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S U M M A R Y
A rockfall (RF) is a ubiquitous geohazard that is difficult to monitor or predict and poses a
significant risk for people and transportation in several hilly and mountainous environments.
The seismic signal generated by RF carries abundant physical and mechanical information.
Thus, signals can be used by researchers to reconstruct the event location, onset time, vol-
ume and trajectory, and develop an efficient early warning system. Therefore, the precise
automatic detection and classification of RF events are important objectives for scientists,
especially in seismic monitoring arrays. An algorithm called DESTRO (DEtection and STor-
age of ROckfalls) aimed at combining seismic event automatic detection and classification
was implemented ad hoc within the MATLAB environment. In event detection, the STA/LTA
(short-time-average through long-time-average) method combined with other parameters, such
as the minimum duration of an RF and the minimum interval time between two continuous
seismic events is used. Furthermore, nine significant features based on the frequency, ampli-
tude, seismic waveform, duration and multiple station attributes are newly proposed to classify
seismic events in a RF environment. In particular, a three-step classification method is pro-
posed for the discrimination of five different source types: RFs, earthquakes (EQs), tremors,
multispike events (MSs) and subordinate MS events. Each component (vertical, east–west
and north–south) at each station within the monitoring network is analysed, and a three-step
classification is performed. At a given time, the event series detected from each component
are integrated and reclassified component by component and station by station into a final
event-type series as an output result. By this algorithm, a case study of the seven-month-long
seismic monitoring of a former quarry in Central Italy was investigated by means of four
triaxial velocimeters with continuous acquisition at a sampling rate of 200 Hz. During this
monitoring period, a human-induced RF simulation was performed, releasing 95 blocks (in
which 90 blocks validated) of different sizes from the benches of the quarry. Consequently,
64.9 per cent of EQs within 100 km were confirmed in a one-month monitoring period, 88
blocks in the RF simulation were classified correctly as RF events and 2 blocks were classified
as MSs given their small energy. Finally, an ad hoc section of the algorithm was designed
specifically for RF classification combined with EQ recognition. The algorithm could be ap-
plied in slope seismic monitoring to monitor the dynamic states of rock masses, as well as in
slope instability forecasting and risk evaluation in EQ-prone areas.
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1 I N T RO D U C T I O N

Rockfalls (RFs), or rock falls according to Hungr et al. (2014), are
unstable processes consisting of the intermittent and rapid mobi-
lization of various sizes, types and volumes of rock. These events
are difficult to observe directly and pose significant risk for human
habitation, security and transportation. Related to other natural dis-
asters, the International Disaster Database suggests that between

1990 and 2015 landslides account for 4.9 per cent of all-natural dis-
aster events and 1.3 per cent of all nature hazard fatalities. In total
55 997 people were killed in 4862 distinct landslide events from
2004 January to 2016 December (Froude & Petley 2018). There are
many established approaches for detecting RF activity, and recently,
characterization and monitoring have been carried out by passive
seismic techniques (La Rocca et al. 2004; Lin et al. 2010; Feng
2011; Hibert et al. 2011; Yamada et al. 2012; Hibert et al. 2014;
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Dammeier et al. 2016; Van Herwijnen et al. 2016; Coviello et al.
2019; Guinau et al. 2019; Li et al. 2019; Matsuoka 2019; Pazzi
et al. 2019; Zhang & He 2019). The seismic signals generated by
geomorphic processes (i.e. tectonic, climatic and anthropogenic ac-
tivities) propagate from sources through the earth (Burtin et al.
2014; Fan et al. 2019) carrying abundant information about the
event and allowing researchers to reconstruct the event location,
onset time, volume, trajectory and so on (e.g. Manconi et al. 2016;
Gracchi et al. 2017; Hibert et al. 2017; Arosio et al. 2018). There-
fore, precise automatic event detection and classification are neces-
sary in correlation analyses involving seismic events and environ-
mental features (Helmstetter & Garambois 2010; Kortstrom et al.
2016).

There are two basic algorithms generally used in seismic event
detection. (1) The most popular and widely used method, which was
proposed by Allen (1978) and Trnkoczy (1998), is the short-time-
average through long-time-average trigger (STA/LTA) algorithm. It
continuously calibrates the average absolute amplitude of a seismic
signal in two consecutive moving windows. This algorithm is ap-
plied in Kinemetric K2 firmware and Geopsy software (Trnkoczy
1998; Picotti et al. 2017). (2) The second algorithm is the cross-
correlation, which is widely used in similarity analyses of data sets
for two signals, images, sounds, etc. to recognize specific patterns.
This method calculates the covariance between two traces to detect
seismic events (it is a measurement of similarity as a function of the
lag of one relative to the other). The final value of cross-correlation
falls between −1 and +1. In real-world data, values = ± 1 can
never be achieved, and the absolute value will fall somewhere be-
tween these values, with a high value indicating a high degree of
signal similarity and a low value indicating little similarity (Bendat
& Piersol 2000; Yang et al. 2009; Akhouayri et al. 2014). Yang et al.
(2009) proposed a waveform template matching method based on
cross-correlation that is useful for the detection of the events that
could provide a universal waveform template, such as for earth-
quakes (EQs) with clear and regular seismic waveforms. In the lit-
erature, there are also many other algorithms employed in seismic
event detection, but most of them are modified from the aforemen-
tioned two basic algorithms. For example, there are algorithms that
use denoising filters (Panagiotakis et al. 2008; Küperkoch et al.
2010; Rodriguez 2011; Gibbons et al. 2012; Akram & Eaton 2016),
such as wavelet transforms (Hafez et al. 2009, 2010; Rodriguez
2011), that can remove useless noise from the original signal to
obtain a stationary and clean signal for subsequent research. No-
tably, (i) an RF is characterized by multi-impact/rebound character-
istics, irregular spike waveforms and a geomorphology-dependent
duration; therefore, it is difficult to find a universal template wave-
form for cross-correlation, as proposed by Yang et al. (2009), but
it is better to detect all events first and then classify them into
different event types with seismic features; and (ii) denoising fil-
ters applied before data processing avoid the removal of important
information.

Concerning seismic event classification, there are now many new
approaches (hidden Markov models: HMM, neural networks, sup-
port vector machines, random trees, fuzzy logic, clustering, etc.)
that have been tested and work well for seismic data with multi-
ple purposes. For example, HMMs were initially introduced and
studied in the late 1960s and early 1970s for speech recognition
(Rabiner 1989). HMM recognition is based on the spectral prop-
erties of signals and the transformation of raw data into a para-
metric representation. Benı́tez et al. (2007) applied an HMM in
seismic event classification for a volcano. For the HMM architec-
ture, they designed in total 39 features relative to the energies in

given frequency bands of the seismic signal, and they also per-
formed training with a standard database for each event category.
Heck et al. (2018) applied an HMM for snow avalanche precur-
sor detection and classification, defined six features (central fre-
quency, dominate frequency, instantaneous bandwidth, instanta-
neous frequency, cepstral coefficients and half-octave bands), and
then trained one model for detection. HMMs are efficient tools for
seismic event classification in real time with high accuracy, but they
largely depend on the quality of the training model and the features
defined, especially when only one component is applied. The HMM
accuracy could be improved with the use of more seismic features,
such as the ratio of the frequency or amplitude at two different seis-
mic stations and the energy variations between different frequency
bands, as proposed in this study. A neural network defines many
key seismic features to create and train a model using a standard
database to obtain a weight for each feature or an empirical func-
tion to describe these features (Romeo 1994; Scarpetta et al. 2005;
Curilem et al. 2009; Akhouayri et al. 2015; Provost et al. 2017).
Provost et al. (2017) proposed a random tree defined by 71 features
that included the seismic signal waveform, spectrum, spectrogram,
network geometry and polarity. Vallejios & McKinnon (2013) de-
fined 29 features for event classification, such as the seismic energy,
frequency, magnitude and some mechanical parameters estimated
in the event motion process. For success detection and classifica-
tion, the most important step is to build a good training database
and define suitable seismic features, including not only the charac-
teristics of the signal but also taking into account all the seismic
stations parts of a monitoring network.

In this study, an ad hoc algorithm/procedure, DESTRO (DEtec-
tion and STorage of ROckfalls), for RF detection and classification,
that makes full use of a monitoring array with a three-step designed
classifier, was proposed. The whole algorithm can be segmented
in three steps: (1) events detection, (2) seismic features calibration
and (3) input the features into a three-step classifier. The presented
application of DESTRO is based on a small-scale seismic network
that monitored an unstable rock slope in a former limestone cave at
Torgiovannetto (near Assisi, central Italy; Fig. 1) for seven months
(Lotti et al. 2015; Gracchi et al. 2017; Lotti et al. 2018). To cali-
brate the system, 95 rock blocks were manually released from the
benches of the former cave to simulate the occurrence of RFs, of
which 90 were used for validation (Gracchi et al. 2017; Feng et al.
2019, 2020). The occurrence of EQs was cross-checked with the
Italian National Institute of Geophysics and Volcanology (INGV)
EQ database (http://cnt.rm.ingv.it/). For brevity, we do not present
the seismic monitoring layout or the RF in situ test, but we invite
the reader to refer to the literature, where more information can be
found (Lotti et al. 2015; Gracchi et al. 2017; Lotti et al. 2018; Feng
et al. 2019).

2 E V E N T D E T E C T I O N

In this study, two methods, the STA/LTA and cross-correlation al-
gorithms (specifically the maximum normalized cross-correlation
method: MNCC), are compared to evaluate the most suitable al-
ternative for DESTRO. It is important to note that in this work,
and thus in DESTRO, to enhance amplitude changes, STA/LTA
takes into account the average values of squared amplitudes, as
suggested by Allen (1982), instead of the average values of the
absolute amplitudes, as proposed by Trnkoczy (1998). MNCC
consists of scanning the signal step by step in the time domain
with two continuous sliding windows of the same length T and
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Figure 1. The LiDAR scanning digital elevation model of Torgiovannetto cave with the locations of the seismic stations (the blue triangles, named TOR 1,
TOR 2, TOR 3 and TOR 4) and the cameras (yellow dots, named Camera 1, Camera 2, Camera 3 and Camera 4). In the box on bottom right, the red star is
Assisi (central Italy).

sliding pitch θ ; one sliding window is the master window in MNCC
(Akhouayri et al. 2014). The degree of similarity between the two
windows is continually examined by computing the MNCC value.
If the two windows contain only background noise, the MNCC
value does not vary significantly as t varies in the sense of MNCC
≥ δ (threshold). Otherwise, the arrival of the P wave implies a
notable downward variation in MNCC, which tends to be zero,
and hence, MNCC < δ (threshold). The value of MNCC lies be-
tween 0 and 1, and a high value indicates a high degree of signal
similarity.

To compare the detection methods, a short signal trace (270 s
long), that contains two strong events and three weak events (marked
with green ellipses in Figs 2 and 3), is analysed with both the
STA/LTA and MNCC methods. This trace is extracted from the
seven-month monitoring data set and chosen for this test due to its
clarity. As clearly visible from the Torgiovannetto seismic traces,
RFs bounce on the benches and every rebound is recorded by the
seismic network as an impact (Gracchi et al. 2017; Feng et al.
2019).

With respect to the observation of the manually released RFs, the
shortest length of one impact (the time at which the block impacts
the slope surface) is 0.4 s, and 99.2 per cent (a value which cov-
ers most RF lengths and considers the lowest error) of the length
of one whole RF event is less than 14 s. Therefore, the lengths
of the short-time window and long-time window in DESTRO are
chosen as 0.4 and 14 s, respectively. Fig. 2 shows the seismic event
detection result and computational parameters for the STA/LTA
method. Fig. 2(a), in particular, is the original signal trace, and
the red lines are the onset times of each event automatically de-
tected by STA/LTA; additionally, the dashed green ellipses are the
manually selected events. Fig. 2(b) shows the two computational
variables: the average energy over a short-time window (STA) and

long-time window (LTA). Fig. 2(c) shows the two STA/LTA thresh-
olds employed. The first threshold (threshold 1), used for event
detection, was fixed at 4, and the second (threshold 2), which was
used for checking the onset times of the events, was set equal to
2. The difference between the two thresholds is used to precisely
select the event onset time. In the automatic STA/LTA event de-
tection example shown in Fig. 2, four events are detected, and one
weak event is missed (highlighted by the second green ellipse in
Fig. 2a), since the two events are too close one to each other. The
interval between them is indeed less than 2800 samples (i.e. 14 s),
that was set as the minimum interval time between two separate
events in DESTRO. However, this does not mean that DESTRO
failed to detect events. In fact, if one component fails, there are
many components defined in DESTRO, which are introduced and
discussed in the next section. In the STA/LTA method, the values of
the thresholds and lengths of the two windows are not permanent,
and the most appropriate value should be modified depending on the
monitoring site conditions and the types of target events (Trnkoczy
1998).

Fig. 3 illustrates the results of the MNCC method for the same
original signal as the one used for STA/LTA. In Fig. 3(b), the black
line is the value of the MNCC calculated with a moving window of
20 s and a step of θ = 0.005 s; the blue dashed line is the MNCC
mean value; and the red dashed lines are the detection thresholds
suggested by Akhouayri et al. (2014), which are equal to the mean
MNCC plus and minus the standard deviation (STD) of the MNCC
mean value (mean ± STD). The red solid lines in Fig. 3(b) are
the event onset times detected by the MNCC using mean − STD
according to the method suggested by Akhouayri et al. (2014). As
a result, there are eight events detected by the MNCC, but only
two of them (the second and the sixth ones) have been detected
correctly. Notably, some events are missed, and some other are
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Figure 2. STA/LTA analysis results: (a) original signal where five events (circled in green) have been manually selected. Solid red lines are the event onset
times detected by STA/LTA; (b) values of STA and LTA and (c) thresholds used as criteria for target event detection.

Figure 3. Cross-correlation detection (MNCC) results. (a) Original signal, where the five events (circled in green) have been manually selected. Solid red lines
are the event onset times detected by MNCC and (b) analysis results, where the thresholds used to detect the events are represented.

identified even if they did not occur. In Fig. 3(b), the MNCC curve
displays considerable variation, and it is easily disrupted by nearby
events. For these reasons, it is suggested that MNCC is preferable
for use in a stable monitoring environment (or with filtered signals
and high signal-to-noise ratio data) or for single event detection, and
therefore, it is not a suitable method for DESTRO, which operates
with raw signals and in complicated environments.

Finally, in DESTRO, STA/LTA is chosen for single-component
detection, and the process flowchart is shown in Fig. 4. In addition
to the detected thresholds (threshold 1 and threshold 2 defined
previously), a minimum event duration [MINevent, set equal to
0.4 s, i.e. equal to the short-time window (STw) in this study] and
a minimum interval time [MINinterval, set equal to 14 s, i.e. equal
to the long-time window (LTw)] between two events are defined
to separate events. According to the monitoring site environment,
the mean amplitude of ambient noise is 2 × 10−5 m s−1, and the
seismic event detection ability is 4 × 10−5 m s−1, or sometimes
smaller depending on the ambient noise and event duration.

3 E V E N T - T Y P E D E F I N I T I O N

In DESTRO, based on the characteristics of the frequency and am-
plitude, five seismic event types are defined: EQ, tremor (TR), RF,
multispike event (MS) and subordinate MS (SMS) events, where the
only difference between MS and SMS is the maximum frequency
(Fm), set higher than 60 Hz and lower than 60 Hz, respectively. This
difference is related to the material and the distance between the
event source and receiver/s. The typical original signal traces and
spectrograms of the five event types and those for the artificially
released rockfall (ARF) are shown in Fig. 5. EQ (Fig. 5a) is identi-
fied as an easily detectable regional EQ, and the TR event (Fig. 5b)
is a remote EQ or tectonic activity characterized by a long dura-
tion, low amplitude and low frequency due to the long distance of
and energy attenuation during propagation. MS (Figs 5c and d) and
RF (Figs 5e and f) are supposed rock cracking or small block falls
and RFs, respectively, with a high frequency and short duration.
For the purpose of RF classification, the discrimination between
RF and MS is based on the maximum amplitude (Am) threshold
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Figure 4. The flowchart of seismic event detection in DESTRO. In the flowchart, D and Am are the duration and maximum amplitude of a detected event,
respectively.

because their spectral attributes and waveform attributes look very
similar. Unfortunately, this hypothesis of MS has not been validated
until now (Arosio et al. 2009; Lenti et al. 2012; Lu et al. 2012,
2013).

To analyse the seismic features and feature weights, a seismic
event-type training database is built. All the events in the database
are manually picked from the east–west component of the traces
recorded by station TOR 1 [see Fig. 1 and Lotti et al. (2018) or
Feng et al. (2019) for its location within the quarry area] during a
seismic monitoring window of 12 d, including the two days of the
ARF test. The database contains 174 EQ events, 239 TR events,
90 ARFs, 75 natural rockfalls (NRF) manually selected based
on the waveform, amplitude, duration, etc., and 1424 MS events
(including SMS).

4 F E AT U R E D E F I N I T I O N

4.1 Methodology

To obtain good quality in seismic event classification, the choice
of seismic features is critical, and it is important to keep the num-
ber of features as low as possible (Benitez et al. 2007; Vallejios
and McKinnon 2013; Provost et al. 2017). In this study, nine seis-
mic features are defined related to the event power (maximum

amplitude Am, energy density Ea and energy variation Rea), spec-
trogram (maximum frequency Fm and frequency spectrum vari-
ation Rfv), waveform (number of peaks Np), duration (D) and
values at multiple stations (amplitude ratio Ra and frequency
ratio Rf).

The frequency is one of the most important parameters of seismic
signals and reflects the physical characteristics of the event source.
The maximum frequency (Fm) is a frequency value with the max-
imum fast Fourier transform coefficient (FFTA, as defined in Feng
et al. 2019) in the spectrogram (Daubechies 1992). This means that
the signal of the Fm frequency band is the most powerful in the entire
trace generated by the event. The maximum amplitude (Am) is the
maximum value of samples (xi) in a time-series and represents the
most powerful moment in the entire event duration. The calibrations
of Fm and Am are shown below.

Fm = i = argmax (FFTAi ) , (1)

Am = max (xi ) , (2)

To avoid the shortcomings associated with Fm, the frequency
spectrum variation (Rfv) is newly introduced. It represents the energy
distribution between the high-frequency bands [20–100 Hz] and
low-frequency bands [3–16 Hz] and is calculated as the energy ratio
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Figure 5. Original signal traces and time–frequency wavelet transforms of the five event types. TOR 1 is the name of one of the four seismic stations in
the monitoring system (see Fig. 1 for its location). Moreover, the NRF in picture is not confirmed, but it has the same waveform (multiple spikes), duration,
amplitude and high frequency as an ARF based on seismic analysis.

between the two frequency bands, as in eq. (3). The Rfv comparison
of the five event types in Fig. 5 is shown in Fig. S11 (Supporting
Information):

R f v =
∑i=100

i=20 FFTA2
i∑ j=16

j=3 FFTA2
j

, (3)

Seismic energy (E) is a relevant feature used to separate EQ
events from TR events. In this study, it is calculated at each station
and is defined as the integral of the squared seismic amplitude (Am).
It is important to note that given this definition, the employed energy
is a relative quantity and not an absolute one because it is calculated
at each station. Thus, factors such as attenuation effects and geo-
metrical spreading are not included, and the chance of introducing
processing errors is reduced (Dammeier et al. 2011). To decrease
the duration effect in the energy calculation, a feature of the energy
density (Ea) reflecting the energy density distributed over the entire
event duration is proposed. The equations for E and Ea are shown
in eqs (4) and (5):

E =
N∑

i=1

xi
2, (4)

Ea = E

D
, (5)

where N is the number of samples in a single detected event, D is
the duration of one event and xi is the velocity (signal amplitude)
of sample i.

According to the observations of the ARF test and the generated
signal traces, in RF and MS events, a large portion of the seismic
energy is usually concentrated at the impact or cracking moment,
while the energy of EQ and TR events is mostly distributed and
varies over the entire event duration (Fig. 5). This phenomenon is
especially clear for RF events. Therefore, energy variation (Rea)
could be efficiently used to distinguish RF events from EQ events.
Rea is defined as Ea divided by the square of Am and indicates the
degree of energy concentration, as shown in eq. (6).

Rea = Ea

Am
2
, (6)

The amplitude ratio (Ra), defined in eq. (7), is the ratio of
Am between two different seismic stations TOR i and TOR j,
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where Ami > = Amj:

Ra = Ami

Amj
, (7)

Consequently, as defined in eq. (8), the frequency ratio (Rf) is the
ratio of Fm between two different seismic stations TOR i and TOR
j, where Fmi > = Fmj:

R f = Fmi

Fmj
, (8)

Ra and Rf are first proposed in this study, and they are very
important features for DESTRO to classify remote and local events.
For example, the values of Am and Fm for some seismic events that
occur far from the seismic network are often similar at different
stations, so both the Ra and Rf values are close to 1. The part of the
energy characterized by high frequencies is attenuated or filtered
during long-distance propagation. In contrast, the values of Ra and
Rf for events that occur near the seismic network or inside it (such
as a local RF or crack breaking) are very high because the relative
distances between stations and sources are proportionally different
and the attenuations are different. In terms of this relationship, the
features of Ra and Rf can be used to efficiently separate remote
events and local events.

The waveform peaks (Np) have been defined as the number of
periods (peaks) exceeding a threshold calculated on the basis of
the amplitude standard deviation (computed in a 0.4 s-long sliding
window, see also Feng et al. 2019). Although Np is significantly
influenced by many factors, such as the geomorphology, seismic
energy and threshold chosen for detection, it clearly discriminates
between EQs (which typically have a single peak) and RFs (which
have as many peaks as the number of rebounds of the rock on the
ground, Fig. 5). For TR and MS events, the signal amplitudes are too
small to detect waveform peaks with the same threshold as applied
for EQs and RFs, so in this study, Np is only used in EQ and RF
classification.

Duration is another very important complementary feature for
seismic event classification, even though it highly depends on
specific topographical conditions, the event source location and
the attenuation in propagation as waveform peaks. In this study,
the duration of an event was defined as the time elapsed from
the first sample triggered by the threshold of STA/LTA = 2
(for more information on the seismic event detection method
for STA/LTA, see Allen 1978; Trnkoczy 1998) to the last sam-
ple triggered by the threshold of STA/LTA = 4. The calcu-
lated duration, given the principle of the STA/LTA detection
method, is shorter than the real duration. One example of the
duration of an ARF is plotted in Fig. S12 in the Supporting
Information.

4.2 More discussion on seismic features

In this study, five key features (Fm, Rfv, Am, Rf and Ra) and four
complementary features (Ea, D, Rea and Np) were defined for event
classification. In particular, multistation attributes (Rf and Ra) and
frequency variations (Rfv) were proposed for the first time. Accord-
ingly, the distribution in the database event classes of all the features
are analysed in detail in the Supporting Information. These features
are useful for seismic event classification and initial feature weight
computing (see Section 5.1). Considering the spectral attributes,
seismic events can be classified into high-frequency events (RF

and MS) and low-frequency events (EQ and TR), while consid-
ering the event-power attributes, the events can be classified into
powerful events (EQ and RF) and weak events (TR and MS). Mul-
tistation attributes are thus applied to classify events as local (MS
and RF) and remote (EQ and TR) events. The waveform peaks
and durations allow for the precise distinction between EQs and
RFs and between EQs and TRs, respectively. Consequently, most
of these features extracted from signal traces are successfully ap-
plied, except for the waveform peaks and durations. In fact, (i)
it is difficult to precisely pick in an automatic way the end time
of an event, even though the lengths of triggered samples are ap-
plied instead of the true durations, and (ii) the computation of the
waveform peaks is still ineffective due to the need for amplitude
threshold selection and the strong variation in the amplitudes of
different events. In general, the five key features performed very
well, but the four complementary features should be improved
to find a more relevant relationship with amplitude. Addition-
ally, more seismic event samples and monitoring cases need to be
studied.

5 C L A S S I F I E R D E S I G N

In this study, a three-step classifier is designed based on the seis-
mic features and information from multiple stations in a monitoring
array. The seismic features, as discussed in Section 4, include five
key features (Fm, Rfv, Am, Rf and Ra) that play a determinant role,
and four complementary features (Ea, D, Rea and Np) that support
precise classification. Three different classifiers are designed in the
three-step classifier. The first classifier (classifier S) is designed as
a single-component classifier. The second classifier (classifier C)
is proposed as a multicomponent classifier, that is at one seismic
station, multicomponent event integration and re-classification are
performed, based on the results of classifier S of the three com-
ponents. The third classifier (classifier M) performs site-event in-
tegration and event-type reclassification considering the results of
classifier C for the entire monitoring network. The full classification
flowchart is shown in Fig. 6. In this study, as shown in Fig. 1, the
monitoring network is comprised of four seismic stations, and each
station has three components, E–W, N–S and vertical Z compo-
nents. Furthermore, in addition to the five event types, namely, EQ,
TR, SMS, MS and RF defined above, another event type, unknown
events (UNs), is defined. UNs consist of MS events with Fm < 3 Hz
or Am > 1 m s−1 and EQ or TR events recognized by only a single
component.

5.1 Single-component classifier design (classifier S)

To perform single-component classification, a different weight is
assigned to each feature (key and complementary) . The initial
weights are calculated from the distribution of seismic features in
the database, and then they are modified with a manual calibration
process considering the bias in the data because some event types
could be over- or under-represented. An example of the initial weight
computation of EQ (WEQfm1) in the range of Fm (0–3 Hz) is shown
in the Supporting Information, and the initial and modified weights
of nine seismic features in the training set are computed in Tables
S1–S3 (Supporting Information). As soon as the modified weights
(W’) of the nine features are assigned, each feature is extracted with
a weight array (W) that represents the six event-type occurrence
rates in each range of each feature. Next, all the weight arrays
from the nine features are multiplied by multiplying corresponding
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Figure 6. Seismic event classification flowchart in DESTRO. ei, Ei and ETi are the event types as classified by classifiers S, C and M, respectively.

elements to obtain a final product array (V) that represents the final
occurrence rate of each event type (eqs 9 and 10).

W f m = [
W ′

eq f m, W ′
t r f m, W ′

sms f m, W ′
ms f m, W ′

r f f m, W ′
un f m

]
,

(9)

V = W f m .∗Wr f v .∗Wam.∗Wr f .∗Wra.∗Wea.∗Wd .∗Wrea.∗ Wnp

= [
V eq, V tr , V sms, V ms, V r f , V un

]
, (10)

where W’eqfm, W’trfm, W’smsfm, W’msfm, W’rffm and W’unfm are the mod-
ified weights of EQ, TR, SMS, MS, RF and UN, respectively; the
variables Wfm, Wrfv, Wam, Wrf, Wra, Wea, Wd, Wrea and Wnp are
the weight arrays of the seismic features Fm, Rfv, Am, Rf, Ra, Ea, D,
Rea and Np, respectively.

Finally, each event type is assigned an ID number (e.g. events
EQ, TR, SMS, MS, RF and UN are represented by 1, 2, 3, 4, 5
and 7, respectively) and the maximum element in the final matrix
V represents the event type (ei) classified by classifier S.

5.2 Multicomponent classification (classifier C)

Classifier C is designed to classify event types (E1, E2, . . . , Es) at
a single station by integrating and reclassifying the events identi-
fied for each of the three components at one station. The process
flowchart for classifier C is shown in Fig. S9 (Supporting Infor-
mation). The main process can be divided into three phases. First,
all of the event parameters, such as the onset time (To), end time
(Te), event type (ei) and detected component number, are marked as
input parameters. Second, all the events from the three components
with the respective features are integrated into one event series and
sorted in the time domain, and a judgement for event integration
and the reclassification of specific integrated events is performed.
Finally, events from three components are reclassified according to
the reclassification criteria to obtain a station-event series (E1, E2,
. . . , Es) with event types and seismic features. The details of the
integrated judgement and reclassification criteria are shown in the
Supporting Information.

5.3 Multistation classification (classifier M)

Classifier M is designed to integrate all the events from the seismic
network. In addition to the EQ, TR, SMS, MS, RF and UN even
types, classifier M introduces a secondary specification to character-
ize their influence (classified as a regional event, slope-scale event,

local event, very local event, or point event; Table 1) by multiplying
the event-type ID number by a power of 10 (from 103 to 10−1). The
events are therefore classified as a site-event series (ET1, ET2, . . . ,
ETm) based on both the event type and scale.

In classifier M, the processing steps are divided into three phases
(as shown in Fig. S10, Supporting Information): data preparation,
event integration and event-type reclassification. The first and sec-
ond parts are the same as those for classifier C; in the third part,
the number of stations that detect the same event is determined (s
equals 1, 2, 3 or 4), and the secondary specification is obtained. The
event-type reclassification criteria for classifier M and the detailed
secondary event-type definitions are provided in the Supporting
Information.

6 D E S T RO P E R F O R M A N C E

Based on the algorithms proposed and implemented in MATLAB
2017b, a Graphical User Interface was designed to combine seismic
event detection, classification and event spectrogram rechecking.
DESTRO is specially designed for RF hazard monitoring combined
with EQ detection. As processing outputs, the event types, onset
times and nine seismic features are provided.

6.1 DESTRO detection accuracy

To evaluate the detection accuracy, a test signal of 55 min that
recorded 30 different events was chosen among the entire seven-
month monitoring data set (the original signal is shown in Fig. S13,
Supporting Information). The DESTRO code managed to automat-
ically detect all 30 events.

The onset times automatically detected by DESTRO (tD) and the
onset times manually picked (tm) are shown in Table 2, together
with all the errors between tD and tm (calculated as tD—tm). It can
be noted that (1) only one error is larger than one second, and
most of the others errors are near zero; (2) all of the errors are
larger than 0, which means that for the onset time selection method,
STA/LTA, there is a lag based on the length of the selected sliding
window and (3) the mean error is 0.2178 s, which is treated as the
median lag. The results also show that there were no missing or fake
events.

6.2 Training set evaluation

To evaluate the DESTRO classification performance in the database,
a test is performed on a continuous monitoring trace of 12 d, from
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Table 1. The identification numbers (ID numbers) of the event categories (event type and scale). Note that
signals primarily classified as EQs or TRs but detected by only one component or one station are instead
classified as UN.

Event types Scales
Regional (R) Slope-scale (S) Local (L) Very Local (vL) Point (P)

EQ 1 1000 100 10 7 (UN) 7 (UN)
TR 2 2000 200 20 7 (UN) 7 (UN)
SMS 3 3000 300 30 3 0.3
MS 4 4000 400 40 4 0.4
RF 5 5000 500 50 5 0.5
UN 7 7000 700 70 7 7

Table 2. The onset times picked manually and by DESTRO with the corresponding errors.

Event Manual onset DESTRO Errors Events Manual onset DESTRO Errors
number times (s) onset times (s) (s) Number times (s) onset times (s) (s)

1 374.4 374.52 0.12 16 1956.13 1956.16 0.03
2 466.71 466.75 0.04 17 2027.96 2028.025 0.065
3 522.825 522.86 0.035 18 2091.85 2092.01 0.16
4 538.25 538.345 0.095 19 2261.65 2261.95 0.3
5 577.23 577.87 0.64 20 2480.48 2480.505 0.025
6 649.01 649.05 0.04 21 2572.54 2572.64 0.1
7 772.8 773.205 0.405 22 2828.15 2828.3 0.15
8 796.38 796.685 0.305 23 2941.05 2941.565 0.515
9 1039.03 1039.11 0.08 24 3060.16 3060.23 0.07
10 1143.05 1143.185 0.135 25 3174.31 3174.355 0.045
11 1218.95 1219.015 0.065 26 3221.02 3222.235 1.215
12 1328.78 1329.145 0.365 27 3267.33 3267.445 0.115
13 1502.925 1502.96 0.035 28 3322.25 3322.28 0.03
14 1582.93 1582.945 0.015 29 3392.7 3392.795 0.095
15 1769 1769.44 0.44 30 3409.33 3410.145 0.815

2012 December 7 to 18, that includes all the events in the training
database. In total, 471 EQ events, 194 TR events, 2819 SMS events,
3683 MS events and 318 RF events were classified by DESTRO.
The DESTRO classification results are then compared with manual
classification results for the same period, and results are plotted in
Fig. 7. The following observations can be done: (i) 96 per cent of
the EQ events and 100 per cent of the RF events in the training
database are correctly classified by DESTRO; (ii) 4 per cent of
the EQ events (six EQ events) are still not classified correctly by
DESTRO; specifically, three EQ events were classified in the TR
category, one as an SMS, and two as RFs; (iii) 99.5 per cent of SMS
and MS events were classified successfully, and only 0.5 per cent
of MS events (seven MS events) were classified incorrectly, that is,
four events classified as EQ, two as UN, and one as TR and (iv) many
TR events were incorrectly classified as UN, SMS, or MS events.

In summary, from the accuracy evaluation results, 100 per cent
of the event categories of RF, and 99.5 per cent SMS plus MS were
successfully classified and separated from the all-around noise. With
respect to the strict classification criteria of EQs and TRs, some EQ
and TR events were incorrectly classified as UN, and some EQs
were classified as TRs when the energy of an EQ was too low to
be detected by more than two stations. For the reasons that follow,
there are still two EQ events classified as RFs: (i) in one case, the
EQ event merged with too many other high-frequency events, which
contributed to a high Rfv value, and (ii) for the other EQ events, the
maximum frequency is higher than the Fm threshold (20 Hz) used
in the classification of EQs.

6.3 Earthquake classification

To evaluate the DESTRO classification performance of EQs, a
longer monitoring data set of 25 d (2012 December 7–31) recorded
at Torgiovannetto is selected. All the EQ and TR events detected by
DESTRO (984 EQ and 370 TR) are compared with the events from
the INGV EQ database (573 EQs that occurred in the same period
within a radius of less than 300 km). The result of this comparison
is shown in Fig. 8. 58.8 per cent of the EQs recorded by INGV
are also clearly recognized by DESTRO, simply from an onset time
comparison, but 41.2 per cent of the EQs were not confirmed in
DESTRO.

To determine why 41.2 per cent of the EQs are unconfirmed
in DESTRO, the magnitudes and epicentre distances are analysed.
The distance versus magnitude result is shown in Fig. 9. In par-
ticular, blue dots are the EQs confirmed as EQs by DESTRO,
and the yellow dots are EQs only recorded by INGV. The his-
togram shows the percentages of confirmed and unconfirmed EQs
in two distance ranges: less than 100 km and from 100 to 300 km.
The EQ distances recorded by INGV ranged from 4.4 to 292 km,
and the magnitudes ranged from 0.4 to 3.2. From the results, al-
most 64.9 per cent of the EQs with epicentre distances less than
100 km are confirmed by DESTRO, and in the distance range of
100–300 km, only 21.3 per cent are confirmed. This result is be-
cause the EQs that occurred nearby are more easily confirmed with
a small onset time delay and attenuation than EQs that occurred
farther away with strong attenuation that are difficult to detect with
DESTRO or cannot be simply confirmed with onset times because
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Figure 7. The classification results of DESTRO for the 12-d monitoring data set.

Figure 8. The detection results for EQs and TRs in DESTRO and a comparison with the INGV EQ database from 2012 December 7 to 31 based only on the
onset time.

Figure 9. The distances and magnitudes of EQs recorded in the INGV EQ database that were less than 300 km during the period 2012 December 7–31.

of large onset time delays. Moreover, high EQ magnitudes are eas-
ier to detect by DESTRO than low magnitudes, as validated in
Fig. 9.

In summary, the reasons why 41.2 per cent of EQs were not con-
firmed in DESTRO are as follows: (i) the onset time delay makes
it difficult to track EQs from INGV to DESTRO since some EQ
epicentres were distant from the stations and signal were influenced

by high attenuation; (ii) a low-magnitude EQ is not a single event
but usually occurs with a series of post-shocks, so there will be
some differences in post-shock recordings between the seismic net-
work and INGV; (iii) the intrinsic drawbacks of this monitoring
network (the stations are located at a distance of 200 m), that is a
very small network scale, compared with the scale of the national
EQ monitoring network, so some EQs could be merged into one
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TR event. Moreover, classification errors can occur in DESTRO.
For example, (i) some EQs could be classified as TR events since
the definitions of TRs and EQs are similar (differences related to
duration and energy attributes); (ii) some EQs could be classified
as UN events, since EQ and TR events should be detected by more
than two stations, otherwise an event will be classified as UN; and
(iii) some EQs may be classified as SMS, MS or RF events when
EQ events merge with SMS, MS, or RF events since high-frequency
events are prioritized and kept in DESTRO.

6.4 Artificially released rockfall classification

To evaluate the capability of DESTRO in RF detection, a continuous
monitoring period of 4 hr and 40 min that covers an ARF test (Feng
et al. 2019) is analysed. A total of 109 RFs were detected. Of the 90
ARFs, 88 ARFs were classified correctly by DESTRO, and 2 ARFs
were classified as SMS events (because their amplitudes were less
than the 0.001 m s−1 threshold defined). The hit rate of DESTRO in
this test is 100 per cent. On the other hand, 21 events in excess were
detected, for a total of 109 signals classified as RFs. Even a manual
check on these 21 extra signals made it impossible to distinguish
them from the verified RFs, since they probably represent actual
involuntary RFs caused by the passage of the experiment operators
or even small unnoticed NRFs. This means that the confidence
against false negatives (i.e. of detecting real RFs from raw seismic
data) is ≥ 81 per cent (where 81 per cent represents the assumption
that the 21 extra events detected were all errors).

7 C O N C LU S I O N S

After comparing the differences and performances of the STA/LTA
method and cross-correlation method, the most traditional and
widely used STA/LTA method was chosen in DESTRO because
of (i) the processing stability with raw monitoring data, (ii) the
flexible parameters and (iii) good performance in event detection
and onset time selection. Nevertheless, the STA/LTA method strug-
gles to separate different events and defines the ends of two nearly
coincidental events, even though the minimum event duration and
minimum interval time were defined as two extra parameters. To
classify the events by integrating all the signal trace features from
multiple components and stations, nine seismic features and a three-
steps classifier (includes classifiers S, C and M) are designed and
implemented in coordination. Classifier S integrates the seismic
feature matrices over time and classifies each component based on
the initial event types. Then, classifier C integrates all the events de-
tected in the three components of one station and reclassifies them
into primary event types. Finally, classifier M, by introducing a sec-
ondary specification that describes the scale of influence, integrates
all the events detected by the monitoring network and obtains a final
site-event series with event types, scales and seismic characteristics.

Considering the performance of DESTRO in classification, there
are 96 per cent EQ and 100 per cent RF events in the monitoring
period of 12 d. Based on a training database of correctly classified
EQs, 58.8 per cent of EQs have distances less than 300 km (64.9
per cent of EQs have distances less than 100 km) in 25 d that were
clearly identified by both INGV and DESTRO, simply from an
onset time comparison. In the 4.7-hr monitoring time period, which
includes the artificial RF release test, 80.7 per cent of RFs were
correctly classified (assuming that the extra detected events were all
errors), and 1.8 per cent were classified as SMS.

In addition to use DESTRO in detection and classifier design,
more studies should be performed on the following topics: (i)
six event types (EQ, TR, SMS, MS, RF and UN) are defined in
DESTRO, but only EQ and RF are confirmed by both the INGV
database and the ARF test respectively, and MS and SMS, repre-
senting rock cracking or tiny block falls, were not confirmed in
the laboratory or with field testing (Senfaute et al. 2009; Lu et al.
2012, 2013; Coviello et al. 2015); (ii) the weights of features for
classifier S were modified from the distribution of seismic features
in the training database, and the training database is not sufficiently
relevant and has some bias; therefore, a more relevant and larger
database or more cases should be used in the future. DESTRO is
especially applied in rock slope seismic monitoring combines with
EQ monitoring. This approach is useful for rock mass dynamic state
monitoring, not only for the surface but also for the subsurface, even
in slope instability forecasting and risk evaluation, once the signal
of rock cracking is checked in the laboratory and field tests. More-
over, since DESTRO can separate the event types of EQ and RF, the
method would also be useful in defining the relationship between
RFs and EQs with the meteorological events in EQ-prone areas.
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S U P P O RT I N G I N F O R M AT I O N

Supplementary data are available at GJI online.

Figure S1. The percentages of the maximum frequency (Fm) of
all the event types in the training database. See Section 3.3.1 to
understand how we separate NRF and MS.
Figure S2. The percentages of the maximum amplitude (Am) for
five event types: (a) percentage of all the events in the database dis-
tributed for Am with a spacing of 1 × 10–5 m s−1 and (b) percentage
of five event types clustered in spatial Am ranges of (−∞, 1 × 10–4),
[1 × 10–4, 2 × 10–4), [2 × 10–4, 1 × 10–3) and [1 × 10–3,+∞).
Figure S3. The distribution of the FFTA ratio (Rfv) for all the events
in the training database corresponds with the maximum amplitude
(Am); (a) values of Rfv, where each event type is represented in a
different colour and ( b) percentage of Rfv for each event type, the
results of which are clustered in three ranges: less than 0.5, from
0.5 to 1, and greater than 1.

Figure S4. (a) Linear correlation between Ea and Am and (b) Ea

values of EQ and TR events distributed in three Am ranges.
Figure S5. (a) Energy variation (Rea) plotted against maximum
amplitude (Am) and (b) the percentages of EQ and RF events with
Am more than 10–3 m s−1 distributed in the < 0.05 and > 0.05
ranges.
Figure S6. The percentages of five event types distributed according
to (a) the maximum frequency ratio (Rf) and (b) maximum amplitude
ratio (Ra).
Figure S7. The percentages of EQ and RF events distributed ac-
cording to the waveform peaks.
Figure S8. The distribution of the event duration from the database;
(a) the distribution of all event durations versus Am and (b) the
percentages of EQ, TR and MS events distributed in three different
Am ranges.
Figure S9. The flowchart of classifier C. Toi is the onset time of
event i; Tei is the ending time of event i; ei1, ei2, ei3 are the event
types classified for the E-W, N-S and Z-Z components, respectively;
and E is the event type for one station.
Figure S10. The flowchart of classifier M. E12, E12, E13 and E14 are
the event types classified for seismic stations TOR1, TOR2, TOR3
and TOR4, respectively, and ET is the final event type for the seismic
monitoring network.
Figure S11. Frequency spectra of six events and frequency spectrum
variation (Rfv). The original signals of six events shown in Figs 3(a)–
(f) represent EQ, TR, SMS, MS, NRF and ARF events, respectively.
The value in each rectangle is the percentage of the energy of that
frequency range.
Figure S12. An example of the duration of the N.3 RF event. The
time that elapsed between the vertical red and the blue lines is
calculated from the first sample triggered by STA = 2 and the last
sample triggered by STA = 4.
Figure S13. (a) Original testing signal, (b) detected events in dif-
ferent colours and (c) detection criteria and the onset times auto-
matically detected by DESTRO.
Table S1. The initial and modified weights of five key features for
each event type in different feature ranges.
Table S2. The initial weight of each event type calculated for the
complementary features.
Table S3. The modified weight of each event type calculated for the
complementary features.
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