rearranged immunoglobulin/T-cell
receptor genes or flow cytometry test for leukaemia-associated
immunophenotype (Fig. 3; FACS sequential gating strategies in Sup-
plementary Fig. S3). For 53 ALL and 10 AML samples assessed (Fig. 3),
the estimates fromTINC andMRDwere consistent, with the same four
of 63 samples considered as being contaminated (i.e. TIN contamina-
tion >1%). In order to extend experimental validation to additional
samples with TIN, we included in our validation cohort seven addi-
tional ALL samples not meeting the 100,000 Genomes Project sample
collection criteria (Fig. 3). Consistent with observations from the in
silico validation experiment, the TIN value was underestimated when
compared with experimental data but still very significant for samples
with high TIN.

TINC implementation in a high throughput bioinformatics
pipeline
TINC has been implemented as an essential quality control step for
contamination assessment in the high-throughput bioinformatics
pipeline at Genomics England (Fig. 4a). Using variant call format (VCF)
files generated in the somatic SNV and CNA detection components of
the analysis pipeline, TINC classifies normal samples as “PASS”, “FAIL”
or “Cannot estimate TINC reliably”, based on the level of TIN and TIT
detected. For all analysed samples, TIT andTIN scores are presented as
read-fractions (RF), i.e. the fraction of reads in a given sample origi-
nating from the tumour. Samples with TIN >1% are classified as “FAIL”
indicating an alternative analysis not reliant on the matched normal
sample should be conducted (for example, using an unmatched nor-
mal sample from another individual). As deconvolution of the VAF
distribution is typically unreliable for tumour sampleswith low tumour

Fig. 2 | In silico validation of TINC performance. a Generation of test data by in
silico contamination of patient WGS datasets. A range of TIN levels were generated
from tumour and normal BAM files, injecting tumour reads in the normal BAM to
achieve a desired level of TIN contamination. Somatic variant calling of small var-
iants andCNAswasperformed by pairing the original tumour BAMwith the in silico
contaminated normal, and the resulting calls used for TINC analysis.b Performance
of TINCwith the in silico contaminated haematological cancer samples. The scatter
plot compares the expected TIN contamination (based on in silico contamination)
to TINC estimates. Both axes report the score in read fractions for the tumour (RF).
Eachpoint is coloured by the percentage of clonalmutations used by TINC, relative
to the original uncontaminated sample. The fraction of clonalmutations decreases
with increasing contamination, due to the limitations of variant callers that fail to
report genuine somatic variants (false negatives). With few clonal mutations,
identifying clonal peaks is more difficult; in this case clonal variants are also biased

towards those with lower support in the normal sample. Line fits were performed
by linear regression (testswith Pearsonmethodwith two-sidedp-value and squared
correlation coefficient). c Performance of TINC with lung cancer samples con-
taminated in silico. The same information available in (b) is provided. These
tumours have a higher fraction of CNAs compared with haematological cancers
that are represented by triangles and squares. Fits and tests are as in (b).
d, e Performance of DeTiN and TINC on the haematological and lung cancer
samples shown in (b) and (c). Consistent with the definition of DeTin, the relative
tumour DNA abundance in the normal and tumour samples is shown on the x-axis.
This plot is restricted to cases with a maximum ratio of 20%, which includes sam-
ples within the anticipated contamination range for use in clinical reporting (full
plot, Supplementary Fig. S1). The y-axis shows the ratio betweenTIN and TIT scores
returned by the two tools. Fits and tests are as in (b). Source data are provided as a
Source Data file.
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purity, samples with a TIT score estimated at <25% are considered as
not eligible for TIN estimation (cluster of samples with clonal/total
mutations ratio = 1 on Fig. 4b) and classified as “Can’t estimate TIN
reliably”. This cutoff has been estimated using a cohort of 617 whole-
genome samples (see Contamination analysis of clinical samples), and
accounts for i) samples with genuinely low tumour purity and for ii)
samples for which TIT is underestimated due to high TIN (i.e., extreme
high TIN causing catastrophic subtraction of clonal somatic SNVs).

In order to mitigate the potential loss in variant calling sensitivity
due to TIN contamination, in the Genomics England bioinformatics
pipeline (Pipeline 2.0), small variants and structural variants in hae-
matological samples with TIN >1% or samples where TIN can’t be
estimated are also analysed in a parallel pipeline, without subtraction
using the patient’s germline (tumour only). In this pipeline, filtering of
contaminating germline variants is performed for variants with
population allele frequency >0.01 in population databases, and
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potential sequencing artefacts using a Panel of Normals (PON)
approach (Online Methods). The results of the two pipelines are sub-
sequently merged and analysed together in the annotation and inter-
pretation workflow (Fig. 5a). This hybrid configuration allows high-
confidence somatic variants from the paired tumour-normal pipeline
to be combined with variants of uncertain origin from tumour only
pipeline, to ensure no reduction in overall sensitivity. The filtering
thresholds have been optimised to reduce the number of non-somatic
variants in clinically relevant genes returned using the tumour-only
pipeline without compromising sensitivity for identifying true somatic
variants selected from a manually curated set of 65 haematological
samples (Fig. 5b, c). In order to demonstrate sensitivity for somatic
variant detection despite increasingly high levels of TIN contamina-
tion, we compared the sensitivity of the paired tumour-normal pipe-
line (Fig. 5d) with the tumour-only pipeline (Fig. 5e).

Contamination analysis of clinical samples
To assess the clinical impact of implementing TINC in a bioinformatics
pipeline, TINC was used to analyse 771 tumour-normal pairs from
participants in the 100,000 Genomes Project with either haematolo-
gical cancer (n=617) or sarcoma (n = 154). All sampleswere re-analysed
through the Genomics England Pipeline 2.0 (Online Methods). Since
TIN contamination is not expected to be a frequent occurrence for
sarcoma samples, these samples were included as a control group for
comparison. Normal DNA used for WGS was derived from blood, cul-
tured fibroblast, saliva or skin biopsy samples. TIN scores were
determined only for the samples with TIT score above 25%.

The haematological malignancy samples covered a wide range of
the most common clinical indications: AML (n = 168), chronic lym-
phocytic leukaemia (CLL, n = 158), MM (n = 87), ALL (n = 90), myelo-
proliferative neoplasm (MPN, n = 58), chronicmyeloid leukaemia (CML,
n = 57), diffuse large B-cell lymphoma (DLCBL, n = 23), low and mod-
erate gradenon-HodgkinB-cell lymphoma (Low/midgradeNHL,n=20)
and high-risk myelodysplastic syndrome (High-risk MDS, n = 20). Nor-
mal sample collection was performed according to criteria established
for the 100,000 Genomes Project (Supplementary Table 1).

Of the 771 cases assessed, CNA and SNV data were incorporated
for 758 cases, with TIN score estimated using SNV data only (due to
sample ploidy notmatching TINC criteria) for 13 cases. The proportion
of cases for which TIN contamination was observed (tumour read
fraction in normal sample >1%) varied across the cancer subtypes
(Fig. 6a–c). As expected, no normal samples derived from the cultured
fibroblasts had TIN >1%. Notably, the two cancer subtypes with the
highest fraction of contaminated samples wereMPN andAML. 22 of 24
(91%) of sorted CD3+ T cell-derived normal samples forMPN cases and
43 of 114 (38%) saliva-derived normal samples for AML cases were
found to be contaminated, consistent with previous reports11–13. It is
worth noting that saliva samples were accepted as a normal sample in
myeloid malignancies only if sufficient treatment has been given to
remove all circulating myeloid cells from the peripheral blood, e.g.
after administration of anthracycline chemotherapy in patients
receiving intensive induction in AML.

In contrast, among the sarcoma samples, only 2% were found to
be contaminated (4out of 154, 3 out 4with TINCbelow2%). This canbe

explained by the fact that twoof the contaminated normal samples for
sarcoma patients were derived from fresh frozen muscle tissue, which
can present a higher risk for contamination than blood in patients with
solid cancers. In an additional group of ALL cases for whom the sample
collection procedures did not meet the criteria specified for the
100,000Genomes Project, 11 of 46 (24%) showed contamination. A full
description of the samples tested and the TINC results are provided in
Supplementary Figs. S4–7.

To assess the incidence of essential somatic variants being at risk
of inappropriate subtraction during tumour-normal analysis, we
computed the read-support in tumour andnormal samples for hotspot
mutations in the AML and MPN patient cohorts. We focused on genes
with the highest prevalence of somatic mutations in haematopoietic
and lymphoid tissue in COSMIC: JAK2, FLT3, DNMT3A, TP53, KIT, NRAS
and IDH2, and defined hotspot mutations as those found in at least
100 samples in COSMIC. Of 108 high-confidence hotspot mutations
with VAF in tumour >5% identified in the AMLandMPN samples, 51 had
a VAF >1% in the normal sample and 27 >5% (Supplementary Fig. S8).
We found hotspotmutations with a VAF >10% in the normal samples in
6 AML cases with DNMT3A p.R882X, 5 with IDH2 p.R140Q, 3 with JAK2
p.V617F and 1 with TP53 p.R273X, IDH2 p.R172K andNRAS p.Q61X, and in
4 MPN cases with JAK2 p.V617F.

This set of mutations overlaps with those commonly found in
clonal haematopoiesis of indeterminate potential (CHIP)14,15, the pre-
sence of a pre-cancerous clonally expanded hematopoietic stem cell
population, caused by a somatic mutation that can, potentially, cause
malignant transformation. In order to investigate further the rela-
tionship between CHIP and TIN contamination, we scanned the
sequencing data for the normal samples in the cohort of 168 AML
patients for thepresenceof 168pointmutations previously reported in
genes linked with CHIP and myeloid malignancies (IDH2, PRPF8,
PPM1D, SRSF2, TP53, GNB1, ASXL1, GNAS, RUNX1, SF3B1, DNMT3A,
MYD88, CCND3, TET2 and JAK2)15. We observed a weak correlation
between TIN score and VAF for the CHIPmutations in normal samples
(Supplementary Fig. S9) that can reflect complex phylogenetic rela-
tionships between the hematopoietic and the AML clones. Overall we
demonstrated that TINC was able to flag normal samples with recur-
rent CHIP mutations, and to trigger a hybrid pipeline that includes
tumour-only analysis in order to report the true extent of tumour
mutations (including CHIP).

The availability of WGS allows us to examine the extent of con-
tamination for all tumour clonal mutations, going beyond hotspot
ones (which are usually clonal). In Fig. 7 and Supplementary
Figs. S10–S11 we report two example cases of AML patients from the
100,000 Genomes Project with tumour in normal contamination. In
the first case, 982 diploid SNVs are analysed by the TINC test (see
Fig. 7a–c for VAF distribution in tumour and normal samples), of which
378 are identified as clonal mutations by deconvolution analysis (teal
dots on Fig. 7e). Deconvolution analysis identified two clusters of
subclonal mutations in addition to the clonal cluster (green and blue
peaks in Fig. 7d, top). The allele fraction in the normal sample for the
clonal variants peaks at ~8% (Fig. 7d, bottom), indicating that
approximately 16% of cells sampled in the normal sample are of
tumour origin (Fig. 7f). In this case, the analysis performed during the

Fig. 4 | TINC test implementation inGenomics Englandpipeline. a Somatic SNVs
are used in TIN assessment; by default all variants are used. If run with CNA inte-
gration, only SNVs mapping to the most prevalent copy state are used. The sup-
ported copy states are 1:0 (loss of heterozygosity, LOH), 1:1 (heterozygous diploid),
2:0 (copy-neutral LOH), 2:1 (triploid) or 2:2 (tetraploid genome-doubled) TIN
contamination is estimated for samples with tumour purity (TIT score) >25%.
Samples that can be analysed are assigned a TIN score, which can be converted into
tumour read fractions (RF) detected in the normal sample, and used to determine a
final status for the presence or absence of contamination. The threshold imple-
mented at Genomics England to determine PASS status (TIN contamination

undetected) versus FAIL (TIN contamination detected), is set to 1% RF. b Scatter
plot reporting the ratio between the number of clonal mutations over total muta-
tional burden, against estimated sample purity (TIT) for 617 WGS samples of hae-
matological cancers. When clonal/total mutations ratio = 1, TINC did not separate
clonal somatic variants from subclonal variants and TIN estimates are less reliable.
Themajority of sampleswith ratio = 1 are clusteredwith TIT score< 25%. The colour
of each point represents the sample contamination as estimated by our method;
the vertical dashed line represents the 25% purity cutoff for TINC analysis adopted
in Genomics England. Further details on this cohort and contamination assessment
are shown in Fig. 6. Source data are provided as a Source Data file.
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Fig. 5 | Hybrid variant calling pipeline for processing of samples with TIN
contamination. a Graphical representation of the pipeline that combines outputs
of paired tumour-normal run with high specificity and reduced sensitivity due to
TIN contamination and tumour only run (unmatched normal sample is used to
satisfy input requirements) with high sensitivity and low specificity due to unsub-
tracted rare germline variants. b, c Extensive filtering is therefore implemented to
reduce the number of variants in clinically relevant genes reported from tumour
only workflow. Panel of Normals (PoN) is applied to SNVs to reduce the number of

false positive findings due to sequencing artefacts. Population Frequency (PF) filter
is applied to reduce the number of common germline variants in tumour only run.
Filtering cut-offs are optimised for improving specificity without compromising
sensitivity. Application of these two filters significantly reduces the numberof SNVs
(b) and SVs (c) that require clinical review.d, e Sensitivity of SNV calling for samples
fromFig. 2bwith standard paired tumour-normal analysis (d) andwith tumour-only
pipeline (e). Source data are provided as a Source Data file.
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100,000 Genomes Project (Genomics England pipeline 1.0, Online
Methods) failed to detect a driver somatic hotspot variant in the JAK2
gene (ENST00000381652:p.V617F) due to TIN contamination (variant
supported by 50 out of 110 paired reads in the tumour, and 4 out of 34
in the normal; Fig. 7a). Additionally, a frameshift deletion in TP53
(ENST00000269305:c.594delA) was observed at 28% VAF in the nor-
mal sample raising uncertainty as towhether this variant is germline or

somatic (variant supported by 41 out of 90 paired reads in the tumour,
and 6 out of 21 in the normal), a classification that is important for
clinical reporting. Additionally, if somatic, as this variant has a higher
VAF in the normal sample than all other somatic variants (Fig. 7a) one
canhypothesise that it is amarker ofCHIP. In the second example case,
358 clonal SNVs are used to estimate TIN contamination, again at
approximately 16% tumour cells in the normal sample (Fig. 7g–i).
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Analogous to somatic small variant calling, somatic structural variant
calling also requires the subtraction of germline variants and therefore
TIN can result in false negatives. In this case, a diagnostic somatic PML-
RARA fusion was not detected due to TIN contamination (variant
supported by 25 out of 150 paired reads in the tumour, and 6 out of 52
in the normal), which would affect patient diagnostic classification16.
Further examples of the determination of TIN status using tumour-
normal pairs fromparticipantswithMPNs are shown in Supplementary
Figs. S12–S13.

Discussion
Typical tumour-normal analyses utilise a normal sample to identify the
patient’s germline variants, which are then subtracted from the variants
identified in the tumour to define the tumour-specific somatic muta-
tions. This approach is successful when high-quality normal samples are
available, but somatic variant detection is significantly impacted by
poor-quality normal samples, particularly those in which there is con-
taminating tumour DNA. The incidence of contaminated normal sam-
ples has been understudied, thus some tumour types and normal source
combinations may have an unforeseen prevalence of TIN contamina-
tion, making them unsuitable for a canonical tumour-normal analysis.

Our computational technology to assess TIN contamination
exploits tumour evolutionary principles to quantify the proportion of
contaminating tumour cells in a normal sample, using WGS data for
paired tumour and normal samples. The score generated by TINC is
simple to interpret and can resist confounding factors such as tumour
CNAs and tumour sample purity. Furthermore, it can be computed
automatically by integrating different data types, regardless of the
variant calling methodologies used. The TIN score therefore allows an
informed decision-making process to either proceed with variant
interpretation and reporting, or whether alternative variant calling
procedures are required, such as tumour-only analysis.

By applying TINC to WGS data from a large cohort of tumour-
normal pairs, we have performed a thorough investigation of TIN
contamination in the most common types of haematological cancers
and sources of normal DNA. Haematological cancers were the ideal
candidates for this assessment due to the natural spread of tumour
cells in the bloodstream. Previous studies have demonstrated that
saliva DNA from MPN patients can be positive for JAK2 p.V617F
mutations12,17. A more recent study also reported contamination in
saliva samples of MPN patients due to leucocyte presence in the oral
mucosa, and suggested the use of CD3+ T cells as a source of normal
sample11. Strikingly, we found that WGS data for normal DNA derived
from sorted CD3+ T cells for MPN patients show clear signs of con-
tamination and exhibit JAK2 mutations with high read support.

We also found a high prevalence of TIN contamination in saliva
samples for AML patients. Similar to our findings, other studies report
the oral cavity presents the first clinical manifestations of leukaemia18,
with gingival infiltration of AML cells demonstrated by biopsy19,20 and
most commonly seen in acute monocytic leukaemia and acute mye-
lomonocytic leukaemia13,21.

Given the incidence of these tumour types and current standard
practices for normal sample collection, findings with our TINC tool are
crucial for improving best practice guidelines for sample handling and

highlight the importance of thorough quality control processes, par-
ticularly when genomic data are used to inform clinical decisions.
Failure to identify TIN contamination increases the potential for false
negative somatic variants, particularly those that occurred within the
earliest stages of tumorigenesis and thus have the highest repre-
sentation in the sequencing data. These mutations could determine
disease course7, stratify patients with respect to treatment response
(McGranahan and Swanton 2017)22, and inform targets for therapy
(McGranahan et al. 2016)23, so failure to detect them carries a high risk
for clinical reporting, familial screening, and basic cancer research.

Reassuringly, our findings demonstrated the validity of specific
normal DNA sources (e.g., cultured fibroblasts) for haematological
cancers, and the overall lack of contamination in a class of solid
tumours (sarcomas). This analysis could be extended to a broader
range of cancer types, especially focusing on those that have begun to
spread (such as in late-stage patients) and might present contamina-
tion. However, the high incidence and level of contamination observed
for other tumour and DNA source types highlights the importance of
bioinformatics pipelines that can accommodate TIN contamination.
Some variant calling algorithms are now attempting to mitigate the
impact of contaminated normal samples4, but this is more difficult for
complex and structural variants for which variant calling from short
read data is more challenging and less well established.

The high proportion and high level of contamination observed for
some haematological cancer subtypes demonstrates the importance
of careful consideration of normal sample source and collection pro-
tocols. It is paramount that bioinformatics pipelines are capable of
detecting and reporting TIN contamination and subsequently miti-
gating the impact on somatic variant detection. Thus we recommend
that the assessment of tumour-in-normal contamination using a tool
such as TINC becomes part of standard quality control procedures for
tumour-normal matched pair analyses, especially in clinical settings
where data are being used in patient care.

Methods
Ethics
Approval for the 100,000 Genomes Genomics England project was
obtained from the national research ethics committee (IRAS ID
166046). Participants were selected on the basis of having been iden-
tified by healthcare professionals and researchers within the NHS as
having a cancer diagnosis. The participants were recruited across 13
NHS Genomic Medicine Centres and written informed consent was
obtained from the participants.

The TINC method
TINC tracks putative clonal somatic SNVs in the tumour and normal
samples to determine the overall purity of the tumour (TIT score), and
the contamination of tumour cells in the normal biopsy (TIN score). As
input it requires the read counts of somatic SNVs (e.g. Strelka2VCFfile)
and, if available, the CNA segments (e.g. Canvas VCF file).

TIT and TIN scores are computed as fractions (0 to 1). These can
be represented either as the fraction of tumour cells or the fraction of
reads originating from tumour DNA in the normal sample. These
values are equivalent if the tumour genome is diploid. The conversion

Fig. 6 | Application of TINC to the 100,000 Genomes Project dataset.
a Distribution of the estimated level of tumour in normal contamination for 771
tumour-normal pairs derived from participants in the 100,000 Genomes Project
(n = 617 haematological cancers, n = 154 sarcomas). Data are shown for haemato-
logical cancers of the subtypes: Acute Lymphoblastic Leukaemia (ALL), Acute
Myeloid Leukaemia (AML), Chronic Lymphocytic Leukaemia (CLL), Chronic Mye-
loid Leukaemia (CML), Diffuse Large B-cell Lymphoma (DLCBL), High-risk Myelo-
dysplastic Syndrome (High-risk MDS), Low and moderate grade Non-Hodgkin B-
cell Lymphoma (Low/mid grade NHL), Multiple Myeloma (MM) and Myeloproli-
ferative Neoplasm (MPN). Azure bars represent normal samples with TIN score >1%

expressed in read fractions, light grey bars l samples with score <1%. b Distribution
of normal sample source for haematological cancers. The fraction of normal
samples for which the DNA was derived from blood, saliva, fibroblasts or tissue
samples is shown for haematological cancers of different subtypes (AML, MPN,
High-riskMDSandCML). cTheproportion of normal samplesdetermined tohave a
PASS or FAIL status by TINC (1% read fraction threshold) is shown in light grey and
azure respectively for AML, MPN, High-risk MDS and CML cancers. The proportion
of cases that could not be analysed by Genomics England pipeline (tumour purity
estimated to be below 25%) is shown in dark grey. Source data are provided as a
Source Data file.
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between the two values (cell fraction and read fraction) requires the
knowledge of tumour CNAs in order to normalise observed VAF values
for the tumour ploidy profile.

Bulk tumour deconvolution. The subset of clonal SNVs is derived
from the input set of somatic variants using the MOBSTER mixture
model9,24. For data x, the likelihood is that of a (k + 1)-dimensional

Dirichlet mixture

f ðxjθ,πÞ=π1PLðxjθÞ+
Xk

i = 2

πiBetaðxjθÞ ð1Þ

Here θ are model parameters considering the density function
PLðxjθÞ of a Pareto Type-I power law, and BetaðxjθÞ for a Beta
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distribution; π are mixing proportions representing the proportion of
mutations assigned to each cluster.

The fit is carried out to select the best possible model, using a
score function based on the principles of the integrated classification
likelihood (ICL), which extends the likelihood f ðxjθ,πÞ with a regular-
isation for the complexity of the model—measured by jθj+ jπj—akin to
the Bayesian information criterion, and include the separation of the
clusters through an entropy term defined over latent variables zn,k
(clustering responsibilities)

ICL= � 2 log ðxjθ,πÞ+ ðjθj+ jπjÞ log ðnÞ+ Σzn,k
zn,k log ðzn,kÞ ð2Þ

Through a gradient-based procedure, MOBSTER optimises the
value of k and the presence of the tail in the data as defined by the PL
density, improving largely over standard methods for subclonal
deconvolution9. In general, MOBSTER can be used to study the full
tumour architecture, amore broad and complicated problem than just
determining clonal mutations, as we perform here; nonetheless, the
tool is fast and provides precise evolutionary information that TINC
can use to estimate contamination.

From MOBSTER fits we obtain a set of vector-valued latent vari-
ables zn,k reporting the probability of each inputmutation to bepart of
one of a set of clusters; these contain the normalised posterior den-
sities

zn,k = ½πkgðxjθkÞ�=½Σi πigðxjθiÞ� ð3Þ

were gð�Þ are the density functions used in themixture (power-law
and Beta, depending on the component index i).

By design MOBSTER labels with “C1” (or C1) the set of mutations
with the highest VAF. These should be the clonal mutations we need in
TINC, unless there are CNA events in the data and TINC is run without
input CNAs. If that is the case, e.g. the tumour bears some miscalled
large loss of heterozygosity (LOH), then C1 might be artifactually
related to the CNA event. Mistaking such a cluster for clonalmutations
would inflate TIT and TIN estimates; therefore TINCmapsmutations in
C1 to chromosomes, and tests for their enrichment when it is run
without CNA data.

Mutations mapping is done by a function mapð�Þ that returns the
chromosome counts were a set of mutations map onto the genome.
Cluster C1 is rejected—as the putative clonal cluster—by using an
empirical 60/20 rule: if more than 60% of mutations in C1 map to less
than 20% of the chromosomes (we define this to be the case in which
mapðC1,0:6Þ<0:2). The 60/20 cutoffs are determined from analysis of
pan-cancer WGS data at Genomics England.

When C1 is rejected, TINC performs a recursive test for clusters
with progressively lower Beta means, stopping when a suitable cluster
is found or all clusters are rejected; in the latter case, TINC determines
it is impossible to assess reliable clonalmutations. Inpractice, theTINC

algorithm selects Ci such that

mapðCi, 0:6Þ>0:2 ^ 8j < i:mapðCj, 0:6Þ<0:2 ð4Þ

When TINC is run with CNA data this test is not required since we
are already filtering mutations by the tumour’s most prevalent kar-
yotype. This choice allows control for CNAs that confound the VAF
distribution10.

Note that by running TINC with CNA one elicits the assumption
that CNA segments are correct. We also note that, using CNAs for
tumour with high friction of CNAs (i.e., cases with copy neutral LOH,
triploid or tetraploid genomes etc.), themutations associated with the
cluster with highest VAF are those that happened before the copy
number event. In other words, if we work with a tumour that is pre-
valently triploid with two and one copies of the major and minor
alleles, the putative subset of clonal mutations thatwe find in the high-
VAF cluster have happenedbefore the amplification of themajor allele.

When TINC has identified a clusterw of putative clonalmutations,
it selects the ones with assignment probability above a threshold
z + >0, disregarding all others. I.e., it defines

C = fnjzn,w > z + g ð5Þ
If there are not enough such mutations, z is decreased until we

include a predefined number of mutations that the user can decide.
For instance, TINC can be parameterised to search for all mutations
with at least 90% probability to be assigned to the clonal cluster,
requiring at least n= 150 mutations back. With its dynamic-cutoff
strategy, TINC might determine that, in order to select 150 clonal
mutations, z + must be decreased to 80%:

Bulk normal deconvolution. Read counts for putative clonal
mutations are collected from the normal biopsy, and then used by
TINC to fit a Binomial mixture model. This is available in the
open-source R package BMix9, which provides univariate Binomial
and Beta-Binomial mixtures. For a set of clonal mutations with
associated sequencing depth d >0, and r ≥ 0 reads with the
alternative allele, we use the likelihood

f ðx = ½r,d�jθ,πÞ=
Xk

i = 1

πiBinðrjd, θÞ ð6Þ

Herewe have amixture of k ≥ 1 components,where b is a Binomial
density function for d trials with r successes, and unknown success
probability p (parameter in θ). In this case BMix optimises the value of
k scoring models similarly to MOBSTER, and then returns clustering
assignments, latent variables, and Binomial parameters p1,:::,pk similar
to MOBSTER9.

TIT and TIN scores. The computation of TIN and TIT scores is done
after deconvolution of tumour and normal bulks. In both cases TINC
uses the same principle to normalise for the tumour genome

Fig. 7 | Examples of TINC test outputs. a Scatter distribution of somaticmutation
VAF in tumour and normal samples (a–f represent case 1). VAF is shown for n=982
mutations detected from WGS data which reside within heterozygous diploid
regions in the tumour genome. Two variants of clinical significance are highlighted;
aTP53 frameshift deletion (c.594delA) and a JAK2V617Fmutation. Neithermutation
would be detected using a standard tumour-normal calling pipeline, due to the
tumour contamination in the normal.b, cHistograms of VAF values for tumour and
normal samples in (a).dDeconvolutionanalysiswith TINC.n= 378 clonalmutations
were identified in the tumour using MOBSTER (upper panel) with mean VAF ~45%
(cluster C1). Subsequent deconvolution determines one cluster in the normal
sample for the corresponding mutations with a VAF peak at about ~8% (lower
panel). e Representation of somatic mutation VAF in tumour and normal samples.
After deconvolution of somatic mutations (d), clonality can be attributed to the

mutations in (a)—clonal mutations with teal dots. f TIT and TIN scores can be
determined from the parameters fit by the deconvolutionmethods, accounting for
the copy state of somatic SNVs. In this case, the data indicate an overall tumour
purity of 90% (TIT score, high-purity tumour sample) and tumour-in-normal con-
tamination level of ~16% (TIN score). g Representation of somatic mutation VAF in
tumour and normal samples (g–i represent case 2) as in (a–c). For this case, a
previously identified (by Fluorescence in situ hybridisation) translocation resulting
in a PML-RARA fusion was not detected using a standard tumour-normal analysis
pipeline.hDeconvolution identifies a cluster of clonal somaticmutations of n = 358
SNVs (cluster C1) with VAF ~30%. i Representation of contamination in tumour and
normal samples. TIT and TIN scores determined by TINC, expressed in cellular
proportions and adjusted for copy number states, show a tumour purity of ~60%
(TIT), and tumour contamination of the normal sample of ~16% (TIN).
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karyotype, which requires knowing copy number data or assuming a
known state (e.g., diploid).

We use our CNAqc open-source R package for WGS to make
these conversions10. For mutations mapping on a genome seg-
ment with m copies of the minor allele, M of the major, allelic
frequency v and mutation multiplicity μ (i.e., number of copies
of the mutation on the genome), the tumour purity ρ is deter-
mined by

½μ+ νð2�m�MÞ�ρ=2v ð7Þ

Solving for ρ we determine the percentage of tumour cells in the
biopsy.

When TINC is run without CNA data, the model assumes that the
above equation is to be solved for a diploid tumour (m=M =μ= 1).

This equation is used for both TIT and TIN estimation, using dif-
ferent values for v in the tumour, and in the normal.

• For TIT, v is themeanVAF of clonalmutations identified by TINC
(mapping to cluster w in MOBSTER analysis)

v=meanfVAFx jx 2 wg ð8Þ

• For TIN, v is expressed as a linear combination of the Binomial
peaks and cluster sizes reported by BMix, i.e., a mean of p1,:::,pk

weighted by the mixing proportions π1,:::,πk ,

v=
Xk

i= 1

πipi ð9Þ

For the normal biopsy, we use all the mutations determined in
the tumour as clonal (red MRCA in Fig. 1b). One could be tempted to
subtract those with VAF above 0 from that set, which are theoreti-
cally those accruing from the MRCA of both the cells in the tumour
and the normal (yellow MRCA in Fig. 1b). However, we are expecting
to work with quite low VAF values corresponding to a normal
with contained levels of contamination. Given the median
coverage of WGS assays available in Genomics England for normal
biopsies (30x), we cannot neglect a strong effect of Binomial
sampling (sequencing observational model) on the observed counts.
For this reason, retaining all highly-confident clonal mutations in the
tumour is a reasonable conservative choice. Their effect on TINC
estimation is weighted by their proportions, as obtained from BMix
clustering.

TIT andTIN scores can be finally converted to units of read counts
by solving for another equation. If wedenotewith λ the tumour cellular
fraction, the read counts fraction η is

η=
λðm+MÞ

λðm+MÞ+2� 2λ
ð10Þ

This equation follows from simple arguments about allele
multiplicity10,25,26.

Complementary multivariate analysis. A variational Binomial mix-
ture model is used jointly on read counts data of both the tumour and
normal biopsies; this is available through the VIBER open-source R
package9, which is designed to implementmulti-dimensional mixtures
with arbitrary dimensions.

This type of mixture is semi-parametric and determines the
number of clusters in an automatic fashion via variational inference,
using the likelihood function

f ðxjθ,πÞ=
Xk

i = 1

πiBinðrt jdt ,θi,tÞBinðrnjdn, θi,nÞ ð11Þ

where the counts are considered for both the normal (dn and rn) and
tumour (dt and rt) assays. Here we are assuming that the counts are
independent, as obtained from two sequencing runs.

From VIBER outputs TINC checks the position of the clonal
mutations identified for tracking.When these associate a single cluster
—as one might expect—we can obtain an alternative TIT and TIN set of
scores; TINC uses these to confirm the original estimates obtained by
using MOBSTER and BMix, and reports this further evidence to the
user. However, we note that results from this joint analysis do not fully
count as a joint recalling step of somatic variants, as available by
default in DeTIN8, for instance. This is because the input to this analysis
is obtained from the standard paired tumour-normal workflow, and
therefore the input itself is affected by the false negative calls. In the
future, however, onemight thinkof extendingTINCby implementing a
straightforward recalling step through a pileup of variant read counts
data from both the tumour and normal samples. In this sense, since
VIBER outputs are already available inside the TINC object, adding this
feature should not be complicated besides the cost of preparing the
data by a pileup.

Comparison with DeTIN
DeTIN8 was run with both somatic single-nucleotide variants (SSNVs)
and allele-specific somatic copy-number alterations (aSCNAs) as input.
DeTiN estimates contamination for each of these somatic variant types
separately, and then combines them into a single value which we
report here.

SSNVs were generated with the Genomics England Pipeline 2.0.
We used GATK’s (v4.0.4.0) CNA analysis suite (https://github.com/
broadinstitute/gatk), utilising a panel of normals, to generate the
aSCNAs input required for DeTIN.

Mapping/variant calling pipeline
Genomics England Pipeline 2.0 (implemented in November 2020).
All samples were sequenced onHiSeq platform to an average coverage
of 100x for tumour and 30x for normal. Read alignment against the
human reference genome GRCh38+Decoy+EBV was performed with
DRAGEN software (version 3.2.22). Small variant calling together with
tumour-normal subtraction was performed using Strelka (ver-
sion 2.9.9).

In addition to default Strelka filters we applied the following
additional filters in order to reduce the false positive rate in the set of
somatic variants:
1. Variants with a population germline allele frequency above 1% in

the Genomics England dataset of >6000 unrelated individuals or
gnomAD v2 datasets;

2. Recurrent somatic variants with a frequency above 5% in the
Genomics England dataset;

3. Variants overlapping simple repeats as defined by Tandem
Repeats Finder;

4. Small indels in regions with high levels of sequencing noise where
at least 10% of the basecalls in a window extending 50 bases to
either side of the indel’s call have been filtered out by Strelka due
to the poor quality;

5. SNVs resulting from systematic mapping and calling of artefacts.
We testedwhether the ratio of tumour allele depths at each somatic
SNV site were significantly different to the ratio of allele depths at
this site in a panel of normals (PoN) using Fisher’s exact test. The
PoNwas composedof a cohort of 7000non-tumour genomes from
the Genomics England dataset, and at each genomic site only
individuals not carrying the relevant alternate allele were included
in the count of allele depths. The mpileup function in bcftools v1.9
was used to count allele depths in the PoN, and to replicate Strelka
filters duplicate reads were removed and quality thresholds set at
mapping quality > = 5 andbase quality > = 5. All somatic SNVswith a
Fisher’s exact test phred score < 50 were filtered.
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Copy number aberrations were identified with Canvas 1.39.
Structural variants were identified with Manta (version 1.5).
Population germline allele frequency for the breakpoints of a
given structural variant is based on two internal panels of nor-
mals: GESG, which consists of germline variants coming from
single germline analysis of about 2200 samples, and GECG, which
consists of the variants detected as germline in paired tumour-
normal variant calling for about 2,500 cancer samples. If a variant
has two breakpoints, maximal value of allele frequency among the
two is reported.

Genomics England Pipeline 2.0 for samples with TIN contamina-
tion. Haematological samples with TIN > 1% or where TIN can’t be
estimated (e.g. due to TIT content < 25%) are also analysed in the
parallel pipeline run without subtracting variants from the
patient’s germline. Gender-matched platinum genome is used as a
normal sample to satisfy input requirements for Strelka and
Manta. Subsequent filtering of variants with population frequency
>0.01 and variants highlighted with PoN (see above) significantly
reduces contamination by unsubtracted germline variants and
sequencing artefacts. The results of two pipeline runs are sub-
sequently merged and analysed together in the annotation and
interpretation workflow. In the WGS analysis results high-
confidence somatic variants from the paired tumour-normal
pipeline are highlighted with SOMATIC flag while the outcomes
of tumour only pipeline that pass filters are presented as variants
of UNCERTAIN origin.

In silico contamination data generation
Tumour-in-normal contamination was generated in silico for
cohorts of haematological and lung cancer tumour-normal pairs,
with samples selected based on a Ccube tumour purity estimate >
30% and baseline normal samples checked to ensure they were
not contaminated27. Various levels of tumour-in-normal con-
tamination were created for each tumour-normal pair by using
samtools to combine fractions of the normal and tumour BAM
files. The level of contamination was calculated accounting for
the purity of the tumour sample predetermined with Ccube27.
Using the in silico contaminated normal bam files TINC R package
input was generated using the Genomics England pipeline
outlined above.

Fluorescence-activated cell sorting (FACS) for quantifying MRD
A sequential gating strategy is applied at diagnosis to establish and
define patients leukaemia-associated aberrant phenotype (LAIP) using
comprehensive 8 colour panels (8–9 antibodies for B-ALL) and BD
FACS Canto II instrument. Data is analysed using FACS DIVA software
(BD).Once established, the same sequential LAIP gating is applied to all
follow up samples to quantifyMRD.MRD events found in the final LAIP
gate are reported as a percentage divided by the total number of CD45
positive “live” WBC events analysed. A “different from normal”
approach is also utilised when LAIP is similar to normal BM haemato-
poiesis or where there is marked regeneration in LAIP gates at later
time points.

Standard Flow MRD Panels include:
B-ALL MRD
CD19, CD20, CD66c/CD123, CD38, CD10, CD45, CD34, CD81
CD19, CD20, CD73/CD304, CD38, CD10, CD45, CD34, CD81
AML MRD
CD45, CD34, CD13, CD33, HLA DR, CD117, CD11b, CD15
CD45, CD34, CD56, CD33, CD38, CD117, CD11b, CD15
T-ALL MRD
CD56/TCR alpha/beta/TCR gamma/delta (cocktail), CD99, CD45,
CD5, CD7,CD3, CD4, CD8

CD56/TCR alpha/beta/TCR gamma/delta (cocktail), CD2, CD45,
CD5, CD7,CD3, CD4, CD8

Analysis of patients data
Samples and data collection. All samples as well as sample metadata
were collected as part of Genomics England 100,000 Genomes
Project28. Sample Specifications for haematological cancers are
described in Supplementary Table 1.

Identification of potential CHIP variants. The list of 168 CHIP-
associated SNVs was compiled from the literature15, gathering patho-
genic variants in the genes known to drive CHIP and myeloid malig-
nancies and identified in at least three cases in the cohort of 46,706
unrelated healthy individuals. For example, variants in the following
genes were included: IDH2, PRPF8, PPM1D, SRSF2, TP53, GNB1, ASXL1,
GNAS, RUNX1, SF3B1, DNMT3A, MYD88, CCND3, TET2 and JAK2. Geno-
mic data from the normal samples of 168 AML patients was scanned
withbcftoolsmpileup to calculate support forCHIP-associated variants.
In order to examine relationships between CHIP and contamination
estimated by TINC, VAF of CHIP-associated mutation in normal sam-
ples was correlated with TIN score (in Read Fraction units with SNVs
and CNAs used in calculation).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
TINC results used to produce figures in the manuscript are provided
as a Source Data file, in Excel format with multiple sheets and
anonymised sample IDs. Original sample IDs are available with a copy
of the data stored in the Genomics England Research Environment, in
the “/published_data_archive/paper_data/paper_data_RR306” folder.
The description of the data available in the Genomics England
Research Environment for this paper will be available under https://
re-docs.genomicsengland.co.uk/tinc_publication/. The sequencing
data and variant calls supporting the findings of this study are
available within the Genomics England Research Environment, a
secure cloud workspace. To access genomic and clinical data within
this Research Environment, researchers must first apply to become a
member of either the Genomics England Clinical Interpretation
Partnership, GECIP (https://www.genomicsengland.co.uk/research/
academic) or the Discovery Forum (industry partners https://www.
genomicsengland.co.uk/research/research-environment). The pro-
cess for joining the GECIP is described at https://www.
genomicsengland.co.uk/research/academic/join-gecip and consists
of the following steps: Your institution will need to sign a participa-
tion agreement available at https://files.genomicsengland.co.uk/
documents/Genomics-England-GeCIP-Participation-Agreement-v2.0.
pdf and email the signed version to gecip-help@-
genomicsengland.co.uk. Once you have confirmed your institution is
registered and have found a GECIP domain of interest, you can apply
through the online form at https://www.genomicsengland.co.uk/
research/academic/join-gecip. Once your Research Portal account is
created you will be able to log in and track your application.The
domain lead will review your application within 10 working days.
Your institution will validate your affiliation. You will complete our
online Information Governance training and will be granted access to
the Research Environment within 2 hours of passing the online
training. Source data are provided with this paper.

Code availability
TINC (https://github.com/caravagnalab/TINC/) is available as an open
source R package hosted at GitHub, and the release used for this
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manuscript is available at a Zenodo repository29. The TINC website at
https://caravagnalab.github.io/TINC/ presents detailed manuals and
RMarkdown vignettes for all TINC analyses. The source code to repli-
cate all the figures of this paper is available within the Genomics
England Research environment (under the “/published_data_archive/
paper_data/paper_data_RR306” folder). A copy of this data with
anonymised sample identifiers is also available in a Zenodo
repository30.
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