ar'T

ON AN ASYMPTOTIC MODEL FOR FREE BOUNDARY DARCY
FLOW IN POROUS MEDIA*

RAFAEL GRANERO-BELINCHON' AND STEFANO SCROBOGNA

Abstract. We provide a rigorous mathematical study of an asymptotic model describing Darcy
flow with free boundary in a small amplitude/large wavelength approximation. In particular, we
prove several well-posedness results in critical spaces. Furthermore, we also study how the solution
decays towards the flat equilibrium.
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1. Introduction. Since the pioneering works of Boussinesq [8], the derivation
and study of asymptotic models for free boundary flows (usually, the water waves
problem) is a hot research area (the interested reader can refer to [43]).

In this paper we study an asymptotic model for the intrusion of water into oil
sand. This is known as the Muskat problem [44]. The study of the (full) Muskat
problem has received a lot of attention in the last years with several very recent
advancements on the problem (cf. [1, 2, 4, 5, 31, 45]), and, as a consequence, there is
a large literature available (we refer to [36] for a recent survey of the available results).
More precisely, this work considers the following one-dimensional equation:

Of = —vN3f — Af + 0, ([H, f] (WA f + Af)),
f|t=0 = fo,

where [A,B] = AB — BA denotes the commutator between A and B, the Bond
number v > 0 represents the ratio between capillarity and gravitational effects, and
the Hilbert transform H and the Calderén operator A are defined as the following
Fourier multiplier operators:

(1.1)

(1.2) Hf(n) = —isgn(n)f(n), Af(n) = In| f(n).

Equation (1.1) was derived by the authors as an asymptotic model for the Darcy flow
in porous media under the assumption that the amplitude over the wavelength, a
quotient known as steepness, is small [37] (see also [14, 38, 39, 41]). In the gravity
driven case (when v = 0), (1.1) reads as
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f|t:0 = f0~

Although (1.1) and (1.3) seem semilinear fourth and second order nonlocal PDEs,
respectively (due to terms like f02f and f02f), the commutator structure of the
nonlinearity implies that they are a quasilinear third and a fully nonlinear first order
nonlocal PDE;, respectively (see Lemma 3.1 below). This feature is key in the analysis
of the Dirichlet-to-Neumann operator (cf. [3, Lemma A.1.11] and the pioneer works
by Craig [27, 28, 29]).

There are several motivations to study asymptotic models of free boundary Darcy
flow. One of them arises from computational reasons. The idea is, then, to simulate
the asymptotic model to obtain an accurate description of the full problem at a lower
computational cost. In that regard, let us briefly emphasize that the one-phase Muskat
problem reveals itself as somehow harder (computationally speaking) than the two-
phase Muskat problem. Let us try to briefly explain the reasons for this “paradoxical”
fact. In the case when there are two fluids, the gravity driven Muskat problem reads
as the following single nonlocal PDE [18]:

O f(x) — Opf(x —
Yy CELA LT
R (f(z) = flz—vy) +y
Simplified models for this case were provided (following heuristic ideas) by Cérdoba,
Gancedo, Orive [20] (see also [42]). Remarkably, when the one-phase Muskat problem

is considered, the previous PDE has to be modified, and one is forced to study the
following system of a nonlocal PDE and an integral equation [17]:

- _ Yy
ouf(@) = o [ e =) e e
e [ @ = fa—y)
ons@. [ o)
~0u1(a) = pav. [ SOz S(0), 8,15 (1,0.f(a)) + T,
where B denotes the kernel of VFA™! ie.,
_{_ T2 — Y2 T1—
Blos, 72, 91,92) = ( (z2 —y2)? + (21 — y1)2’ (x2 = y2)? + (21 — y1)2)

Thus, to write the amplitude of the vorticity in terms of the interface, one needs to
invert an operator as in Cérdoba, Cérdoba, and Gancedo [17]. This is, mathematically
and computationally, a challenging issue.

Another reason is the possibility of finding new finite time singularity scenarios. In
particular, for the two-phase Muskat problem, Castro et al. [10] proved the existence
of turning waves, i.e., interfaces that can be parametrized as a smooth graphs at time
t = 0 but that become smooth curves that cannot be parametrized as graphs after
a finite time (see also [7, 21, 22, 23, 33]). We observe that these turning waves are
interfaces such that there exist 0 < T < oo and

limsup ||0, f(t)|| L = 0.
t—T1

In the case of the one-phase Muskat problem, Castro et al. [11] proved the existence
of curves that self-intersect in finite time in what is called a splash singularity (see



also [24, 26, 30, 32]. It remains as an interesting open problem whether the Muskat
problem can have a cusp singularity, i.e., a singularity where the slope and curvature
of the interface blows up while the interface remains a graph (see [9, 13, 15, 16, 34, 40]
for global existence results). In that regard, we are optimistic enough to think that
such a scenario should be simpler to prove (or discard) in an asymptotic model rather
than the full problem. Taking this into consideration, the results of this paper then
give conditions that excludes finite time blow ups of turning type.

1.1. Functional spaces. The space domain considered in the present article is
the one-dimensional torus, i.e., T = R / 271 Z. The domain T can also be understood
as the interval [—m, 1] endowed with periodic boundary conditions. Let f(z) denote
a L? function on T. Then, its Fourier transform is an ¢2 (Z) sequence defined as

¢ £ 1 —iz n

for any n € Z, with inverse Fourier transform

1 £ i n
f(l“):\/T—?TZf(n)e ‘

ne”Z

Then, we define the L2-based (homogeneous) Sobolev spaces H*(T)

H*(T) = {u(x) such that ul3, ) = Y k> Ja(k)]> < oo} .
k

In the present work we will need to define Sobolev spaces with fractional deriva-
tives and integrability indexes different from two, i.e., spaces W*P (T) for s € R and
p € [1,00). We provide here a characterization of such spaces using using the theory
of Littlewood-Paley (see Appendix A). If we consider the dyadic block A, we can
hence define the seminorm

1/p

||uHWs,p('J1') = /Z 2pee HAQUHZE,P(T)
q€Z

It is well-known that
||U||Ws,2(1r) ~ HUHHS(T)’

in the sense that there exists a positive absolute constant C'> 0 such that & llull e ry <
lellvipea(ry < Cllell gromy-

Similarly, we define the (homogeneous) Wiener spaces A*(T) and Wiener spaces
with weight as

A%(T) = {u(m) such that [|ull jo(p) = Z |k|“ (k)| < oo} ,
k

A%(T) = {u(m) such that [[ul] jo ) = Y [k|* e’ a(k)| < oo} :
k

respectively. Obviously, Ax = AS“, and the functions in A? are analytic in the complex
strip



SV:{.’E+Zy, ‘y|<l/}

We observe that (1.1) conserves the average of a solution f. Thus, without losing
generality, we can assume this average to be zero. Thus, from this point onwards we
identify the spaces H® (T) and H*® (T), A®(T) and A®(T), and A3 (T) and A% (T).
Then, the previously defined seminorms when restricted to average-free functions are
in fact genuine norms.

Let us notice that the following embedding, valid for mean-free distributions on
the one-dimensional torus

HY2(T) — LP(T) VY p € [1,00),
and in particular the following inequality hold true for any u € H'/2 N LP:

[ull Lo < CVP Il g/ -
We also recall that H® (T) for s > 1/2 embeds continuously in L* (T) with bound

C
(1.4) e < 7 Mol g0

1.2. A word on scaling. We observe that, when v = 0, (1.1) is left invariant
by the scaling

(1.5) Ao t) = %f(m,m).

Remarkably, this scaling is the same as in the full Muskat problem (see [25]). Then,
we note that the following spaces are critical for this scaling:

L (0,T; Al(T)) L™ (O,T; H3/2(T)) L (O,T; le“(ﬁr)) .

Let us now consider (1.1) for v > 0. In this setting (1.1) reads, when expanded,
as

(1L6) Ouf + VA f+ Af = v [A(f NPF) =0, (F O20)] + [A(f A+ (f 0F)]

There is no scale invariance satisfied by (1.6). Despite this fact we can rewrite (1.6)
as

(1.7)
SO+ NS f — UA ( NF) 00, (7 02F) = ~200f — A+ A(f AT +0,(f 0uf)

and then study separately the homogeneity of the left- and right-hand side of (1.7).
Concerning the right-hand side the deductions of above still hold, and it is invariant
with respect to the scaling (1.5). The left-hand side of (1.7) is invariant with respect
to the scaling

(1.8) fa(z,t) = %f (Az, A%t).

We remark that the space Lg° (Ry) is invariant with respect to both the dilations
t — At and t — A3t which characterize, respectively, (1.5) and (1.8). Then, the spaces

L (O,T; 3/ (T)) L™ <O,T; Al (’JT))

are, in a certain sense relatively to scale invariance, reasonable critical spaces to
consider for (1.6).



2. Main results and discussion.

2.1. Results for the gravity driven case (1.3). Our first result proves the
existence of solution for analytic initial of arbitrary size.

THEOREM 2.1. Let fo € AL(T); there exist a short enough time T,

0<T<—
4 foll a2

and a unique mild solution to (1.3) stemming from fo which moreover belongs to the
space
feL>®(0,T;A1)NC([0,T],4}5) -

This result is a sort of Cauchy—Kovalevsky theorem. However, we emphasize that
the solution is less regular in time (merely L instead of continuous) but maintains
its original strip of analyticity.

Furthermore, we are able to prove a result establishing the decay of certain norms
of the solution.

PROPOSITION 2.2. Assume that the solution to (1.3) constructed in Theorem 2.1
satisfies
sup || f(O)] 41 < 15
0<t<T

then

sup max f(y,t) < max fo(y),
0<t<T Y Y

. . < i
Ognngylnf(yJ) > Irgnfo(y)a

and, as a consequence,
sup [|f(t)ll e < [lfollzoe-
0<t<T

This result seems the analogue of the maximum principles known for the full
Muskat problem [5, 19, 23]. In particular, when compared to the results in the previous
papers, it seems that the model equation (1.3) is less stable than the full Muskat
problem. The fact that the maximum principle holds if and only if Af is small (see
below for the proof) may seem somehow surprising. However, we should recall that
the model studied in this work is only valid when the steepness parameter (i.e., a
quantity akin to || f|| 4:) is small. In other words, the range of validity of the PDE
under consideration as a model of the full Muskat problem is related to the smallness
condition guaranteeing the decay stated in the previous proposition. In this sense,
since the range of validity of the model imposes restrictions in the slope of f, there is
no contradiction between the conditional decay of the PDE under consideration and
the decay with no extra assumptions of the full Muskat problem.

Once the local solution for analytic data is known, we turn our attention to the
global solution for initial data satisfying certain size restrictions in critical spaces.
Then, our well-posedness result for Wiener class initial data reads as follows.

THEOREM 2.3. Let fo € A be the initial data for (1.3). Assume that

[ foll ar < 1/2;

then the Cauchy problem (1.3) is globally well-posed and admits a unique solution
f e L™ (Ry; AN (T)) N M (Ry; A%(T)),



verifying
(2.1) IFOar < Nl foll ar

and
£ g0 < || foll o e~ (2 ollan)t

We observe that these are a global existence and decay for initial data in a critical
space.

The next result we prove in the present manuscript is a global existence result
for initial data in H2 N H%+E, € > 0; we suppose the initial data to be small in H3
and of arbitrary size in H ite, Very recently D. Cordoba and O. Lazar proved in [25]
that it possible to construct global solutions for the two-dimensional (full) Muskat
problem when the initial data is small in the space H3/2 and also belongs to H*/2.

The following theorem establishes a similar result for the evolution equation (1.3).

THEOREM 2.4. Let us suppose fy € H3n H%Jrs, € > 0. There exists a constant
C > 0 independent of € and fy such that, if fo satisfies

62

2
C (Ifoll - Togllfol 3+ +1)

the Cauchy problem (1.3) is globally well-posed and admits a unique solution f such
that for any T > 0

||f0||H% <min¢ 1,

)

fe =0 ([o,1)s ) L (0,7); HEF) (L2 ((0.7); H),
1 1

— <V < -

2(e+1) 2

In other words, the initial data must be small in H3/2 even for large e. Further-
more, if the initial data is large in H3/27¢, then the size condition for the initial data
in H%/? is even more restrictive.

The methodology used in order to prove Theorem 2.4 differs completely from the
one used in [25], since (1.3) presents a nonlinearity of polynomial type we will be
able to use tools characteristic of the paradifferential calculus, we refer the reader
to [6, Chapter 2]; we will hence decompose the nonlinearity in an infinite sum of
elementary packets on which we will be able to highlight some nontrivial regularizing
properties of (1.3).

2.2. Results for the gravity-capillary driven case (1.1). We are able to
extend Theorem 2.3 to the case with surface tension.

THEOREM 2.5. Let v > 0 be a fized parameter and fo € A be the initial data for
(1.1). Assume that

[ foll ar < 1/2;
then the Cauchy problem (1.1) is globally well-posed and admits a unique solution
fe L™ (Ry; AN (T)) N M (Ry; A*(T)),

verifying
IF@Oar < Nl foll ar

and
()] g0 < Nl foll 4o e~ (-2M0lar)A00e,



Remark 2.6. We observe that the size condition is v-independent.

The following result is a result analogous to the one stated in Theorem 2.4 for
the system (1.1) when v > 0.

THEOREM 2.7. Let us suppose that fo is a zero mean function on T, fo € H? (T).
There exists a C' > 0 such that if

. _1
(2:2) lfollgzzqry < 5 min {1, w71},

then there exists a unique solution f € C(Ry; H*)NL?(R; H%) of the Cauchy problem
(1.1) such that for any t >0

2 2

I Oy + | t [uHAWf(s)H

2.3. Discussion. In this paper we prove several well-posedness results for an
asymptotic model of free boundary Darcy flow. Most of them are global existence
results in scale invariant spaces. In that regard, our results should be understood
as nonlinear stability results rather than linear stability (even if some size conditions
are imposed on the initial data). These results exclude the existence of turning wave
singularities but leave open the door to cusp singularities. The occurrence of such
behavior will be the object of future research.

HAl/Qf (s)H ] ds < ||f0||?{2(1r) :

+
H2(T) H2(T)

3. Gravity driven system (1.3).

3.1. Proof of Theorem 2.1. The cascade of linear equations. We look for
a solution of the form

o0
fla,t) =A> X fO(a,0),
£=0
where A = A\(fp) will be chosen below. Then, the existence of solution is reduced to
the summability of a series where each term satisfies a linear problem. A similar idea

can be tracked back to the works of Oseen [46] (see also [14]). Indeed, matching the
appropriate terms, we find that f(©) satisfies

OfO + AFO = %A (f(j)Af(Z—j—l)) + 0, (f(j)awf(f—j—l))

J=0

with initial data
fOx,0)=0if £ #£0

and
f(O) (z,0) = % otherwise.
Then ;
0) _ —tAJO
f e T

and we can solve recursively for the other f(). In particular, using that the solution
of
Ou(z,t) + Au(x,t) = F(x,t), wu(z,t) = g(z)

is given by

t
a(k,t) = e Flg(k) +/ e IR Bk, 5)ds,
0



we find that

O, 1) = Z f: / ts\k\ |k|( FD(n, $)|k — n|fE—D(k —ns))

j=0 n=—00
i (£ (n, s)ilh - ) fEI-1 (k —n, )]
Thus, using
|kl[k —n| = k(k —n) = |k[|k —n| (1 - sgnk sgn (k —n)) < 2|k[[k —nl,
we have that

aAﬁZﬂAw:EZMk—ma>umm—m—kw—n»
(3.1) 22] \nkan\‘

Thus, we obtain that

) 28 55 [

j=0n=—o0

)| Il = | £ (k= n, )| ds.

Approximate problems. We now fix 1 < R and consider the partial sum

R
fr(z,t) =X Z N (z,t).

Then, fr satisfies

R -1
Ofr—+ Afr = Z)\Hl ZA (f(j)Af(ffjfl)) + 0, (f(j)amf(f*j*1)>

R (-1

Z Z A ()\j+1f(j))\Z—j—1+1Af(€—j—1))

=1 j=0

+ 0y ()\J+1f(j)Ae—j—l-&-laxf(@—j—l)) _

Nonlinear estimates. We estimate

(3:2) MO, < Wollar
Define
v(l)=R—L+1.
Applying Tonelli’s theorem, we find that
17 Laz,
<2y Z > / e M ler O |G, )] nl b = ] | /E== (k =, 5)| ds
j=0k=—ocon=— 0
L— 0o oo o o
<2 Z S [ et [FO (n,3)| Inllk = nl | FE==0 (6 =, 5)| ds,
7j=0 k=—oco n=—o0 0



where we have used
|k| < el®l.

Now we observe that, since 0 < j</—1land 0</l—j—-1</(—-1,

v(l)+1=R—-({-1)+1<R—j+1=uv(j)

and
v)+1=R-({—-1)4+1<R—-({—j—-1)+1=v{l—j—1).
Thus,
(0)
|row],

V(L)
-1 o0

t
<23 % Jﬁ o @lnl gr(t=j =) k—n

7=0n,k=—o0

=1 4 A
< QZ/ | r96s)

We define the numbers

7D (m,5)| nllk — | [fETD Gk~ n, 5)| ds

(e—j—1) ‘
i, P70

) ds.
Ale—j-1)

o = 2| ) oy =1.

1 )
Au(f)

These numbers satisfy

=1 .t
2y [ Ahotsads
j=0"9

Then, we prove by induction that
oy < Gt

where %, are the Catalan numbers. It is known that the Catalan numbers grow like
4°. We also observe that
v(f) >1

for £ < R. As a consequence, we have the bound

R
Ifa(®)lay < A7)+ 230 19|

<A\ f(O)

A
<SA|FO| L, 5N

<A f(O)



where we have used (3.2). We choose A = || fy||..1 and note that, for ¢ < 1/4| fol| 1,
we obtain the bound
[follar 4l follazt

2 T Alfolat

IRy < [l follay +

Thus, we have a bound
fr € L>(0,T; A%)

Passing to the limit. This bound is independent of R, and then, using the
Weierstrass M-theorem in the space L>(0,T; A1), we can pass to the limit as R — oo
and obtain

lim fr=fe€L>(0,T;A]).
R—o0

Furthermore, fg satisfies

ﬁ%(k‘,t) =e'Fl
R (-1 o

+ ZZ Z /Ot o~ (t=5)IK] </\j+1f’(j\)(n7 S)Ae—j—1+1f@1)(k _n, s))

(=1 j=0n=—o0

x [Ik|lk — n| — k(k — n)].

Then, using the Cauchy theorem for the product of series, the limit is a mild solution
of our problem

(3.3)
i = ¢tk f 3 te_(t_s)lkl f(n,s)f(k—n,s —n|— —n)l.
feny =i 3 [ (Fon. )70k = ) ) 1kl1E = nl = k(e = )

n=—oo

Time regularity. Finally, as we have that the mild solution we have just con-
structed is f € L°°(0,T;A}), due to the Banach scale property of the functional
spaces, we also have that

fAf,0uf € L (0,T; Af5) -

Due to the fact that f is a mild solution together with the previous regularity, we find
that f is time differentiable. Using the equation for f, we find that its time derivative
satisfies

O f €L™(0,T;Ads).

Then, using the fundamental theorem of calculus, we can write

~ ~

t+h .
Flet ) = Fko = [ iF(hs)as,
t
and as a consequence, we can conclude the desired regularity
f eC ([07T]7 Aéf)) .

Uniqueness. We prove now that the solution with this regularity is unique. The
proof is a variation of the one in [14], so we refer to it for more details. Let fy € Al,
and let us suppose there are two distinct f; and fo mild solutions of the form (3.3)
stemming from fy. Let us denote with g = f; — fo. We have that g solves

10



Z/ O (G, ) Fue =, )) [kl = ] = k(k = )]

£ 30 [T o s, ) Dl o= )]

where, by assumption, f; € L>°(0,T; A}). Hence we can apply a Gronwall integral
inequality and the uniform boundedness in L>(0,T; Al) to conclude that g (k,t) = 0
foreacht > 0 and k € Z.

3.2. Proof of Proposition 2.2. We start this section with an auxiliary lemma
that establishes an integral formula for the nonlinear term.

LEMMA 3.1. Let u € A'; the nonlinear term 0, ([H,u]Au) admits the represen-
tation

0y ([H, uﬂ Au)

—Ul‘—y)u(%—y)—u(a?—y—z) 2
167r2p s / / sin’(y/2) sin?(z/2) dzdy + (9su(a)

ule) —ule —y) wo)?
= g | e = )y + (D)

Proof of Lemma 3.1. Let us assume first that « € C°°(T). Then we will conclude
using the density of these functions in A'. Now, we observe that for any f,g € A!

1 (f(x—y) = f(x) g(z —y)
H, flg = %PN-/T tan(y/2) dy,

Ho(r —y)
r tan( y/2)

/ / glx—y—2) 1 ds d
T 4r 2pv p-v- tan(z/2) tan(y/2) =

Thus, we obtain that, given u € A!

1
—p.v.

(34)  H(Hg) (@) = %

Oz ([H,u]Au) = S;p.v./TWHa u(z —y)dy

Oz we—y)—ux) [ Oulz—y—2z)
47T2p /T tan y/2) P- '/T tan(z/2) dz=dy

x—y) —u(z) dyulr —y — z)
7T2pv /pv/ tan(y/2) tan(z/2) dz=dy

=I5 +1+ I3,

where

y) dwu(z —y — 2)
L= 4 2pv/ / tan y/2 tan(z/2) dzdy,

1 ulzr —y —2)
dzd
47T2 / /tan (y/2) tan(z/Q) =

z —y) —u(x) Gu(z —y — 2)
2pv /pv/ tan(y/2) tan(z/2) dzdy.

12—

11



Let us remark that I3 is well-defined as long as u has enough regularity. This term
will later dissappear due to a nonlinear cancellation. We have that

I = 42pv/pv/ —Oyu(r — y) Opu(z —y — )dzdy

tan y/2 tan(z/2)
1 )—u(r—y)) Opulz —y — 2)
- T / p-v: / tan (y/2) tan(z/2) 2
) —u(r —y) pu(z —y — 2)
dzd
sr 2pv /pv/ sin’ y/2 tan(z/2) =
u(z) —u(x —y) 0. 0yu(r —y — 2)
dzd
W2pv TPV/T tan(y/2) tan(z/2) S
) — u(z —y) Owulz —y — 2)
dzd
2pv /pv/ sin? y/2 tan(z/2) i
w(x) —u(z —y) Pulr —y — 2)
4 2pv pv/ tan(y/2) tan(z/2) dz=dy
) —u(r —y) —Oyu(z —y — 2)
dzdy — I
8 2pv /pv/ sin? (y/2) tan(z/2) Yy — s
—ux—y)U(x—y)—U(:v—y—Z)
dzdy — Is.
167T2p / / sin®(y/2) sin?(z/2) s
Using that, for zero mean functions,

together with (3.4), we find that

I, = (9u(z))>.

Thus, collecting every term and using the density of the C'°*° functions, we conclude
the result. ]

Proof of Proposition 2.2. Define X; such that
M) = [(Xe,0) = max f 1),

We observe that M (t) is a.e. differentiable. To see that, take two t < s, and assume
that M (t) > M(s); then

[M(t) = M(s)| = M(t) — M(s)

= f(Xe,t) = (X5, 9)
S f(Xt7t) + f(Xt,S) - f(XSas)
< f(Xtat) - f(XhS)ﬂ

where we have used

As a consequence,

|M(t) — M(s)| < [|0cf | o ([0,m)xT) |t — 51,

and we obtain that M (t) is a Lipschitz function. Now Rademacher’s theorem gives
us the a.e. differentiability of M. Now we observe that there is a sequence of h; such
that

12



Dty — i M) = M)

. f(Xt+hJ>t+hj)_f(Xtat)
= lim
hj—0 hj

— lim f(Xt+}Lj7t+ h]) + f(Xtat+ h‘]) - f(Xtat)
 hy—0 h;

2 8tf(Xt7t)7

where we have used
f(Xt+hj7t+ h]) - f(Xt,t+ hj) > 0.

Similarly, since

f(Xi—n, t —h;) — f(X¢, t—hj) >0,

d . Mt —h;)— M)
dt (t) = hljlgo —h;
. (X, t—hy) — f(Xy,t)
= lim
h;—0 7hj
— lim f(thhJ7t_hj):tf(Xtat_hJ)_f(Xt>t)
 hy—0 —h;
< 8tf(Xtat)

As a consequence, we find that the derivative verifies the equality

d
—M(t) = 0 f( Xy, t
SM(0) = 0uf (X1
almost everywhere in time. Using Lemma 3.1, we find that

d 1 M) —u(Xy —y)
EM(t 47 Jp sin?(y/2)

(Au(X: —y) — 1) dy.
Using that
[Aul < fJu(t)]] 41,

we conclude
max f (y,1) < max fo(y).

If we define z; such that
m(t) = f(xht) = mylnf(y,t),

we can repeat the previous steps and conclude the result. 0
3.3. Proof of Theorem 2.3.

Step 1: A priori estimates. We start the proof providing the appropriate a
priori estimates in A'. Standard manipulations allow us to deduce the differential
inequality

13



%Ilf(t)llm 1 Ollaz < 1107 ([ SIAS)| 0 -

In Fourier variables, we have that

—

02 (TH, FIAS) = O A(FAT) + 02(f0. 1)
= f(k —m) f(m)p(k, m)
with

. ) k(k—m)
p(k,m) =ik (|k||k — m| — k(k — m)) = ik|k||k — m| (1 - |k||k—m|> .
Since %;é1ifandonlyifm<k<0andOékgmweobservethatpyéOif
and only if 0 < |k| < |m|. We use this observation in order to argue that
(3-5) [p(k,m)| < 20k [k —m| < 2lm|?|k — m].
Thus,

102 (1M, FIAD] 4o < 21l as 1F Lo -

As a consequence, we find the inequality

% [FOlar + @ =2[FOa) [1F )] 42 <O,

so that if || fo|| 4o < 1/2 a standard parabolic bootstrap argument shows that

1 t
15 Ollas+ 5 [ 17 Gl ds < ol
0
Computations very close to the ones performed above allow us to infer that

10:1H, FIAF I 40 < 201£1%0

which we use in order to obtain the following uniform bound on the time derivative
of f which we will need for the compactness argument of the next step:

10cf 1| a0 < WIf1Lar + 102TH, FIAf g0 < 1 llax (U + 2017 40) < (ol ar (1421 foll ar) -

Step 2: Approximated solutions and passing to the limit. To construct
solutions we consider the regularized problem where the initial data is localized in
Fourier space. In other words, given fo, we consider (1.3) with the initial data f&¥
where

N
fo' =32 folme™.
n=—N
Then, invoking Theorem 2.1, there exists a local analytic solution
N ec([0.v]; Al )

for some Ty > 0. Moreover the a priori estimates performed in the previous step
assure us that if ||f(§VHA1 < | follar < 1/2, then fn € L> (Ry; A') for each N € N.
We can hence invoke Aubin-Lions compactness lemma as it is stated in [47, Corol-

lary 6] or [35, Lemma 5.1] in order to argue that, up to non-relabeled subsequence,

mw oo, fin L2 ([O, T ;Al) , ¢ € [1,00). To prove that the limit function is a weak

solution of (1.3) is standard, and the detailed computations are left to the interested
reader.

14



Step 3: Uniqueness. We argue by contradiction: let’s assume that there exist
two different solutions fi and fo starting from the same initial data || foll ;1 < 1/2.
Since fy satisfies the smallness condition we have that f; € L™ (R+; Al) NL! (R+; AQ)
and satisfy the energy inequality (2.1) for ¢ = 1,2. Then one can prove that the
difference g = f; — fo satisfies the Cauchy problem

(36)  dg+ Ag =08, ([H,glAf1) + 0x ([H, f2]Ag) 9li—o =0.
Performing an A° energy estimate on (3.6) and using the nontrivial commutation

property (3.5) we deduce the energy inequality

d
g l9llae +llgllar < llgllax (llfullar + [.f2]Lav).

Since f;,i = 1,2 satisfy (2.1), then using parabolic absorption and Gronwall’s inequal-
ity one concludes that g has to be identically nil in A° which implies that the solution
is unique.

Step 4: Decay. We have that

d
3 W Olao + 1 Ol]ar < 110 (7, FIAN)] 40 -
Recalling (3.1), we find that

10z (IH, FIAS) ] ar < 21 F 1 -

As a consequence, we find the inequality

d
3 I @Olao + 1 @Ola2 (L =2[1F @) 42) < 0.
Using the Poincaré-like inequality

IOl a0 < 1FELar s

we find the exponential decay

1FO)|go < Il foll yo e (2Molla)e,

3.4. Proof of Theorem 2.4.

Step 1: A priori estimates. Equipped with the local existence of smooth
solution emanating from an analytic initial data, the proof of Theorem 2.4 reduces to
the derivation of appropriate energy estimates in the right Sobolev spaces. Thus, we
consider f to be a (space-time) smooth solution of the periodic problem (1.3).

Step 1.1: L? estimates. As the main nonlinear cancellation is already present
at the L? (T) level, for the sake of clarity, we start with the global estimate for this low
energy norm. Thus, our first goal is to prove that, if |[f (¢)|| ys/2(y) is small enough,
then

2

2
ds < ||f0HL2(T) :

t
0 L2(T)

(3.7 15 Ol + [ 4221 65)

Let us multiply (1.3) for f and integrate by parts. Then, we deduce

15



1d 2
s a1 Ols + |27 @), = /Tf ((A)? = (@177 da,
(38) - / f H—-1)0,f (H+1)0,f da,
T
:N(f7 f7f)7
where
(3.9) N (g1, 92.95) = /T o (H— 1), (H+1)0,g5 dr.

In order to conclude the inequality (3.7), we have to prove that the following inequality
holds true:

(3.10) N (g, 1y )] < C gl gare 13002

Indeed, if we denote as (§n),,cz » (]Aln)nEZ the Fourier transform of g and h, respectively,
and use the Plancherel theorem, we can rewrite N (g, h, h) as

N(g:hh)= > Gu(—isgnm — 1) (im) by, (—isgnk + 1) (ik) hy,

(n,k,m) €73
k+m=n

= > Gumk hyhy (14 sgum sguk) .

(n,k,m)€Z3
k4+m=n

We observe that, if the addends are nonzero, k and n must verify
0<k<n or n<k<O0.
In other words,
k[ < |n.

Furthermore, using the previous cancellation to find a symmetry in the series, we find
that

(3.11) N(g.hh)=4 Y (n—k)kRe (gjﬁn_k/ak) .

(n,k)ez?
0<k<n

Thus,
N (g, b ) <4 Y =kl [k] |gal

(n,k)ez?
0<k<n

ﬁnfk‘ ’hk

)

but since 0 < k£ < n we deduce that
(n—k)k <n?(n—k)"Y* K4,
from where, using the £2 — 2 Cauchy—Schwarz inequality, we can obtain the following:

(3.12) N (g, h,h)|

1/2 (
<4 (Zn3 |gn2> > ‘Zm— B/ ]| R [
n n k

o\ 1/2

16



Let us define the following distribution:

),) 0= 5%

neN

hn hn| €.

H (@) =7 ((

Using the auxiliary distribution H we can rewrite (3.12) as

(3.13) N (g, hy R)] < 419l s /2

AVA A1/4H‘

2’

Using the Holder inequality and Sobolev embeddings we deduce that

AYVAH AVAH)| O < |HR
Lz

2
Wi <C HH||H1/2 )

but

~ |2 2
hn = ||hHH1/2a

, :
|H s = > Inl |1
n

2
=>_Inl
whence we deduce from (3.13) that

N (g, hy h)] < Cllgllgrse 1Rl 312 -

As a consequence, we find that (3.8) now reads

1d 2
(3.14) 5T < C N\ fllggore 1£ 172

17 Olacey + 472 0, <

from where we find the desired inequality (3.7).
We need now to find the appropriate bound for the higher order energy given by
the H3/2 norm.

Remark 3.2. Tt is known that the L? energy is a Lyapunov functional for the
one-phase Muskat problem (cf. [2, 5]), but for the truncated equation (1.3) such
conservation is no longer valid. Let us in fact consider the analytic function

6(@) = <= St

neZ

we use the formulation (3.11) in order to argue that

/T¢ ((A¢)2 - ((%gb)Q) dr =4 Z (n—k)k e 2"

(n,k)ez?
0<kn

B op [P (n+1) n(n+1)(2n+1)
=12 ¢ [ 2 6

n=0

— 23 nen <n2 _ ;) € (0,00),

n=0

i.e., (1.3) does not conserve the L? energy even for analytic functions.

17



Step 1.2: Dyadic estimates. Let us apply the truncation operator A, to (1.3).

We then multiply the resulting equation for A, f and integrate in space to obtain
1d 2
(3.15) 537 18af 15 + || 2en2s| = 4,- B,

with
A, = / Ay (F AF) DA fda,

B, :/Aq(f Oz f) DO f da.

Using now Bony decomposition (A.2), we can split the previous terms as follows:
Aq :Tlf}q_'_qu"i'Ti{}q"’_R?’
By =T + Ty, + T, + RY,

where
T, = /Sq_lf (DA f)? dz,
TP = /Sq_lf (DB, f)? du,

T3, = > | (L Sy-1f]1 Dy Af DgAf da,

lg—q’'|<4

qu = Z [A(p Sq’—lf] Aq’aacf Aqach dz,

lg—q'|<4

T?fq = Z /(SQ’—l = Sg) [ DgDg Af AgAf dz,

lg—q'|<4

TS, = Y (Sy—1—8g) f DgAgOuf Ngsf du,

lg—q'|<4

R} = Y /Aq (Ag—1f Syralf) NgAfda,

q'>q—4
RP = Z /Aq (Dgr—1f Sq420:f) DgOy fda.
q’'>q—4

We have to estimate these eight terms. The terms T7* and TP are the more
singular. We will make use of the commutation properties (3.10) to estimate these
terms. First of all we remark that

T~ T8, = N (Sqif, Do f. Dof) s

where the trilinear operator A is defined in (3.9). We can hence use inequality (3.10)
and (A.3) in order to deduce

2
}qu B qu| <C ||f||H3/2 12

Aqu/zf‘

(3.16)

2
< Ob27 | s A2

for any s € R.

18



Next we handle the remainder terms Rj;‘, Rf . Indeed, we have that

= Y [ 2@yt Spuahp) Aafds

(3.17) =i
< ) 18q 1 fIl 2o, 1Sq+2Afll Lo | BgAfl 2 -
q’'>q—4

Since Hz (T) «— L (T) for any p € [2,00) we can say that
(3.18) 1S +2Af Nl o S VP IS gsr2 -

Moreover due to the localization in the Fourier space and the fact that ¢’ > ¢ — 4 we
deduce

180-1fl 22, 18AF |2 S 18g-1 1| 20, 2q/2|]A
S22 DSl 2,
<[ a2, o, HA

We use (A.3), (3.18), and a summation in ¢’ in order to transform (3.17) into

(3.19) Ry < 0272 /p I f oo

R L

=

Using the Sobolev inequality (1.4), we can also obtain the following estimate for
the term Rj?:

B = 3 ISpsatfl | Apant2s| |
(3.20) 7>q-4 .
<0272 <l

wor],

for any 0 < 0 < 1.
A very similar procedure allows us to deduce the following bound:

(3.21) RY S 0272 /b |1 fll gare

Sl P L P
HS W —

s 1
(3.22) REP < b2 AT

We turn now our attention to the element T5'. Using Lemma A.1 we obtain

|T2/}q| < Z ||[Aq»5q’—1f] Aq’Af”m HAqu”Lz

lg—q’|<4

< > 27 DAl IAFIl 18 AFIl 22,
(3.23) lg—q’|<4

D DI LT VI VIS

lg—q’|<4

S 027D | fll oo

T P L
Hs w

As a consequence, we can conclude the following bound:
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H3+

Cogs 1 2
(3.24) T3] S 022725 15y 4721

Similarly, we can deduce the bounds

(3.25) ITEN S 02272 /o Fllgsra | A2 |22z
1 2
B —2 1/2
(3.26) ITE] S 022725 16150 |42
The estimates
2
(3.27) AR AR VA e

can be easily obtained since the terms composing the elements Tg‘}q, qu are all
localized in dyadic annuli, and hence these terms are more regular than the ones
estimated above. We note that

A1/2fH

3i 18l + [ 2an 2], < b2 2q&[||f||m/z

VP f s

S PR ]

2p 5
p—2

where we have used (3.16), (3.19), (3.21), (3.23), (3.25), and (3.27). Now, multiplying
the above equation for 229° and summing in ¢ € Z, we obtain

2
e | 22721

1 d 2 1/2 2
. - + <
(3.28) 5 1l HA fHH C

+ VBl llgsra |42 HAl/QfHWs,;fgl.
Using (3.16), (3.20), (3.22), (3.24), (3.26), and (3.27) instead we deduce
329 M+ [N < {1n + 50715 | |21

Step 1.3: H3/? estimates. We can now simply consider the estimate (3.28) in
which we set s = 3/2 and

1
D =D = g
in order to deduce
S+ 72 < C<|f||Hm NG
b e 21 A2
ﬁ H3/2 H3/2 Wz p -

3 i3 20
Next we remark that H27¢ < W?2'»-2, whence
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(3.30) AL/2 f‘

N+ 21| <€ Wl

2 dt H3/2

A1/2fH

H3/2

1 1/2
+ 22 I e AY fHHgH).

Step 1.4: H2%< estimates. We invoke the estimate (3.29) with s = 3 +eand
0<ike:

1 2
I g+ a2 < <||f|H3/2 + 3 ||f|Hg+s) (£ e

Using interpolation between Sobolev spaces we deduce

1—38

171305 < I 11

from where we obtain that
(3 31)
1-98
s e+ 220 s <0 (Ul + 5 15 0. ) |2

Step 1.5: Closing the estimates. In this section we conclude the high order
energy estimates. We sum up (3.30) and (3.31) to find that

330 g (e + 1A 5) + (a2, + 0250

<01+ —2) Il
F O (14 52) Wl + 3 ITIRE A o, ) 2027
\[ H3/2 H3/2 H%*E.

A1/2fH

H3/2

We define

||f0H S4e
H?2

B=pB(fo) = 7”]00”;1% >1

We want now to absorb the contribution of

appearing in the right-hand side of (3.32) in the parabolic term in the left-hand side
of the same estimate. In order to do so we must split the proof according to the

explicit value of 3.
Case 1: B < 2. In this setting we fix § = £/2; hence £°/¢ /6 < 23/2/e. Thus

1,,

172 4|
A fHH%+E

1-8

1 5/ 23/2
(33 ST 190 5 = 5160 8% < 2171

So, if the initial data is small enough in H®/2 then (3.33) is as small as needed in
order to absorb the desired term.
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Case 2: B > 2. In this setting we can define
6 =10(fo) =clogg2 <e.
The value of ¢ has been defined so that
BoE =2.

We compute

2
elogg 2

1 1-38 s 1
5 Wfoll s 1Foll - . = 5 1 foll pe =

1ol 3 -

We want to make sure that
2C

S 1/2.
Sog; Mollys <1/

Thus, simplifying the previous expression, we obtain that our goal is to prove that
the following inequality holds:

||f0||Hg+a elog2
||f0HHg log <||f0||Hg = ||f0HHg (10g||f0||H%+s —10g||f0||H%) < 10

We will now use the algebraic inequality —zlogx < v/z, x € [0, 1] to obtain

||f0||H%+s

1ol 3 108 | =22 ) = Ifoll 43 (10g 1ol 34 — og 1 foll ;3 )
1ol .3

1/2 1/2
< 15ll/3 (155, 1og 1ol 50 +1)-

3.,
H?2
It is now clear that, under the assumptions of the statement, we have that
elog?2
4C

In other words, we can now collect the estimates (3.33) and (3.34) to obtain that if
the initial data satisfies the condition

1/2 1/2
(3.34) 1oll/5 (15oll5. 108 I folly30e +1) <

H%+E

e2log? 2

2
16C2 (| foll - 108 | foll 32 +1)

)

Ifoll, 3 <min{1,

then

2 1 2
S
H2te 2 H

Ligni=2 g
H AT

3, -
gte

Thus, due to the previous energy estimates, we can absorb the contribution from the
nonlinear terms and conclude that

(8:35)  If (Ol7are + 1 OIS 3 + / t (HA1/2f (s)]

2 2
< ollZe + 1ol 5.

2

+ HAl/zf(s)HQ >ds

H3+e

H3/2

The above equation implies, hence, that smooth solutions stemming from small H3/2
oy . . 3 3
initial data are nonlinearly stable in H> N H27¢,
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Step 1.6: Estimates for the time derivative. The purpose of this section
is to find estimates for the time derivative of the solution. In particular, we want to
obtain the following;:

330) [ 10uf ()l ds

1
<o{(wm2WK+MMZ%J[1+Qﬂm;ﬂ+|hﬁﬁﬂ)<1+v€ﬂ

1 olrs + ol . }
We multiply (1.3) by 0;A?f and integrate in T x (0,7 to obtain

(3.37) 10 2o+ (1 O3 = 15oll% ) = T + Fo,
where
T
11=/ /A(fAf)atAQf dzds
0 T
and

T
I, = /0 /T Op (fOLf) O, A% f dads.

Using the identity A> = —9? and integrating by parts we can deduce the following
equalities:

T T
I = / / 0y fAS 0,00, f dzds + / / FAOLf 0,AD, f dzds
o Jr o Jr
=5+,

T T
Iy=- / / (02 f)* 03 f dwds — / / 031007 f dwds
0 T 0 T
= 1271 + 1272-

We hence obtain that
1 /T ) 5 2
Lo+ Do =3 10, [(AD )7 = (825)"] dds
o JT

= SN (0.0,0.0)
=Ji + Jo.

T 1 T
o5 Nesare.as

The term J; can be estimated using (3.10), and we deduce

(3.38) Ty S @ sz + 1l follgrsz -

The term Jo can be estimated in a similar way. In particular, we obtain for any
e>0
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w0

T
bi/l@ﬁm
0

1/2
AL 00

T
(3.39) < / 1001 1 a2

2

Al/zf‘

C
2 2
< €l|lOfllLz g + ¢ Hf||L%°H3/2 L2.H3/?

We have to estimate the term I 1 + I3 ;. We find that
T
I, = / /8IfAf 0¢AO, f dxds
o Jr
T
N/ /AZfAf oA f dxds
o JT

(3.40) SR, ey I8 o 10l g 20
T

pe—2

Al/zf’

potee Wl 190 m

<zl
G
<010+ [41721]

2 2
L2H3te ||f||Lq°~°H3/2 ’
T

where 7 > 0 is arbitrary. The term I5; is completely analogous to I;; and can be
handled in a similar way, and we obtain the estimate

2

2 c 2
Boa <o ligm + 2= [A2S (T

3
2 75 te
L7 H?2

Using the estimates (3.38), (3.39), (3.40) in (3.37) we obtain that

(1= 20) 90 f12 i < C [ 1oll2,5 = 1 DI 5 + 1F (D gasz + 1 foliare

2 2
o iee ) s |-
T

We fix n = 1/4 and use (3.35) in order to deduce the bound

2
10011122 1

2
1
< c{ (Wl + 1Al 5.0) [+ (WAl + 1% ..) (12

2 1

1
2 (Iarr2 ‘ L HA1/2 ’
* N (H / L2, H3/? + NG !

3 3
ol + 1ol . }

Step 2: Approximated solutions and passing to the limit. The a priori
estimates provided before the proof of Theorem 2.4 become a standard approximation
argument which we outline here. Let us define the truncation operator

BN T == 3 e = F (L (1)),

|k|<n
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We apply this truncation operator to the initial data fy. Then, this truncated initial
data is analytic, and, invoking Theorem 2.1, we obtain the existence of smooth (in time
and space) local solution approximate solutions. We can use the previous estimates
(3.35) to deduce that the local approximate solutions are actually globally defined as
H3/2%¢ functions. The sequence of approximate solutions (fn),, is bounded uniformly
in n and T in the spaces

L ([0, T):;H3 N H£+) N L2 ([0,T); H2 N H2F)
so there exists a weak limit
ferL® ([O,T); H’+> NL2(0,T; H).

Furthermore, estimate (3.36) ensures that the sequence of approximate solutions (fy,),,
is uniformly bounded in
H* ([0.T); H'),

from where, using interpolation, we deduce that
(fn),, is uniformly bounded in H'~? ([O,T) ;HHMEH)) , ¥ e0,1].

Setting

1 1
3.42 Ve |l——, = |,
(342) {2 (e+1) 7 2 )
we deduce that

(fn),, is uniformly bounded in Oz e ([0, T) ;H1+19(5+1)) .

We obtain that (f,),, is equicontinuous-in-time. We can hence apply Ascoli-Arzela
theorem in order to deduce that there exists an f € C%z~? ([07 T) ;Hl*‘ﬂ(a"’l)) such

that, taking a subsequence if necessary, f, — f in €027 ([0,T); H+9(+D) as long
as v satisfies (3.42). It is a classical argument to prove that f solves (1.3) and that it
is unique.

4. Gravity-capillarity driven system (1.1).
4.1. Proof of Theorem 2.5.

Step 1: A priori estimates. We only prove the a priori estimates, since the
approximation procedure is standard and it can be done using a Galerkin scheme. We
have that

d
3 I OlLis + 2 1FOllas + 1 @) a2 < (07 ([H SIEA f +AD) | 4o
As before,
102 (TH, FIAF) | o < 21 F 1 ar 1£]l 42 -

In Fourier variables, we have that

02 ([H, JTA®f) = D, A(FA3f) — 02(fO2 )
= F(k —m)f (m)p(k, m)
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with

—m)3
plk,m) = ik ([kllk —m|” — k(k —m)?) = ik|k||k = m|’ (1 ) m> '

Again p # 0 if and only if 0 < |k| < |m|. We find that
[p(k, m)| < 2[k||k||k —m[* < 2{m[*|k —m|*.
Thus, using the interpolation inequality (valid for 0 < r < 3)

1—r/3 3
ar < el

| ul
we find that

102 (%, FIA )| go < 20 If o 1£1] g -

As a consequence, we find the inequality

d
T W Olas + v 1F@Olas + 1 Ollae < 2N ar [ 1az +20 1 Las 1] 40

and we conclude the result.

Step 2: Decay. We have that

d
3 I Olao + v [1F@)las + 1 B)l]4r <2 11 420 £ lLas 1o

thus,
% 1F @Ol a0 + @Ol as + 1O 42) (1 =2 f[] 1) <O.
From here we conclude using a Poincaré-type inequality.
4.2. Proof of Theorem 2.7.
Step 1: A priori estimates.

Step 1.1: L? estimates. For the sake of clarity, we first perform L? energy
estimates for (1.1), and we study the particular commutation properties of the non-
linearity of (1.1). We multiply (1.1) by f and integrate in T to deduce the following:

1d

2dt
where N is defined in (3.9) and M is defined as

2 2
1F @I +v|a2r 0|+ |8 2r @, =N s+ Mg,

(4.1) M (g1,92,93) = V/ 91 (Aga Ags + 02gs O,93) da.
T
Our goal now is to prove that
1/2 3/2
(4.2) M (g, By )] < C llgll gz my 1 a7 oy WIS 1ar oy -

Indeed, using Plancherel’s theorem, we can write

(4.3) Mg, b h) =1 G by (n— k) k (sgn (n — k) sgnk +1).

n,k
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As was done in the proof of (3.10) we observe that the nonzero contributions arise in
the set

O0<k<n or n<k<O.

Thus, taking advantage of this symmetry,

Mg.hh) =40 3 (= k)" k Re (G hu-ihi)

0<k<n

which entails the inequality

M (g, hh) <4 > (n=k)k |gn] |B

0<k<n

n— thk‘

Since the summation set is localized in the Fourier modes 0 < & < n we can deduce
the inequality

(n—k)>k<n?® (n—k)k;

thus, we can estimate as follows:

M (g.h, )| < C gl 1Rl

<C
2

< Cllgll g 1Al s/

< Cllgll gz 17l g2 Al g2

e

1/2 3/2
gl 121122 11BN

H1l/2 H3/2

Equipped with (4.2), we can, hence, conclude the proof of the L? estimates. In fact
using Young’s inequality we deduce that

4/3
NS a2 -

M S N < e

Using (3.10) and the continuous embedding of H? into H3/? we obtain that

Clfllgor 1172
CllA Nz 1/ 172

N (£, £, DI <
<
From here, taking o = 1/4 and if

1 1
If Ol < = min{l,v’z} Yitelo,T],

Q

we deduce that

N L DL+ IMS £ DS S 1 s+ 5 11

2 2
) ds <ol

leads us to

ay e [ (e [arse)

27



Step 1.2: H? estimates. We want now to prove global H? estimates for (1.1)
stemming from small initial data. We apply the dyadic truncation A, to the left of
(1.1); we multiply the resulting equation for A, f and integrate in  obtaining

(4.5) Qd“MMﬂu2+leA”%ﬂ +ﬂsz“A\ = A, — By +Cy + D,
where
A= [ 2,0 4D B fa
B, = / Dy (F 00f) Dy f da,
C, = V/Aq (f A3f) AgAfda,

D, = /Aq (f 02F) DO f da.

We can use the estimates performed before (see in particular the right-hand side of
(3.29)) in order to deduce

2
(4.6) [Ag = Byl < CO274 | [l [A121] .

We can hence now focus on the purely nonlinear part which is characteristic of (1.1)
when v > 0, ie., —v(Cq+ Dy). We can use Bony decomposition A.2 in order to
decompose C,; and D, as

Cq=TC, +T5, +T5, + RS,
Dy :Tll,)q+T2j?q+T??q+Rr?’
where

TlC:q :/SQ—lf Aquf NgAf da,

le?q :/Sq—lf Aqazf N0y f dr,

5, = > Ay, Sy 1 f] Dy A2 f N AF da,

lg—q'|<4

T = > /Aq,S A f] Dy O3 f NGO, f du,
lg—q'|<4

T, = > [ (Syo1—8) f DgAg A f AgAf da,
lg—q'|<4

o= > / ) f DgDg 2 f N0, f da,
lg—q’'|<4

ch - Z /A Dg1f Sy+alh’f) AgAfda,

q'>q—4

RY = / Dy (Dgoif Syi203f) N0, fda.

q'>q—4
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We remark now that
—v (TC,+TP) = M(Sqorf, D f-Lf) -
We can apply the estimate (4.2) and (A.3) in order to deduce the bound

1/2 3/2

M (S-S, Baf Daf)| < Co s | 521 a2
1/2 3/2
< Oz Wl 821, 421,

Next we focus on the remainder terms. Using the Hélder inequality, Sobolev
embeddings, (A.3), and interpolation of Sobolev spaces it is possible to deduce the
following estimate:

RS <C 3 ||Sqsah® £l o 101 fll 1o 1A F ] o

q'>q—4
<C S [SuaaA2F| o 1201 A 1AGASI s
q’'>q—4
2 ,
< Ceg27 | fll e (A1) N 92(a=7) ¢,
q’'>q—4
2
< Ob27 4 g | A1)
1/2 3/2
—4 1/2 3/2
< O e |20 2|

In the above estimates we have that
bq =Cq ((1p<422q/) *q/ Cq/) s
q

which is £? as long as (c,), € ¢'. Similar computations holds for the term R, from
where we deduce that
B 1/2 3/2
[RP| < Cbo27 | fll = ||A1/24] L

A3/2f‘

Next we study the term qu. Using Lemma A.1 we obtain
T, < D0 2 ALl (|20 A% F o 126A S -
la—q’|<4

Now, since HAQ’ASfHH < 2% HAQ’AS/QfHB and as a consequence of 2¢ ~ 24 for
lg — ¢'| < 4 we find that
75 <C 32 Ml
lg—q’|<4

2
< Cb27 | fll e [ 4721 -

AqIA3/2fHL2 HAqAP)/Zf’ L2

We can apply the very same computations to qu, which give

2
T, < b2 |1 s | 4272
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The terms qu, qu enjoy analog bounds and are the overall more regular terms,
being composed by elements localized in dyadic annuli; thus

—4 2 ||V | a3z 122 372 ¢||?
(4.7) v |Gy + Dy| < Cwb,27" [||f|H2 (i e (N e 94 0 fHHz] :
Collecting (4.6) and (4.7) in (4.5), multiplying the resulting inequality for 249,
summing up in g € Z, and applying Young’s convexity inequality we conclude the
following inequality:
1d
2dt

1

190 + v o2+ 2], < (4

+ Ol ) a1l

2
H?

+0 (vl + 4 101G 22721

From the previous inequality, if the initial data satisfies

I

3

1 _
(4.8) Vfollzzry < 5 min {1, v

we obtain the desired global bound

2 2

@9 I Olfm + [ t sz o)

+ HAl/Qf (s)” } ds < ||f0|\§{2(1r) :

H2(T) H2(T)

Step 2: Approximated solutions and passing to the limit. The proof is
again a standard approximation argument. Using the projection operator defined in
(3.41), we consider the approximated problems

Ofn + VAP fr + Afy
(420) ¢ = =T [V |A (fu AF) = Ou (Fu 020) | + [A(a M)+ 00 (£ 01|
fn|t:0 = Info-

We can now define the space

ﬁn:{uED’

u € H?, suppi C B, (0) }

Using the Cauchy—Lipschitz theorem and the estimate (4.9) we deduce that if fj sat-
isfies the smallness hypothesis (4.8), then f, € C*(Ry;H,) N L2(Ry; H?). Moreover
(O fn),, is uniformly bounded in L? (R_,_; HN ) for N sufficiently large, and invoking
the Aubin-Lions lemma we deduce that

(fn),, is compact in L? ([O,T} ;H%_e) Ve, T >0.
Passing to a subsequence if necessary we obtain the convergence
fu— fin 22 (10,T); HE ),
and the limit element f satisfies the energy inequality (4.9), so

feC (R H?) NI (R+;H%).
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Appendix A. Elements of Littlewood—Paley theory.

A tool that is widely used all along the paper is the theory of Littlewood—Paley,
which consists in doing a dyadic cutoff of the frequencies. Let us define the (homoge-
neous) truncation operators as follows:

DNgqu = Z Up (;J) el for g € Z,
nez3

where u € D’ (T?) and 4, are the Fourier coefficients of u. The function ¢ is a smooth
function with compact support such that

su cC §§
pp ¥ 13

d e =1

qEZ

and such that for all t € R,

Let us define further the low frequencies cutoff operator
Squ = Z Agu.
q'<q—1

The dyadic decomposition turns out to be very useful also when it comes to study
the product between two distributions. We can in fact, at least formally, write for
two distributions v and v

(A1) u:ZAqu, vzz Dgv, u«v:Z Dgu - Agrv.

qEL q'EZ qEZ
q €z

Paradifferential calculus is a mathematical tool for splitting the above sum in
three parts:
u-v="Tuw+Tyu+ R(u,v),

where

Tuwv = Z Sq—1u Agv, Tyu = ZS —1v DNgru, R (u,v) = Z Z VAVRTIVAN SR TS
p ;

q k v|<1
The following almost orthogonality properties hold:
Dg (Sqalgb) =0 if |[¢—4q'| =5,
DNy (Dgralg1,b) =0 ifg <qg—4, v <1,
and hence we will often use the following relation:

Dg(u-v) = Z Dg (Sq—1v Dgru) + Z Dg (Sq—1u Dgrv)

lg—q’|<4 lg—q’|<4

+ > ) Ag(Agalyib)

q¢'2q—4|v|<1

= Z Dg (Sq—1v Dgru) + Z Dg (Sqs2uligv).

lg—q’|<4 q'>q—4
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In the paper [12] J.-Y. Chemin and N. Lerner introduced the following decompo-
sition which will be very useful in our context:

(A.2) Ng (uwv) = Sg_1u Ago
+ Z {[Ag, Syr—1ul Agrv + (Sy—1u — Squ) AgAgrv}
la—q'|<4
+ Z Dg (Sqry2v Dgru)
q'>q—4

where the commutator [A,, a] b is defined as
[Ag,alb= Dy (ab) —al\gd.

There is an interesting relation of regularity between dyadic blocks and full function
in the Sobolev spaces, i.e.,

(A.3) ||Aqf||Lp(qr) < Ccz(lp)Qiqs ||fHWs,p(T)

with ||{cép)}qez\|gp(z) = 1; if p = 2 we denote {c((f)}q = {cq}, for simplicity. In the
same way we denote as by a sequence in £*(Z) such that >°_[b,| < 1.

Finally we state a lemma that shows that the commutator with the dyadic block
in the vertical frequencies is a regularizing operator. The proof of this lemma can be
found in [6, Lemma 2.97, page 110] for the whole space R?; the proof for the periodic
space T¢ is analogous.

LEMMA A.1. Let T¢ be a d-dimensional torus and p,r,s real positive numbers
such that p,r,s € [1,00] and % = % + % There exists a constant C such that for all

vector fields u and v on T% we have the inequality

I[Ag ulvll L, < C27[Vull o]l s -
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