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1 INTRODUCTION

SUMMARY

A rockfall (RF) is a ubiquitous geohazard that is difficult to monitor or predict and poses a
significant risk for people and transportation in several hilly and mountainous environments.
The seismic signal generated by RF carries abundant physical and mechanical information.
Thus, signals can be used by researchers to reconstruct the event location, onset time, vol-
ume and trajectory, and develop an efficient early warning system. Therefore, the precise
automatic detection and classification of RF events are important objectives for scientists,
especially in seismic monitoring arrays. An algorithm called DESTRO (DEtection and STor-
age of ROckfalls) aimed at combining seismic event automatic detection and classification
was implemented ad hoc within the MATLAB environment. In event detection, the STA/LTA
(short-time-average through long-time-average) method combined with other parameters, such
as the minimum duration of an RF and the minimum interval time between two continuous
seismic events is used. Furthermore, nine significant features based on the frequency, ampli-
tude, seismic waveform, duration and multiple station attributes are newly proposed to classify
seismic events in a RF environment. In particular, a three-step classification method is pro-
posed for the discrimination of five different source types: RFs, earthquakes (EQs), tremors,
multispike events (MSs) and subordinate MS events. Each component (vertical, east-west
and north—south) at each station within the monitoring network is analysed, and a three-step
classification is performed. At a given time, the event series detected from each component
are integrated and reclassified component by component and station by station into a final
event-type series as an output result. By this algorithm, a case study of the seven-month-long
seismic monitoring of a former quarry in Central Italy was investigated by means of four
triaxial velocimeters with continuous acquisition at a sampling rate of 200 Hz. During this
monitoring period, a human-induced RF simulation was performed, releasing 95 blocks (in
which 90 blocks validated) of different sizes from the benches of the quarry. Consequently,
64.9 per cent of EQs within 100 km were confirmed in a one-month monitoring period, 88
blocks in the RF simulation were classified correctly as RF events and 2 blocks were classified
as MSs given their small energy. Finally, an ad hoc section of the algorithm was designed
specifically for RF classification combined with EQ recognition. The algorithm could be ap-
plied in slope seismic monitoring to monitor the dynamic states of rock masses, as well as in
slope instability forecasting and risk evaluation in EQ-prone areas.
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1990 and 2015 landslides account for 4.9 per cent of all-natural dis-
aster events and 1.3 per cent of all nature hazard fatalities. In total

Rockfalls (RFs), or rock falls according to Hungr et al. (2014), are
unstable processes consisting of the intermittent and rapid mobi-
lization of various sizes, types and volumes of rock. These events
are difficult to observe directly and pose significant risk for human
habitation, security and transportation. Related to other natural dis-
asters, the International Disaster Database suggests that between
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55997 people were killed in 4862 distinct landslide events from
2004 January to 2016 December (Froude & Petley 2018). There are
many established approaches for detecting RF activity, and recently,
characterization and monitoring have been carried out by passive
seismic techniques (La Rocca et al. 2004; Lin et al. 2010; Feng
2011; Hibert et al. 2011; Yamada et al. 2012; Hibert et al. 2014;
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Dammeier et al. 2016; Van Herwijnen et al. 2016; Coviello et al.
2019; Guinau et al. 2019; Li et al. 2019; Matsuoka 2019; Pazzi
et al. 2019; Zhang & He 2019). The seismic signals generated by
geomorphic processes (i.e. tectonic, climatic and anthropogenic ac-
tivities) propagate from sources through the earth (Burtin et al.
2014; Fan et al. 2019) carrying abundant information about the
event and allowing researchers to reconstruct the event location,
onset time, volume, trajectory and so on (e.g. Manconi et al. 2016;
Gracchi et al. 2017; Hibert et al. 2017; Arosio et al. 2018). There-
fore, precise automatic event detection and classification are neces-
sary in correlation analyses involving seismic events and environ-
mental features (Helmstetter & Garambois 2010; Kortstrom et al.
2016).

There are two basic algorithms generally used in seismic event
detection. (1) The most popular and widely used method, which was
proposed by Allen (1978) and Trnkoczy (1998), is the short-time-
average through long-time-average trigger (STA/LTA) algorithm. It
continuously calibrates the average absolute amplitude of a seismic
signal in two consecutive moving windows. This algorithm is ap-
plied in Kinemetric K2 firmware and Geopsy software (Trnkoczy
1998; Picotti et al. 2017). (2) The second algorithm is the cross-
correlation, which is widely used in similarity analyses of data sets
for two signals, images, sounds, etc. to recognize specific patterns.
This method calculates the covariance between two traces to detect
seismic events (it is a measurement of similarity as a function of the
lag of one relative to the other). The final value of cross-correlation
falls between —1 and +1. In real-world data, values = = 1 can
never be achieved, and the absolute value will fall somewhere be-
tween these values, with a high value indicating a high degree of
signal similarity and a low value indicating little similarity (Bendat
& Piersol 2000; Yang et al. 2009; Akhouayri et al. 2014). Yang et al.
(2009) proposed a waveform template matching method based on
cross-correlation that is useful for the detection of the events that
could provide a universal waveform template, such as for earth-
quakes (EQs) with clear and regular seismic waveforms. In the lit-
erature, there are also many other algorithms employed in seismic
event detection, but most of them are modified from the aforemen-
tioned two basic algorithms. For example, there are algorithms that
use denoising filters (Panagiotakis et al. 2008; Kuperkoch et al.
2010; Rodriguez 2011; Gibbons et al. 2012; Akram & Eaton 2016),
such as wavelet transforms (Hafez et al. 2009, 2010; Rodriguez
2011), that can remove useless noise from the original signal to
obtain a stationary and clean signal for subsequent research. No-
tably, (i) an RF is characterized by multi-impact/rebound character-
istics, irregular spike waveforms and a geomorphology-dependent
duration; therefore, it is difficult to find a universal template wave-
form for cross-correlation, as proposed by Yang et al. (2009), but
it is better to detect all events first and then classify them into
different event types with seismic features; and (ii) denoising fil-
ters applied before data processing avoid the removal of important
information.

Concerning seismic event classification, there are now many new
approaches (hidden Markov models: HMM, neural networks, sup-
port vector machines, random trees, fuzzy logic, clustering, etc.)
that have been tested and work well for seismic data with multi-
ple purposes. For example, HMMs were initially introduced and
studied in the late 1960s and early 1970s for speech recognition
(Rabiner 1989). HMM recognition is based on the spectral prop-
erties of signals and the transformation of raw data into a para-
metric representation. Benitez et al. (2007) applied an HMM in
seismic event classification for a volcano. For the HMM architec-
ture, they designed in total 39 features relative to the energies in
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given frequency bands of the seismic signal, and they also per-
formed training with a standard database for each event category.
Heck et al. (2018) applied an HMM for snow avalanche precur-
sor detection and classification, defined six features (central fre-
quency, dominate frequency, instantaneous bandwidth, instanta-
neous frequency, cepstral coefficients and half-octave bands), and
then trained one model for detection. HMMs are efficient tools for
seismic event classification in real time with high accuracy, but they
largely depend on the quality of the training model and the features
defined, especially when only one component is applied. The HMM
accuracy could be improved with the use of more seismic features,
such as the ratio of the frequency or amplitude at two different seis-
mic stations and the energy variations between different frequency
bands, as proposed in this study. A neural network defines many
key seismic features to create and train a model using a standard
database to obtain a weight for each feature or an empirical func-
tion to describe these features (Romeo 1994; Scarpetta et al. 2005;
Curilem et al. 2009; Akhouayri et al. 2015; Provost et al. 2017).
Provost et al. (2017) proposed a random tree defined by 71 features
that included the seismic signal waveform, spectrum, spectrogram,
network geometry and polarity. Vallejios & McKinnon (2013) de-
fined 29 features for event classification, such as the seismic energy,
frequency, magnitude and some mechanical parameters estimated
in the event motion process. For success detection and classifica-
tion, the most important step is to build a good training database
and define suitable seismic features, including not only the charac-
teristics of the signal but also taking into account all the seismic
stations parts of a monitoring network.

In this study, an ad hoc algorithm/procedure, DESTRO (DEtec-
tion and STorage of ROckfalls), for RF detection and classification,
that makes full use of a monitoring array with a three-step designed
classifier, was proposed. The whole algorithm can be segmented
in three steps: (1) events detection, (2) seismic features calibration
and (3) input the features into a three-step classifier. The presented
application of DESTRO is based on a small-scale seismic network
that monitored an unstable rock slope in a former limestone cave at
Torgiovannetto (near Assisi, central Italy; Fig. 1) for seven months
(Lotti et al. 2015; Gracchi et al. 2017; Lotti et al. 2018). To cali-
brate the system, 95 rock blocks were manually released from the
benches of the former cave to simulate the occurrence of RFs, of
which 90 were used for validation (Gracchi et al. 2017; Feng et al.
2019, 2020). The occurrence of EQs was cross-checked with the
Italian National Institute of Geophysics and Volcanology (INGV)
EQ database (http://cnt.rm.ingv.it/). For brevity, we do not present
the seismic monitoring layout or the RF in situ test, but we invite
the reader to refer to the literature, where more information can be
found (Lotti et al. 2015; Gracchi et al. 2017; Lotti et al. 2018; Feng
et al. 2019).

2 EVENT DETECTION

In this study, two methods, the STA/LTA and cross-correlation al-
gorithms (specifically the maximum normalized cross-correlation
method: MNCC), are compared to evaluate the most suitable al-
ternative for DESTRO. It is important to note that in this work,
and thus in DESTRO, to enhance amplitude changes, STA/LTA
takes into account the average values of squared amplitudes, as
suggested by Allen (1982), instead of the average values of the
absolute amplitudes, as proposed by Trnkoczy (1998). MNCC
consists of scanning the signal step by step in the time domain
with two continuous sliding windows of the same length T and
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Figure 1. The LiDAR scanning digital elevation model of Torgiovannetto cave with the locations of the seismic stations (the blue triangles, named TOR 1,
TOR 2, TOR 3 and TOR 4) and the cameras (yellow dots, named Camera 1, Camera 2, Camera 3 and Camera 4). In the box on bottom right, the red star is

Assisi (central Italy).

sliding pitch ; one sliding window is the master window in MNCC
(Akhouayri et al. 2014). The degree of similarity between the two
windows is continually examined by computing the MNCC value.
If the two windows contain only background noise, the MNCC
value does not vary significantly as t varies in the sense of MNCC
=  (threshold). Otherwise, the arrival of the P wave implies a
notable downward variation in MNCC, which tends to be zero,
and hence, MNCC < (threshold). The value of MNCC lies be-
tween 0 and 1, and a high value indicates a high degree of signal
similarity.

To compare the detection methods, a short signal trace (270 s
long), that contains two strong events and three weak events (marked
with green ellipses in Figs 2 and 3), is analysed with both the
STA/LTA and MNCC methods. This trace is extracted from the
seven-month monitoring data set and chosen for this test due to its
clarity. As clearly visible from the Torgiovannetto seismic traces,
RFs bounce on the benches and every rebound is recorded by the
seismic network as an impact (Gracchi et al. 2017; Feng et al.
2019).

With respect to the observation of the manually released RFs, the
shortest length of one impact (the time at which the block impacts
the slope surface) is 0.4 s, and 99.2 per cent (a value which cov-
ers most RF lengths and considers the lowest error) of the length
of one whole RF event is less than 14 s. Therefore, the lengths
of the short-time window and long-time window in DESTRO are
chosen as 0.4 and 14 s, respectively. Fig. 2 shows the seismic event
detection result and computational parameters for the STA/LTA
method. Fig. 2(a), in particular, is the original signal trace, and
the red lines are the onset times of each event automatically de-
tected by STA/LTA; additionally, the dashed green ellipses are the
manually selected events. Fig. 2(b) shows the two computational
variables: the average energy over a short-time window (STA) and

long-time window (LTA). Fig. 2(c) shows the two STA/LTA thresh-
olds employed. The first threshold (threshold 1), used for event
detection, was fixed at 4, and the second (threshold 2), which was
used for checking the onset times of the events, was set equal to
2. The difference between the two thresholds is used to precisely
select the event onset time. In the automatic STA/LTA event de-
tection example shown in Fig. 2, four events are detected, and one
weak event is missed (highlighted by the second green ellipse in
Fig. 2a), since the two events are too close one to each other. The
interval between them is indeed less than 2800 samples (i.e. 14 s),
that was set as the minimum interval time between two separate
events in DESTRO. However, this does not mean that DESTRO
failed to detect events. In fact, if one component fails, there are
many components defined in DESTRO, which are introduced and
discussed in the next section. In the STA/LTA method, the values of
the thresholds and lengths of the two windows are not permanent,
and the most appropriate value should be modified depending on the
monitoring site conditions and the types of target events (Trnkoczy
1998).

Fig. 3 illustrates the results of the MNCC method for the same
original signal as the one used for STA/LTA. In Fig. 3(b), the black
line is the value of the MNCC calculated with a moving window of
20sand astep of = 0.005 s; the blue dashed line is the MNCC
mean value; and the red dashed lines are the detection thresholds
suggested by Akhouayri et al. (2014), which are equal to the mean
MNCC plus and minus the standard deviation (STD) of the MNCC
mean value (mean *+ STD). The red solid lines in Fig. 3(b) are
the event onset times detected by the MNCC using mean —STD
according to the method suggested by Akhouayri et al. (2014). As
a result, there are eight events detected by the MNCC, but only
two of them (the second and the sixth ones) have been detected
correctly. Notably, some events are missed, and some other are
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