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Abstract. Cooperative Coevolution is a way to solve complex optimiza-
tion problems by dividing them in smaller, simpler sub-problems. Those
sub-problems are then tackled concurrently by evolving one population
of solutions—actually, components of a larger solution—for each of them.
However, components cannot be evaluated in isolation: in the common
case of two concurrently evolving populations, each solution of one pop-
ulation must be coupled with another solution of the other population
(the collaborator) in order to compute the fitness of the pair. Previous
studies have already shown that the way collaborators are chosen and,
if more than one is chosen, the way the resulting fitness measures are
aggregated, play a key role in determining the success of coevolution.
In this paper we perform an experimental analysis aimed at shedding
new light on the effects of collaborators selection and aggregation. We
first propose a general scheme for cooperative coevolution of two popu-
lations that allows to (a) use different EAs and solution representations
on the two sub-problems and to (b) set different collaborators selection
and aggregation strategies. Second, we instantiate this general scheme
in a few variants and apply it to four optimization problems with dif-
ferent degrees of separability: two toy problems and two real prediction
problems tackled with different kinds of model (symbolic regression and
neural networks). We analyze the outcomes in terms of (a) effectiveness
and efficiency of the optimization and (b) complexity and generalization
power of the solutions. We find that the degree to which selection and
aggregation schemes differ strongly depends on the interaction between
the components of the solution.

Keywords: Cooperative coevolution · Collaborator selection · Fitness
aggregation · Symbolic Regression · Neuroevolution · Genetic Program-
ming · Evolutionary Strategies

1 Introduction and related works

Cooperative coevolutionary algorithms (CCEAs) are optimization techniques
leveraging a divide-and-conquer approach for addressing complex problems where
the solution can be decomposed into simpler components [16, 17]. The main idea
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behind Cooperative Coevolution (CC) is that of evolving, i.e., optimizing, com-
ponents independently, and than proceeding to aggregate them into the final,
complex, solution to the problem. The rationale being that it might be easier to
navigate smaller search spaces—those of components—separately, rather than
the larger search space of complete solutions, making it simpler to converge to
satisfying solutions.

The components identification and/or emergence is itself an interesting re-
search topic, where continuous coadaptation plays a fundamental role [16]. Here,
without loss of generality, we consider problems where the solutions have only
two hand-designed components. In this case, evolution happens in an ecosystem
with 2 species, which, as in the biosphere, are independent, since they are, in
principle, related to completely different aspects of the problem. Therefore, each
species is evolved in its own population, and the two evolutions are independent
from each other.

However, in most practical cases, the components of the solution are com-
pletely meaningless on their own, making their independent fitness evaluation
practically unfeasible. In fact, oftentimes the components acquire a meaning only
when combined to make a complete solution to the problem at hand. Hence, the
need for forming collaborations to enable the fitness evaluation. To make a clari-
fying example consider the scenario of a robot being optimized to perform a task,
where CCEAs could be used to separately evolve the “body” and the “brain” of
an artificial agent: it is immediately clear how neither a body without a brain,
nor a brain without a body, can be assessed against the proposed task.

The process of forming collaborations introduces additional degrees of free-
dom: (1) on how to select the collaborators from the opposite component pop-
ulation (how many and which ones), and (2) on how to define the fitness of a
component which has been evaluated in combination with different collabora-
tors, i.e., how to aggregate multiple fitness values. Several approaches have been
proposed in the literature for both: Ma et al. [4] provide a neat categorization of
the existing ones (we refer the reader to the cited survey for further details). Col-
laborators selection methods mainly differ in terms of greediness: ranging from
best collaborator selection [16], the greediest, to random or worst collaborator
selection [13, 21], which maintain higher diversity in the population [10, 18]. Such
methods can also be generalized or combined in a hybrid manner [14], in order
to sample multiple collaborators. For the fitness aggregation schemes, the ratio-
nale is similar: the approaches range from the most optimistic ones, considering
the fitness of the best individual [5], to pessimistic ones, using the worst fitness
found [21], going through more moderate approaches, employing the average or
the median fitness in the sample [7].

Clearly, the choice of the collaborator selection and the fitness aggregation
have strong implications on the outcome of CC, affecting efficiency, computa-
tional costs, generalization ability, to only mention a few. However, the recipe
for choosing the right scheme for a given problem remains somewhat unclear.
Some studies have indeed tried to tackle this issue, as [3, 12, 15, 21], which have
all proposed experimental comparisons of some existing methods. Yet, all these
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studies focused on synthetic problems, which generally have different character-
istics from the real-world ones. Moreover, to the best of our knowledge, all the
existing works have only considered a particular combination of EAs, lacking the
generality which CC enables in that direction.

In this context, our goal is that of filling the gap, by first formalizing a
general and fully modular scheme of CCEA, and by then employing it for an
experimental evaluation. We tailor the CCEA scheme to be completely agnostic
with respect to the EAs chosen for evolving the two sub-populations, as long as
they follow an iterative structure. Moreover, we devise it to be able to employ a
variety of collaborator selection strategies, in combination with different fitness
aggregation criteria. Concerning the experimental analysis, we aim at (a) pro-
viding a proof of concept of the generality of the formalized schema, and at
(b) exploiting it for measuring the effects of different combinations in the mod-
ules (EAs, collaborator selection, and fitness aggregation). To this extent, we
focus on two toy problems first, and then on two real-world problems: symbolic
regression and neuroevolution for data classification.

Our results suggest the following insights. First, the number of collabora-
tors has a clear impact on efficiency and a fuzzier impact on effectiveness of the
optimization: in general, few collaborators are enough for co-evolving effective
solutions without affecting efficiency too severely. Second, optimistic aggregation
of fitness values, i.e., assigning to a collaborator the fintess of the best collab-
oration pair, is often better than other schemes (namely, median and worst).
Third, depending on the interaction of solution components, fitness aggregation
may have a strong impact on the structure of evolved solutions, by relying more
on one of the two populations for exploring the conjoint search space. Finally,
we do not observe any evidence of increased generalization power by using more
collaborators or using unfit collaborators.

2 A general scheme for CC

We here describe a CCEA that instantiates a general scheme for CC. We consider
the case with only two solution components and we assume that the way they
are assembled together, in order to form a complete solution for the problem at
hand, is fixed in advance. We deem our results conceptually portable to cases
with more components, where emergence is allowed [16].

Our CCEA works by internally exploiting two other EAs. The only require-
ments we impose on the two EAs is that they are (a) iterative and (b) popula-
tion-based. We assume that they comply to the structure displayed in Figure 1,
according to which an EA corresponds to a function solve(f) that, given a
fitness function f : P → R to be minimized3, should return a solution3 p⋆, such
that q⋆ = f(p⋆) is minimal. Note that a given EA might internally search a space
G different than P and use a genotype-phenotype mapping function ϕ : G→ P

3 Our CCEA does not constrain the fitness to be minimized, nor to be a single number;
similarly the inner EAs may return many solutions, not just one; we pose here these
limitations just for clarity.
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for obtaining solutions to be evaluated with f . Our CCEA does not pose any
constraint concerning this possibility; in particular, the two search spaces G1

and G2 of the inner EAs may be different, as well as the two mapping functions
ϕ1 and ϕ2—that is, the two EAs may employ different solution representations.

An iterative, population-based EA can be described by providing the bod-
ies for the init(), stop(), update(), and extractSolution() functions used
by solve(). The progress of the EA is stored in its state s, which hosts the
population, together with additional information (specific to each EA) about
the ongoing optimization. The state is initialized by the init() function, and is
then iteratively updated within update(): these functions respectively perform
the initialization of the population, which is then stored in the state, and its
update via some forms of genetic operators. The optimization process then iter-
atively proceeds until a termination condition is met, tested in stop(), e.g., an
evaluation budget has been exceeded, and finally the solution is extracted from
the state s via extractSolution() and returned.

function solve(f):
s ← init(f)
while !stop(s) do

s ← update(s, f)
end
return extractSolution(s, f)

end

Fig. 1: General structure of an iterative EA. s is the generic state of the EA.
f : P → R is the fitness function.

Our CCEA is itself an iterative, population-based EA, and hence we can
define it by describing its init(), stop(), update(), and extractSolution()

functions, which are shown in detail in Figure 2.
The working principle of our CCEA is that it delegates the evolution of the

two components of the solution to two inner EAs, that we denote with EA1

and EA2, feeding them with disposable fitness functions created on-the-fly. Such
disposable fitness functions are needed because the inner EAs evolve components
of the solution, rather than full solutions. Hence, they cannot be assessed with
f , which is defined on P , but need a f1 : P1 → R and f2 : P2 → R, where P1

and P2 are the set of possible components for EA1 and EA2, i.e., their solution
spaces. Moreover, by building a disposable f1 (or f2) on-the-fly, we can enclose
the collaborator selection and aggregation steps inside the function, thus making
it dependent on the current population of candidate collaborators.

Each disposable fitness function evaluates an individual of the corresponding
population (i.e., a component of the solution) by performing these three steps:
(1) select a portion of the other population (collaborator selection); (2) use f to
compute the fitness of each pair resulting by combining the current individual
with a collaborator of the selected subset; (3) aggregate the resulting fitness val-
ues (fitness aggregation). In the algorithms of Figure 2, the collaborator selection
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function init(f):
f1 ← p1 7→ 0
f2 ← p2 7→ 0
s1 ← init1(f1)
s2 ← init2(f2)

P ′
1 ← cSel(s1.pop)

P ′
2 ← cSel(s2.pop)

f1 ← p1 7→ cAggr([f(p1 ⊕ p2)]p2∈P ′
2
)

f2 ← p2 7→ cAggr([f(p1 ⊕ p2)]p1∈P ′
1
)

s.n ← 0
s.s1 ← init1(f1)
s.s2 ← init2(f2)
return s

end

function stop(s):
return stop1(s.s1) ∨ stop2(s.s2)

end

function update(s,f):
P ′

1 ← cSel(s.s1.pop)

P ′
2 ← cSel(s.s2.pop)

f1 ← p1 7→ cAggr([f(p1 ⊕ p2)]p2∈P ′
2
)

f2 ← p2 7→ cAggr([f(p1 ⊕ p2)]p1∈P ′
1
)

s.s1 ← update1(s.s1, f1)
s.s2 ← update2(s.s2, f2)
return s

end

function extractSolution(s,f):
P ′

1 ← [p1 : (p1, q) ∈ s.s1.pop]

P ′
2 ← [p2 : (p2, q) ∈ s.s2.pop]

(p⋆
1 , p

⋆
2) ← argmax

(p1,p2)∈P ′
1×P ′

2

f(p1 ⊕ p2)

return p1 ⊕ p2

end

Fig. 2: The init(), update(), stop(), and extractSolution() functions for
our CCEA. The ⊕ operator composes a solution p = p1 ⊕ p2 ∈ P from two
components p1 ∈ P1 and p2 ∈ P2. init1(), init2(), update1(), update2(),
stop1(), and stop2() are the corresponding functions for the first and second
EA, searching respectively in P1 and P2. x 7→ y represents a literal for a function
that maps an x to an y: hence, f1 ← p1 7→ 0 means that f1 becomes a function
that maps any p1 to f1(p1) = 0.

step is performed by the cSel() function, which receives a population, i.e., a
multiset of pairs (p, q), p being the solution and q being its fitness, and returns a
multiset of solutions p, extracted from the population passed as argument. The
fitness aggregation step is performed by the cAggr() function, which takes a
multiset of real values in input, and outputs a single real value.

Going more into details about each part of the CCEA, the core of the CCEA
lies in the update() function, which is responsible for performing each evolu-
tionary step. It starts by selecting the collaborators P ′1 and P ′2, using cSel(),
to evaluate the solutions components, from the first and the second current sub-
population, respectively. Then, update() proceeds by defining the disposable
fitness functions f1 and f2 to evaluate the components: internally, both rely on
f to compute the fitness of a pair of solution components. To complete the evo-
lutionary step, update() invokes update1(s.s1, f1) and update2(s.s2, f2) to
have the inner EAs perform an evolutionary step and update their states (and
populations).

The function init(), responsible for starting the CCEA, has a similar struc-
ture to the update() function. However, since the collaborator selection cSel()

takes a population
[
(p(i), q(i))

]
i
of individuals, rather than just a population[

p(i)
]
i
of components, there is an additional preliminary step where we define

two dummy fitness functions, which map all solutions to a 0 value of fitness. At
this point, the cSel() can effectively be applied to select the individuals from
each population, even though here the selection is driven only by randomness.
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Then, the two fitness functions are defined, and the initialization is concluded
with the invocation of the inner initializers, init1(f1) and init2(f2).

The last two building blocks of the CCEA are the termination condition check
and the extraction of the solution to be returned. The first is performed within
the stop() function, which checks if any of the two inner EAs has achieved
its termination condition. The second, performed by the extractSolution()

function, computes all the possible combinations among the components, and
returns the best one according to the fitness function f . This should increase
the likelihood of achieving a good solution in the end, regardless of the criterion
used during evolution to sample the collaborators. In fact, some criteria might
be helpful at steering the evolutionary search, but they might not be suitable
for selecting the final combination of components.

Following the provided schema, we highlight that there is great freedom in
selecting (a) the inner EAs, as long as they comply to the structure of Figure 1,
(b) the collaborator selection, which can be freely chosen implementing cSel()

as desired, and (c) the fitness aggregation function, which can be customized in
the cAggr() function. The latter two are the main focus of this study.

Concerning the collaborator selection, we consider two sorting variants and
different proportion rates. For the sorting we opt for First and Last, whereas for
the proportion rate we experiment with different rates in r ∈ {0.1, 0.25, 0.5, 0.75,
1}. Namely, we first order the population in ascending or descending order (de-
pending on first/last), and then we take the top r|s.pop| individuals, correspond-
ing to the desired proportion of the population s.pop.

Regarding the fitness aggregator, we consider three cases: the Best, theWorst,
and the Median. We prefer the median over the mean, as it can be generalized
to non-numerical fitness values, and it is also less sensitive to outliers.

In the following, we denote an instance of our CCEA as EA1+EA2/s/r/a,
where s is the sorting (F for First and L for Last), r is the proportion rate, a
is the aggregator (B for Best, M for Median, and W for Worst). For instance,
ES+GA/F/0.1/M is the CCEA that uses ES and GA, selects the best 10% of the
other population as collaborators, and takes the median fitness of the resulting
solutions.

3 Case studies

We consider four case studies to evaluate the practicability and the generality of
the proposed CCEA scheme. Moreover, we use them as a test bed for assessing
the impact of different pairs of inner EAs, collaborator selection schemes, and
fitness aggregation functions. To this end, we start from two simple toy problems,
which serve mostly as a proof-of-concept, and then we move towards two real-
world problems, namely Symbolic Regression (SR) and Neuroevolution (NE).

For each of the examined case studies, we split the search of a solution p ∈ P ,
into the search of two components p1 ∈ P1 and p2 ∈ P2, such that ∀p1, p2 :
p1 ⊕ p2 ∈ P , and we measure the quality of p with a fitness function f : P →
R. We delegate the optimization of p1 and p2 to two inner EAs, which search
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two genotype spaces, G1 and G2 respectively, and make use of two genotype-
phenotype mapping functions, ϕ1 : G1 → P1 and ϕ2 : G2 → P2, to obtain
the solution from the genotype. Clearly, the spaces G1, G2, P1, P2, P and the
functions ϕ1, ϕ2,⊕, f strongly depend on the problem at hand. We hence describe
them in detail in the following sections.

3.1 Toy problems

Point aiming. The goal of the point aiming problem is to find a point in
Rn as close as possible, according to the Euclidean distance, to a target point
x∗ ∈ Rn. The solution space P is hence Rn, and the fitness of a solution p = x
is the Euclidean distance between x and x∗, f(x) = ∥x − x∗∥2. We split the
search into the search of the first ⌊n2 ⌋ components (P1 = R⌊n2 ⌋), and the last

⌈n2 ⌉ components (P2 = R⌈n2 ⌉), and we rely on a direct encoding for both, i.e.,
G1 = P1, G2 = P2. We compose p = x from p1 = x1 and p2 = x2 through
simple concatenation.

We note that this problem is fully-separable [11], meaning that it can be
solved by optimizing each decision variable independently. These types of prob-
lems are, in general, easily tackled by CCEAs [4].

Bimodal point aiming. The bimodal point aiming problem increases the dif-
ficulty of the point aiming problem, by introducing a bimodal fitness landscape.
Namely, two possible target points, x∗,x∗∗ ∈ Rn, are considered, and the fitness
of a candidate solution x, is measured as f(x) = min (∥x− x∗∥2, ∥x− x∗∗∥2),
i.e., as its Euclidean distance to the closest among x∗ and x∗∗. This causes the
problem to not be fully-separable anymore, as the solution components need to
agree on the direction in which they are moving, in order to both get closer to
either x∗ and x∗∗.

3.2 Symbolic regression

We consider SR as our first real-world problem, where the goal is to find a
symbolic formula h : Rd → R which best approximates the relation between
a data point x ∈ Rd and a dependent variable y ∈ R expressed in a dataset
{(x(i), y(i))}i=n

i=1 . Hence, the solution consists of a symbolic formula h : Rd → R,
and we measure its fitness f(h) in terms of mean squared error (MSE) over the

training data: f(h) = MSE
(
h,

{(
x(i), y(i)

)}i=n

i=1

)
.

We split the problem into the search of the skeleton of the formula (p1) and
the optimization of the numerical constants which appear therein (p2), as in-
spired by [19]. More in details, we define P1 as the space of parametric symbolic
formulae p1 : (Rd,Rm) → R, and P2 as Rm. We rely on a tree-based encoding
for the formula, as in standard Genetic Programming (GP), hence, G1 becomes
the space of trees where the inner nodes are mathematical operators (namely, •+
•, •−•, •×•, •÷•, •÷∗•, log •, log∗ •, exp •, sin •, cos •, 1

• ,−•,
√
•, •2, •3,max(•, •),
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min(•, •), where • represents an operand, and operators marked with * are pro-
tected), and the leaf nodes are either problem features x1, . . . , xd or parameters
c1, . . . , cm. Conversely, we use a direct encoding for the second component. For
composing the solutions, we substitute each parameter ci in the formula p1 with
the corresponding element of p2, ci = p2,i,∀i = 1, . . . ,m.

We refrain from using linear scaling, although it can dramatically increase the
performance of SR on real-world problems [20], as it could pollute the results
achieved through CC. In fact, our goal here is not that of achieving state-of-
the-art performance, but we aim mainly at investigating the effects of different
aspects within CC.

We highlight that this problem is far from being separable, as there is a strong
intertwining between the two components. This poses additional hurdles on the
CCEA, and enables us to observe its behavior under more difficult circumstances.

3.3 Neuroevolution

The second real-world problem we analyze is NE, where the aim is that of finding
a suitable Artificial Neural Network (ANN) to solve a task. We here consider
binary classification, hence we search the ANN h : Rd → {y+, y−} which best
captures the relation between a data point x ∈ Rd and its class y ∈ {y+, y−}
expressed in a dataset {(x(i), y(i))}i=n

i=1 . The solution thus consists of an ANN h
with d input neurons (one per feature), and 2 output neurons (one per class):
h(x) is y+ if the first neuron activation is larger than the second neuron activa-
tion, or y− otherwise. We measure fitness with the Balanced Error Rate (BER)

over the training data: f(h) = BER
(
h,

{(
x(i), c(i)

)}i=n

i=1

)
.

Motivated by the work of Gaier and Ha [1], we split the NE task in the
search of a suitable architecture for the ANN and in the optimization of the
ANN weights. However, to constrain and ease the optimization—we remark our
goal is not that of excelling at NE—we take inspiration from the practice of
pruning [22], which has been shown to yield to well performing ANNs even in
presence of high sparsity [8, 9]. Hence, we fix the architecture of the ANN in
terms of number and size of the hidden layers and of activation functions (we
always use tanh), but allow for synapses to be present or not, ranging from a
completely disconnected ANN to a fully connected one. Therefore, p1 consists
of the weights of the ANN, as if it was fully connected, whereas p2 consists of a
binary mask for the ANN, indicating which synapses are pruned. For composing
the final solution p, we simply mask the weights of p1 using p2. Concerning the
evolution of the components, we encode the weights as real-valued vectors, and
the mask as a bit-string. Hence, let w be the maximum number of weights of the
ANN, G1 = Rw and G2 = {0, 1}w.

4 Experimental analysis

We hereon present the details and the results of our experimental evaluation.
We implemented the proposed CCEA in JGEA [6]. For all the problems de-
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scribed in the following sections we performed 10 independent evaluations for
each considered scenario, unless otherwise specified.

4.1 Toy problems

For both toy problems we considered the same settings. We set the problem size
to n = 25, resulting in P = R25, P1 = R12, P2 = R13. For the point aiming
problem we set x∗ = 2 · 125, while for the bimodal point aiming problem we set
x∗ = 2·125, x

∗∗ = −1·125. We considered two EAs: a simple form of Evolutionary
Strategy (ES) and a Genetic Algorithm (GA). We experimented with both EAs
on their own (i.e., without CC) as a baseline, and as inner EAs in the CCEA.
For the latter case, we had ES+ES/s/r/a, ES+GA/s/r/a, and GA+GA/s/r/a,
with s in {F,L}, r in {0.1, 0.25, 0.5, 0.75, 1}, and a in {B,M,W}. For both EAs, we
evolved a population of size npop = 50 for ngen = 70 generations. We initialized
individuals sampling each component uniformly in [0, 1]. Then for the ES, we
used a (1 + λ) model, where we generate the offspring applying a Gaussian
mutation (σ = 0.1) to the point-wise mean of the parents, selected as the top
fourth of the current population. For the GA, we used a (µ + λ) scheme, with
µ = λ. We relied on tournament selection (ntour = 5) for sampling the two
parents, which we combined with geometric crossover followed by a Gaussian
mutation (σ = 0.1) to produce the offspring.

We report the results the experimental evaluation in Figures 3 to 5 for point
aiming, and in Figures 6 and 7 for bimodal point aiming. These results consti-
tute a proof of concept for the practicability of our CCEA, as we successfully
combined different EAs, and experimented with various collaborator selection
methods and fitness aggregation criteria. Focusing more on the single figures,
we can gain different insights. First, in Figure 3, we report the median across
the 10 runs of the fitness of the best evaluated individual vs. the amount of
fitness evaluations performed during evolution. Clearly, since we used the num-
ber of generations as termination criterion, some lines stop earlier than others.
This highlights the trade-off between the amount of collaborators chosen and
the computational effort required: a higher rate r, requires more evaluations to
compute an evolutionary step. From the figure we can also note that at the end
of evolution all combinations reach comparable fitness levels, meaning that evo-
lution was always able to achieve reasonable solutions regardless of the employed
components. These findings are also confirmed by Figure 4, where we plot, for
each generation, the median across the 10 runs of the fitness of the best eval-
uated individual. In fact, we can see the plots almost perfectly overlapping at
the end of evolution. Given the insights gained from these two figures, we limit
ourselves to showing the progression of fitness along generations for the other
problems, in order to save space.

Moving on to Figure 5, we can reason further on the impact of collaborator
selection and fitness aggregation on the solutions found by the CCEA. We here
report the median fitness of the best individual found at the end of evolution.
Concerning the fitness aggregation (one per column), Best generally yields to
better results, although comparable to both Median and Last. Focusing on the



10 G. Nadizar, E. Medvet

0

1

2

D
is
ta
n
ce

ES+ES/F ES+ES/L ES+GA/F ES+GA/F GA+GA/F

B
es
t

GA+GA/L

0

1

2

D
is
ta
n
ce

M
ed

ia
n

0 1 2 3
0

1

2

f evals.

D
is
ta
n
ce

0 1 2 3
f evals.

0 1 2 3
f evals.

0 1 2 3
f evals.

0 1 2 3
f evals.

0 1 2 3
f evals.

W
o
rs
t

0.1 0.25 0.5 0.75 1.0 GA ES

Fig. 3: Fitness (distance from the target) vs. number of fitness evaluations [×105]
for the point aiming problem, one line for each rate or baseline EA. The ES line
overlies the GA line.

rate r, we observe larger values to be more effective with the Best aggregation
scheme, whereas we note a fuzzier impact for Median and Large. Last, regarding
the collaborator selection, First performs better than Last, especially for ES+ES.
We speculate this could be because both ES populations focus on a specific point
in the search space, the mean, and the combination with the another components
tends to move it causing instability.

For the bimodal problems we obtained similar results, see Figures 6 and 7.
In fact, we notice higher differences between plots during evolution, which were
smoothed out at the end of evolution. This leads us to conclude that both toy
problems considered were easy enough for evolution to eventually converge to a
reasonable solution, regardless of the components involved.

4.2 Symbolic Regression

For the SR problem we considered the Boston Housing dataset [2], which con-
sists of 506 examples and 13 features. We used 5 different 80%/20% splits of
the dataset, which we respectively used as training and test sets, thus resulting
in 5 · 10 = 50 independent evolutionary runs. We set the number of numerical
constants to m = 10, hence P2 = R10. We employed GP as EA1, and ES as EA2,
but we also considered, for reference, a variant with GP on its own, where the
terminal nodes could be the problem features or a constant among {0.1, 1, 10}.
We set npop = 100 and ngen = 500. For GP we used a (µ + λ) scheme, with
ramped half-and-half initialization and tournament selection (ntour = 10). We
used either subtree crossover or subtree mutation to compute the offspring, cho-
sen with pxo = 0.8 and pmut = 1 − pxo = 0.2. For the ES we used the same
configuration as described in section 4.1.

We report the results for the SR problem in Figures 8 to 10. In Figure 8,
we show the median fitness of the best evaluated individual along generations.
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Fig. 4: Fitness (distance from the target) vs. generation for the point aiming
problem, one line for each rate or baseline EA.
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Fig. 5: Fitness at the end of evolution vs. rate r for the point aiming problem.

Concerning the fitness aggregation, we see an ordering: Best is better than Me-
dian, which is better than Worst. Regarding the collaborator selection, instead,
the results are not too different, and, in fact, different rates and First and Last
achieve similar fitness results at the end of evolution.

More insights can be gained from Figure 9, where we report the fitness (MSE
on the training set) of the best solutions found at the end of evolution, together
with the MSE of said solutions on the test set. From what we see in this figure,
the previous findings appear confirmed, also in terms of generalization: the col-
laborator selection plays a secondary role compared to the fitness aggregation,
where the Best is clearly better than Median or Worst. We can also note, once
again, that the amount of collaborators, i.e., the rate r, does not influence the
performance of the CCEA, hence we deem convenient to use a lower rate to
constrain the amount of computational resources used. From another point of
view, these results seem to suggest that the optimistic expectation that coupling
each component with unfit components of the other population results in a more
robust solution is not met.

Last, we investigated the structure of the final solutions found by the CCEA
for SR. In Figure 10 we plot the median amount of constants in the best evalu-
ated individual along generations. From here, the differences between columns,
i.e., between fitness aggregation schemes, are evident: the more pessimistic the
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Fig. 6: Fitness (distance from the target) vs. generation for the bimodal point
aiming problem, one line for each rate or baseline EA.
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fitness aggregation, the less cooperation between populations is preferred. In fact,
evolution tends to try to stabilize the fitness of the tree component by avoiding
the combination with constants, as few poor performing ones could hinder the
final fitness of a tree, good though it might be in combination with other values.

4.3 Neuroevolution

For the NE problem we used the German Credit dataset [2], consisting of 1000
examples and 20 features. As in SR, we considered 5 splits for the dataset.
However, here, we performed 5 experiments on each split, rather than 10, totaling
5 ·5 = 25 independent evaluations. We chose an ANN with 3 hidden layers, each
of size 26, to match the size of the input. In fact, some of the 20 features were
categorical, hence we transformed them with one-hot encoding. This architecture
resulted in a maximum number of weights w = 2160, hence P1 = R2160 and P2 =
{0, 1}2160. We relied on ES as EA1 and on a GA as EA2. As a baseline, we also
considered ES on its own, leaving all the weights unpruned. We set npop = 100
and ngen = 700. For the ES we used the configuration described in Section 4.1.
For the GA we used a similar scheme as for the toy problems, but given the
different search space we had some key differences. Namely, we initialized the
individuals sampling each component from {0, 1} with equal probability, and we
computed the offspring with either uniform crossover or bitflip mutation, chosen
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test set vs. rate r for the SR problem.

with equal probability (pxo = pmut = 0.5). Again, we used tournament selection,
with ntour = 10.

We report the results in Figures 11 and 12. In Figure 11 we display the
median of the fitness of the best evaluated individual along generations. Here we
can clearly notice a difference for the third column: with the Worst aggregation,
evolution is not able to converge for rates r > 0.1. In fact, instead of achieving
high selective pressure, the pessimist fitness aggregation is steering evolution
in the wrong direction. We speculate this does not happen for a low rate of
collaborators as this corresponds to a smaller pool of individuals among which
the worst fitness is extracted, meaning that it is more unlikely to have a low
value if the evaluated component is promising.

The results at the end of evolution, reported in Figure 12 together with the
BER resulting from re-evaluation on the test set, are in line with the previous
findings, and confirm the poor performance of the CCEA with the Worst fitness
aggregation scheme. Conversely, we do not note significant differences neither
between the Best and the Median aggregation schemes, nor between the First
and Last collaborator selection criteria. Anyway, it appears that a smaller rate
of collaborators is not only sufficient, but also beneficial in most cases.

Regarding the solutions structure, for space reasons we avoid reporting any
plots. However, the results showed a constant amount of weights pruned, around
50%, meaning that there was no evolutionary pressure in that sense.
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5 Concluding remarks

We considered Cooperative Coevolution (CC), that aims at solving a problem by
dividing it in simpler sub-problems, and we conducted an experimental campaign
for investigating the impact of key CC components on the effectiveness and
efficiency of optimization and on the complexity and generalization power of
optimized solutions.

We first proposed a general scheme for a CC evolutionary algorithm (CCEA)
for the significant case where the problem can be split in two sub-problems. Our
CCEA formulation is general enough to use, as inner EAs for the two sub-
problems, any population-based iterative EA with any representation. At the
same time, it neatly modularizes the key CC components that we study in this
paper, namely (a) how to select the collaborators in the other population (in-
cluding how many of them) and (b) how to aggregate the fitness of many collab-
orator-collaborator pairs to obtain a single fitness value. Then, we instantiated
our CCEA with different combinations of inner EAs, selection, and aggregation
schemes and we applied it to two toy problems and two real prediction problems

We found that: (a) a small number of collaborators is often enough to have
good effectiveness and efficiency; (b) optimistic fitness aggregation schemes (i.e.,
choosing the best fitness among all the collaborator pairs) often results in better
effectiveness; (c) depending on the way the problem is split, fitness aggregation
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Fig. 12: Fitness (BER on training set) at the end of evolution and BER on the
test set vs. rate r for the NN classification problem.

may have a dramatic impact on the structure of evolved solutions. Moreover,
we found no evidence of increased generalization power when more or unfit
collaborators are selected. We believe that our study may help gaining insights
in a sub-field of evolutionary computation, i.e., CC, that is promising, yet not
completely characterized.
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