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Abstract

This doctoral thesis embarks on a comprehensive journey of exploring the potential of spectral X-ray

imaging in medicine, employing advanced techniques and cutting-edge technologies to harness the full

potential of X-ray interactions with matter. The study is divided into several chapters, each contribut-

ing to our understanding of how spectral imaging, particularly through photon-counting detectors and

synchrotron radiation X-ray setups, can revolutionize medical diagnostics and material characteriza-

tion. The research begins by describing the physics of X-ray interaction with matter through X-ray

attenuation and phase shift. It lays the foundation for the subsequent exploration of X-ray detection

methodologies, focusing on photon-counting detectors and addressing challenges like charge sharing

and pulse pile-up. A central theme of this work is quantitative imaging, focusing on material decompo-

sition as an intermediary process for computing material characteristics - material density and effective

atomic number. These quantities are derived through a mathematical framework that encapsulates

their connection to decomposed material maps. Innovative material decomposition techniques such as

singular value material decomposition were formulated and addressed through a comprehensive the-

oretical framework. The concept of effective atomic number as the material property was evaluated

by comparing the methods published in several papers. The exploration extends to spectral data

acquisition techniques, spanning dual-energy imaging systems available on earlier-generation clinical

CT scanners, multi-energy photon-counting CT scanners, and pre-clinical spectral imaging using syn-

chrotron radiation CT systems, discussing the advantages and disadvantages of each technology. The

photon-counting detectors as a state-of-the-art technology for clinical spectral imaging were addressed

in the framework of a virtual imaging platform developed at Duke University. The work consisted

of modeling a realistic spatio-energetic detector response including non-idealities like charge sharing

and pulse pile-up. The model was validated against real measurements and special attention was

focused on the influence of these non-idealities on the accuracy of spectral information, and thus the

correctness of quantitative information obtained from such datasets. Besides virtual investigation, the

thesis highlights the potential of the first clinical photon-counting CT scanner through the compara-

tive assessment with dual-energy CT, demonstrating the superiority of photon-counting CT in iodine

quantification at lower radiation doses. The investigation extends to synchrotron spectral CT, with a

specific focus on estimating the density and effective atomic number of adipose, fibro-glandular, and

cancer tissue. Synchrotron breast CT imaging was carried out at the SYRMEP beamline of Elettra, an

Italian synchrotron light source in Trieste, in the framework of SYRMA-3D (SYnchrotron Radiation

for MAmmography) collaboration. The research shows the potential to differentiate various breast

tissues based on their quantitative characteristics and lays the groundwork for other various spectral

synchrotron-based X-ray imaging setups.
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Introduction

In the context of medical imaging, quantitative measurement refers to the use of numerical data and

analysis to obtain information about the structure and composition of biological tissue or other ma-

terials being imaged. This approach differs from qualitative imaging, which simply provides visual

information (i.e., morphology) about the appearance of the tissue or material. Quantitative mea-

surement allows for the precise and accurate characterization of tissue properties, such as density,

composition, and possibly molecular structure, which can be valuable for various medical applications,

including diagnosis, treatment planning, and monitoring of disease progression. Until today, imaging

modalities based on different physical interaction mechanisms, such as X-ray, ultrasound, and mag-

netic resonance imaging, were designed to probe, directly or indirectly, some of the tissue properties.

For example, in magnetic resonance imaging (MRI), the body’s hydrogen atoms are excited by the

magnetic field and emit radio waves that are detected and used to generate images of the tissue. One of

the main research focuses in the MRI community is developing sequences for precise and standardized

measurements of tissue characteristic relaxation times T1 and T2
1 for quantitative MRI (qMRI). New

studies suggest that mean scan-rescan variations in measurements are 1.23 % [1], where T2 sequences

are useful for quantitatively assessing musculoskeletal tissues such as articular hyaline cartilage and

muscle composition [2] while measuring T1 time provides valuable insights for pathology detection,

contrast agent uptake, iron overload, blood perfusion, and disease progression in brain imaging [3].

Ultrasound (US) imaging is mostly qualitative technique that probes the resistance of tissues to the

flow of an acoustic wave and forms the signal as a difference in the acoustic impedance of tissues inside

the patient. More quantitative information using US waves can be obtained with US elastography,

which provides tissue stiffness or elasticity information to detect liver fibrosis, breast lesions, thyroid

nodules, and prostate abnormalities [4]. Another example is Doppler-US imaging which measures the

frequency shift of sound waves reflected off moving red blood cells, which is used to estimate blood

flow velocity, direction, and pressure gradients. Since their discovery in 1895, X-rays have been used to

produce opacity maps of the human body to visualize internal structures and detect abnormalities, rev-

olutionizing the field of medical diagnostics and significantly improving our ability to diagnose a wide

range of medical conditions and injuries. The revolution of X-ray imaging has come with Hounsfield’s

development of the computed tomography (CT) technique that enabled 3D volume reconstructions in

1971 2. The potential for quantitative imaging using X-ray interaction was realized very early, most

notably in the work of Alvarez and Mackovski [5] in 1976, who theoretically elaborated how exploring

1Longitudinal relaxation time (T1), refers to the time it takes for the hydrogen nuclei to return to their original
magnetic alignment after being excited by a magnetic field. Transverse relaxation time (T2), refers to the time it takes
for the magnetic alignment of the hydrogen nuclei to lose coherence due to molecular motion and other interactions.

2The first successful clinical scan of a cerebral cyst patient at Atkinson Morley Hospital in Wimbledon, London, UK.
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the energy dependence of X-ray-tissue interaction can be used to estimate the physical contributions

to image formation such as photo-electric effect and Compton scattering. It was 30 years later that

the first clinical spectral scanners reached the clinics and later provided the first iodine quantification,

virtual monochromatic images, and estimation of density and effective atomic numbers based on their

principles. Iodine quantification is routinely used in clinical practice as a contrast agent to enhance the

visualization of blood vessels, organs, and lesions. Virtual monochromatic imaging is a post-processing

technique that allows the reconstruction of CT images at a specific energy level, which is referred to

as a virtual monochromatic image. In conventional CT scans, the X-ray beam contains a range of

energies, resulting in polyenergetic images. Virtual monochromatic imaging aims to simulate what an

image would look like if it were generated using a single energy X-ray beam. Virtual monochromatic

images are beneficial in a wide range of clinical applications, including bone imaging, metal artifact

reduction, and better visualization of iodine contrast in blood vessels. In this thesis, we aim to push

the boundaries of traditional CT imaging by leveraging spectral information to quantitatively assess

tissue properties like density and effective atomic number. While some clinical scanners can provide

such data, the associated algorithms are still in their early stages, often lacking accuracy for broad

clinical use and leaving untapped potential. This thesis explores hardware and algorithmic aspects

of tissue characterization through spectral CT, and it presents both clinical and preclinical findings

using cutting-edge technology. More broadly, this thesis contributes to efforts to make medical imaging

more objective and standardized, improving early detection, enabling cross-comparison, and consistent

tracking of disease progression and treatment response.

The research performed in this thesis will be structured into several chapters as follows:

1. In the opening chapter, we will begin by examining the physics of X-ray interactions with matter,

shedding light on the effects of these interactions, such as X-ray attenuation and phase shift.

Next, our attention will shift to the technology behind detectors and the methods used to capture

signal variations caused by objects. Finally, we’ll wrap up the chapter by delving into the

principles of computed tomography and the technical approaches for extracting three-dimensional

data from a series of projection measurements. Although technical, this chapter is an overview

of common knowledge in the X-ray imaging community and will serve as a basis for a more

advanced approach to X-ray imaging.

2. In the upcoming second chapter, we will explore the notion of quantitative imaging. Our primary

focus will be on material decomposition, a fundamental aspect of clinical quantitative imaging

that serves as the basis for deriving other quantitative material maps. We will introduce the novel

solutions for material decomposition researched and developed in this thesis project, offering

comprehensive theoretical explanations. Additionally, we will delve into the idea of the effective
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atomic number, and provide a mathematical framework for calculating material density and

effective atomic number values based on the material decomposition process. It will become

clear that spectral measurements are essential 3 for material decomposition in clinical scanners.

3. The third chapter will focus on technical solutions for spectral data acquisition, such as dual or

multi-energy imaging systems. The spectral separation can be source-based and detector-based,

or a combination of the two, and we will discuss some of the commercially available methods.

The state-of-the-art photon-counting CT and synchrotron radiation CT to exploit phase-contrast

benefits will be introduced in more detail as results presented in this thesis were obtained using

such technology.

4. Next chapter will dive into a virtual (in-silico) framework for the realistic modeling of CT scan-

ners. We will discuss detector modeling as an important part of virtual simulation. The focus will

be on modeling photon-counting detectors in terms of spatial-energetic response including noise

model and all of the non-idealities such as charge sharing and pulse pileup effect. Validation of

the model against physical measurements will be presented and we will show how virtual study

can aid the development of state-of-the-art photon-counting detectors.

5. The fifth chapter contains results obtained from a first-ever clinical photon-counting CT model

produced by Siemens Healthineers and installed at Duke Health clinic in Durham, NC, USA.

In particular, we compared the performance of dual-energy SOMATOM Force and NAEOTOM

Alpha photon-counting CT scanners in generating more quantitative information from obtained

spectral measurements, such as iodine quantification and virtual monochromatic imaging (VMI).

6. In the sixth chapter an experimental work toward spectral imaging using synchrotron CT at

SYRMEP beamline at the Italian national synchrotron facility in Trieste, Elettra Sincrotrone

Trieste will be presented. The work will specifically focus on breast imaging, with the goal of

extracting tissue density and effective atomic number to better differentiate soft tissues within

the breast and cancer tissue.

7. In the final chapter, the potential for optimization of spectral synchrotron breast CT will be

explored. This work is particularly valuable for a transition of synchrotron spectral imaging in

clinical practice where radiation dose and efficiency play crucial roles.

3Simultaneous measurements of attenuation and phase at single energy can also be used to perform material de-
composition (see [6]), but technical solutions are not yet available for clinical practice and won’t be discussed in this
thesis.
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1 Physics of X-ray interaction and detection in tomography

1.1 X-ray attenuation and phase shift in matter

X-ray interaction with matter is governed by the intricate principles of physics that operate on the

atomic scale. However, when it comes to the practical application of X-rays in medical imaging, the

focus shifts from the individual atoms to the local averaged response of matter as a whole. Starting

from the microscopic scale, when diagnostic X-rays interact with an atom, they are scattered by bound

electrons. The amplitude of X-ray scattering caused by a single atom is called the atomic form factor.

The atomic form factor is a function of a scattering vector q(r) as given in equation 1.

f(q, ℏω) = f0(q) + f ′(q, ℏω) + if ′′(q, ℏω) (1)

The first term

f0(q) =

∫
ρe(r)e

iq·rd3r =


Z, |q| → 0

0, |q| → ∞
(2)

of equation 1 represents the Fourier transform of the electron density distribution ρe of the atom.

Notably, for forward scattering (q → 0), f0(q) approaches atomic number Z for nonionized atoms or

Z − I for ions with ionization state I [7]. The real and imaginary corrections, f ′ and f ′′, respectively,

depend not only on q but also on ℏω, capturing the resonance properties of atomic orbitals, particularly

at absorption edges where the magnitude is maximum. The real part of the atomic scattering factor

f ′ describes the dispersion or phase shift of the scattered radiation due to the interaction of the

X-rays with the electrons. The imaginary part f ′′ accounts for the absorption of the radiation by

the electrons. Form factors are tabulated in international databases which are used for wide-angle

diffraction experiments such as crystallography. However, for forward-directed beam propagation and

small angle diffraction conditions which are met in medical X-ray imaging, the optics are insensitive

to the interatomic distances, and matter is probed only in the form of its local averaged response. On

the macroscopic scale, X-ray interaction with matter is described by the refractive index n defined as

a complex quantity:

n = 1− (δ − iβ) (3)

Thus, the X-ray index of refraction is a continuous property of matter, rooted in atomic properties

such as elastic scattering of bound electrons within the medium. The imaginary part f ′′ accounts for

the absorption of the radiation by the electrons. The dispersion term δ of the X-ray refractive index

is related to the atomic form factor and the number density of atoms ρa (atoms per volume) as:

13



δ =
r0λ

2

4π
ρa(r)[Z + f ′(ω)] (4)

Here, r0 = 2.82 × 10−15 m is the Thomson scattering length, and f ′(ω) is the real part of the

atomic form factor. Using relation ρa = ρNA

A and assuming the condition where X-ray energy is far

above any absorption edges of biological tissues (dominated by light elements C, H, O, N, S, P), the

equation can be approximated as:

δ ≃ r0λ
2NA

2πA
ρ (5)

where ρ is mass density and NA is an Avogardo number, because A ≈ 2Z. Similarly, the imaginary

component β of the index of refraction is given by:

β =
r0λ

2

2π
ρa(r)f

′′(ω) (6)

As an X-ray described as a plane wave eikL with a wavenumber k = 2π
λ transitions to a homogeneous

medium with index n, the transmitted plane wave eikL(1−δ+iβ) undergoes changes in amplitude and

phase as given in equation 7

eikL(1−δ+iβ) = eikL e−ikδL e−kβL , (7)

where the phase retardation ∆ϕ, proportional to the material’s traversed length L and δ, is ex-

pressed as e−ikδL ≡ e−i∆ϕ. The decrease in amplitude is governed by the factor e−kβL, leading to an

intensity decrease given by:

I/I0 = |e−kβL|2 = e−2kβL = e−µL (8)

This equation establishes the relationship between the linear attenuation coefficient µ and β as:

β =
µ

2k
=

µλ

4π
. (9)

The wavelength of diagnostic X-rays varies roughly from 0.1 nm to 0.01 nm, roughly corresponding to

an energy range from below 20 keV to about 150 keV. Although X-rays with a much shorter wavelength

are highly penetrating, they provide little low-contrast information and therefore are of little interest

to diagnostic imaging [8]. For soft tissues, the dissimilarity in β is most pronounced within the lower

energy X-rays (below 40 keV), but, the significant absorption of low-energy X-rays within the human

body imposes limitations on signal-to-noise ratios requiring increased radiation doses. Consequently,
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higher average X-ray energies are used in clinical imaging, hampering the capacity to discern small

attenuation differences between soft tissues. The differences between soft tissues are better observed

by measuring the phase perturbations by an object, but the acquisition setups required to detect this

change using a conventional X-ray source are far more complicated and have not yet been implemented

in clinical practice. We will discuss the application of synchrotron X-ray imaging which provides

sufficient characteristics of the beam for measuring phase contrast in section 3.3.

1.2 X-ray detection in medicine

Most clinical X-ray machines use tubes that produce continuous spectrum and energy-integrating

detectors. As a result, the opacity maps obtained this way are a weighted average of X-ray spectral

shape and detector response curve. Energy-integrating detectors in medical imaging operate based

on the principle of integrating the total energy of incident X-ray photons [9]. The detector bulk

typically consists of a scintillator that converts X-rays into visible light, which is then captured by

a photodetector. The scintillator emits light in proportion to the energy of the incoming X-rays. A

photodetector, often a photodiode or photomultiplier tube, then converts this light into an electrical

signal. These types of detectors are referred to as indirect conversion detectors. Direct conversion

detectors mostly consist of an amorphous selenium-based sensor that directly converts X-rays to charge.

Independently of signal generation, the energy-integrating detector systems integrate the electrical

signal over a certain time period, effectively summing up the energy of all the X-ray photons that strike

the detector during that interval. The resulting signal is proportional to the total energy deposited in

the sensor and is used to create a grayscale image, with pixel intensities representing the radiation dose

received at each point in the imaged object. Since higher-energy photons deposit more energy and

generate a stronger signal, they contribute more to the integrated signal. It is to say, energy-integrating

detectors weigh more X-rays of higher energy which carry less contrast information compared to low-

energy X-ray photons. In the aftermath of the detection process, measured signals between tissues

are very similar except for the case of very different tissues or administered contrast agents, and

differentiation between soft tissues becomes a very difficult task.

1.2.1 Photon-counting detectors

Photon-counting detectors (PCDs) operate inherently differently from energy-integrating detectors.

Instead of integrating multiple X-rays arriving at the detector in a given time frame, in photon-

counting detectors each photon is counted as soon as it creates enough electrical signal to surpass

the predetermined threshold. Thus, photon-counting detectors alleviate the problem of the elevated

contribution of high-energy X-rays existing in energy-integrating detectors and provide a more uniform
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detector energy response by counting photons one by one. The energy threshold can be placed at a

desired energy level by adjusting the pre-determined voltage. Targeting the energy range just above

the region where electronic noise dominates over the signal removes the electronic noise [9]. Due to

the direct conversion of X-rays to electric signals that eliminates the need for a scattering scintillation

layer often used in energy-integrating detectors, the cross-talk between adjacent pixels in PCDs can be

reduced, allowing for smaller pixel sizes and improved resolution. Noise cancellation and smaller pixel

sizes are two other big advantages of PCDs over energy-integrating detectors. The scheme of a photon-

counting detector system shown in Fig. 1 comprises several key components that work collaboratively

to detect and quantify incident photons. The scheme describes Application Specific Integrated Circuit

(ASIC) which performs signal collection and processing [10].

Figure 1: The photon-counting detector ASIC’s analog component includes a preamplifier that am-
plifies the charge signal generated by an X-ray and gathered via a bump pad. It also incorporates a
shaper to adjust the signal’s waveform, as well as a comparator. Following the analog stage, the signal
undergoes digitalization through a pulse generator, a clock, a reset generator, and a digital counter.

The system begins with a sensor usually made of Cadmium-Telluride (CdTe) or similarly Cadmium-

Zinc-Telluride (CdZnTe) (sometimes thick Silicon (Si) as well) which converts incident photons into

measurable electrical signals. High-Z semiconductors are usually preferable due to excellent detection

efficiency even with thin sensors, which is of paramount importance for medical imaging where the

radiation dose is always kept as low as possible. The weak electrical signal generated by charge

collection from the sensor bulk is collected to pixel electronics through a bump pad and amplified by

a pre-amplifier. The bias voltage applied over the detector bulk creates an electric field that has to

be strong enough to collect charges before they drift from the center of interaction, but at the same
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time, it can’t be very strong so that charges create secondary particles due to the acceleration by the

field and spoil proportionality between deposited energy and electric signal. The drift of the charges

away from the area covered by a single pixel results in charge collection by surrounding pixels in the

phenomena known as charge sharing. Pre-amplifier proportionally amplifies the signal to enhance the

signal-to-noise ratio and prepare the signal for further processing. The amplified signal is then fed into

a shaping amplifier. The shaping amplifier conditions the signal by modifying its pulse shape, typically

transforming the sharp, short signal pulse from the pre-amplifier into a Gaussian-shaped pulse. This

shaping process further optimizes the signal-to-noise ratio and prepares the signal for digitization. The

shaped signal is compared to one or more predetermined threshold levels in a threshold comparator.

The threshold comparator categorizes the pulses into two groups: those below the threshold (rejected)

and those above the threshold (accepted). This step helps filter out the noise and unwanted signals,

and also inherently encodes spectral information about the object. The number of spectral channels

in photon-counting detectors thus depends on the number of threshold comparators attached to each

detector pixel. The advantages of inherent spectral separation of signal through energy thresholds will

be discussed in section 3.2. The comparator ends the analog part of signal processing and the signal

enters the digital part of the counting circuit. The pulse generator detects edges of a predetermined

polarity at its input and generates a signal pulse of a predetermined width at its output whenever

an active edge occurs. Subsequently, the clock generator provides regular and synchronized signals to

the input of the counter in order to register one count per signal. The reset generator communicates

with the pulse and clock generator and resets the pulse generator once both, the pulse generator input

signal and the clock generator output signals have ended after the registration of a count. This type

of counting circuit is called paralyzable because counting is triggered by the active edges at the input

of the pulse generator and in case no edges occur, the pulse generator remains locked. Edges won’t

occur in conditions of high photon flux, where during the predetermined pulse width set by the pulse

generator other photons are arriving and keeping photon-detection generated voltage higher than the

edge voltage set on the comparator for a given threshold. In such a condition, the circuit is kept in the

loop of waiting for the signal to drop below the predetermined edge so that the count can be registered.

What happens is that the circuit registers two or more photons as one photon of the higher energy,

losing the spectral information, and worsening the signal-to-noise ratio (SNR) and contrast-to-noise

ratio (CNR). In case photon flux is low, there is a low probability that two or more photons will hit

the same detector pixel during the predetermined time set on the pulse generator. In this case, the

detector can count photons one by one, correctly separating them into different energy thresholds.

The effect in which two or more photons impinging the same detector pixel are processed as a single

event, leading to counting loss and spectral distortion of the signal is called pulse pileup. Pulse pileup
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effect and charge sharing effects as one of the main limitations of photon-counting detectors will be

discussed in the following sections.

1.2.2 Charge sharing

When a photon interacts with the detector, it generates electron-hole pairs within the semiconductor

bulk. In photon-counting detectors, each interaction is ideally registered as a separate event within

a single detector element. However, charge sharing can occur due to the finite size of the detector

elements and the spread of charge carriers during their drift toward the readout electrodes. If the

photon interaction point is near the boundary between two adjacent detector pixels, the generated

charge can be shared between them. Fig. 2 illustrates the charge-sharing phenomena. This results

in a single photon being detected as two or more simultaneous events, affecting the accuracy of both

spatial and spectral measurements. Spectral information is corrupted because the information from one

single photon is registered by the detector as if it was created by two or more photons of lower energy.

From this, we can see that charge-sharing effects limit the pixel size of photon-counting detectors, and

in case pixel size is comparable to the mean free path of created charge in sensor bulk, some form of

charge-sharing correction needs to be applied.

Figure 2: Interaction mechanisms occurring in high-Z sensors leading to an incorrect spectral energy
response of photon-counting detectors. An ideal detection of a signal is given for reference.

The high-Z sensors can be as thin as 1.5 mm because of the large interaction cross-section for

diagnostic X-rays but they are limited by the fluorescence effects. Fluorescence is a process by which

incoming X-ray photons interact with the sensor material and create secondary X-ray photons of lower

energy. These secondary X-ray photons, which mainly result from X-ray interaction with electrons

sitting in the K shell, interfere with the accurate detection and measurement of the original X-ray

photons, leading to distortion in the spectral response and decreased image quality. Fluorescence

introduces K-escape peaks at the original energy minus the fluorescence energy in the detector energy
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response. They are called escape peaks as they occur when a fluorescence photon leaves (escapes)

the pixel area of primary detection and is detected in another pixel. The fluorescence photons and

”original minus fluorescence” photons illustrated in Fig. 2 can have energies that overlap with the

energies of the incident X-ray photons, leading to confusion in distinguishing them from the original

X-ray photons. As such they contribute to the measured X-ray spectrum, altering the apparent energy

distribution of the incoming X-rays. This effect is particularly important for CdTe sensors where the K

shell ( EK (Cd) = 26.7 keV and telluride EK (Te) = 31.8 keV) occurs in the energy range of the interest.

Silicon K-edge is very low (1.84 keV), outside of the energy range used in diagnostic radiology, so

fluorescence effects do not have an influence on detector energy response. However, Si sensors exhibit

a significant fraction of Compton interactions at low energies and must be thick for good detection

efficiency.

1.2.3 Pulse pile up

In the realm of X-ray imaging, and nuclear and particle detection, the pulse pileup effect is a critical

phenomenon that arises when the incoming radiation events occur in rapid succession, leading to a

distorted output signal due to the inability of the detection system to resolve individual pulses. This

phenomenon becomes particularly significant at high count rates and can introduce distortions in both

the amplitude and timing of detected signals. Pulse pileup manifests as count loss, where several lower

energy photons are processed together and registered as one higher energy photon. The pulse shape

produced at the shaper can be described with an asymmetric Gaussian-like function which can also

contain a negative tail representing signal recovery time to the base level. The two realistic pulse

shapes are given in Fig. 3.

Figure 3: An asymmetric Gaussian-like shape (blue) and bipolar pulse shape (orange) signals produced
by shaper electronics in PCD ASIC.

The undershoot tail of the preceding pulse can overlap with the peak of the next pulse leading to

tail pulse pileup effects and reducing the effective height of the recorded pulse. Since the tail time
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duration is usually longer than the peak time duration, statistically, there is a higher probability of

a tail pulse pile-up effect. More detail on the bipolar pulse pileup is given in [11]. One of the major

challenges to the application of photon-counting detectors to medical CT imaging was the inability of

technology to meet the high demands of medical CT in terms of photon flux. The high flux is needed

to reduce motion artifacts and scanning times in a clinical environment and photon fluxes in clinical

CT can reach up to 109 counts mm−2s−1, imposing significant challenges on the counting speed of

photon-counting detectors.

Paralyzable and non-paralyzable detectors are two distinct classes of detectors commonly used to

address the challenges posed by the pulse pileup effect. Non-paralyzable detectors are characterized by

a pre-determined, hard-coded dead time during which the detector pixel is unresponsive to incoming

signals after detecting an event. This inherent dead time allows a non-paralyzable detector to process

a single event before the next event is registered. It helps to distinguish between closely spaced events

and reduce the impact of pulse pileup. The dead time is selected such that the signal induced by

the longest input pulses drops below the lowest energy threshold at the end of the dead time. This

approach avoids double counting of a single pulse which would occur by splitting long pulses generated

by high-energy X-rays. Paralyzable detectors, on the other hand, lack this recovery time and can

register events in rapid succession even if the signal is not processed. Once the voltage generated by

the charge cloud reaches a programmable reference voltage supplied to the comparator, the counter is

increased for one unit and the paralyzable detector waits for this voltage to drop below the reference

voltage. This time is also called dead time since it is the time needed for a signal to drop below a given

threshold and enable new detection. The advantage of paralyzable detectors is that deadtime length

is signal-dependent and doesn’t need to be programmed in advance. In case X-rays of significantly

different energies reach the detector, it will take an appropriately shorter time to process X-rays

of lower energy and a longer time to process high-energy X-rays. In applications with fluctuating

event rates, paralyzable detectors might provide more accurate data by dynamically adjusting their

responsiveness based on the event rate at any given time. However, in case of high photon flux, it

happens that photons arrive quickly, keeping the voltage on the comparator above the reference voltage

for a prolonged period of time. In such a condition, the detector is paralyzed and counts several events

as a single event. Under exposure to high photon flux, they are more susceptible to the pulse pileup

effect and have a shorter linearity range than that of non-paralyzable. It has been demonstrated that

for medical applications, non-paralyzed detectors provide a more accurate spectral response.

Recently, hybrid approaches to X-ray detection have been developed [12, 13]. The ”instant-

retrigger” technology developed by DECTRIS Ltd. [12] is a hardware-based counting solution de-

signed to improve paralyzable detectors in high-flux conditions. It addresses the pulse pile-up chal-
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lenge through the implementation of a mechanism to restart counting after an adjustable time period,

allowing the detector to operate in a specific non-paralyzable counting mode. Specifically, following a

predetermined retrigger time period subsequent to the registration of a count, the counting mechanism

within the individual pixels is reactivated. This involves a reassessment of the amplified signal and

the re-enabling of the pixel for counting in accordance with the signal’s characteristics. After the

expiration of the retrigger time interval, a pixel will add one more count if the amplified signal at the

discriminator input continues to surpass the predefined threshold level. Notably, the retrigger time

interval is customizable and can be generated through circuitry within each pixel. The initiation of the

retrigger time interval sequence precisely coincides with the initial surpassing of the threshold level by

the amplified signal. The width of the retrigger time can be configured to be shorter, equal to, or longer

than the nominal single photon pulse width at either the discriminator input or output. In this con-

text, the nominal single photon pulse signifies the pulse generated by a single incident photon based on

the effective processing parameters. A comparison between paralyzable, typical non-paralyzable and

Figure 4: Illustration of paralyzable, non-paralyzable, and instant-retrigger counting mechanisms de-
pending on the incoming signal in high flux conditions.

specific non-paralyzable (instant-retrigger) modes of signal processing is given in Fig. 4. In conditions

where several waveforms are overlapping, a non-paralyzable detector provides a more accurate number
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of counts for a given energy threshold than a paralyzable detector. Instant retrigger technology causes

similar behavior to non-paralyzable detector design except retrigger times can be adjusted to provide

more accurate counting in high-order pulse pileup - indicated by fast instant retrigger output.

1.3 Computed tomography

Computed tomography (CT) is an imaging technique that uses X-rays and computer processing to

produce cross-sectional images of the object’s internal structure. In a nutshell, it is a procedure of

acquiring a large number of low-dose 2-dimensional (2D) views (projections) of an object from different

angles and a follow-up reconstruction procedure to reconstruct the 3-dimensional (3D) structure of the

object. The projections contain integrated µ coefficients that can be obtained from equation 8 through

the process of flat field correction as:

−log(I/I0) =

∫
µ(l)dl (10)

where I represents a projection containing a sample and I0 is air projection. Reconstructing an image

from its projections involves a mathematical operation known as the filtered backprojection, although

other more robust techniques are being constantly developed. The size of a 2D projection is determined

by the number of detector rows in the z direction and the detector columns in the x direction. In

situations where a parallel beam geometry is used, each row of a detector provides a 1D projection

of a 2D slice f(x, y) of a 3D object f(x, y, z) at a particular z position, so that reconstruction of the

2D object distribution f(x, y) can be treated as an independent problem. The theory that describes

the process of reconstruction is called the Fourier slice theorem (FST) and it states that: The Fourier

transform of a parallel projection p(s, θ) of an object f(x, y) acquired at an angle θ equals a line in a 2D

Fourier transform of f(x, y) taken at the same angle [8]. The FST simplifies the reconstruction process

by connecting the projection data to the Fourier domain, reducing the 2D reconstruction problem to

a series of 1D problems. For reconstructing the last dimension z of an object f(x, y, z) using parallel

beam geometry, the 2D reconstruction process is performed multiple times, until the entire z dimension

is accounted for. Filtered backprojection is an implementation of FST to reconstruct tomographic CT

images. To give a straightforward proof of the previous statement, a projection p(x, θ = 0) of a

human chest phantom is obtained at angle θ = 0 in parallel beam geometry and both 2D Fourier

transformation and projection following 1D Fourier transformation were obtained. The result of the

procedure is given in Fig. 5 and present formal derivation by relating the projection p(x, θ = 0) with

the original object f(x, y) as:
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Figure 5: Graphical representation of the Fourier slice theorem used for deriving the concept of image
reconstruction in computed tomography.

p(x, 0) =

∫ ∞

−∞
f(x, y)dy (11)

Performing 1D Fourier transformation of projection with respect to x considering the equation 11

FT(u) =

∫ ∞

−∞
p(x, 0)e−2πiuxdx =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−2πiuxdxdy (12)

and on the other hand, 2D Fourier transformation with respect to both x and y of object f(x,y)

evaluated at ν = 0

FT(u, ν) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−2πi(ux+νy)dxdy =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−2πiuxdxdy (13)

the proof is obtained by equating the right-hand sides of equations 12 and 13. From Fig. 5 one can

see that if we collect a sufficient number of projections over the range from 0 to π, we can fill the

entire Fourier space with a set of 1D Fourier transforms of acquired projections. The tomographic

reconstruction can be simply obtained following an inverse path: from Fourier space using inverse 2D

Fourier transformation. The procedure can be extended to the last dimension to perform reconstruc-

tions at different heights of an object. Although straightforward, the reconstruction technique utilizing

Fourier space lacks robustness in practical application. One of the challenges lies in the non-Cartesian

sampling pattern it produces in Fourier space. To perform a 2D inverse operation the interpolation or
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regridding of data must be performed, introducing the errors in the frequency domain that can have

a broad impact on the entire image in the spatial domain. The inverse form of 2D forward Fourier

transform given in equation 13 is:

f(x, y) =

∫ ∞

−∞

∫ ∞

−∞
FT(u, ν)e2πi(ux+νy)dudν (14)

To express quantity FT(u, ν) in the form in which data is collected, we switch the coordinate systems

using u = ω cos θ and ν = ω sin θ and dudν = ωdωdθ. In the changed reference frame equation 14

becomes:

f(x, y) =

∫ 2π

0

dθ

∫ ∞

0

FT(ω cos θ, ω sin θ)e2πiω(x cos θ+y sin θ)ωdω (15)

Using the FST, FT(ω cos θ, ω sin θ) can be replaced by P(ω, θ), leading to following relationship:

f(x, y) =

∫ 2π

0

dθ

∫ ∞

0

P (ω, θ)e2πiω(x cos θ+y sin θ)ωdω

=

∫ π

0

dθ

∫ ∞

0

P (ω, θ)e2πiω(x cos θ+y sin θ)ωdω +

∫ π

0

dθ

∫ ∞

0

P (ω + π, θ)e−2πiω(x cos θ+y sin θ)ωdω

(16)

For parallel beam geometry p(s, θ+π) = p(−s, θ) symmetry holds as projections from the two exactly

opposite sides of the object are the same. In Fourier space, this translates to P (ω, θ + π) = P (−ω, θ)

and allows rewriting the equation 16 as:

f(x, y) =

∫ π

0

dθ

∫ ∞

−∞
P (ω, θ)|ω|e2πiω(x cos θ+y sin θ)dω (17)

.

Finally, switching back to the rotated coordinate system, we obtain:

f(x, y) =

∫ π

0

dθ

∫ ∞

−∞
P (ω, θ)|ω|e2πiωxdω (18)

where P (ω, θ) is 1D Fourier transformation of projection p(x, θ) at angle θ and the inside integral∫∞
−∞ P (ω, θ)|ω|e2πiωxdω is the inverse Fourier transform of P (ω, θ)|ω|. It is called filtered projection

because, in the spatial domain, it represents a projection that is filtered by a function whose frequency

domain is |ω|. In the spatial domain, the corresponding function ξ(x) to the filter |ω| is the inverse

Fourier transform of the function:

ξ(x) =

∫ ∞

−∞
|ω|e2πiωxdω (19)
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When choosing x = 0, ξ(0) represents area under the curve |ω|, and when |ω| → ∞ also ξ(0) → ∞.

Thus, to be able to solve equation 18, one introduces a band-limited filter H(ω) to limit high spatial

frequency contribution to the reconstruction, leading to the equation 20:

f(x, y) =

∫ π

0

dθ

∫ ∞

−∞
P (ω, θ)|ω|H(ω)e2πiωxdω (20)

.

The equation 20 cannot be directly implemented in its present form, as Fourier inversion of filter

|ω| doesn’t exist. The solution is to assume that Fourier transform is band-limited as

g(t, θ) =

∫ Γ

−Γ

P (ω, θ)|ω|e2πiωxdω . (21)

This means that all energy is contained inside the interval (−Γ,Γ). In order to ensure a sampling

process devoid of aliasing artifacts, it is imperative that the projection bandwidth Γ adheres to the

Nyquist sampling criterion, which is expressed as:

Γ =
1

2δ
cycles/mm ,

where δ represents the projection sampling interval, measured in millimeters. Under these sampling

conditions, it becomes necessary to introduce a window function q(ω) to modulate the original ramp

function |ω|.

Hq(ω) = |ω|q(ω) .

The window function is defined as:

q(ω) =


ω, for |ω| < Γ

0, otherwise

The difference between an ideal and band-limited ramp filter is given in Fig. 6.

Reconstructed data is typically expressed in Hounsfield units (HU), named after Sir Godfrey

Hounsfield, the inventor of the CT scanner:

HU =
µ− µwater

µwater
× 1000 (22)

where µ is the linear attenuation coefficient of the material being measured and µwater is the linear

attenuation coefficient of water. Hounsfield units measure radiodensity within the human body; on
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Figure 6: Band-limited ramp filter in the frequency domain.

this scale, water is assigned a value of 0 HU, and other materials are measured relative to water. For

example, air has a negative HU value, while dense materials like bone have positive HU values.
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2 Quantitative computer tomography

The linear attenuation coefficient of tissues in the human body is very similar within the diagnostic

energy range, as shown in Fig. 7.

Figure 7: The log-log plot of linear attenuation coefficients of different human tissue and iodine contrast.

The early work of Alvarez and Makovski [5] addressed the limited ability of conventional X-ray

imaging to distinguish similar soft tissues. They opened a whole new field dedicated to improved tissue

differentiation and quantitative description: spectral X-ray imaging. The primary principle underlying

spectral imaging is the capture and analysis of the energy-dependent linear attenuation coefficient µ(E)

within the diagnostic X-ray energy range. Spectral information can be used to estimate the ratio of two

dominant contributions to image formation - photoelectric (PE) and Compton effect (CE). Hence, two

maps of competing physical contributions, one proportional to PE and the other to CE, are produced

with this procedure. Because their functional dependence is empirically related to material density

ρ and the effective atomic number Zeff, such decomposition procedure leads to an opportunity for

tissue separation based on their quantitative features. Instead of decomposing spectral data in PE/CE

space, a more popular approach is representing the content of each voxel as a combination of two

known materials. This process is known as material decomposition and represents a cornerstone of

clinical spectral CT imaging. In the material decomposition approach, the attenuation coefficient µ of

a given material is expressed as a linear combination of the (known) attenuation coefficients of a pair

of basis materials, here labeled µ1 and µ2

µ = x1 µ1 + x2 µ2 (23)

where x1 and x2 are the coordinates of the material in the reference frame identified by the selected

basis. It is used to produce a range of clinical tasks such as iodine quantification, calcium scoring,

virtual monochromatic imaging, or density and Zeff maps. Iodine solutions are the most common
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contrast agent used in medical imaging due to their high atomic number and excellent X-ray attenuation

properties, which make them ideal for enhancing the visibility of blood vessels, organs, and other

structures. The notable difference in attenuation is shown in Fig. 7. Section 2 is dedicated to

a detailed explanation of the material decomposition approach focusing on the contribution of this

thesis to the field. The following section 2.2 deepens our understanding of the concept of effective

atomic number and provides a mathematical recipe to obtain density and Zeff maps from the material

basis set.

2.1 Material decomposition

Until now, many decomposition methods have been developed, and some have been clinically imple-

mented. Among existing approaches, material decomposition could be applied to sinogram space or

already reconstructed images. A sinogram is a set of line projections (as one shown in Fig. 5) obtained

from different angles θ around the object organized in a matrix form of a size number of projection ×

number of detector pixels in the horizontal direction. In parallel beam geometry, the reconstruction of

one sinogram leads to a single scan slice and the number of slices corresponds to the number of vertical

pixels in the detector selected for image reconstruction. The comparison between the raw data domain

(sinogram domain) versus image domain material decomposition is illustrated in Fig. 8.

Figure 8: The two most common approaches to material decomposition in clinical CT scanners. In
the first case, spectral sinograms are first reconstructed using the procedure described in section 1.3,
and material decomposition is applied in reconstructed (tomogram) space, while in the second case,
material decomposition is applied in the sinogram space prior to image reconstruction.

The straightforward image-based method can be obtained by rewriting the equation 23 in a matrix
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form as:

µ⃗ = Ax⃗ (24)

where the 3D material maps x⃗ are obtained through inversion of linear map A. The x⃗ and µ⃗ are of

size 2 × (number of pixels) in an image. More explicitly, equation 24 is given as:

 µH

µL

 =

 µ1H I µ2H I

µ1L I µ2L I


 x1

x2

 (25)

where I is an identity matrix of size (number of pixels) × (number of pixels). Vectors µL and µH

are concatenated low-energy and high-energy CT slice and x1 and x2 decomposition coefficients of the

same dimension. The inversion of matrix A leads to:

A−1 =
1

µ1Hµ2L − µ2Hµ1L

µ2LI − µ2HI −µ1LI

µHI µ1HI

 (26)

Although simple, this approach is limited by the invertibility of matrix A and usually introduces a

large amount of decomposition noise [14]. Consider the term 1 / (µ1Hµ2L−µ2Hµ1L) and notice that it

can be very large if µ1Hµ2L −µ2Hµ1L is very close to zero. The difference between terms µ1Hµ2L and

µ2Hµ1L, in general, will be larger as the ability of the system to collect spectral information improves

and there is less overlap between low and high energy collection channel. Furthermore, the ability of

a system to collect data with the minimum amount of imaging noise is crucial because noise tends

to get amplified during the decomposition process. The noise-cancellation ability of photon-counting

detectors obtained by placing one of the energy thresholds just above the noise floor ensures lower

fluctuations in spectral datasets.

The pseudo-inverse A+ (Moore-Penrose inverse) of the matrix A is well-defined even for values

µ1Hµ2L = µ2Hµ1L in the matrix. In theory, A+ = A−1 when A is invertible, and when A is not

invertible, A+ inverts the invertible portion of A and suppresses the zero-eigenvalue component of A.

Every matrix A has singular value decomposition (SVD) given by:

A = UΣV T (27)

where U is a set of left-singular vectors in an orthogonal (or unitary) matrix of dimension m×m, m

is the number of rows of A, and V T is the set of right-singular vectors and the transpose of an orthogonal

(or unitary) matrix of dimension n×n, where n is the number of columns of A. Σ is a diagonal matrix

of dimension m×n and with non-negative diagonal entries in decreasing order σ1 ≥ σ2 ≥ σ3 ≥ ... ≥ σn

where diagonal elements of Σ are the singular values of A. To obtain the pseudoinverse of the diagonal
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matrix Σ the reciprocal of the non-zero singular values and zeroing out the other entries is performed

so that diagonal elements of pseudoinverse Σ+ satisfy σ1 ≥ σ2 ≥ σ3 ≥ ... ≥ σk > 0. The rank of A is

k, and when k is less than n, then we can write:

A+ = V Σ+UT . (28)

The pseudoinverse can be shown to solve an inconsistent Ax⃗−µ⃗ by finding the least squares solution

that minimizes the L2-norm of Ax⃗− µ⃗.

2.1.1 Least-square fit material decomposition

In some imaging systems, more than two spectral information can be obtained. Instead of using

traditional matrix inversion in equation 25 where only two spectral scans can be used as an input, the

x1 and x2 coefficients can be computed using a least-square fit of the form:

∑
i

(µ(Ei)− (x1 µ1(Ei) + x2 µ2(Ei)))
2

(29)

where information from an arbitrary number of spectral channels Ei can be used. The fit procedure

consists of a voxel-by-voxel minimization of the sum over the energies Ei of the squared residuals. From

such a point of view, including more images of different energies adds further points to the plane, which

is expected to increase the accuracy of the decomposition. In case the spectral data is contaminated

by outliers (wrong pixel measurements) the least-squares solution can become significantly biased

to avoid very high residuals on outliers, because the contribution of each measurement is scaled by

the square term. A more robust estimator is the L1-norm estimator, in which the sum of absolute

values of the residuals is minimized. Because the L1-norm function is non-differentiable everywhere,

the optimization problem is hard, and it is often preferred to stay with differential problems such as

least-square fit but incorporate robustness in estimation by introducing a sublinear function ρ(r) and

re-formulate the least-squares as an optimization problem:

∑
i

ρ (µ(Ei)− (x1 µ1(Ei) + x2 µ2(Ei)))
2

(30)

The problem can be reduced to standard nonlinear least squares as described in detail in [15]. A

set of common sublinear functions is given in Fig. 9.

Several approaches to material decomposition exploring multiple constraints and regularization

techniques can be found in literature [16, 17, 18].
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Figure 9: Loss functions useful for regularizing least squares solutions in the presence of outliers.

2.1.2 Singular value material decomposition

The singular value decomposition technique can be employed to decompose a tomographic (or radio-

graphic) image in terms of the spatial distributions of a selected set of basis materials, much like the

standard spectral decomposition originally introduced in Alvarez et al. [5] and most recently applied

to tomographic images [19]. In this section we derive a mathematically enclosed connection between

the values of 1st and 2nd principal components extracted through SVD and material maps PMMA

and Al [20].

Fig. 10 illustrate the idea. Fig 10 a) shows a vector of length 100 consisting of a linear combination of

2 single materials (PMMA and Al) so that the first value represents pure PMMA and the last contains

pure Al, while all values in between them contain a mixture of PMMA and Al, so that amount of

PMMA decreases (blue line) and the amount of Al increases (red line). Using the X-ray attenuation

database [21], µ values for PMMA and Al were selected for monochromatic energies of 20,30 and 40

keV and combined in proportions described in Fig. 10 a) to obtain µ values of a given mixture as

shown in Fig. 10 b). As expected, the higher the contribution of Al in the mixture, the higher µ values

are obtained. Standard SVD procedure is applied to the set of images and principal components are

extracted in Fig. 10 c). The third principal component (PC), describing computational noise has a

singular value equal to zero. The goal of this paragraph is to derive a mathematical procedure that

puts in a linear correspondence the first two principal components extracted through SVD (Fig 10 c))

with the distribution maps of an arbitrary set of basis materials (e.g., PMMA and Al) as shown in

Fig. 10 d). The coincidence of constructed t and retrieved t′ weight coefficients shown in Fig. 10 a)

and Fig. 10 d) proves the concept of material decomposition through SVD.

The starting point is the consideration that a tomographic image F acquired at X-ray energy E
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Figure 10: Scheme explaining the role of SVD in material decomposition. From left to right, a) an ideal
dataset made as a mixture of PMMA and Al in various ratios and b) attenuation profiles at monochromatic
energies of 20,30 and 40 keV. The decomposition with SVD is given in c) and the ratio of the two basis materials
t′ retrieved using the first two principal components is given in d). The scheme shows that t = t′ when there
is no noise in the data.

can be described as a composition of the distribution maps xa of a given set of basis materials

Fi(E) =
∑
a

xai µa(E) (31)

where the index a labels the basis material, µa(E) is the corresponding attenuation coefficient at energy

E and the index i identifies the pixel of an image flattened into a vector. A set of images acquired at

energies Ep is therefore described as

Fip =
∑
a

xai µap (32)

p being the index spanning the set of X-ray energies and µap = µa(Ep).

The matrix F defined in equation 32 is rectangular, of dimensions (number of pixels) × (number

of energies). Applying SVD to such an object returns a set of left singular vectors un, right singular
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vectors vn, and singular values σn (as shown in equation 27) such that

σn uni =
∑
p

Fip vnp (33)

where the index n labels the singular value/vector. A notion that will prove useful in the future is

that the left and right singular vectors are the eigenvectors of the matrices

Uij =
∑
p

FipF
⊤
pj (34a)

Vpq =
∑
i

F⊤
piFiq (34b)

respectively, both with eigenvalues λn = σ2
n.

Substituting equation 32 into 34a gives

Uij =
∑
p

∑
a

xai µap

∑
b

xbj µbp =
∑
a

∑
b

Sab xai xbj (35)

where the definition Sab =
∑

p µap µbp was used. Equivalently, substituting equation 32 into (34b)

gives

Vpq =
∑
a

∑
b

Iab µap µbq (36)

with Iab =
∑

i xai xbi.

Knowing the explicit form of matrices U and V, it is possible to derive explicit expressions for their

eigenvectors. It is possible to prove that the eigenvectors uni must be linear combinations of the basis

material distribution maps xa

uni =
∑
a

αna xai (37)

the α being the linear coefficients. An equivalent proof holds for the eigenvectors

vnp =
∑
a

βna µap (38)

As a consequence of equations 37 and 38, the number of nontrivial solutions of the eigenvalue problems

for matrix U (that is, U u = λu) and matrix V (V v = λ v) cannot exceed the number of basis materials

considered in the description.

Replacing equations 37 and 34a into the eigenvalue problem for matrix U , and equations 38 and 34b
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into the one for matrix V, leads to the compact relationships

∑
a

(∑
b

(
Mab − λn δab

)
αnb

)
xai = 0 (39a)

∑
a

(∑
b

(
Mba − λn δab

)
βnb

)
µap = 0 (39b)

where Mab =
∑

c Sac Icb and δab is the Kronecker delta. Since the basis material distribution maps

xa (as well as their attenuation coefficients µa) are independent vectors in their respective spaces, the

only way for equations 39 to hold is for each element of the sum to vanish separately, namely

∑
b

(
Mab − λn δab

)
αnb = 0 (40a)

∑
b

(
Mba − λn δab

)
βnb = 0 (40b)

Equation 40a can be seen as the eigenvalue problem for the matrix M, a square matrix whose

dimensions are equal to the number N of basis materials considered in the decomposition. The

literature [5, 19] is quite unanimous in defining such a number to be equal to 2 within the diagnostic

imaging energy range. It is now worth noting that the coefficients α, as defined in equation 37, provide

the desired relationship between the singular vectors un (output of the SVD algorithm) and the basis

material distribution maps xa (outcome of the procedure being defined here). Computing them is

therefore the aim of the following discussion.

The first step in such direction is noticing that both vn and µa of equation 38 are known quantities:

the latter are tabulated in dedicated databases [21], while the former are outputs of the SVD algo-

rithm. The coefficients β can therefore be computed, for example through a nonlinear fitting routine.

Equation 40b is composed of N ×N independent equations, one for each a and each n, in which the

coefficients β are known from the previous step and the λn can be computed from the singular values

σn (also outputs of SVD). In the case of N = 2, as assumed above, the matrix M can therefore be

expressed as

M11 =
β−2 β+1 σ2

+−β−1 β+2 σ2
−

β−1 β+2−β−2 β+1
M12 =

β−2 β+2(σ
2
+−σ2

−)

β−1 β+2−β−2 β+1

M21 =
β−1 β+1(σ

2
−−σ2

+)

β−1 β+2−β−2 β+1
M12 =

β−2 β+1 σ2
−−β−1 β+2 σ2

+

β−1 β+2−β−2 β+1

(41)

with the indices a and b spanning values {1, 2} and the index n spanning values ±. From the definition

of M in terms of I and S (which is easily computable from the tabulated µ values), it is now possible to

compute the former, which by definition obeys the symmetry I12 = I21. Their analytical expressions

are too complex to be reported explicitly here, but the numerical computation from known M and S

values is straightforward.
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At this point it is finally possible to solve the eigenvalue problem for αn, as stated in equation 40a.

With N = 2 the resulting constraints for the eigenvectors are easily written as

α±1

α±2
=

M11 −M22 ±
√
(M11 −M22)

2
+ 4M12M21

2M21
(42)

while the remaining degrees of freedom can be reduced through the unitarity of the singular vectors

u±, that is

1 =
∑
i

(u±i)
2
= I11 (α±1)

2
+ 2 I12 (α±1 α±2) + I22 (α±2)

2
(43)

Equations 42 and 43 allow a solution in terms of the coefficients α, which was the aim of the whole

derivation. In fact, due to the quadratic nature of equation 43, they allow two distinct solutions for

each value of n, for a total of four viable solutions. In fact, such degeneracy is intrinsic in the SVD

algorithm: each set of singular values/vectors pertains to four distinct rectangular “set of images”

matrices F . Luckily, such a feature does not pose an insurmountable obstacle towards the retrieval of

the basis material distribution maps, as it is always possible to re-derive the matrix F from each of

the four solutions, and then select the one that matches the original set of images.

2.2 Decomposition to density and effective atomic number

As we just showed, given two (or more) scans at different energies, the material decomposition approach

can be used to describe the content of each voxel as a linear combination of the attenuation of two basis

materials. Decomposition to two basis materials is the most common approach because two physical

effects contribute to image formation in the diagnostic energy range: the photoelectric effect (PE) and

the Compton scattering effect (CE). The photoelectric-Compton basis itself is very convenient because

of the well-defined dependencies of these effects on density and atomic number. The photoelectric

effect can be described by the following empirical relationship, taking into account material properties

such as atomic number (Z), atomic mass (A), and density (ρ):

µPE ∝ Zn

Aρ
fPE , (44)

where fPE describes the photoelectric effect dependence on the X-ray energy and is given as fPE =

1/E3. The Compton contribution to the X-ray attenuation is empirically described as:

µCE ∝ Z

Aρ
fKN , (45)
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where energy dependence is given by the Klein-Nishina formula:

fKN =
1 + α

α2

(
2(1 + α)

1 + 2α
− 1

α
ln(1 + 2α)

)
+

1

2α
ln(1 + 2α)− 1 + 3α

(1 + 2α)2
, (46)

and α = 1/510.975 keV. From this point of view, one can rewrite the material decomposition in

equation 24 as a linear combination of PE and CE contributions to material attenuation as:

µ =
Zn

Aρ
K1 fPE +

Z

Aρ
K2 fKN (47)

where n, K1, and K2 are constants that can be obtained using a least-square calibration procedure

as described in [5]. In principle, it is worth noting that these coefficients will depend on the energy

range and the elements chosen for the calibration purpose. From there, one can see that solving

the equation 47, which also can be solved only when spectral information is available, leads to an

estimation of coefficients carrying the coupled information about element density, atomic number, and

mass number. However, these coefficients will be quantitatively correct as long as the measurements

(spectral image acquisition) are performed under the same conditions, the same energy and elements

range, as the least-square calibration procedure. This restriction is encapsulated in coefficients n, K1,

and K2. The same restrictions will hold true for the material decomposition approach, e.g., the mixing

ratios of water xwater and iodine xiodine that describe an unknown material can be assumed to be

constant only over energy range within which the said decomposition has been performed.

As we saw before, for elements composing biological tissue one can assume A = 2 Z, so that

decomposition coefficients can be rewritten as:

xPE =
K1

2
ρZn−1 (48a)

xCE =
K2

2
ρZ (48b)

Later in Sec. 6.1.1 we will focus on practical considerations of equations 48, discussing an experi-

mental design as well as providing a mathematical recipe to decouple the density and atomic number

information. However, before that, we need to focus on defining an equivalent of the atomic number

of an element for materials consisting of several elements, such as compounds and mixtures.

2.2.1 The concept of effective atomic number

The atomic number is a physical property of an element, but the same concept cannot be trivially

defined in compounds. An effective atomic number Zeff is a concept derived to quantify the chemical
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composition of a material with a single quantity. Since it is a quantity to be defined, many different

approaches to calculating Zeff exist in the literature, well summarized in [22]. There, definitions of

Zeff are classified into two categories i) the ones that involve calculating Zeff as some combination of

atomic numbers Zi of ith atom constituting given compound [23, 24, 25, 26, 27] and ii) methods that

compute Zeff based on the mass attenuation coefficient of a compound [28, 29, 30] where Zeff of a

compound is ”an equivalent to an element of atomic number Z”. We included most of the published

definitions in open-source GUI software ”ZcompARE” [31]. Part of the software is built on top of

the python library (xraylib 4.1.0 package, Python 3.10) of the xraylib database [32, 33] and can be

used to compare approaches for computing atomic numbers of compounds from this database or list

of user-defined materials can be provided.

Table 1: The comparison between several proposed methods to compute Zeff which have been imple-
mented inside ”ZcompARE” software.

Tissues Method A Method B Method C Method D Method E Method F Method G Density (g cm−3)

Adipose Tissue 6.23 7.01 2.99 6.27 2.99 5.59 6.30 0.92
Blood 7.51 8.35 3.46 7.56 3.46 6.95 7.57 1.06
Bone, Compact 11.61 14.69 4.41 11.82 4.41 11.39 11.74 1.85
Bone, Cortical 12.97 15.73 5.29 13.16 5.29 12.92 13.13 1.85
Brain 7.46 8.40 3.31 7.51 3.31 6.82 7.53 1.03
Lung 7.27 8.38 3.47 7.30 3.43 6.67 7.31 1.05
Skin 7.17 7.95 3.42 7.21 3.42 6.57 7.23 1.10
Tissue, Soft 7.18 8.08 3.36 7.22 3.35 6.56 7.25 1.00

Method A: Spiers et al. 1946 [23], Method B: Glasser et al. 1947 [24], Method C: Hine et al. 1952 [25],

Method D: Tsai and Cho 1976 (E < 150 keV) [26], Method E: Puumalainen et al. 1977 [27],

Method F: Gowda et al. 2004 (also Direct-Zeff 2014) [28], Method G: Champley et al. 2019 (SIRZ-2)[30].

Decomposition to density ρ and the effective atomic number Zeff is a step further toward extract-

ing the physical information about tissue composition from spectral measurements. While material

decomposition describes the attenuation of one material as a linear combination of the attenuations

of other known materials, ρ/Zeff decomposition exploits the underlying physics of X-rays interaction

with materials to extract information about their physical and chemical properties. Several works

have been published exploring this approach [34, 35, 36, 29, 30, 37, 20]. Density and Zeff are intuitive

units that can be easily interpreted and correspond to physical properties that can be measured by

other techniques, allowing for easy comparison. Previous work showed the benefits of ρ/Zeff for tissue

differentiation [38], radiotherapy planning [39, 40, 41], and interventional radiology [42].
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3 Spectral computed tomography

Since its introduction in 1917 and the pioneer works in the ’60s and ’70s of the last century [43],

computed tomography quickly gained its popularity and became a valuable diagnostic modality not

just in clinics, but also in industry. To this date, it is under constant development, improving detector

technology, radiation sources, and computing power which allowed for more advanced reconstruction

algorithms than the one introduced in section 1.3, leading to improved image quality at lower radiation

doses. However, despite technological advances, the fact that several materials could share the same or

very similar linear attenuation coefficient µ under the same source energy spectrum remains the major

limitation of conventional CT. This is particularly true in medical imaging for similar soft tissues and

some tumors that share imaging features with their surroundings.

3.1 Dual-energy CT systems

Dual-energy CT systems are readily present in clinical environments and different vendors came up

with diverse technical solutions to obtain spectral information during a CT scan [44]. The most

common approach is scanning with two different X-ray tube potentials to obtain on average lower and

higher energy images. An example of different spectra generated from clinical CT X-ray tubes is given

in Fig. 11.

Figure 11: The set of spectral shapes for tube potentials of 80, 100, 120, and 140 keV. In clinical CT
scanners, no more than two different tube potentials can be used simultaneously.
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Canon Medical Systems has a series of models (Aquilion One family) that combine rapid kVp

switching and/or rotate-rotate axial technology, offering the flexibility of both axial and helical scanning

modes. In helical CT, the source continuously rotates around the patient while the patient table moves

through the scanner, resulting in a spiral path of data acquisition. On the other hand, in axial mode,

one full rotation is performed before the table is moved to a new position. Rotate-rotate axial mode

refers to the acquisition of dual-energy data by rotating the gantry to different angles for each energy

level. In this mode, the gantry is rotated to a specific angle to acquire high-energy data, and then

it is rotated again to a different angle to acquire low-energy data. This process is repeated to obtain

multiple views at each energy level, allowing for the reconstruction of dual-energy images. The main

advantage of the rotate-rotate axial mode is the ability to acquire high- and low-energy data with a

larger coverage area, as the gantry can be positioned at various angles during the scan. On the other

hand, the helical kVp switch mode involves the acquisition of dual-energy data during a continuous

helical scan. In this mode, the X-ray tube rapidly switches between high and low energy levels as the

patient is moved through the rotating gantry during the helical scan. This allows for the acquisition

of dual-energy data along the entire length of the scanned region. Helical kVp switch mode offers

the advantage of faster scanning times and improved workflow. Models developed by GE Healthcare

(Revolution GSI, Frontier, and ES models) utilize similar kVp switching technology - ultrafast kVp

switching. Ultra-fast kVp-switching involves quick switching between 80 kVp and 140 kVp to ensure

adequate energy separation between spectra. This process occurs in just 0.5 ms on the Revolution GSI

and 0.25 ms on other systems. Siemens Healthineers employs two distinct dual-energy CT platforms

for obtaining two-photon spectra during acquisition: Dual-Source CT (DSCT) platform (Somatom

family) and split filter CT platform (Edge+, Xcite, Xceed, GoTop). The DSCT platform utilizes two

X-ray tube/detector pairs with a 95◦ dephasing for the Somatom Force and Somatom Drive. One tube

operates at low kVp (70 - 100 kVp), while the other employs high kVp, potentially with a tin (Sn)

filter (140 kVp or Sn150 kVp) to enhance spectral separation. This platform offers various kVp pairs

adaptable to patient morphology and clinical needs. The use of two tubes enables cardiac gating CT

scans with temporal resolutions of 66 to 75 ms. However, the second tube’s detector array is narrower

(33 or 35 cm) than the first tube’s (50 cm), resulting in a limited acquisition and reconstruction

FOV. In the split filter CT platform, a single X-ray tube/detector pair with a 120 kVp (or 140 kVp)

tube voltage is coupled with two filters to split energy spectra into low- and high-energy components.

Philips Healthcare employs a different approach from its competitors as it uses detector-generated

(dual-layer) detector technology for obtaining simultaneous dual-photon spectra in its IQon Spectral

CT scanners. This technology enables spectral imaging without additional constraints and the decision

whether spectral reconstructions will be needed doesn’t need to be determined prior to acquisition.
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However, low tube potentials of 80 and 100 kVp are not suitable for spectral imaging presumably

because the average energy is too low to yield sufficient photon statistics in the second layer of the

detector. Material decomposition is executed in the sinogram domain instead of image domain material

decomposition preferred by other vendors.

3.2 Photon-counting CT systems

In the previous paragraph, we saw that most spectral scanners on the market (with the exception of the

dual-layer approach) generate spectral separation by modifying the X-ray spectrum. This is because

conventional CT detectors are energy-integrating detectors: they integrate the energy of incoming

photons over some period of time to form the signal. Overlap of the energy spectrum in spectral

sinograms obtained using multiple source potentials or multi-layer detectors is still significant. Besides

the advantages of lower imaging noise, smaller pixel size, and more uniform spectral weighting related to

photon-counting detection introduced in section 1.2.1, PCDs also provide inherent spectral separation

of recorded X-ray photons [45, 46]. The first photon-counting CT (PC-CT) scanner available in clinics,

NAEOTOM Alpha produced by Siemens Healthineers, is a dual-source CT scanner with two PCDs

made of CdTe sensors with up to 4 energy thresholds available. Spectral separation is obtained through

multiple threshold comparators attached to a single pixel element, which can be supplied with different

external voltages and act as energy thresholds. Comparators compare photon-generated voltage signals

against predetermined voltage levels. If the photon-generated voltage exceeds the set energy threshold,

the photon is counted and assigned energy higher than the energy of the predetermined threshold. In

photon-counting detectors each pixel contains several comparators, so this process is also repeated

for other predetermined energy thresholds and final spectral information is obtained by threshold

subtraction to obtain multiple energy bins. An ideal photon-counting detector would be able to

separate photons from an X-ray tube in precisely defined energy bins as shown in Fig. 12.

Such spectral information would significantly improve the quality of the material decomposition

approach and the quantitative imaging performance of spectral CT systems. However, as we saw

before, PCDs suffer charge sharing and pulse pile-up effects. Charge sharing causes multiple counts

at lower energies and blurring of the image, while pulse pileup leads to the count loss, in lower energy

bins and potential increase of counts in high energy bins. Spectral distortions introduced by charge

sharing and pulse pile-up have a significant impact on the accuracy of quantitative imaging tasks and

could lead to misdiagnosis [13].
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Figure 12: An ideal spectral response of photon-counting detection unit containing 4 comparators for
an input polychromatic spectrum of 120 kVp.

3.3 Synchrotron computed tomography

Synchrotrons are state-of-the-art facilities designed to accelerate charged particles (i.e., electrons) along

curved trajectories through a magnetic field. Synchronous modifications of electric fields accelerate

electrons to relativistic speeds, while the circular trajectory of the electron beam is ensured by a set

of magnets, known as bending magnets. Bending magnets cause the energy emission of X-rays in the

kV energy range as a byproduct of the bent trajectories, often called the synchrotron ”white” beam.

The white synchrotron beam contains an abundance of X-ray photons, a photon flux several orders of

magnitude higher than in conventional anode sources. The synchrotron radiation beamline for medical

applications (SYRMEP) at the Italian national synchrotron in Trieste, Italy obtains the maximum flux

of 1.94 × 1010 20-keV X-ray photons/mm2/s at 2.0 GeV electron energy and typical ring current of

300 mA, while at 2.4 GeV and current of 100 mA it reaches 9 × 1010 photons/mm2/s of the same

energy. Due to the characteristic emission spectrum of the bending magnet in the Elettra electron

storage ring, the intensity drops as the energy of X-rays increases. Both spectral shapes for 2.0 and

2.4 GeV are given in Fig. 13.

The critical energy, which represents the energy at which the intensity of synchrotron radiation

emitted by electrons is maximized (with the emitted power per unit energy interval reaching its peak),

depends on factors such as the energy of the storage ring and the strength of the magnetic field. For
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Figure 13: The shape of spectra (”white beam”) obtained from bending magnet at SYRMEP beamline
after 2mm Beryllium window at an electron beam energy of 2.0 and 2.4 GeV.

the specific configuration mentioned, the critical energy is 6.9 keV (at 2.0 GeV and 1.2T) and 8 keV

(at 2.4 GeV and 1.45T). Because X-rays of energy below 20 keV are dominantly absorbed in biological

samples such as breast, human or porcine heart, bones, etc. the beam is often filtered with different

attenuators (e.g., aluminum).

Without going into too much detail, we should note that besides bending magnets synchrotron

radiation can be produced, even more effectively, at specialized magnetic configurations known as

wigglers and undulators. These are called insertion devices because they are placed (inserted) in

straight sections between the bending magnets without perturbing normal operation. The magnetic

field is set up to have a sinusoidal variation along the trajectory of the charged particles which causes

the electrons to undergo a sinusoidal motion, leading to the emission of synchrotron radiation. A

simplified scheme of synchrotron operation containing bending magnets is given in Fig. 14.

The standout feature of synchrotron-generated X-rays is their high temporal and spatial coherence.

Temporal coherence refers to the X-rays’ ability to maintain a consistent phase relationship over time,

while spatial coherence pertains to their ability to maintain a consistent phase relationship across

space. Such characteristics are obtained from the synchronized motion of high-energy electrons within

the accelerator resulting in an emission of an X-ray beam that is both coherent and intense. These

properties allow almost exact energy selection of X-rays through monochromators usually made of a

pair of silicon crystals because of their well-defined crystal lattice structures. When X-rays strike the
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Figure 14: Simplified view of monochromatic X-ray generation using synchrotron beam. Electrons
accelerated in the electron ring follow circular trajectories due to the banding magnets and emit
bremsstrahlung X-ray radiation, here called the ”white” beam to emphasize its polychromatic nature.
The beam is collimated with a set of collimator slits and monochromatic energy is selected using a
double-crystal monochromator.

crystal at a particular angle, they are reflected (or diffracted) off the crystal planes in a way that

constructive interference enhances certain wavelengths of X-rays while suppressing others. The energy

of X-rays depends on the crystal lattice spacing and the angle of incidence which is adjusted by rotating

the crystal in the X-ray beam. The relationship between these parameters is given by the Bragg law

in equation 49

2d sin θ = nλ (49)

where θ is the angle of incidence, λ is the wavelength of X-rays, d is the spacing between crystal lattice

planes, and n is the diffraction order. The second crystal reflects the beam in a parallel direction

to the incident beam on the first crystal and further refines the selection to a specific, narrow peak

of wavelengths. Because the incoming beam is very intense, monochromatic beams with an effective

energy resolution of ∆E/E ∼ 0.1% could be still more intense than conventional X-ray sources.

3.3.1 Phase-contrast

The coherent nature of a monochromatic synchrotron beam can be exploited for imaging biologi-

cal tissues through phase contrast. Theoretically speaking, the phase-related δ values dominate the

absorption β values of the refractive index, but experimental setups required to detect phase perturba-

tions by an object using a conventional X-ray source are far more complicated and have not yet been

implemented in clinical practice.

Figs. 15a and 15b show how both imaginary component β and real component δ of the refractive

index n are characteristic quantities of a given material. For water, the substance that makes up

around 60 % of the human body, the real component related to phase shift is δH2O = 5.78× 10−7 and

the imaginary component related to attenuation βH2O = 3.47 × 10−10 at 20 keV X-ray energy. The
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(a) (b)

Figure 15: Energy dependence of (a) imaginary component β and (b) real component δ of the refractive
index n for diagnostic X-ray imaging for materials mimicking soft biological tissues. The scale is kept
the same for both quantities (maximum value 10−6), while the plot (b) containing δ values also shows
a rescaled (”zoomed plot”) graph with the maximum value set to 10−9.

large factor of ∼ 103 in favor of phase shift suggests the opportunity for much better contrast and

resolution using phase contrast imaging for a given dose.

Phase-contrast imaging is defined as any form of X-ray imaging that exploits the refractive prop-

erties of a sample to visualize it radiographically. Various techniques for X-ray phase contrast imaging

are available, including the Bonse-Hart interferometer [47], analyzer-based phase-contrast imaging [48],

and grating-based methods [49]. All of these methods need specialized optical components, in addition

to an X-ray source and detector. A method that distinguishes itself by not requiring any specialized

optical elements beyond the conventional detector and a coherent source is called the propagation-

based X-ray imaging method. In a nutshell, the propagation-based technique simply allows for the

propagation of phase-shifted X-rays by placing a detector at an increased distance z′ from a sample.

To understand the benefit of phase propagation we re-consider the X-ray propagation equation 7 laid

out in Sec. 1.1 from the perspective of wave optics. As pointed out before δ is related to phase shift

∆ϕ as kδL. In equation 7 one assumes that the perturbation of a wavefield is entirely determined by

phase and amplitude shifts, in literature known as projection approximation. The phase-shift term

ϕ is understood as a local distortion of the wavefront. At a specific point on the object plane, this

distortion causes a slight alteration in the propagation direction concerning the incident planar wave.

To calculate the outgoing propagation direction at each point, we assume that deviations from the

initial direction (z) are small, which can be expressed formally as the paraxial approximation. In other

words, the absolute values of the spatial derivatives ∂ϕ(x,y)
∂x and ∂ϕ(x,y)

∂y are much smaller than the wave
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number (k). Consequently, the outgoing wave vector can be represented as follows:

kout(x, y) =
∂ϕ(x, y)

∂x
x+

∂ϕ(x, y)

∂y
y + kz (50)

Here, x, y, and z are unit vectors pointing along the x, y, and z directions, respectively. The

deviation from the original direction (z) imposed on the beam by the refractive object is expressed as

a position-dependent refraction angle (α(x, y)), which can be written as:

α(x, y) ≈ 1

k

((
∂ϕ(x, y)

∂x

)2

+

(
∂ϕ(x, y)

∂y

)2
)

=
1

k
|∇xyϕ(x, y)| (51)

Here, ∇xy represents the gradient operator in the object plane. The small angle deviation causes the

X-rays to impinge on the detector at the position (x′, y′), given by:

x′ = x+ z′αx(x, y)

y′ = y + z′αy(x, y)

(52)

where αx and αy represent the projections of α in the planes xz and yz, respectively. Equation 52

straightforwardly expresses the coordinate transformation that maps each ray from the object plane

to the detector plane [50]. These projections are calculated as:

αx =
1

k

∂

∂x
ϕ(x, y)

αy =
1

k

∂

∂y
ϕ(x, y)

(53)

By calculating the transformation Jacobian, one can express the intensity detected in the image

plane as follows:

I(x′, y′) = I(x, y)

∣∣∣∣∂(x′, y′)

∂(x, y)

∣∣∣∣−1

= I(x, y)

∣∣∣∣∣∣∣
1 + z′ ∂αx

∂x z′ ∂αx

∂y

z′
∂αy

∂x 1 + z′
∂αy

∂y

∣∣∣∣∣∣∣
−1

≈ I(x, y)

(
1− z′

k
∇2ϕ(x, y)

)
(54)

Equation 54 involves the Laplacian operator ∇2 in the object plane, where the approximation is

obtained by neglecting terms of O(z′2/λ2). This approximation is reasonable because, in a typical

phase-contrast imaging setup, z′ is on the order of meters while λ is around 10−10 meters. When

z′k∇2ϕ(x, y) ≪ 1, meaning that the phase contrast is weak [50], equation 54 can be further simplified
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as:

I(x′, y′) ≈ I0e
−2kβ(x,y)∆

(
1− z′

k
∇2ϕ(x, y)

)
(55)

Here, I0 represents the X-ray intensity incident on the object and∇2ϕ(x, y) represents the Laplacian

of the phase term ϕ(x, y), which characterizes the phase change of the X-rays as they pass through

the object. The equation 55 is called the transport of intensity equation (TIE) [51] and is essential

for understanding the effects of phase propagation on image formation. In the case of a very small

detector-sample distance z′ → 0 the image registered would be a result of pure attenuation contrast

in the sample. On the contrary, as we increase z′, phase contrast becomes significant as it is directly

proportional to the Laplacian of the phase shift. When dealing with a planar impinging wavefront,

phase contrast increases in a linear fashion as the propagation distance grows and becomes more

pronounced at the boundaries or sharp interfaces of the refractive object. At these locations, where the

phase shift changes abruptly, it results in what is known as the ”edge enhancement effect”. Obtaining

the contrast from phase shift effects involves a TIE-based phase retrieval approach. In its simplest

form, it implies the inversion of equation 55 to compute ϕ from I(x′, y′). The mathematical formalism

of phase-retrieval using TIE is beyond the scope of this thesis and interested readers are referred to

[51]. However, it should be noted that images acquired in the free space propagation regime provide

significant improvement in the CNR which can reach up to 10-fold improvement compared to pure

attenuation contrast for an optimal propagation distance as reported by Gureyev et al. [52] on carbon

sphere objects, and explained thoroughly in a follow-up publication [50].

SYRMEP beamline has been specifically designed to exploit the free space propagation technique

for the imaging of breast cancer. Brombal et. al [53] performed a study specifically designed to

measure the improvement of SNR in breast specimens, reporting up to a 20-fold improved SNR for

the largest propagation distance compared to a conventional CT setup. Breast cancer imaging is

particularly challenging due to the small differences in the composition compared to fibrous, glandular,

fat, and cancer tissue. It is a task where phase-induced contrast can significantly help to improve tissue

differentiation at multiple monochromatic energy levels. We will show later in Sec. 6.4.2 how the

pre-clinical setup at SYRMEP exploits the joint contribution of synchrotron-based monochromatic X-

ray imaging in phase propagation mode and a spectral photon-counting detector to compute density

and effective atomic numbers of breast tissues. Because the synchrotron source is stationary, the

tomographic acquisition is performed through the rotation of the patient table instead of the source.
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4 Virtual (in-silico) computed tomography

Computed tomography (CT) has become a pivotal imaging modality for patient screening, diagnosis,

and treatment planning, leading to continuous advancements in CT systems to enhance diagnostic

accuracy and minimize radiation exposure. Traditionally, the evaluation of new advancements is per-

formed in the act of clinical trials which involve imaging physical phantoms or actual patients. Imaging

studies on physical phantoms are easy to set up and repeatable with a high degree of control but lack

the complexity required for task-based or patient-specific assessments, while patient imaging is lengthy

and expensive, with a series of ethical considerations. Practically, it happens that tested advancements

are already overcome with other ones before conclusive evidence is collected. Furthermore, traditional

clinical trials are ground truth limited, which makes comparing new technology to objective ground

truth impossible and becomes a significant limitation for the interpretability of artificial intelligence

solutions. To address these challenges, virtual imaging trials (VITs) or in-silico imaging trials have

emerged as promising solutions, enabling clinical experiments to be conducted through computer sim-

ulations. In a virtual platform, complete X-ray physics is modeled using analytical simulations or

Monte Carlo methods, eliminating the need for physical scanners. Virtual patients are created by

segmentations of scans obtained from prior acquisitions on different diagnostic imaging modalities

such as CT or MRI, enabling anthropomorphic phantom geometry without ethical concerns about

radiation exposure. This approach results in faster and more cost-effective trials. The effectiveness of

VITs heavily relies on the realism of two critical components: patient modeling and modeling of the

image acquisition chain. Extensive efforts have been made to develop populations of anthropomorphic

phantoms that accurately represent detailed organ anatomies, including intra-organ heterogeneities in

organs such as the breast, lungs, liver, and bones. On the acquisition side, several CT simulators based

on Monte Carlo (MC) methods have been developed [54]. While MC-based simulators accurately cap-

ture the X-ray interaction process, their slow computation speeds limit their application for generating

high-resolution CT images necessary for realistic image quality assessments, especially when simulating

imaging of a large population of phantoms. To overcome these challenges, alternative approaches such

as GPU-accelerated MC, ray-tracing, and hybrid simulators combining ray-tracing and MC techniques

have been introduced. These methods provide faster image generation and are suitable for realistic

image quality assessments. DukeSim CT simulator is a hybrid simulation platform [55] developed to

rapidly generate scanner-specific CT images of voxelized computational phantoms. The simulator con-

sists of a primary signal generator using X-ray propagation and a Monte Carlo module for estimating

X-ray scatter contribution to image formation. By combining these two signals and accounting for the

physics of the detector elements, DukeSim computes projection images with realistic characteristics.

A detailed description of the DukeSim CT simulator is given in [55]. Similar open-source CT simula-
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tors, such as XCIST or VICTRE, have emerged as valuable tools in the field. All of these platforms

offer a powerful avenue for developing, evaluating, and optimizing scanner-specific technologies in the

clinical context. What differentiates DukeSim software from others is the high computation speed and

presence of state-of-the-art features such as a photon-counting detector model.

In the following sections, the work on modeling photon-counting detectors for CT image acquisition

with details of modeling several physical effects occurring in the process of detection will be presented.

On one side, parameters of this model can be adapted to model CT scanners already on the market (e.g.,

NAEOTOMAlpha by Siemens Healthineers) with an idea to test and optimize the available technology,

or to develop and predict the potential of new technology in the initial phase of development, yet to

enter the clinical environment. An example of such a project will be given in the section 4.1.4, where

the potential of instant-retrigger technology designed by Dectris LTD to improve the capability of

photon-counting detectors in high-flux conditions was tested using DukeSim CT simulator. These

attempts illustrate how virtual simulations can be used beyond clinical trials for the development of

new technology, reducing the time and cost of testing new ideas.

4.1 Photon-counting detector modeling

To accurately model the physics of image acquisition in photon-counting computed tomography, it is

crucial to incorporate realistic models of the signal generation process in photon-counting detectors,

considering factors such as X-ray crosstalk due to the fluorescence effects in the sensor, charge sharing,

and pulse pileup. Previous studies have proposed various models to describe the detection process in

PCDs, including cascaded parallel system models [56] and simulation frameworks combining Monte

Carlo and analytical techniques [11, 57, 13, 58]. Analytical models have also been developed to account

for the probability distributions of photon energies, inter-arrival times, and pulse shapes, thereby

estimating both spatial distribution effects resulting in charge sharing among the neighboring pixels

and spectral distortion effects of pulse pileup. While these studies have enhanced our understanding

of PCDs and their impact on image quality in PCCT, their utility for realistic VITs is limited due to

several factors. These include the lack of comprehensive models considering the combined effects of X-

ray crosstalk, charge sharing, and pulse pileup across various detector designs, limited or no validation

against physical measurements, and the absence of an established methodology for efficient simulation

of scanner-specific images in clinical PCCT systems. The work on the development and validation of

a modular detector response model that incorporates the combined effects of X-ray crosstalk, charge

sharing, and pulse pileup on the image formation process in CdTe-based photon-counting detectors

is described here. The developed methodology integrates these detector response models with the

DukeSim CT imaging simulation platform, enabling the flexible and efficient simulation of scanner-
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specific images for both existing and upcoming clinical PCCT systems. By addressing these challenges,

this research contributes to the advancement of PCCT imaging and its potential for realistic and

comprehensive VITs in a clinical setting.

4.1.1 Stochastic interactions model

A Monte Carlo simulation code developed in Geant4 (v.10.6) was utilized to model the stochastic

interactions between incident X-ray photons and the bulk of the detector. The simulation geometry

consisted of a rectangular X-ray source (S) emitting a uniform beam of monochromatic X-rays, di-

rected towards the central pixel (C) of the detector, as shown in Fig. 16. The distance between the

source and detector was arbitrary, as the choice did not impact the simulation outcomes, consider-

ing the vacuum environment defined for the simulation. The detector was represented as a 100 ×

100-pixel array with detector-specific dimensions (dx, dy, and dz). To minimize boundary effects, a

large pixel array was selected for simulating X-ray photon transport. The Livermore physics list [59]

in Geant4 was employed, which accounts for interaction processes within the energy range relevant

to diagnostic imaging, including photoelectric absorption, Compton and Rayleigh scattering, fluores-

cence, Bremsstrahlung, and ionization. Each simulation was performed with 105 histories (or events)

per run, and the coordinates (xi, yi, zi) and energy (Ei) of all photon interactions resulting in energy

depositions within the detector were recorded.

(a) (b)

Figure 16: An overview of the geometry employed in Monte Carlo simulations to model the probabilistic
interactions between incoming X-ray photons and the detector. Panel (a) shows a side view and panel
(b) shows a 3x3 pixel (C, S, X) neighborhood with a possibility of 2, 3, or 4 pixels involved in charge
sharing.

4.1.2 Charge sharing model

An analytical simulation was developed in MATLAB (Mathworks, Natick, MA) to model pixel crosstalk

arising from charge sharing. This simulation utilized the list of photon interactions obtained from

the Monte Carlo simulation as input. Sequentially selecting interactions within a single event, the
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analytical simulation binned them into pixels based on location and pixel size. Charge clouds were

then modeled at the location of these interactions. The spatial density of charge within the charge

cloud was determined to follow a 2D isotropic Gaussian distribution with a standard deviation (σ)

given by the equation:

σ =

√
2(dizkT )

eV
+

(dizdNe)

10πϵV

1√
5σi

+ σ2
i (56)

Here, diz represents the distance of the interaction location from the collection surface along the

direction of the electric field, d is the thickness of the detector, k is the Boltzmann constant, T is the

absolute temperature, e is the electron charge, V is the bias voltage, Ne is the number of electron-hole

pairs liberated, ϵ is the permittivity, and σi is the initial size of the charge cloud. This formulation

takes into account both charge diffusion in the direction of the electric field and charge repulsion

perpendicular to the electric field. The initial width of the charge cloud was assumed to be 5 µm. For

computing Ne, the energies for liberating a single electron-hole pair and the Fano factors were 4.43 eV

and 0.12 for CdTe, respectively.

To estimate the energy deposited in the surrounding neighborhood of a 3×3 pixel array (C, S, X)

centered around the pixel C assigned to the interaction location in Fig. 16b, the method assumes that

the energy shared is proportional to the projection areas of the charge cloud onto the anodes of those

pixels. The projection areas were computed by numerically integrating the 3D Gaussian charge cloud

projections onto the collection surface, with the limits defined by the pixel boundaries. The maximum

number of neighboring pixels simultaneously sharing the charge cloud was 6 pixels for CdTe as it was

determined that considering a larger neighborhood does not change simulation output and increases

computation time. The combined shared energy within the 3×3 pixel array for all interactions within

an event was then converted to photon counts using multiple energy thresholds, with the selectable

parameter of electronic noise (σe). The electronic noise refers to noise in the detector electronics with

thermal noise in the passive resistive elements of the ASIC being the dominant contributor. This

analytical charge-sharing simulation was performed for all simulated photon transport events, and

the resulting photon counts across all energy thresholds were normalized using the total number of

simulated events (105).

4.1.3 Non-paralyzable detector model

To address the influence of pulse pileup on the recorded spectral data from detector pixels, only

counting logics belonging to the non-paralyzable family were considered, as paralyzable detectors

underperform in high flux conditions. A general non-paralyzable analytical model was adopted from

a previously established method [11]. The model calculates the average number of photons m(E)
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recorded by a detector pixel at energy bin E while accounting for pulse pileup effects. The calculation

incorporates the true count rate (a), which would be the rate of photon counts in an ideal detector,

and the probability of photons being recorded, denoted as aR

a (where aR signifies the recorded count

rate). The influence of pulse pileup is encapsulated by a summation over all possible orders of pileup

(i). Each term in this sum is weighted by the probability of the i-th order pulse pileup occurrence

Pr(E|i).

Mathematically, the m(E) is expressed as a combination of probabilities:

m(E) = a×∆t× Pr(rec|aτ)×
∞∑
i=0

[Pr(i|rec)× Pr(E|i)] , (57)

where Pr(rec|aτ) Poisson probability of events being recorded, Pr(i|rec) probability of the pulse pileup

order i given the events-of-interest being recorded, Pr(E|i) probability of counts recorded at an energy

E with pulse pileup order i, and τ corresponds to the detector deadtime. Replacing the probabilities

with

Pr(rec|aτ) = 1
1+aτ , (58)

Pr(i|rec) = (aτ)ie−aτ

i ! (59)

(60)

the final analytical model can be defined as

m(E) = a× 1

1 + aτ
×

∞∑
i=0

[
(aτ)ie−aτ

i !
× Pr(E|i)

]
. (61)

To calculate Pr(E|i) efficiently, we established lookup tables based on the premise that photons

reaching the detector generate energy-proportional delta pulses. This approach deviates from the

original model where the bipolar pulse is represented with a triangular shape. The cumulative recorded

energy is obtained by summing the energies of pulses within a defined integration window. It’s worth

noting that, for practical purposes, the highest order of pileup considered when computing m(E) was

limited to i = 3, as subsequent increases in accuracy were found to be negligible.

4.1.4 Instant-retrigger detector model

The ”instant-retrigger” pulse pile-up model was implemented using a previously published [60] analyt-

ical method incorporating retrigger capability in a paralyzable detector counting model. The model

is based on assumptions that the arrival of events follows a Poisson distribution with an average true
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incoming rate q, the signals exhibit rectangular shapes with width τP , the retrigger time τR exceeds

the pulse width τP , and the amplitudes of signals are mutually independent stochastic variables, dis-

tributed according to a probability function corresponding to the energy spectrum SE(ϵ). The recorded

count rate m above a certain threshold Eth is given as:

m(E > Eth) =
a− B

τP

aτR + e−aτP + 2A+ τR
τP

B
, (62)

where

A =

∞∑
i=1

Pr(i|τP )SEi(Eth) , (63)

and

B =

∞∑
i=1

iPr(i|τP )SEi
(Eth) . (64)

Term Pr(i|τP ) represents Possion probability given as:

Pr(i|τP ) =
(−aτP )

ie−aτP

i!
, (65)

while SEi
(Eth) is a cumulative distribution function for i pulse pile-up events. For this study, the sum

was safely terminated at i = 3 representing 3rd-order pulse pile-up events as shown in Fig. 17.

Figure 17: Recorded integral spectrum considering the increasing number of pileup events allowed in
analytical model.

The non-paralyzable and instant-retrigger models sightly differ in their assumptions, where the non-

paralyzable model considers delta pulse shape while the instant-retrigger model considers rectangular

pulse width of adjustable shape. The output of the non-paralyzable model is recorded counts for a given

energy (or energy range) while the instant-retrigger model gives counts over the selected threshold.
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4.2 Validation of models

The validation process of the developed detector response model consisted of the validation of pho-

ton transport and charge sharing model using experimental data obtained in a separate study [61].

The data acquisition employed a large-area photon-counting detector (PixiRad-1/Pixie-III) featuring

a CdTe sensor with a thickness of 650µm. This detector had pixels measuring 62 × 62µm, spanning

a total active area of 3.17× 2.49 cm2 (512× 402 pixels). The data was acquired at −30◦C, utilizing a

monochromatic synchrotron X-ray source at energies of 26, 33, 37, and 50 keV. The integral spectra

were obtained through threshold scanning, and differential spectrums were derived through numerical

differentiation. To address the charge-sharing effect among pixels, the detector employed three op-

erational modes. The ”neighborhood pixel inhibit and pixel summing” (NPISUM) mode assigns the

total energy of an event involving up to 4 pixels to the pixel receiving the highest fraction of the total

energy. While NPISUM operation mode allows for well-preserved energy peaks and corrects for effects

of charge sharing, it is prone to pulse pileup due to longer processing times. The effect was minimized

by acquiring data in the linearity range of the detector (fluence rate < 2 × 106 photons mm−2 s−1).

For 26 keV, additional data was available corresponding to the two other modes, the ”neighborhood

pixel inhibit” (NPI) mode and no summing mode (NONPI). The latter operates with no correction

to the counting process, while the NPI mode is similar to the NPISUM mode but assigns the energy

of the pixel receiving the highest fraction of total energy to the event energy without performing any

summing of the charge detected in the neighborhood.

The experimental conditions for data acquisition were replicated to validate our photon transport

and charge-sharing model. Since the data was acquired in the linearity range of the detector, the

effects of pulse pileup were not modeled at this step of the validation. The implementation of NPI and

NPISUM modes involved modification of the analytical charge-sharing simulation to apply corrections

to a neighborhood of 2×2 pixels surrounding the pixel with maximum energy deposition within a

simulated event. The specific neighborhood of 2×2 pixels was chosen based on the minimum distance

of interaction location from the pixel corners. Since NPISUM corrects for most effects of charge sharing,

no charge sharing was simulated at locations of interactions for that mode. For each incident energy

and mode, a total of 105 events were simulated.

The experimentally obtained energy spectra can be distorted by various sources of noise, including

statistical and electronic noise. Here, statistical noise refers to the fluctuations in the energy required

for electron-hole pair generation in the detector bulk. The contribution of noise was introduced to our

simulated spectra using experimentally measured energy resolutions (quantified as the full width at half

maximum - FWHM). Since the energy resolutions were determined only at specific energy peaks (e.g.,

26, 33, 37, and 50 keV monochromatic beams), we needed to estimate how statistical and electronic
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noise (cumulatively) affect the detector’s energy resolution at other energies. To do this, we performed

a linear fit on the standard deviations (σs+e(E)) computed from the measured FWHM values. This

allowed us to model the combined effect of statistical and electronic noise on the degradation of the

detector’s energy resolution at different energy levels. The collective blurring from statistical and

electronic noise was incorporated in the simulated spectra using this linear fit to introduce Gaussian

fluctuations (with σs+e as the standard deviation) in the threshold energy while converting photon

energies to counts. For comparison, both the experimental and the simulated spectra for each incident

energy were normalized using the area under the respective curves.

To validate the analytical non-paralyzable pileup model, the Monte Carlo method to generate the

stochastic arrival times and integrate photon pulses at a non-paralyzable detector was used. Like

the analytical model, the code generates delta pulses proportional to photon energies and sums their

energy within the integration window to produce the integrated signal. Implemented in MATLAB,

the simulation models photon pulses arriving at the detector as a Poisson process with count rate a,

leading to the interarrival times of the photons being sampled from an exponential distribution with

a mean of 1/a. The energies of the individual photon pulses were sampled from a 140 kV spectrum

(15-140 keV, bin width of 5 keV) and integrated at the detector using a running integration window of

width corresponding to the deadtime τ of the detector. The count rate in this study (a) was defined

relative to the detector deadtime (τ) using the dimensionless parameter aτ . For validation, values of

aτ = 0.1, 0.5, and 1.0 were considered, with 106 pulses sampled for each count rate. The simulated

spectra with effects of pileup were then compared to that predicted by the analytical method for each

count rate. The analytical instant-retrigger model has been validated against Monte Carlo simulation

by Zambon et al. [60].

4.3 Charge-sharing validation results

Fig. 18 shows the experimental and simulated spectra for a CdTe-based detector (0.062× 0.062× 0.65

mm) at an incident beam energy of 26 keV using the ”no summing” (NONPI) and the ”neighborhood

pixel inhibit” (NPI) mode. For both NONPI and NPI, the experimental and simulated spectra show

agreement with R2
NONPI = 0.89 and R2

NPI = 0.94 and peak shift towards lower energies for the main

peak in the simulated spectra (Epeak = 25 keV) compared to the experimental spectra (Epeak = 26

keV).

Fig. 19 shows experimental and simulated spectra for the same detector at incident energies of 26,

33, 37, and 50 keV using the ”neighborhood pixel inhibit and pixel summing” (NPISUM) mode. An

agreement of R2
NPISUM = 0.98, 0.90, 0.91, and 0.95 between experimental and simulated spectra were

observed for the NPISUM mode at incident energies of 26, 33, 37, and 50 keV, respectively. Since the
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Figure 18: Experimental and simulated spectra for a CdTe-based detector (0.062 × 0.062 × 0.65) at
an incident beam energy of 26 keV using no summing (NONPI) and the neighborhood pixel inhibit
(NPI) mode.

incident energy of 26 keV is less than the K-edges of Cd (EK,Cd = 26.7 keV) and Te (EK,Te = 31.8

keV), no fluorescence and escape peaks were observed in both the simulated and experimental spectra.

For other incident energies (E = 33, 37, 50 keV), as expected, fluorescence peaks for Cd were observed

at the energy of EKα,Cd = 23.1 keV, while the corresponding escape peaks for Cd and Te were observed

at E−EKα,Cd and E−EKα,Te (EKα,Te = 27.4 keV), respectively. No fluorescence peaks were observed

for Te as EKα,Te is slightly above EK,Cd, leading to mean free paths comparable to the pixel size and

high susceptibility for those photons being reabsorbed within the pixel. Similar to NPI, the slight

inconsistencies in the heights of the fluorescence and escape peaks can be attributed to the lack of

exact details on the implementation of the NPISUM mode. Although the experimental data was

acquired in the linearity range of the PixiRad-1/Pixie-III detector, the longer processing times of the

NPISUM can introduce distortions in the experimental spectra due to the effects of pulse pileup.

4.4 Non-paralyzable validation results

Fig. 20 shows the spectra after pulse pileup estimated for a 140 kV input spectrum (15-140 keV,

bin width: 5 keV) using a Monte Carlo (MC) simulation modeling pileup of delta pulses and the

corresponding analytical approximation method utilized in this study for 3 different products of count

rate and deadtime (aτ = 0.1, 0.5, and 1.0). For all count rates considered, the spectra estimated

using the analytical method and the MC simulation show close agreement of R2 > 0.99. For both

simulated and analytical spectra, spectral distortion characterized by low-energy photons piling up

to higher energies was observed for all non-zero count rates with increased distortion for increasing

incident count rates by 10%, 50%, and 100%, respectively.
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Figure 19: Experimental and simulated spectra for a CdTe-based detector (0.062 × 0.062 × 0.65)
at incident beam energies of 26, 33, 37, and 50 keV using the neighborhood pixel inhibit and pixel
summing (NPISUM) mode.

4.5 Integration of models in DukeSim CT simulator

The effects modeled in this study were implemented in a virtual imaging framework for simulating

photon-counting CT images, specifically utilizing the DukeSim simulation platform. In this work,

DukeSim was adapted to model the scanner-generic geometry featuring a CdTe detector with pixels

measuring 0.5×0.6 and a sensor thickness of 1.6 mm.

The photon transport and charge-sharing simulators were utilized to compute matrices containing

the quantum efficiencies R(E, tn)i,j , representing the counts detected per incident photon on the central

pixel, for all pixels (i, j ∈ C, S,X) in the 3×3-pixel neighborhood of the central pixel across all energy

thresholds tn, as well as the corresponding spatio-energetic covariance matrix Cov(E, tm, tn)i,j;k,l,

which contains covariance values computed for all combinations of neighboring pixels (i, j; k, l ∈

C, S,X) and energy thresholds (tm, tn). The monochromatic quantum efficiency and covariance matri-

ces were computed using monochromatic simulations ranging from 10 keV to 150 keV, with 105 events

simulated per energy. The quantum efficiencies R(E, tn)i,j were used to compute the noise-free mean

signal M(tn) for all pixels in the 3×3-pixel neighborhood for a given energy threshold (tn) as:
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Figure 20: Spectra after pulse pileup estimated for a 140 kV input spectrum (15-140 keV, bin width:
5 keV) using a Monte Carlo (MC) simulation modeling pileup of delta pulses and the corresponding
analytical approximation method utilized in this study for 3 different count rates (aτ = 0.1, 0.5, and
1.0).

M(tn) =
∑
E

∑
i,j∈C,S,X

Nattn(E)i,j ·R(E, tn)i,j (66)

Where Nattn(E) represents the number of photon counts at energy E hitting the pixels after

attenuation through the phantom. Similarly, the total covariance Cov(tm, tn)i,j for the correlated noise

associated with the mean signal for a given pixel (i, j) and pair of thresholds (tm, tn) was computed

using the spatio-energetic covariance matrix Cov(E, tm, tn)i,j;k,l as:

Cov(tm, tn) =
∑
E

∑
i,j∈C,S,X

Nattn(E)i,j · Cov(E, tm, tn)i,j (67)

The noisy signal for a pair of thresholds (tm, tn) was then estimated using multivariate Gaussian

random variables with means M(tm) and M(tn) and the covariance matrix Cov(tm, tn). To incor-

porate the effects of pulse pileup in the non-paralyzable detector, noisy spectral projections, and the
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corresponding air scans were simulated using multiple pairs of energy thresholds to obtain energy-

binned projections, which were then processed using the method described in Sec. 4.1.3. The values

of the true count rate (a) for each pixel were computed as the sum of the counts across all energy bins

and adjusted for the total acquisition time of the scan. The implementation of the instant-retrigger

model was simpler because the model takes counts above the threshold as an input. The projections

were logged using air scans to compute attenuations and corrected for the effects of beam hardening

using a 4th-order polynomial water correction before reconstruction.

Fig. 21 shows the normalized mean, variance, and covariance of counts for incident energies 10-

150 keV summed across the 3 × 3 pixel neighborhood for energy thresholds of t = 20 and t = 60

keV for CdTe- (0.5 × 0.6 × 1.6 mm) detector modeled in this study. Across both energy thresholds,

the magnitudes of mean and variance of counts were observed to peak with increasing energy (in-

cluding secondary peaks from K-edges of Cd and Te at 26 and 31 keV) from the threshold cutoff to

monotonically decrease at higher energies.

Figure 21: The normalized mean, variance, and covariance of counts for incident energies 10-150 keV
summed across the 3×3 pixel neighborhood (C, S, X) for energy thresholds of t = 20 keV and t = 60
keV for CdTe-based (0.5× 0.6× 1.6 mm) sensors modeled in this study.

Fig. 22 shows the corresponding covariance matrices for incident energies of 60 and 90 keV for all

pixels in the 3 × 3 pixel neighborhood for energy thresholds of 20 and 60 keV. As expected, incident

energy of 60 keV only shows signals at thresholds of 30 and 60 keV while incident energy of 90 keV

shows signals in all thresholds (30, 60, and 90 keV). A high covariance (up to 0.7) in counts was

observed between the central (C) and the neighboring pixels (S, X) for both incident energies, with a

relatively larger inter-pixel spread in the lowest threshold (30 keV) for 90 keV.
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(a) (b)

Figure 22: Covariance matrices for incident energies (a) Ei = 60 keV and (b) Ei = 90 keV for all pixels
the 3×3 pixel neighborhood (C,S,X) for energy thresholds of t = 30 keV, t = 60 keV, and t = 90 keV
for CdTe-based (0.5× 0.6× 1.6 mm) detector modeled in this study.

4.6 Discussion of detector response model

In this study, a modular detector response model was developed and validated, accounting for the

combined effects of X-ray fluorescence, charge sharing, and pulse pileup on the image formation pro-

cess in CdTe-based photon-counting detectors. The simulated spectra for the CdTe-based detector

(PixiRad-1/Pixie-III) at an incident energy of 26 keV using no summing mode and the NPI mode

were found to be in good agreement (avg. R2 = 0.92) with the experimental spectra. The peak

shift towards lower energies for the main peak observed in the simulated spectra compared to the

experimental spectra can be attributed to the blurring applied to model the energy resolution of the

detector. Particularly, in Fig. ?? symmetric Gaussian blurring of the spectra skews the main peak

toward the lower energies because of the high contribution of the low energy tail created by charge

sharing events. In the other spectra (e.g., the ones in Fig. 19) this effect is less pronounced in the main

peak as it stands more isolated due to the effects of charge sharing being eliminated in the NPISUM

operation mode. The σs+e(E) used for modeling the energy resolution were computed as a linear fit

on the FWHM values measured on experimental data acquired using the NPISUM mode, which might

not apply to other modes. The close agreement (R2 > 0.99) of the analytical approximation method

with the MC simulation for incorporating the effects of pulse pileup demonstrates the feasibility of this

approach for the processing of energy-binned count data for a variety of true count rates and detector

deadtimes. The slight overestimation of magnitudes (up to 3%) at the bin corresponding to 110 keV

is due to the particular choice of energy bins considered for validation, which leads to the maximum

number of combinations of delta pulses whose sum of energies results in a total energy of 110 keV.
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It was observed that increasing the number of bins by reducing the bin width rectifies this issue at

a cost of increased computational time. Since only unipolar delta pulses piling up as summation of

energies within the integration window were considered in this study, the spectral distortion from pulse

pileup presents itself as a shift in the expected spectra towards higher energies. The mean, variance,

and covariance of counts in Fig. 21 were observed to have a dependence on the incident energy and

the choice of energy thresholds. The mean and variance of counts increase from the threshold cutoff

energy peak with increasing energy due to increased multiple counting above the threshold due to

the fluorescence effects and charge sharing, and then monotonically decrease at higher energies due to

decreasing attenuation of CdTe. There are also secondary peaks observed at energies corresponding to

the K-edges of Cd (26.7 keV) and Te (31.8 keV) due to increased absorption of incident photons in the

detector. The imperfections in the energy thresholds arise due to the presence of electronic noise that

was added during the modeling process. Similar trends were also observed in the covariance matrices

in Fig. 22, reinforcing the incident energy and threshold dependence of covariance values observed in

Fig. 21.

The limitations of this study are reflected in the definition of the charge cloud size utilizes a constant

value of the initial charge cloud size (σi), which might not accurately reflect the physical reality. For

increased accuracy, the σi should be defined using either the Kanaya-Okayama radius or be derived

using MC simulations. The charge cloud sizes can also be calibrated using experimental measurements

for a given detector design. Second, the methods for incorporating the effects of pulse pile-up in the

projection data assume unipolar delta (pulse-width pw = 0) or rectangular delta pulses (pulse-width

pw > 0). Although leading to efficient computations, unipolar delta pulses might not be as realistic as

alternate pulse shapes such as a unipolar triangular or bipolar triangle with long negative tails, which

additionally lead to pileup from high to low energies. Future versions of the study need to validate the

pile-up model against experimental data for a variety of pulse shapes to find the most relevant match.

4.7 Material decomposition in the presence of charge sharing and pulse

pile-up

To demonstrate the viability of our model to perform clinically relevant VITs for PC-CT, we integrated

the developed detector response model with an existing imaging framework for CT to generate scanner-

specific images of an anthropomorphic imaging phantom. The influence of charge sharing and pulse

pileup on the detector spectral response was evaluated through the clinically relevant task of material

decomposition.
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4.7.1 Simulation setup

The anthropomorphic phantom of the abdomen and thorax region was created using the XCAT phan-

tom generator software [62], simulating iodine contrast injection for cardiac perfusion CT scan. The

appearance of the phantom is given in Fig. 23.

Figure 23: Antrophomorphic abdomen and thorax phantom generated using XCAT software. Images
are color-coded to emphasize that this is a ground truth phantom that is to be fed to the CT simulator.

Images were acquired with axial tube rotation at a tube current of 150 mAs, rotation time of 1

s, and a tube potential of 120 kVp. The instant-retrigger analytical model was adapted to matrix

form and applied in projection space specifying energy thresholds of 20 keV and 65 keV, as this is

the common output of the clinical NAEOTOM Alpha PCCT scanner. The nominal pulse width τP

was set to 12 ns and retrigger time was varied in the range of 15 - 35 ns, with the step of 5 ns. The

data was reconstructed using Astra Toolbox [63] cone-beam filtered backprojection to obtain 20 and

65 keV threshold reconstructions with a 37 cm FOV and matrix size 800 × 800 pixels. The material

decomposition algorithm described in Sec. 2.1.2 was applied in image space to obtain iodine images and

virtual monochromatic images, using water and bone as basis materials. The workflow is illustrated

in Fig. 24.

4.7.2 Simulation results

Fig. 25 shows the influence of retrigger time on the redistribution of weights in the water-bone material

decomposition process. Iodine and water decomposition coefficients are determined by averaging values

across a 50× 50 pixel region within the central slice of the XCAT phantom, which contains the heart

artery (aorta) filled with iodine contrast, heart muscle, and body fat.

In the presence of strong photon flux, a rapid retrigger of counters suppresses the pulse pileup and

leads to more accurate material decomposition. Using a fast retrigger time (15 ns) quantitatively accu-
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Figure 24: Implementation of charge sharing and pulse pileup model into a DukeSim virtual CT
platform. The charge-sharing model is implemented in the detector response, while the pulse pileup
model is applied in the projection domain.

Figure 25: Material decomposition weights for muscle, soft tissue, and iodine solvent in water and
bone basis as a function of retrigger time in high flux condition.

rate material decomposition can be performed to compute virtual monochromatic images at different

energy levels as demonstrated in Fig. 26.

Iodine contrast spread in the aorta and heart can be qualitatively observed as more enhancing at

low VMI (50 keV) than at higher VMI energy levels. Finally, pulse pileup influences the accuracy of

VMI through material decomposition. Fig. 27 shows how slower retrigger times suppress less pulse

pileup effects and can lead to a slight underestimation of 8.4 % when comparing the 15 and 30 ns

retrigger times.
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Figure 26: Low (20 keV) and high (65 keV) energy threshold reconstructions of XCAT phantom are
decomposed into water and bone material maps. From said decomposition, VMIs at 50, 100, and 150
keV were reconstructed.

Figure 27: Virtual monochromatic images at 70 keV were reconstructed for a set of decreasing retrigger
times. Linear attenuation coefficients were measured from a 50 × 50 region inside the heart ventricle
as marked on the slices.

The obtained results indicate the necessity of fast retrigger times in the presence of increased

photon flux for accurate quantitative imaging. More advanced flat-field correction techniques based

on empirical projection-based material decomposition approach and pre- and post-processing steps

could also prove valuable in suppressing or efficiently mitigating the influence of pulse pileup on the

quantitative accuracy of measured data [64, 65, 66].
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5 Photon-counting spectral CT in clinics

Spectral computed tomography (CT) has allowed the possibility of a more quantitative evaluation of

data acquired from clinical scanners. Virtual monochromatic imaging (VMI) and iodine quantification

(IQ) are the major quantitative representations in spectral CT to highlight specific attributes of clinical

information. For example, VMI promises to offer improved differentiation of tissues by targeting

specific points of their µ(E) dependence, while further correcting for beam-hardening artifacts[67]

with benefits in imaging abdomen [68], lungs [69] and head and neck [70]. The clinical relevance of

iodine quantification has been reflected in many studies. The most significant application includes the

studies of pulmonary disease [71], coronary artery disease through the detection of myocardial ischemia

based on contrast distribution [72], tumor status (eg., thymic epithelial tumor [73]), differentiation

of metastatic and non-metastatic lymph nodes [74], renal masses and hepatocellular carcinoma [75,

76, 77], and lung cancer where iodine quantification has significant diagnostic and prognostic power.

Increased popularity and demand for VMI and IQ has resulted in several studies testing their accuracy,

precision, and repeatably across different vendors and scanning conditions offering spectral information.

Most investigations have focused on the identification of sources of error when estimating quantitative

parameters and comparing results from different scanner generations. Jacobsen et al. [78] performed

a study measuring the iodine concentration bias from different scanners and computing VMI data

at several energies. Following the suggestion from this paper, Euler et al. [79] conducted a large

study among second and third-generation CT scanners focused on minimum detectable concentration

difference under various scan- and patient-related factors. Several other studies compared different

scanner generations and vendors based on acquisition technique [72], iterative reconstruction, tube

settings, and patient size [80], fluid characteristics of solvent, and influence of the iodine concentration

itself [81]. These studies show that third-generation dual-energy CT (DE-CT) scanners outperform

the second-generation models. The difference between single-source fast kV-switching and DE-CT

in estimating IQ and VMI maps was found to have a small impact. The choice of reconstruction

algorithm (i.e., filtered-back projection or iterative reconstruction) and exposure level showed either

insignificant or very minor impact [82, 83] on quantitative measurements. Most of the variability was

introduced through non-controllable factors such as patient size, iodine concentration, solvent chemical

composition, and misalignment of the phantoms with respect to the iso-center (patient positioning

errors).

As we saw before, a new generation of CT scanners equipped with PCDs has reached clinical status.

This started a new era of computed tomography since the process of data collection with PCDs is

inherently different from energy-integrating detectors (EIDs). Images can be obtained with reduced

noise while maintaining comparable or better spatial resolution. In other words, photon-counting CT
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is capable of delivering images of comparable or better quality at significantly reduced doses. While

spectral imaging on earlier scanners is limited by the overlap of low and high-energy spectra, the

approach of photon binning in PCD can potentially improve the accuracy of estimated quantities

[45, 84]. During its development, the photon-counting approach to detection was extensively studied

using simulation frameworks, bench setups, and prototype systems [85, 86, 87]. Rajendran et al. [88]

performed one of the first technical evaluations of a clinical PC-CT scanner, demonstrating improved

spatial resolution as well as the potential for lower radiation dose and image noise when compared

to current state-of-the-art CT systems. Booij et al. [89] compared the contrast-to-noise ratio of an

iodinated contrast agent in DE-CT and PC-CT at three different phantom sizes and several VMI

levels. They demonstrated improved PC-CT performance only at VMI levels below 60 keV. They also

discovered that using a tube voltage of 90 kV results in a higher CNR than using a tube voltage of 120

kV. Sartoretti et al. [90] conducted a comparison study in 30 patients using the same two scanners for

iodine quantification in liver parenchyma and lesions. They demonstrated good iodine quantification

accuracy regardless of radiation dose, iodine concentration, or base attenuation. Both studies found

no significant differences in PC-CT and DE-CT [90] or minor differences in iodine-to-tissue CNR at

low energy VMIs (40 - 60 keV) [89] at radiation doses recommended by diagnostic reference levels

(DRLs). Decker et al. [91] published the first low-dose study in clinical PC-CT, demonstrating a

statistically significant improvement in CNR and image noise in abdominal scans when compared to

a second-generation scanner. This study demonstrated that PCD technology produces higher-quality

images at lower doses, but it was not quantitative in the sense that VMI levels were not compared.

Leeds et al. [92] provided a quantitative evaluation of multiple VMI levels between DE-CT and PC-

CT Siemens scanners at low doses, reporting improved accuracy in a large phantom and significant

reduction in electronic background noise. In both low-dose studies, the iodine quantification task was

not evaluated.

In the following sections, we investigated the potential of PC-CT for low-dose quantitative spectral

tasks on the NAEOTOM Alpha, a newly released CT scanner in the clinical environment. The scanner

was evaluated against a clinical DE-CT scanner (Siemens Somatom FORCE) in VMI and IQ tasks.

The study tested the accuracy of both Siemens scanners in estimating Hounsfield units (HU) and iodine

concentrations of phantom inserts against the ground truth. Guided by the evidence from previous

research [89, 83], scan-related parameters were closely matched, shifting the focus to patient-specific

and the most influential parameters: phantom volume, material type, its location in the scanner, and

also comparing the relevant concentration of iodine (2 mg/ml) in two different tissue backgrounds

(solvents) - water and blood. The virtual monochromatic images were generated at energies of 40, 70,

and 100 keV. The radiation dose used for image acquisition needed special consideration. Previous
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research on quantitative imaging in DE-CT scanners indicates optimal performance at current DRLs,

but research PC-CT systems showed significant improvement in contrast-to-noise ratio at the same

doses [93, 88]. Thus, in addition to routine dose levels, data in this study was collected at doses below

the current diagnostic reference levels, according to the potential of the new technology. Moreover,

using the combination of large phantom sizes and extra-low doses we explored the ranges within which

quantitative imaging remains viable.

5.1 Experiment design

The experimental design developed for the comparison study between a dual-energy CT of the new

generation and the first clinically approved photon-counting CT scanner is given in the following

sections.

5.1.1 Phantom

The Multi-Energy 20-cm-diameter CT Phantom (Model 1472, Gammex Inc.) containing 9 different

inserts that were used for this study is shown in Fig. 28. Inserts contained iodine (concentrations of 2,

5, and 15 mg/ml), calcium (50,100, and 300 mg/ml), and body tissues (brain and blood). Custom-made

rings (each 5 cm in width) of fat-equivalent material were added to simulate the waist circumference

(WC) of larger patients. There were a total of three rings, referred to as M, L, and XL sizes, designed

according to the NIH practical guide to represent normal (WC: 90-100 cm), type-I, and type-II obese

(WC: 110-130 cm), and extreme obese (WC: > 130 cm) patients.

Figure 28: The phantom with inserts used for data collection. The core is a commercial Multi-Energy CT
Phantom (Model 1472, Gammex Inc.) while fat-equivalent rings were produced in-house to simulate different
patient sizes.
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5.1.2 CT scanners

Quantitative analysis was performed on two clinical scanners: Siemens FORCE and Siemens NAEOTOM

Alpha. The FORCE scanner is representative of a third-generation dual-energy CT system, utilizing

the latest energy-integrating detector technology. Spectral separation is enabled by two X-ray tubes

which are simultaneously operated at different tube voltages. Thus, in spectral mode, the standard out-

puts of this system are ”low” and ”high” energy projections. The tube operating at higher energy has

also a smaller field of view, limiting the quantitative analysis for very large patients. The NAEOTOM

Alpha is a first-generation photon-counting CT scanner. It is a dual-source scanner with two CdTe

photon-counting detectors with both tubes operating at the same voltage. The in-plane resolution in

ultra-high mode reaches 0.125 mm [88], somewhat higher than the 0.30 mm in the FORCE scanner. In

lower resolution ”standard mode”, spectral separation is possible by up to 4 energy levels, but in high

resolution ”ultrahigh-resolution mode”, only two energy thresholds are available. It is worth noting

that even when operating in standard mode by averaging the values in the 2-by-2 pixel neighborhood,

the effective pixel size is still smaller than in the FORCE scanner. The reconstruction software uses an

iterative reconstruction approach (Quantum Iterative Reconstruction, or QIR) different from the one

that comes with the FORCE scanner (ADMIRE) and the standard output is always a VMI dataset.

Sartoretti et al. [83] showed a reduction of up to 45 % in the global noise index between filtered

back-projection and maximum QIR. This improvement didn’t compromise the noise texture and mean

attenuation values of measured regions. Thus, the iterative strength in the NAEOTOM Alpha scanner

has no influence on quantitative values except for measurement standard deviation.

5.1.3 Acquisition and reconstruction

For each phantom size, we determined the required effective mAs to achieve CTDIvol values that align

with our clinical quality reference mAs (QRM) for a routine abdomen pelvis exam. Given the desire

to use the new technology for low-dose imaging, the clinical CTDIvol was then halved and quartered

to give three dose levels. In this study, scanners were matched based on CTDIvol values and we refer

to dose levels as standard, low, and extra-low doses. In addition, for each dose level, the phantom

was shifted 5 cm in a vertical direction to ascertain the effect of variability in patient positioning on

the results. The acquisition parameters used on both scanners are given in Table 2. In the DE-CT

scanner, the low voltage tube was set to 80 kVp or 100 kVp and high to 150 Sn kVp[80, 86, 90], while

for PC-CT both tubes were at 120 or 140 kVp, with the two thresholds set at 20 and 65 keV [94] and

20 and 70 keV, respectively. All scans were acquired at the pitch of 1.

The quantitative reconstruction kernel ”Qr40” was used with both scanners. The influence of

iterative reconstruction strength was shown to be negligible in the presence of other patient-related
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Table 2: Scan parameters of both scanners

Scanner model Phantom size CTDIvol (mGy) Offset (cm) Tube voltage (kVp) Tube current (mAs)

Somatom FORCE M 2.6, 5.2, 10.4 0;5 80/150Sn; 100/150Sn 18, 36, 73

L 6.8, 13.6, 27.2 0;5 80/150Sn;100/150Sn 48, 95, 190

XL 20, 40, 70 0;5 80/150Sn;100/150Sn 140, 280, 557

NAEOTOM Alpha M 2.6, 5.2, 10.4 0;5 120; 140 19, 36, 73

L 6.8, 13.6, 27.2 0;5 120; 140 43, 68, 172

XL 20, 40, 70 0;5 120; 140 127, 253, 380

parameters in DE-CT [80, 79] and it also does not bias mean values in PC-CT [83]. Because QIR

has 4 degrees of strength and ADMIRE has 5, we decided to use strength 3 for the NAEOTOM

Alpha scanner (75 %, Syngo VA40) and strength 4 (80 %, Syngo VB10) for the FORCE scanner. All

reconstructions were performed using a slice thickness of 2 mm, a field of view of 500 mm, and a matrix

size of 512 × 512. The choice of VMI energy level is task-dependent and for non-contrast tasks, 70

keV images are a vendor standard output on NAEOTOM Alpha PC-CT. Besides 70 keV, images at

lower energy (40 keV) and higher energy (100 keV) were rendered on both scanners to enable a full

comparison. Ground truth values provided by the phantom manufacturer were calculated from the

elemental compositions of the inserts. For iodine quantification, measured values exported in DICOM

iodine maps were converted to units of iodine concentration (mg/ml) [79] using vendor calibration.

Fig. 29 shows extra-low dose scans for qualitative comparison.

5.1.4 Statistical evaluation

An automated approach to data collection was implemented (Python, version 3.10.0) and statistical

analysis was performed in dedicated statistical software (R, version 4.1.3). Pixel values were extracted

from the 9 circular regions in each slice (16 mm in diameter). A total of 10 slices free from major

artifacts were considered for each scan. All data acquired were initially separated into two groups

according to scanner type. The association between measured and true values of iodine concentration

and HU values across all scanner conditions was statistically evaluated using Pearson correlation.

Experimental data were compared to ground truth values across different patient-related parameters

using known material compositions provided by the phantom manufacturer. To assess the accuracy

of measurements, the difference D = (mean measured value - true value) was computed for each

region of interest (ROI) leading to a total of 90 values per scan. An uncertainty on the difference

was reported using 95 % confidence intervals computed as 1.96 × standard error. Using D as the

dependent variable and analysis of variance (ANOVA), the influence of each patient-related parameter

(patient size, radiation dose, solvent type, and displacement from the iso-center) on the accuracy of

each scanner was assessed. After the most significant sources of error were identified, further analysis

was performed using posthoc Tukey honest significance (HSD) on the same dataset. The goal of this
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Figure 29: The extra-low dose phantom CT reconstructions from the DE-CT and the PC-CT scanner organized
by size (M, L, XL) for three virtual monochromatic energy levels (40, 70, and 100 keV) and an iodine map.
Scans are displayed with window width 0-500 HU and the orientation of inserts is the same as in Fig. 28

step was the pairwise comparison of groups within the selected patient-related parameter to estimate

the influence of each group on the accuracy of measurement (D). To consider overall deviation from

the ground truth, a virtual monochromatic scanner bias was estimated as:

MB =
∑

i=40, 70, 100 keV

(measured− true)i (68)

and an iodine scanner bias was defined as:

IB =
∑

i=2, 5, 15 mg/ml

(measured− true)i (69)

previously defined by Jacobsen et al. [78]. The results reported in this study were obtained at a p <

0.01 statistical significance level.
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Table 3: Analysis of variance

Virtual monochromatic imaging Iodine quantification

EID PCD EID PCD

Quantitative task 19.15∗∗∗ 505.63∗∗∗ − −
Phantom size 288.64∗∗∗ 499.05∗∗∗ 220.61∗∗∗ 1934∗∗∗

CTDIvol 21.22∗∗∗ 0.61 5.35∗∗ 1.70
Material type 115.05∗∗∗ 77.42∗∗∗ 223.73∗∗∗ 294.34∗∗∗

Displacement from iso-center 52.73∗∗∗ 0.22 15.68∗∗∗ 44.88∗∗∗

Solvent − − 20.23∗∗∗ 9.17∗∗

∗∗∗p < 0; ∗∗p < 0.001; ∗p < 0.01; ·p < 0.05

5.2 Comparison results

5.2.1 Quantitative assessment of virtual monochromatic data

In our analysis, we obtained superior HU and iodine quantification accuracy for higher tube power

setups (100/150Sn kVp and 140 kVp) in large and extra-large phantoms at low doses, and a comparable

accuracy in the medium-size phantom. Thus, subsequent analysis was performed using higher voltage

setups, and the raw data visualization for major patient-specific dependencies is shown in Fig. 30.

The results of the Pearson test showed a statistically significant correlation between measured and the

phantom manufacturer (true) HU values in both scanners. A slightly higher correlation coefficient of

0.993 was observed for the DE-CT scanner, versus 0.970 for the PC-CT scanner. The overall mean

difference with 95% confidence interval for the combined contribution of all patient-related factors was

13 ± 2 HU for DE-CT and -28 ± 3 HU for PC-CT at all three VMI energy levels, 14 ± 4 and -83 ± 6

for 40 keV, 17 ± 1 and -1 ± 1 for 70 keV, and 10 ± 1 and 14 ± 1 for 100 keV, for DE-CT and PC-CT,

respectively.

The analysis of variance revealed that the choice of monochromatic energy level in both scanners

had a significant effect on the difference between actual and measured values. All patient-related

parameters used in this study significantly affected the accuracy of HU values in the DE-CT, while

in the PC-CT scanner, the radiation dose and the displacement proved insignificant for the virtual

monochromatic imaging in tested conditions. The ANOVA results for VMI are shown in the first part

of Table 3.

The posthoc Tukey pairwise comparison of the significant patient-related parameters is summa-

rized in Fig. 31. The statistically significant difference in the pairwise comparison of dense material

inserts containing calcium and high iodine concentrations against other materials was observed in both

scanners (Fig. 31 a). The most obvious difference between the two scanners was observed in a pairwise

comparison of dose levels: in the PC-CT scanner, there were no statistically significant differences be-

tween dose levels while in DE-CT significant differences were observed in the comparison of extra-low

70



Figure 30: Comparison of the three virtual monochromatic levels (40, 70, and 100 keV) as deviations from
the ground truth (baseline equals no deviation), for a combination of three patient-related factors (phantom
size, dose, and material density), highlighting the difference between PC-CT and DE-CT. The data points
represent the mean differences obtained from 10 different slices, while the error bars are the mean standard
errors. Similar tissue inserts (soft, calcium, iodine), and values measured when the phantom was displaced
from the iso-center were averaged together. Data points were grouped based on phantom size (M, L, XL),
radiation dose (extra-low: red, low: yellow, standard: green), and material insert type.

dose levels and the other two higher dose levels (Fig. 31 b). The VMI levels significantly differed

from each other, especially in PC-CT where the average accuracy D for 40 keV VMI level and XL

phantom was -503 HU in calcium, -182 in iodine, and -117 in soft inserts (given in more detail in the

Appendix). The mean difference between all sizes in both scanners was statistically significant, but a

major increase in mean difference was associated with the extra-large phantom size.

The monochromatic bias was characterized for each VMI level according to the formulation given

in Sec. 5.1.4 and shown later in Fig. 34. The results demonstrated the opposite overall MB of 40
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Figure 31: Tukey pairwise comparisons of groups within each statistically significant patient-related parameter
for the virtual monochromatic imaging task are presented with 95% family-wise confidence intervals. Panels
show a comparison of mean differences of accuracy (D) between material types (a), dose levels (b), VMI levels
(c), and phantom sizes (d). Star shapes (⋆) mark the statistically significant mean differences of accuracy (D),
while circles show insignificant pairwise mean differences.

± 5 HUs in DE-CT and -83 ± 7 in the PC-CT scanner. A major contribution to a negative bias in

the PC-CT scanner was driven by the underestimation of HU values at 40 keV virtual monochromatic

images, especially in dense phantom inserts (Ca 300 mg/ml and iodine 15 mg/ml).

5.2.2 Quantitative assessment of iodine quantification

Measured iodine concentrations showed a statistically significant correlation with ground truth values

in both scanners for the task of iodine quantification. The Pearson correlation in PC-CT (0.89) was

significantly higher than in DE-CT (0.80). Visual inspection of the data revealed that patient-related

parameters have a lower influence on the accuracy and stability of measurements in the PC-CT scanner.

For the iodine quantification task, a comparison between the two scanners is shown in Fig. 32. Data

were sorted by the level of iodine concentration, radiation dose, and phantom size.
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Figure 32: Comparison of measured iodine concentrations to the ground truth, highlighting the difference
between PC-CT and DE-CT for respective tube configurations 140 kVp and 100/150Sn kVp. The data points
represent the mean differences obtained from 10 different slices, while the error bars are the mean standard
errors. All data points were grouped by phantom size (M, L, XL), radiation dose, and level of iodine con-
centration (2, 5, and 15 mg/ml). Iodine inserts at 2 mg/ml for two different tissue backgrounds (water and
blood), and values measured when the phantom was displaced from the iso-center were averaged together.

The overall mean difference when all patient-related factors influencing the iodine quantification

task were taken into account was 1.57 ± 0.04 mg/ml in the DE-CT and -0.30 ± 0.02 mg/ml in the

PC-CT, with significant differences between DE-CT and PC-CT. The mean difference increased with

the phantom size, 0.50 ± 0.03 and 0.47 ± 0.01 for M size, 1.59 ± 0.06 and 0.67 ± 0.03 for L size, and

2.63 ± 0.13 and -2.04 ± 0.11 for XL size in DE-CT and PC-CT respectively. The complete ANOVA

and Tukey pairwise comparison results are shown in Table 3, that is Fig. 33.

The results of the analysis of variance indicate that phantom size, iodine concentration, phantom

displacement from the iso-center, and solvent type (water or blood) are significant parameters for

both scanners. However, the radiation dose only affects the DE-CT scanner and not the PC-CT

scanner. Further analysis using Tukey pairwise comparison within the significant groups reveals that

there is a significant difference in means between high (15 mg/ml) and lower (2 and 5 mg/ml) iodine

concentrations in both scanners. This difference is more pronounced in the DE-CT scanner than in

the PC-CT scanner (as shown in Fig. 33 a). Additionally, there were no significant differences in

means obtained at extra-low, low, and standard doses for the iodine quantification task in the PC-CT

scanner (as shown in Fig. 33 c), as was the case for the VMI task. However, in the DE-CT scanner,

measurements obtained at the standard dose were statistically different from the lower doses. The

mean difference in the extra-large phantom size is significantly different from the medium and large

sizes in both scanners (as shown in Fig. 33 d).

Based on these statistical results, the iodine size bias was characterized for each iodine concentration

according to equation 68 and is shown in Fig. 34.

The iodine quantification bias of -0.9 ± 0.15 was significantly lower in PC-CT compared to IB of

4.72 ± 0.22 in DE-CT.
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Figure 33: Tukey pairwise comparisons of elements within each statistically significant patient-related param-
eter for the iodine quantification task are presented with 95% family-wise confidence intervals. Panels show a
comparison of mean differences of accuracy (D) between iodine concentration (a), tissue backgrounds (b), dose
levels (c), and phantom sizes (d). Star shapes (⋆) mark the statistically significant differences in the observed
mean differences.

5.3 Discussion of comparison results

Spectral CT scanners offer new opportunities in quantitative imaging through virtual monochromatic

images and iodine quantification. These methods are useful for a variety of clinical tasks, including

tumor, staging, and tissue differentiation. To be considered fully quantitative they must be accurate,

precise, and repeatable. Numerous studies on early-generation scanners have been conducted, testing

the influence of many scan- and patient-related parameters on the accuracy and precision of VMI and

IQ. Through their inherent ability to differentiate the energies of detected photons, paired with uniform

spectral weighting and low electronic noise, a new generation of CT scanners with photon-counting

detectors offer new potential for spectral imaging. However, studies by Sartoretti et al. [90, 83]
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Figure 34: Scanner bias: VMI and iodine bias computed using equations 68 and 69, respectively. The
horizontal lines show the 95% confidence intervals.

and Booij et al. [89] found little or no difference in quantitative performance at doses comparable

with DRLs, whereas Rajendran et al. [88] and Decker et al. [91] obtained statistically significant

improvement in CNR at low dose range. Leening et al. [95] performed a quantitative evaluation of

VMI levels at low doses, stating that PC-CT outperforms DE-CT in given conditions. The purpose

of this study was to compare the advantages of photon-counting versus energy-integrating detection

in quantitative imaging with two representative clinical CT scanners under the influence of major

patient-related factors such as patient size, radiation dose, patient positioning, iodine concentrations,

and their dissolving environment at very low dose levels. Compared to other similar studies [91, 92],

in addition to VMI performance evaluation, we evaluated the iodine quantification task and included

more patient-related parameters and analyzed cases where quantitative imaging becomes extremely

difficult such as in extremely obese patients at low doses.

Using the ANOVA we found that low-dose quantitative imaging was significantly affected by most

patient-related parameters in both scanners. However, the radiation dose did not significantly affect

the accuracy of quantitative imaging in the PC-CT scanner. The PC-CT scanner showed an obvious

improvement in the iodine quantification task, as iodine concentrations could be estimated with good

accuracy (D = -0.30 ± 0.02 mg/ml) and small bias (-0.90 ± 0.15 mg/ml), while the accuracy of VMI

was comparable at higher VMI levels (in agreement with previous studies) but degraded in the 40 keV
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virtual images. The VMI bias was higher and the iodine bias was lower in the PC-CT than in the

DE-CT scanner in our study. For the iodine quantification task, some of the results of this study can

be compared to the findings of Sartoretti et al. [90]. For the identical phantom circumferences (M size

phantoms in both studies) the dose levels (CTDIvol = 15, 10, and 5 mGy) were on average 1.7× higher

than in our study. The reported iodine error in the PC-CT scanner (|D| = 0.32 ± 0.39) was comparable

to the one obtained in the PC-CT scanner in our study (0.30 ± 0.02 mg/ml), and in the DE-CT scanner

(|D| = 0.36 ± 0.31) the reduction of the dose severely affected the accuracy of iodine quantification

(1.57 ± 0.04 mg/ml) in our study. Iodine quantification bias results were compared to the largest study

[78] evaluating the most widespread dual-energy scanners from different vendors. The dose reported in

their study was on average 1.6× higher for nearly matching phantom sizes (elliptical phantom 40×30

cm versus the L size phantom of diameter 40 cm) and the iodine inserts used in both studies were of

the same concentration. The iodine bias range obtained from several dual-energy scanners (-2.6 to 1.5

mg/ml) was comparable to the iodine bias in PC-CT (-0.9 ± 0.15 mg/ml) but not with the bias in

DE-CT (4.72 ± 0.22 mg/ml) scanner used in our study. Therefore, iodine quantification at very low

doses in PC-CT produces a comparable accuracy and bias to that of dual-energy scanners at DRLs,

but the reduction of dose in the same DE-CT scanner type significantly increases the iodine bias. The

comparisons with the previous studies further corroborate our result that radiation dose was not a

statistically significant factor in the PC-CT scanner for the iodine quantification task.

The size of the phantom was the most influential factor when estimating both quantitative maps.

The size factor has been investigated before [96] and some vendors have implemented a size-dependent

calibration factor that re-scales the iodine concentrations based on the effective size of the patient.

The main effects influencing the accuracy at increased phantom size are the combined effects of photon

starvation and energy weighing of the signal inside the detector. Because photon starvation is energy-

dependent (beam hardening effect), the improved spectral weighting of low-energy photons in photon-

counting detectors becomes even more important in the imaging of large and dense objects at low doses.

The combined effect of beam hardening and sub-optimal energy weighting has a particular influence

on iodine quantification because the most prominent feature of iodine, its K-edge, is located at the

low end of diagnostic energy spectra (33.2 keV). Indeed, the mean differences in the Tukey pairwise

comparisons were the largest between low and high iodine concentrations and between medium and

larger phantom sizes. For comparison, iodine quantification accuracy for M and L size phantom is

comparable in PC-CT (D = 0.47 ± 0.01 → D = 0.67 ± 0.03), while a significant drop in accuracy is

observed in DE-CT for the two sizes (D = 0.50 ± 0.03 → D = 1.59 ± 0.06). However, when photon

statistic becomes very low such as in XL size phantom, both scanners exhibit low iodine quantification

accuracy. Because the L and XL phantom sizes used in this study are representative of obese and
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severely obese patients and at the same time they make up nearly 42 % and 10 % of the US adult

population (NHANES 2017-18), our results suggest improved quantitative imaging performance in

PC-CT for the substantial part of US population.

The virtual monochromatic imaging task is different from the iodine quantification task in that

the basis materials used for material decomposition usually don’t contain a K-edge. An advantage of

improved photon statistics at very low energies in the PC-CT scanner (due to improved weighting of

low energy photons) that is crucial for the iodine quantification task, seems to diminish in the VMI

tasks for the condition of low-dose-obese patient imaging, especially for the estimation of bone VMI

HU values and other dense tissues. Overall, the DE-CT scanner HU accuracy for all VMI levels (13

± 2 HU) was within the range (11.4–52.0 HU) reported in prior studies [78], and compared to these

values the PC-CT scanner showed similar accuracy (-28 ± 3 HU) but in opposite direction. Further

investigation revealed that the significant negative bias (-83 ± 3 HU) was driven by an underestimation

of 40 keV HU values in XL phantom (top-right Fig. 30), particularly in high-concentration calcium

and iodine inserts (see Appendix A). Leening et al. reported larger deviations from the ground truth

in 40 keV images compared to higher virtual monochromatic levels for both PC-CT at 120 kVp and

DE-CT at 100/150Sn kVp scanner. Since we used much larger patient sizes (L and XL) and denser

inserts (calcium 100 and 300 mg/ml and iodine 15 mg/ml), the accuracy of estimating HU values at 40

keV was significantly reduced in PC-CT. Previous studies found that an increase in tube potentials in

DE-CT benefits virtual monochromatic imaging at low doses, despite decreased spectral separation and

decreased attenuation difference between basis materials. Perhaps, following the same logic, PC-CT

scanners could benefit from increased tube potentials and/or threshold optimization for the specific

case.

The analysis of the influence of the dissolving environment on the accuracy of iodine estimation

in the two special inserts of 2 mg/ml with different body fluids backgrounds showed statistically

significant differences in both scanners. The insert containing blood produced consistently higher

iodine concentration measurements and positive iodine bias in both scanners. This is because blood

contains a certain amount of iron, which can erroneously mimic iodine-induced attenuation. Thus, it

is worth noting that the true iodine concentration in blood could be slightly lower compared to the

measured values. Lastly, the offset of 5 cm from the iso-center didn’t cause any differences in virtual

monochromatic imaging performance in the PC-CT scanner, but it was significant for iodine imaging

and for both quantitative tasks in the DE-CT.

Irrespective of spectral performance, to complement the picture one should consider the level of

noise and resolution of both scanners. For the exact two scanners (study done in the same institution

[97]), it was found that PC-CT exhibits similar or better noise, contrast, and CNR than DE-CT when
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comparing kernels with similar names. Sharp kernels on PC-CT had lower resolution than DE-CT’s

sharp kernels.

Some of the limitations of our study should be noted. We performed this study on phantoms,

thus, results may slightly differ in actual patients. Our study covered a wide range of patient-related

parameters relative to clinical practice but we mostly focused on low-dose performance. Although

we had different levels of iodine concentration, we didn’t estimate a minimal detectable concentration

difference [79] due to the lack of suitable inserts. Although expected to be minimal, some differences

in results could exist due to the difference in smoothing kernel implementation and reconstruction

software version. Finally, in the case of larger phantoms (e.g., L and XL), it’s important to note

that the comparison between DE-CT and PC-CT might not be entirely fair. This is because DE-CT

employed a higher tube voltage of 150 keV (with Sn filter), whereas the PC-CT scanner used 140

keV. It’s worth mentioning that both settings represented the maximum voltages available on their

respective machines. In clinical scenarios with patients of similar sizes, the recommended clinical

protocols advise utilizing the highest tube potential.

According to our statistical analysis, photon-counting CT has the potential to achieve better quan-

titative performance at lower radiation doses. Our study found that the Siemens NAEOTOM Alpha

PC-CT scanner showed comparable accuracy in iodine and VMI imaging between low and standard

radiation dose levels. In contrast, the DE-CT scanner’s performance was affected by radiation dose

levels and showed reduced accuracy at lower radiation doses. The PC-CT scanner outperforms the

DE-CT scanner in the iodine quantification task in all cases. The accuracy of virtual monochromatic

imaging is comparable between scanners for normal and obese patients, but in extreme cases of very

large patients and dense material inserts, DE-CT seems to benefit from the increased tube potential

configurations available on the system, outperforming the PC-CT scanner.
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6 Synchrotron spectral breast CT - density and effective atomic

number

Tissue differentiation in mammography is challenging due to the overlap of tissues with similar linear

attenuation coefficients µ in the diagnostic energy range. A comparison of the attenuation of glandular

tissue and close-by malignant tumors found that the average attenuation values are almost identical

even in the low-energy range [98, 99]. Computed tomography (CT) solves tissue overlapping issues

and provides additional diagnostic information based on tissue morphology in 3D volumes. On the

other hand, breast-dedicated CT uses higher X-ray energies than mammography due to the imaging of

uncompressed breasts, thus reducing attenuation contrast between similar tissues. Tissue separation

can be significantly improved by acquiring data at multiple energy levels using spectral CT imaging [5].

As we established before, photon-counting detectors are particularly interesting due to the availability

of multiple energy thresholds (up to 12 [84]), flat spectral response, and low imaging noise. The first

breast CT scanners with PC detectors are being introduced in clinics [100, 101, 102, 103] and syn-

chrotron facilities [104, 105], where spectral separation can be obtained using multiple monochromatic

X-ray beams. Despite the available technology for spectral imaging in both systems, the benefits of

such an approach in breast CT imaging have not been explored yet.

Spectral data representation through material decomposition into two basis materials is the most

common approach because two physical effects contribute to image formation in the diagnostic energy

range: the photoelectric effect and Compton scattering. The photoelectric-Compton basis itself is very

convenient because of the well-defined dependencies of these effects on density and atomic number.

However, such basis spans an infinite range of physical materials, given that a “purely Compton”

material would be the element in the limit Z → 0, while a “purely photoelectric” one would correspond

to Z→ ∞. Such a broad range would degenerate the separation of similar materials, such as soft tissues.

To address this issue, the use of a pair of physical (or even virtual) materials that span the range of

materials of interest has been shown to significantly reduce decomposition uncertainty [30]. A popular

choice of physical materials for decomposing biological tissues are polymethyl-methacrylate (PMMA)

and aluminum (Al) basis pair [106], also used in this study. Estimated weights of the linear combination

of two basis materials carry physical information but have no particular comprehensive meaning except

when one of the basis materials is the same as the material of interest (e.g. iodine quantification or

calcium scoring). However, using the weights and the known energy dependence of basis attenuation

coefficients virtual monochromatic images (VMIs) can be extrapolated at an arbitrary energy value

within the diagnostic energy range [107]. VMIs have simple interpretation and clinical case studies

show that virtual monochromatic images are diagnostically valuable for certain tasks [67], and they
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are a standard output in the first clinical whole-body PC-CT (Naeotom Alpha, Siemens) [108].

In the present research, a spectral study was specifically designed to characterize breast CT images

in terms of material density ρ and the effective atomic number Zeff. While ρ/Zeff decomposition has

been implemented in some clinical CT scanners [109], no studies specifically focused on breast tissue

characterization were performed. In section 6.1.1, a theoretical approach to computing ρ and Zeff

values from physical material decomposition instead of the photoelectric-Compton decomposition was

developed to improve the accuracy of results. Using synchrotron X-ray beams at several energies and

a high-resolution PCD described in section 6.1.2, CT scans of a dedicated phantom and 5 mastectomy

samples were acquired. Due to the superior imaging quality and spectral separation available with

synchrotron setup, the work investigates the feasibility and the potential diagnostic benefit of ρ/Zeff

decomposition in breast CT imaging. This information is of interest since PCDs matured enough to

operate in clinical conditions with the ability to obtain better spectral separation than other approaches

mentioned earlier [84]. The introduced concept of effective atomic number was further investigated in

section 6.1.3. Section 6.1.4 describes tissue preparation and section 6.2 provides a detailed explanation

of the practical realization of the analysis with careful consideration of the well-known problem of the

decomposition noise [16, 110, 111]. Finally, the data analysis approach is given in 6.3. We also showed

that virtual monochromatic µ values at desired energy can be computed using the known dependence

of X-ray attenuation on density and atomic number.

6.1 Experiment design

6.1.1 Theoretical model

In the first step of our method, we performed material decomposition to determine the coefficients x1

and x2. Because more than two spectral scans were available for each sample [112], instead of using

traditional matrix inversion [113], x1 and x2 coefficients were calculated by using a least-square fit

approach described in equation 29. Using the dependence of the linear attenuation coefficient on PE

and CE as stated in equation 47 to describe basis materials in equation 23 and once again assuming

A = 2Z, as it is almost true for any chemical element with Z ≲ 20, the linear combination coefficients

of equation 23 read

x1 =
ρZ1(Z

nZ2−Z Zn
2 )

ρ1Z(Zn
1 Z2−Z1Zn

2 )
(70)

x2 =
ρZ2(Z Zn

1 −ZnZ1)

ρ2Z(Zn
1 Z2−Z1Zn

2 )
(71)

ρj and Zj being the density and the atomic number of the j-th basis material. It is straightforward
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to notice that equations 70 and 71 depend on both the density and the atomic number of the material.

In order to decouple the two dependencies, it is necessary to rotate the reference frame (by an angle

ϕ = arctan
(

ρ2

ρ1

)
) and then rescale the second coordinate dividing it by the first one. The resulting

coordinates, which read

xρ = ρ√
ρ2
1+ρ2

2

(72)

xZ =
Zℓ(ρ2

1+ρ2
2)−(Z

ℓ
1ρ

2
1+Zℓ

2ρ
2
2)

(Zℓ
2−Zℓ

1)ρ1ρ2
(73)

(with ℓ = n − 1) are labeled xρ and xZ because of their exclusive dependencies on the variables

mentioned in the subscripts. Equations 72 and 73 represent the expected relationships between xρ

and ρ, and between xZ and Z, for a given choice of basis materials. Such expressions are used in the

calibration procedure described in section 6.4.1, where the (known) densities and atomic numbers of

reference materials will be fitted against the corresponding (measured) values of xρ and xZ using the

functional forms

xρ(ρ) = κ ρ (74)

xZ(Z) = pZλ + q (75)

stemming directly from equations 72 and 73 with the (physically motivated) coefficients replaced

by the effective fit parameters κ, λ, p, and q. The resulting calibrated relationships map the measured

xρ and xZ of any imaged material onto its actual values of density and effective atomic number.

6.1.2 Scan setup

The experimental image acquisition was carried out at the SYRMEP beamline of Elettra, an Italian

synchrotron light source in Trieste, in the framework of SYRMA-3D (SYnchrotron Radiation for

MAmmography) collaboration [105]. The SYRMEP beamline utilizes a laminar beam having a cross-

section at the detector equal to 148.5 mm (horizontal) × 3.25 mm (vertical), while the energy is

selected through a Si double-crystal (1,1,1) monochromator with a resolution around 0.1%. To perform

tomographic acquisition the sample was positioned on a rotation stage spinning at a constant speed

of 4.5 degrees/s while 1200 projections were acquired over 180 degrees. The imaging detector was a

large area high-resolution CdTe photon-counting device (Pixirad8) featuring a honeycomb matrix of

4096 × 476 pixels with a 60 µm horizontal and 52 µm vertical pitch [114, 115]. It was positioned
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∼1.6 m from the sample to employ the propagation-based phase-contrast imaging technique. The

source-to-sample distance was 30 m, leading to a magnification factor of 1.05. Acquired projections

were pre-processed with an ad-hoc procedure [116] and then phase-retrieved using an algorithm based

on the homogeneous transport of intensity equation (TIE-Hom) [51]. Finally, CT reconstructions

were obtained via a GPU-based filtered-back-projection algorithm with Shepp-Logan filtering [117].

It is worth noting that, despite being a product of phase retrieval, reconstructions are maps of the

attenuation coefficients µ at a given energy, as thoroughly explained in [50, 53, 112].

6.1.3 Calibration phantom and effective atomic number

A custom-made cylindrical phantom with a 10 cm diameter dedicated to calibration and quality con-

trol of the synchrotron breast CT system was used [118, 119]. The phantom was filled with water

and contained five inserts of polyethylene (PE), nylon (PA), PMMA, polyoxymethylene (POM), and

polytetrafluoroethylene (PTFE) mimicking soft tissues of similar attenuation properties. The density

of each material was known and the effective atomic number was computed from the material com-

position. Comparison between the methods using the open-source GUI software ”ZcompARE” [31]

software is analyzed in Appendix B, showing that depending on the method chosen, Zeff number can

take different values for the same compound. However, any choice of the method led to a unique

material description on a chosen basis. Quantity xZ derived in section 6.1.1, was simply calibrated

to the desired definition of effective atomic number for a compound by putting Z = Zeff in equation

(75). In this paper, we used the approach by Champley et al [30] which defines Zeff of a compound

as a linear combination of two consecutive Z numbers such that the least square error between X-ray

transmission of the compound and the transmission of a combination of the two elements is minimized.

Compounds’ brute formula, density, and Zeff are given in table 4. The phantom served two purposes:

i) to obtain the ρ and Zeff calibration curve from the decoupled set in equations (72) and (73) and ii)

to validate the theoretical model against the ground truth.

Table 4: List of materials composing the phantom together with chemical formulas, effective atomic
numbers, and material density values [33].

Material Water PE PA PMMA POM PTFE

Brute formula H2O C2H4 C12H22N2O2 C5H8O2 CH2O C2F4

Effective Z 7.44 5.28 6.16 6.49 7.01 8.56
Density (g/cm3) 1.0 0.94 1.14 1.19 1.425 2.2
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6.1.4 Breast mastectomy samples

In addition to phantom scanning, post-mastectomy breast tissue images were analyzed in a retrospec-

tive study. The analyzed surgical samples (N=5) were fixed in formalin, sealed in a vacuum bag, and

conserved at 4 ◦C. The preliminary analysis of the same data was published [112] as a feasibility study

of the synchrotron breast CT approach. All the procedures adopted in this work followed Directive

2004/23/EC of the European Parliament and of the Council of 31 March 2004 on setting standards

of quality and safety for the donation, procurement, testing, processing, preservation, storage, and

distribution of human tissues. In the present work, we further processed the data to extract ρ and

Zeff of breast tissues. Tomographic reconstructions of selected samples are given in Fig. 35. They

all contained adipose, fibro-glandular, and tumorous tissue, but only in sample 4 existed a region of

glandular tissue clearly separated from the fibrous. It also contained calcification regions that were

not evaluated in this study. All samples contained some type of malignant tissue: Samples 1, 2, and

3 contain infiltrating ductal carcinoma, Sample 4 contains infiltrating ductal carcinoma with a core of

desmoplastic tissue, and Sample 5 contains vastly differentiated infiltrating ductal carcinoma. Samples

1,2,4, and 5 also contained portions of the skin. The mean glandular dose of 5 mGy delivered per scan

Figure 35: Mastectomy CT reconstructions acquired at SYRMEP beamline at Elettra Sincrotrone
Trieste at the energy of 28 keV (Sample 1,2,3, and 5) and 26 keV (Sample 4).

was computed according to a dedicated Geant4 Monte Carlo simulation [120, 121]. The phantom scans

were acquired at 25, 28, 32, and 35 keV, and mastectomy samples at several monochromatic beam

energy levels in the range of 24 - 38 keV, from which three scans were selected for the spectral analysis.
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6.2 Practical implementation

The theoretical model described in section 6.1.1 was implemented with Python (Python 3.10.0) and

an interactive delineation tool was developed to select an arbitrary region of interest (ROI) within a

reconstructed spectral data set (Matplotlib, Python 3.10.0) containing a single tissue type. In the first

step of the process (framed with a dashed line in Fig. 36), the voxel-to-voxel material decomposition

method using the PMMA-Al basis is applied to the selected regions (Fig. 36(a)), resulting in PMMA

and Al maps for each ROI (Fig. 36(b)). In the next step, the material maps are combined in 2D

histograms, one for each tissue type (Fig. 36(c)). In literature, this approach to material visualization

is often referred to as CT fingerprinting [109]. Due to the presence of noise, the obtained histograms

are blurred and elongated. The correct decomposition coefficients x1 and x2 are considered to be the

Figure 36: The step-by-step scheme of quantitative material evaluation followed in this work. Inputs
to the algorithm (dashed rectangle) are delineated tissues. Section a shows the material decomposition
task which leads to material maps in section b. These maps are represented in form of a 2D histogram
and centers of clusters corresponding to each delineated material are extracted in section c. These
values are then transformed using equations 72 and 73 and an offline calibration using materials from
table 4 is performed in section d to obtain the ρ and Zeff values as a final output.

centers of obtained distributions. They are extracted using a 2D Gaussian fit method of the form:

G(x1, x2) = Ae

(
− u2

2S2
u
+ v2

2S2
v

)
(76)
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A is the intensity of the peak and Su, Sv the spreads (that is, the standard deviations of the associated

distributions) along the major and minor axes, respectively. The peak coordinates x̄1 and x̄2 relative

to (x1, x2)-plane of the histogram are contained in the quantities u and v,

u = (x1 − x̄1) cos θ + (x2 − x̄2) sin θ (77)

v = (x2 − x̄2) cos θ − (x1 − x̄1) sin θ (78)

θ is the tilt of the major axis of the spot with respect to the horizontal direction. After the fitting,

the peak coordinates x̄1 and x̄2 found according to equations (77) and (78) are used in equations (70)

and (71) to compute the final output of the procedure: the single values for densities and effective

atomic numbers of selected tissues (Fig. 36(d)). The measurement uncertainty, estimated as the

standard error on the center of fitted 2D Gaussian distribution, is propagated through all mathematical

transformation steps and measurement calibration. For the sake of conciseness, the complete analysis

is given in the B.

6.3 Data analysis

In addition to the experimental data obtained using the calibration phantom, the procedure described

in the theoretical model (section 6.1.1) was also applied to published µ (”true”) values [33] of phantom

material inserts at the energy levels used in the experiment. The true data points are used to evaluate

the accuracy of the model by calculating the percentage error between the experimental and the ground

truth data points, as given in equation 79.

% error =
|ground truth - measured|

ground truth
× 100 (79)

The segmentation of the breast CT reconstructions were performed by an experienced radiologist,

who selected ROIs containing adipose, fibro-glandular, glandular, skin, and tumorous tissue already

knowing the mastectomy content from specimens sampled for the histological examination. Considering

magnification, slices were reconstructed with 0.057×0.057 mm pixel size and slice thickness of 0.049

mm. The segmentation was done slice by slice to extract values from a 3D volume, using at least 3

pixel thick (0.17 mm) margins to avoid partial volume effects. For each sample and tissue type, density

and Zeff values and their uncertainties were estimated respectively as the mean and standard deviation

evaluated over 10 consecutive CT slices. To estimate the discrimination power of ρ/Zeff and xPMMA

and xAl decomposition, hence diagnostic potential, a mean Silhouette score using Euclidean distance

as a metric was computed on mean values of all tissue types collected from the mastectomy samples

[122]. The mean Silhouette score (MSS) is a tool to quantify how similar are samples within the same
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cluster and how separated they are from other clusters, defined as:

MSS =
1

n

n∑
k=0

NCk − ICk

max(NCk, ICk)
(80)

where IC is the mean intra-cluster distance and NC is the mean nearest-cluster distance for each

sample k, and n equals the number of selected tissue types × number of selected mastectomy samples.

Negative values of MSS indicate cluster overlap, values around 0 signal that samples are on or close to

the boundary between clusters, and positive values up to 1 indicate increased cluster separation.

Finally, extracted density and effective atomic numbers from the calibration phantom and Sample

4 were fed to the mathematical relationship given in equation 47 to extrapolate linear attenuation coef-

ficients of tissues for arbitrary (virtual) monochromatic energy levels. The uncertainty was propagated

from the standard deviation of obtained ρ and Zeff values.

6.4 Results

6.4.1 Calibration phantom results

The accuracy of material decomposition in phantom materials following the Gaussian fitting in the

histogram space is shown in Fig. 37a. Quantities x1 and x2 in equations 70 and 71 are replaced

with xPMMA and xAl because of the particular basis choice. Fig. 37b corresponds to the decoupling of

density and effective atomic number in equations 72 and 73. The fitting parameters A, Su, Sv defined

in equation 76, and angle θ for phantom materials are given and further discussed in C.

(a) (b)

Figure 37: Experimentally obtained basis material concentrations (blue) against the true data values
(red) in (a) the PMMA-Al basis and (b) decoupled reference frame. The error bars show standard
error a) computed using equations 82 and 83 and b) propagated using equations 87 and 88 in section
B.

The decoupled values from Fig. 37b were calibrated to absolute density and effective atomic numbers

(table 4) applying the least-squares fitting method to the functional forms given in equations 74 and
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75. Both calibration curves were based on the phantom material inserts in the range of interest for

soft tissue imaging and the mapping to correct density and the effective atomic number was obtained

at R2 = 0.998 and R2 = 0.997, respectively. Calibration curves are given in Fig. 38 and corresponding

density and Zeff values are given in table 5. Using the equation 79, % errors in calibration materials

(a) (b)

Figure 38: Theoretical data points fitted to (a) a linear calibration curve for density ρ, and (b) a
power-law curve for Zeff of the same form suggested by the equations 74 and 75.

were estimated to be below 3% and 1.5%, respectively, after the density and effective atomic number

calibration.

Table 5: Zeff and ρ with the corresponding standard errors σZ and σρ obtained from the calibration
phantom and %err computed using equation 79.

Material ρ± σρ (g/cm3) Zeff ± σZeff
%err ρ %err Zeff

PE 0.963± 0.004 5.36± 0.02 2.4 1.3
Water 0.971± 0.001 7.51± 0.02 2.9 0.9
PA 1.149± 0.004 6.10± 0.01 0.7 1.0
PMMA 1.198± 0.004 6.40± 0.01 0.7 1.4
POM 1.411± 0.004 7.04± 0.01 1.0 0.4
PTFE 2.204± 0.003 8.55± 0.01 0.2 0.2

6.4.2 Breast mastectomy results

Tissues inside the mastectomies delineated by a radiologist were quantitatively analyzed in terms of

their density and effective atomic number and presented in Fig. 39, with average values given in table

6. For comparison, decomposition to basis material coefficients xPMMA and xAl are also given in Fig.

39. Skin tissue was not included in the graph as it is anatomically well separated from other tissues

of the breast.

The level of separation between adipose, fibro-glandular, and tumor tissue in ρ and Zeff space was

found to be 0.31 (on a scale of -1 to 1) using MSS. Pairwise comparison of adipose and fibro-glandular

(MSS = 0.59), adipose and tumor (MSS = 0.74), and fibro-glandular and tumor (MSS = 0.17) showed
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Table 6: Average Zeff and ρ from 5 mastectomy samples.

Tissue type ρ± SDρ (g/cm3 Zeff ± SDZeff

Adipose 0.90 ± 0.02 5.94 ± 0.09
Fibro-glandular 0.96 ± 0.02 7.03 ± 0.12
Tumor 1.07 ± 0.03 7.40 ± 0.10
Skin 1.08 ± 0.02 7.31 ± 0.06

that adipose tissue can be distinguished from the other two, while fibro-glandular and tumor are

closer together in ρ/Zeff space. In comparison, MSS in xPMMA and xAl space was -0.02. From Fig.

39 it can be seen that adipose tissue can be distinguished from fibro-glandular and tumorous purely

based on effective atomic number values. On the other hand, fibro-glandular and tumorous tissues are

overlapping both in their effective atomic numbers and densities and can be distinguished only if both

quantitative values are observed together.

(a) (b)

Figure 39: Quantitative description of tissues in (a) xPMMA and xAl basis and (b) in terms of density
(g/cm3) and atomic number computed as in Champley et al [30]. Adipose, fibro-glandular, and tu-
morous tissues are distinguished with green, blue, and red colors, respectively, while marker shapes
correspond to different mastectomy samples. Error bars represent the standard deviation of 10 ROIs.

In addition to adipose, fibro-glandular, and malignant tissue, the mastectomy labeled as Sample 4

contains well-separated pure glandular tissue and skin. Thus, an extensive investigation was conducted

on this tissue. Extracted density and effective atomic number were 0.98 ± 0.01 and 5.42 ± 0.06 for

adipose, 1.07 ± 0.02 and 6.56 ± 0.20 for fibro-glandular, 1.18 ± 0.02 and 6.88 ± 0.09 for glandular,

1.19 ± 0.01 and 7.04 ± 0.07 for tumorous, and 1.19 ± 0.02 and 6.87 ± 0.04 for skin tissue, respectively.

In this particular mastectomy sample, mean density and Zeff are not distinguishable between the skin

and glandular tissue. Glandular tissue has higher Zeff and density than fibro-glandular tissue, but

almost the same density and slightly lower Zeff than tumorous tissue.

Virtual µ values of phantom materials and tissues in sample 4 are given in Fig. 40. The obtained
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ρ and Zeff values correctly map to experimentally measured µ values and provide information about

tissue separation at lower energies with respect to those used for tissue scanning.

Figure 40: Virtual linear attenuation coefficients computed from extracted density and effective atomic
numbers. Full lines represent virtual µ values extracted from experimental data at an arbitrary energy
level, while uncertainty was propagated from the standard deviation of ρ and Zeff.

6.5 Discussion of breast mastectomy results

Conventional CT scans offer a relatively low specificity when distinguishing between soft tissues of

slightly different compositions. On the other hand, spectral imaging advances the ability to distinguish

such tissues by probing their attenuation properties at several energy levels. Spectral information is

used for the decomposition of data in basis materials, such as PMMA-Al. The decomposed material

maps can be used as an intermediate step to estimating the uniquely defined physical quantities of

imaged tissues. Utilizing these quantities, virtual monochromatic µ values at arbitrary energy levels

can be further extrapolated. In this work, a new approach to material decomposition and ρ/Zeff

estimation was presented to characterize breast tissues.

A least-square fitting approach to two-basis material decomposition was adopted for an over-

determined system when µ values can be measured at several energy levels. This was the case in

our retrospective study with monochromatic beams, but the same approach can be applied to multi-

threshold photon-counting detectors. Although both setups provide multiple spectral imaging chan-

nels, the performance of multi-threshold photon-counting detectors is limited compared to multiple

monochromatic images as i) energy bins cover a range of energies much wider than the energy reso-

lution of synchrotron monochromatic beams, and as already briefly explained, ii) energy resolution of

PCDs is further degraded by charge sharing and pulse pileup effects. Thus, the latter limits the reduc-

tion of bin energy width and the increase of the number of energy bins. To attain similar performance,

novel approaches to charge sharing and pulse pileup correction such as the one introduced in 4.1.4 are

needed. The procedure for decoupling density from Zeff depends on the quality of performed material

decomposition, but is at the same time independent of the method itself, and can be applied to other
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methods published in the literature. Experimentally computed concentrations xPMMA and xAl of basis

materials and related basis xρ and xZ in the phantom were found to be in good agreement with the

ground truth values. Moreover, small associated standard errors in Fig. 37 show that plastic inserts

can be separated in both material and xρ/xZ basis. The theoretically derived functions in equations

74 and 75 were fitted to 6 data points corresponding to tissue-equivalent plastics in the phantom.

The high accuracy (R2 > 0.99) of the fitting procedure justifies the assumptions made in theoretical

derivation. The systematic errors observed in Fig. 37 for some materials (e.g., PTFE and PE), that

can probably be ascribed to slight differences between the composition of the phantom materials and

the ones published in [33], do not impact the process of calibration, leading to an agreement with the

ground truth data at an average % error of 1.34 % for ρ and 0.89 % for Zeff, as shown in table 5.

These results demonstrate that soft-tissue-equivalent plastic materials of similar composition can be

distinguished from spectral CT data using estimated effective atomic number and density values.

The preliminary study on the breast cancer mastectomy samples was an attempt to demonstrate

the feasibility of our method to distinguish between fibro-glandular and tumorous tissues inside the

breast. Based on the available samples, it was shown that starting from spectral data it is possible to

separate adipose, fibro-glandular and tumorous tissues based on their physical characteristics. This

might be useful in risk assessment, cancer diagnosis, and the assessment of the status of the disease.

Although pure glandular and tumorous tissue in Sample 4 had almost the same density and slightly

different effective atomic numbers, this could be due to the desmoplastic core present inside the tumor

and no conclusions could be made based on a single piece of evidence. The importance of Zeff to X-ray

attenuation can be observed when comparing adipose and fibro-glandular tissue clusters. It can be seen

that lower µ values for adipose tissue are driven by lower Zeff, rather than significantly lower density.

Distinguishing tumorous and pure glandular tissue is challenging because only slight differences exist in

both density and Zeff. In our study, we observed that it is not possible to distinguish between different

tissues solely on density or effective atomic number or µ value alone while reasonable discrimination

(MSS = 0.31) can be obtained considering 2D clusters in ρ/Zeff space. A worse separation (MSS

= -0.02) can be obtained using just material coefficients xPMMA and xAl. Therefore, using density

and effective atomic number maps in the diagnostic workflow could be beneficial, potentially allowing

the identification of the tissue type based on quantitative measurements. Because of improved tissue

separation, interpretability, as well as the ability to measure these quantities with other experimental

techniques, density and Zeff should be preferred over a simple material decomposition approach.

Virtual monochromatic images are usually computed directly from decomposed basis (e.g., µ1

and µ2) using x1 and x2 in equation 23. Equivalently, physically relevant ρ/Zeff space can be used

to compute other quantitative maps established in clinical practice. Linear attenuation values in
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Fig. 40 were calculated using equation 47 at energies within and outside the energy range used in the

experiment. Virtual µ values calculated using the Zeff defined by Champley et al [30] were in agreement

(within the measurement error) with experimentally measured µ coefficients in both the phantom and

Sample 4 and they enabled comparison with experimentally obtained µ values in other studies. For

Sample 4, which contained tissues examined by Fredenberg et al [99], µ values were compared at

energies of 20, 30, and 40 keV with average % error of 3.3, 7.3, and 3.4 %, for glandular, adipose and

tumor tissue, respectively.

Our approach to tissue analysis could be directly applied to state-of-the-art synchrotron radiation

breast CT setups currently developed in Trieste at Elettra Sincrotrone SYRMEP beamline [105], and at

ANSTO Imaging and Medical beamline in Australia [123]. With these experimental settings, it should

be mentioned that multiple energy acquisitions would be required, thus resulting in an increased dose

to the breast. On the other hand, due to the high contrast-to-noise ratio of phase-contrast images,

the dose per scan could be reduced thus bringing overall acceptable radiation exposures. Considering

clinical systems in hospitals, the advent of spectral CT paves the way to material decomposition

following a single shot acquisition without a significant increment of the dose. Photon-counting breast

CT systems are in clinical practice [101] and an extension to spectral applications is expected.

Studies estimating both ρ and Zeff of human tissues using synchrotron CT systems are almost

nonexistent. The study by Torikoshi et al [34] introduced a method to compute these quantities

avoiding the material decomposition task. An average accuracy of 0.9 % for ρe and 1 % for Zeff is

comparable to our method, but the dose level used was not reported. The analysis was performed

on low-Zeff plastic materials using a pair of monochromatic acquisitions. Considerably more papers

using conventional systems have been published, but not focusing on breast tissues or breast dedicated

scanners. Szczykutowicz et al [36] performed a methodologically similar approach to the one presented

in this paper using a clinical scanner and test object without any noise remedying approach. They suc-

cessfully decompose electron density and Zeff but at the cost of a significant reduction in signal-to-noise

ratio. Lalonde et al [124] developed a model in which materials are decomposed in a compressed basis

with principal component analysis, using the fact that human tissues are composed of a very limited

number of elements. Then, the first principal components are virtual materials containing a certain

fraction of those elements. From there Zeff were computed. Azevedo et al [29] implemented their

System-Independent-Rho-Z (SIRZ) method to obtain physical quantities of phantom materials inde-

pendent of the shape of the X-ray spectrum. The photoelectric-Compton decomposition is performed

in sinogram space and absolute ρe and Z values are obtained after the calibration procedure. While

physical characterization was successfully described for materials of fairly distinguishable composi-

tions, the noise behavior was also not described in this work. Champley et al [30] released a follow-up
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paper focusing on the optimization and simplification of spectral modeling as a new method called

SIRZ-2. Most recently, Busi et al [37] developed a physical characterization method using spectral

detectors. They claim higher robustness and increased estimation accuracy ( 25%) compared to SIRZ

methods. Extended work from the same group was published in [125] to optimize the computation

speed. Machine learning solutions to ρ/Zeff extraction were also tested by Su et al [126] using dedicated

phantoms with several tissue-equivalent inserts. Good results in computing Zeff were obtained using

artificial neural networks and the random forest method with the relative error between 1 and 2 % at

clinically relevant doses. However, a low-dose scanning and evaluation of the model on materials that

were removed from the training set led to errors up to 6 %. Nonetheless, the authors showed that the

machine learning approach is robust and computationally efficient.

Considering specifically the estimation of ρ and Zeff for breast tissues, only a few studies exist

and most have been made with experimental setups not used in diagnostic radiology. Berggren et

al [127] performed clinical evaluation of breast skin Zeff obtained from 709 screening patients using

planar spectral mammography. They reported slightly higher values of 7.365 (95% confidence interval:

7.364,7.366) comparable to our findings of 7.31 ± 0.06, with a difference of less than 1% that might be

due to the fact that tissues in our experiment were formalin-fixed. Gobo et al [128] used a combination

of transmission and scattering measurements with 241Am source and an X-ray tube, while Antoniassi

et al [129] performed scattering measurements at 90 degrees by using low energy beams. Given diverse

formulations of Zeff across the literature, we made a comparison in relative change using Zeff of nylon

as a reference value in table 7.

Table 7: Literature review of experimentally obtained density and Zeff numbers for fibro-glandular,
adipose, and tumorous tissues.

Tissue type Density ρ (g/cm3) Zeff to nylon % diff

This work Gobo et. al This work Gobo et al Antoniassi et al

Fibro-glandular 0.96 1.04 15.38 16.73 14.07
Adipose 0.90 0.95 2.68 4.40 5.60
Tumorous 1.07 1.05 21.31 18.87 14.79

This study shows potential for quantitative breast imaging by translating spectral information into

the computation of physically relevant quantities, but it also has some limitations. The accuracy of

the presented method is mainly governed by the quality of material decomposition, which is highly

dependent on the denoising of decomposed data. We gave up the spatial information inside the ROI

to obtain quantitatively correct material decomposition during the 2D Gaussian denoising approach.

Inaccurate tissue segmentation would result in an erroneous Gaussian fitting procedure as the number

of peaks in 2D histogram space corresponds to the number of tissue types being evaluated at once. The

appearance of a histogram containing several plastic materials was published in our previous study [19].
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Thus, either correct tissue segmentation or an algorithm capable of correctly fitting multiple Gaussian

functions in case no segmentation is performed are critical aspects of the present model. For the proof

of concept, we relied on high-quality synchrotron beam radiation, but to make this approach broadly

used, we plan to apply the method to more accessible polychromatic sources. Finally, the conclusions

drawn in this study were based on the analysis of 5 mastectomy samples fixed in formalin which could

slightly bias the measured µ values (less than 0.5 % [99]). More samples will be evaluated to further

confirm these findings. Despite the mentioned limitations, given the general validity of the proposed

decomposition model and the foreseeable use of spectral detectors in breast CT scanners, the present

feasibility study paves the way for its application to clinical spectral breast CT data.

In conclusion, a model incorporating CT reconstructions of an arbitrary number of spectral energy

channels was developed to compute material density and effective atomic number. The density and

effective atomic number of soft-tissue-equivalent plastic materials were computed with an average

accuracy in the order of 1 %, and the same approach was applied to the set of 5 mastectomy samples.

The quantitative analysis presented here suggests that adipose, fibro-glandular, and tumorous tissues

can be distinguished, given the mean Silhouette scores obtained for each tissue pair. Density and

effective atomic number can also be used for physics-based extrapolation of virtual monochromatic

linear attenuation coefficients outside of the experimental energy range. Breast CT is an emerging

technology that is capable of providing three-dimensional imaging of the breast and its extension to

spectral imaging is certainly desirable for exploring the potential of material characterization in clinical

trials.
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7 Optimization of spectral imaging for clinical synchrotron CT

In the previous chapter 3.3, it has been demonstrated that synchrotron radiation offers unique advan-

tages over conventional setups in terms of high brilliance and coherent X-ray beam, enabling precise

manipulation of the beam for improved image acquisition. One of the primary benefits of high bril-

liance for X-ray imaging is the capability to filter, shape, and monochromatize the beam to meet

specific imaging requirements. As we introduced in section 3.3.1, the coherent nature of the beam

can be exploited by placing the detector at an appropriate distance, allowing for the propagation of

X-ray phase differences caused by the interaction with a sample. Utilizing phase retrieval techniques

such as Paganin filtering [51], pure attenuation maps with an improved contrast-to-noise ratio can be

obtained. This has proven particularly advantageous in imaging soft tissues, where the differentiation

between similar tissues is crucial for accurate diagnosis. This realization spurred the development of

clinical synchrotron X-ray imaging facilities, such as breast CT synchrotron setups in Trieste, Italy,

and Melbourne, Australia [105].

Monochromatic beams for X-ray imaging are preferred over polychromatic beams due to the en-

hanced contrast-to-noise ratio between different tissues especially at low energy levels, the elimination

of beam-hardening artifacts, and the utilization of phase-contrast to improve image quality. In the

realm of synchrotron CT, thanks to the high brilliance of synchrotron sources, medical imaging beam-

lines can afford the filtration of polychromatic (”white”) beams to obtain specific X-ray wavelengths

using crystal monochromators. This approach eliminates the need for material decomposition to ob-

tain monochromatic images but doesn’t provide spectral measurements needed for more quantitative

evaluation of scanned materials. The strait-forward approach leading to the best spectral separation

and the most accurate quantitative analysis would be acquiring one more (or several) monochromatic

images at other energy levels. However, there are two major objections to this approach: i) the ac-

quisition of a larger number of images at different energy levels introduces an additional dose to the

sample, and ii) changing the energy in synchrotron setups typically involves rotating and adjusting

the monochromator, which is time-consuming and takes several minutes.

In this work, spectral data acquisition with synchrotron beams was further optimized to characterize

breast CT images in terms of material density ρ and the effective atomic number. We addressed the

challenges of multiple data acquisition with monochromatic beams through a study aimed at examining

the effect of acquiring multiple monochromatic images versus just a pair of monochromatic images on

the accuracy of material decomposition. In this approach number of spectral channels was governed

by the number of image acquisitions with the PCD detector which did not operate in spectral mode.

Instead, the detector operated in a single-threshold continuous reading ”dead-time free” mode (i.e.

counting in one counter while reading the other one).

94



7.1 Optimization methods

CT images were once again acquired at the SYRMEP beamline of Elettra, an Italian synchrotron light

source in Trieste. The detector was the same large area Pixirad8 photon-counting detector of very fine

pitch (62 microns) and experimental conditions matched the ones introduced in section 6.1.2, in terms

of acquisition geometry and processing of the data. Acquired projections were pre-processed with

an ad-hoc procedure [116] and then phase-retrieved using an algorithm based on the homogeneous

transport of intensity equation (TIE-Hom) [51]. Finally, CT reconstructions were obtained via a

GPU-based filtered-back-projection algorithm with Shepp-Logan filtering [117].

Material decomposition, used as an intermediate step to ρ/Zeff decomposition, was performed

using the singular value material decomposition approach described in section 2.1.2. As a reminder,

with the SVD method, the number of left-singular vectors (also referred to as principal components)

corresponding to the number of input spectral channels are extracted. The principal components are

the linear combinations of the spectral datasets that capture the maximum variance in the data, and

they are ordered in such a way that the first principal component explains the most variance, the

second explains the second most, and so on. In section 2.1.2 we showed that the first two components

can always be related to an arbitrary set of basis materials. In this particular study, we once again

selected aluminum and PMMA and obtained full 3D volumes of PMMA and Al basis maps that

contained sufficiently low noise, which was further suppressed with an adopted bilateral filter. Our

procedure for extracting ρ and Zeff is independent of the material decomposition approach as long

as it produces quantitatively correct results. Thus, we applied the same approach laid out in the

section 6.2 to obtain density and Zeff maps from said decomposition. The study was performed on the

same custom-made cylindrical phantoms that contained the five inserts of polyethylene (PE), nylon

(PA), PMMA, polyoxymethylene (POM), and polytetrafluoroethylene (PTFE) mimicking soft tissues

of similar attenuation properties. For this acquisition, the single threshold of the detector operating in

”dead-time free” mode was set to 3 keV as a single noise cancellation threshold. Spectral information

was obtained with monochromatic beams of energies: 25, 28, 30, 32, 35, 38, and 40 keV, and as

the phantom is a rigid object, data didn’t require any co-registration. The metric of interest was

CNR computed on the ROI inside PTFE (”Teflon”) and PA (”nylon”) inserts with respect to the

surrounding water, defined as:

CNR =
|PTFEavg − PAavg|

H2Ostd
, (81)

where PTFEavg and PAavg represent the mean intensity of the signal and background, respectively,

while H2Ostd represents the standard deviation of the noise in water.
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7.2 Optimization results

The acquisition of a larger number of images at different energy levels introduces an additional dose

to the sample. The first two principal components and following PMMA and Al material maps were

obtained from the five datasets containing 2, 3, 4, 5, and 7 spectral CT reconstructions. The CNR was

measured on both, extracted principal components and decomposed basis set, and results are shown

in Fig. 41.

Figure 41: Contrast-to-noise ratio was computed in space of principal components and also basis material
space. Contrast was estimated as a difference in mean values measured in PTFE and PA inserts against water.

Fig. 41 suggests that SVD decomposition can be performed on just two independent scans at

beam energies of 25 and 40 keV without affecting the CNR. Therefore, this set of spectral images was

chosen for the SVD approach. In Fig. 42, principal components of singular value decomposition are

given in the first column and basis material image pair in the second column. Physical quantities -

effective atomic number and material density - are extracted from said decomposition, after applying

an adopted bilateral filtering procedure [130] to PMMA and Al images. Density and effective atomic

number maps obtained this way are shown in the last column of the same figure.
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Figure 42: The first column shows the principal components extracted from spectral data. The corresponding
material basis images obtained by the procedure described in Sec. 2.1.2 are given in the second column. Basis
images were post-processed by an adopted bilateral filter. The last column shows extracted Zeff and density
maps. Scans are represented in the inverted grayscale, where higher density and Zeff are represented with
darker shades of gray.
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Conclusion

In conclusion, this doctoral thesis has underscored the significance of spectral imaging as a promis-

ing avenue to address the enduring challenge of soft tissue characterization in X-ray imaging. The

primary focus has been on the quantification of tissue properties, particularly iodine content, virtual

monochromatic imaging, density, and effective atomic number. It is worth noting that the computa-

tion of density and effective atomic number presents a valuable and intuitive approach, rooted in the

fundamental physics of X-ray interactions, and measurable via diverse methods.

The effectiveness of quantitative imaging relies on the synergy between spectral technology and

the accurate recording of spectral data, and the progress in algorithms capable of deriving these key

quantities from spectral information. Photon-counting detectors have emerged as a prime candidate,

given their ability to reduce imaging noise, provide high resolution, maintain a uniform detector energy

response, and inherently obtain spectral information. A critical factor driving the recent adoption of

photon-counting detectors in clinical practice is the technological maturity of detector ASICs. Nonethe-

less, this thesis has revealed that challenges such as charge sharing and pulse pileup can introduce

inaccuracies into quantitative maps. The utilization of a virtual imaging platform, which models the

detection mechanism and is validated against real-world measurements, has been instrumental in elu-

cidating these limitations. Hardware-based pulse pileup correction solutions such as instant-retrigger

technology allow detectors to operate in a specific non-paralyzable mode and extend the linearity

range of counting in high flux conditions, which could play a pivotal role in the wider application of

photon-counting detectors for quantitative material characterization. Additionally, an investigation

into low-dose imaging with the first clinical photon-counting CT system has shown improved iodine

quantification when compared to dual-energy scanners. However, it was observed that low-energy

virtual monochromatic imaging on the photon-counting CT scanner, employing a 140 keV tube and

accommodating large patient volumes, exhibits bias. This appears to be due to the limitation of the

potential not being sufficiently high for this specific case. In contrast, dual-energy CT with a potential

of 150 keV, using a thin filter, demonstrates more accurate results owing to the availability of higher

tube potential. The thesis also explores the most advanced application of spectral imaging utilizing

synchrotron radiation, while acknowledging its current lack of clinical feasibility. It illustrates that in

the ρ/Zeff space, soft-tissue equivalent materials can be effectively differentiated keeping the spatial

information. Singular value material decomposition analysis has shown that two well-separated spec-

tral channels can provide an equivalent amount of information for material decomposition, rendering

multiple scans at different energies redundant, with no need for additional exposure. Finally, the anal-

ysis of breast tissues demonstrates the capacity of synchrotron-based spectral imaging to discriminate

between adipose, fibro-glandular, and tumorous tissues in ρ/Zeff space. This preliminary study sug-
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gests a possible solution for tissue differentiation and tumor characterization inside the breast, offering

diagnostic benefits.

Spectral imaging, particularly with photon-counting detectors and synchrotron beams, addresses

the longstanding challenges of soft tissue differentiation and characterization. Through a compre-

hensive examination of various aspects of spectral imaging, from fundamental physical principles to

practical clinical applications, this research contributes to the ongoing advancement of medical imaging

technology, with implications for improved patient diagnosis and care. It highlights both the oppor-

tunities and the ongoing challenges in the pursuit of enhancing the capabilities of X-ray imaging for

soft tissue characterization.
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Appendices

A Low energy VMI in clinical PCCT in large phantoms

The PC-CT scanner is underestimating 40 keV virtual monochromatic levels in the extra-large phan-

tom, particularly in higher-density inserts. This underestimation remains consistent even with in-

creased doses, indicating that low VMIs may not be accurate in extremely obese patients, particularly

for dense tissues. The results for the particular case with repeated scans for each dose are given in

Fig. 43.

Figure 43: The accuracy of VMI 40 keV HU values in the PC-CT scanner for XL phantom size. Measurements
were repeated twice at doses of 10,20,40 and 70 mGy.
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B Noise analysis and uncertainties

As it was shown in section 6.2, regions of uniform composition result in scattered values of elongated

shape (i.e. clusters) in the (x1, x2)-plane histogram. Such behavior was ascribed to the unavoidable

amount of noise carried by the tomographic reconstructions on which the whole decomposition method

is based. Detailed analysis of the propagation of measurement uncertainties, related to the size of the

cluster, was carried out. The Gaussian fitting procedure introduced in section 6.2 individuates a

preferred direction at angle θ aligned to the major axis u of elliptical Gaussian. The length in this

direction and the orthogonal one (minor axis) are identified as the Gaussian spreads in a reference

frame (xu, xv), which is parallel to the major and minor axes of the spot. The standard errors of the

centroid coordinates can be approximated by the ratios between the Gaussian spreads Su and Sv and

the square root of the volume under the Gaussian surface

σxu
=

Su√
V

(82)

σxv =
Sv√
V

(83)

where the volume is given as

V = 2π A
Su Sv

b1 b2
(84)

that it is equal to the total number of voxels contributing to the corresponding two-dimensional Gaus-

sian function. Quantities b1 and b2 are bin sizes in both directions and A is the peak value. Calculated

errors are then translated into uncertainties of coordinates xξ and xζ in the reference frame rotated

by the angle ϕ defined in section (6.1.1). Rotation from the frame identified by angle θ to the frame

identified by angle ϕ is defined as

xξ

xζ

 =

 cosα sinα

− sinα cosα


xu

xv


where α = ϕ− θ. Propagating uncertainty through the rotation of the reference frame leads to

σ2
xξ

= cos2 ασ2
xu

+ sin2 ασ2
xv

(85)

σ2
xζ

= sin2 ασ2
xu

+ cos2 ασ2
xv

(86)

From the rotated frame, to the rescaled xρ, xZ frame, the division of the second coordinate by the first

one implicates
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σ2
xZ

=
x2
ζ

x4
ξ

σ2
xξ

+
1

x2
ξ

σ2
xζ

(87)

while propagating xρ remains trivial

σ2
xρ

= σ2
x1
. (88)

Finally, shifting to the pair ρ, Z requires equations (74) and (75), leading to the uncertainties

σρ = κ−1 σxρ
(89)

σZ = (xZ−q)
1−λ
λ

λ p1/λ σxZ
. (90)

102



C Noise behaviour in 2D histogram space

In addition to the estimated centers of the distributions in figure 37a, the 2D Gaussian fit method

outputs several other parameters relevant for the accurate estimation of basis material concentrations

summarized in table 8. The angle θ at which the cluster is extended remains constant (≃ −0.12) for

all materials indicating that blurring is not dependent on the material type. It is rather a result of

combined contributions of image acquisition, reconstruction, and material decomposition noise. The

amount of blurring in the major direction Su and the direction orthogonal to it Sv is of the same order

of magnitude for all materials. The Su values are around 2 orders of magnitude larger than Sv values.

The amplitude A of the Gaussian function remains constant for the same size of the ROI for all plastic

inserts.

Table 8: List of output parameters in 2D Gaussian fitting method for the phantom materials.

Material Amplitude (A) Major axis spread Su Minor axis spread Sv Angle θ

Water 38 0.40 0.0074 −0.121
PE 40 0.37 0.0065 −0.121
PA 38 0.32 0.0062 −0.120
PMMA 38 0.41 0.0073 −0.121
POM 38 0.32 0.0062 −0.120
PTFE 41 0.46 0.0078 −0.121

These properties are important for the Gaussian fitting procedure because an initial guess for fitting

parameters can be given, improving the robustness of the method and increasing the computational

speed. A more rigorous statistical description of these features will be the subject of a forthcoming

standalone communication.
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D Comparison of methods used to compute the atomic num-

ber of a compound - ZcompARE

Effective atomic number as a property of a material depends on its chemical composition, but it is

not uniquely defined in the literature. Very often different definitions are adopted by researchers

depending on the experimental setup, energy range, and type of compounds. Several definitions that

have been proposed to compute this quantity can be divided into: i) methods that compute Zeff

as a weighted average of composing elements in the compound, ii) and methods that rely on mass

attenuation coefficients of composing elements to compute Zeff [22]. The second group of methods

was developed to solve the fundamental problem: Zeff as the quantity defined in the first category

is not specifically tied to the absorption property of a material. Thus, weighted sums of elements

in a compound used in the first category are exclusively valid for certain energy ranges and often

to a certain set of elements contained in the mixture, while methods in the second category rely on

tabulated attenuation properties of materials to inherently define Zeff as a quantity tied to attenuation

property of the material.

In this section, we compared several available methods for the materials in the calibration phantom.

ZcompARE [31] is user-friendly software with a graphical interface that can be used to compare several

methods most often used. The comparison of the methods for the calibration phantom materials in

the energy range 20 - 40 keV is given in 9.

Table 9: Comparison of the most often used formulations of effective atomic numbers for phantom
materials in the energy range 20 - 40 keV.

Material Water PE PA PMMA POM PTFE
Brute formula H2O C2H4 C12H22N2O2 C5H8O2 CH2O C2F4

Spiers et al 7.42 5.44 6.12 6.47 6.95 8.43
Glasser et al 7.96 5.94 6.60 6.94 7.38 8.62
Hine et al 3.34 2.67 3.27 3.60 4.00 7.99
Puumalainen et al 3.33 2.67 3.27 3.61 4.00 8.00
Tsai and Cho 7.44 5.47 6.15 6.50 6.98 8.45
Gowda et al 7.24 5.05 5.89 6.32 6.85 8.53
Champley et al 7.44 5.28 6.16 6.49 7.01 8.56

It can be seen that methods by Spiers et al, Tsai and Cho, Glasser et al, Gowda et al, and Champley

et al provide very similar Zeff numbers for our experimental conditions. Methods by Hine et al and

Puumalainen et al gave considerably lower Zeff numbers for all materials. Calibration functions of the

form defined in equations (74) and (75) were applied to all definitions for Zeff and results are given in

figure 44. The mean Silhouette score defining the level of separation in the range -1 to 1 was found

to be approx. 0.31 for all methods used. Thus, the distinguishment of tissues could be obtained

irrespective of the proposed definition.

The method defined by Champley et al [30] showed a slightly better agreement of virtual monochro-
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Figure 44: Comparison of Zeff definitions in ρ/Zeff space.

matic µ values computed using equation 47 with experimentally measured data. Constants n, K1, and

K2 used in equation 47 were estimated to be 4.44, 9.4, and 1.6 using the least-square fit method for

elemental materials found in the human body in the Z range of 1-20 across the diagnostic energy range

(20 - 200 keV).
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