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Abstract. Evolutionary algorithms (EAs) are a family of optimization
algorithms inspired by the Darwinian theory of evolution, and Genetic
Algorithm (GA) is a popular technique among EAs. Similar to other
EAs, common limitations of GAs have geometrical origins, like prema-
ture convergence, where the nal population’s convex hull might not
include the global optimum. Population diversity maintenance is a cen-
tral idea to tackle this problem but is often performed through methods
that constantly diminish the search space’s area. This work presents a
self-adaptive approach, where the non-geometric crossover is strategically
employed with geometric crossover to maintain diversity from a geometri-
cal/topological perspective. To evaluate the performance of the proposed
method, the experimental phase compares it against well-known diver-
sity maintenance methods over well-known benchmarks. Experimental
results clearly demonstrate the suitability of the proposed self-adaptive
approach and the possibility of applying it to dierent types of crossover
and EAs.

1 Introduction

Evolutionary computation (EC) [2], a subeld of articial intelligence, leverages
computing power to model global optimization strategies that mimic natural evo-
lution and can be applied to several domains [13,19,24]. Genetic algorithms [8]
belong to the family of EC and handle a population of candidate solutions rep-
resented as a sequence of genes. GAs are stochastic optimizers, minimizing or
maximizing an objective function while exploring the underlying search space.
This space can be better understood considering a geometrical and topologi-
cal view of the evolutionary process. In particular, candidate solutions can be
described as points in a geometric space within a dynamical system (expressed
as the whole GA search process) that changes these points as time (generations)
goes through. To describe a candidate solution, one can characterize it genotypi-
cally by studying its genetic information or phenotypically by studying its tness,
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meaning its ability to address the optimization problem at hand. The merging
of these two dimensions establishes a tness landscape in which all the possi-
bilities within the genotypical domain, and consequent tness outcomes, can be
envisioned. Depending on the eect they produce in the underlying space, it is
possible to identify two main categories of search operators used by a GA to
act on a point/solution: (1) geometric operators (that result in a convex search),
and (2) non-geometric operators (that result in a non-convex search) [16]. A con-
vex search will contract the hypervolume of the hypercube that represents the
tness landscape observable by the search process, while a non-convex search
has, usually, a non-zero probability of expanding it. In this context, it is crucial
to understand the idea of a topology associated with a problem. Using an algo-
rithm to solve a problem means essentially applying a strategy for searching that
topology in a (hopefully) optimized fashion. Existing literature proposed dier-
ent search operators in the context of GAs [11]. Each genetic operator produces
a specic eect on the search process, and it is challenging to determine which
operators are more eective in addressing a specic problem and which operator
is more eective in a given phase of the search process. As a consequence, existing
works proposed to dynamically modify the probability of using genetic operators
based on some criteria [4,12,22]. In this work, we propose a self-adaptive app-
roach to exploit the properties of geometric and non-geometric crossovers to
achieve a more eective search. We expect this method can help overcome (or
at least reduce) the problem of premature convergence of the population, one of
the main limitations of GAs. In particular, we rely on a self-adaptive technique
which, based on the current stage of the search process, decides whether to use
the non-geometric crossover to (possibly) increase the population’s convex hull.
This work diers from the existing methods that, in the majority of the cases,
simply modify the probabilities of crossover and mutation based on the status
of the search process but without considering topological information concern-
ing the genetic operators. In particular, by adapting the search operators used
in GAs, we will leverage the continuous need to apply either geometric or non-
geometric crossover in dierent phases of the search process characterized by
specic space topology conditions [3].

The remaining part of the manuscript is organized as follows: Sect. 2 reviews
some concepts concerning the geometric properties of genetic operators and con-
vex search; Sect. 3 links this study to the existing literature; Sect. 4 presents
the proposed self-adaptive approach; Sect. 5 outlines the experimental settings;
Sect. 6 analyzes the results achieved, while Sect. 7 summarizes the main ndings
of the paper and suggests future research avenues.

2 Fundamental Concepts

This section presents important concepts and denitions related to the geometri-
cal properties of genetic operators. To frame the discussion, it is essential to recall
some ideas developed in the geometric framework that unied various EAs [15].
This framework analyzes the working principles of the genetic operators from a
mathematical perspective.
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2.1 Crossover

Let S be the space of all possible solutions and the image set Im[OP ] the set of
all possible ospring produced by a recombination operator OP with non-zero
probability.

A recombination operator OP belongs to the geometric crossover class G [15]
if there exists at least a distance d under which such a recombination is geometric:

OP ∈ G ⇐⇒ ∃d : ∀p1, p2 ∈ S : Im [OP (p1, p2)] ⊆ [p1, p2]d .

On the other hand, a recombination operator OP belongs to the non-
geometric crossover class G if there is no distance d under which such a recom-
bination is geometric:

OP ∈ G ⇐⇒ ∀d : ∃p1, p2 ∈ S : Im [OP (p1, p2)] \ [p1, p2]d = ∅.

The geometric crossover leads to the creation of ospring lying on the segment
that connects the parent individuals in the space. As pointed out by Moraglio,
there are three properties [17] that arise from using a geometric recombination
operator:

– Property of Homology. It states that the recombination of one parent with
itself can only produce the parent itself.

– Property of Convergence. It states that the recombination of one parent with
its ospring cannot produce the other parent of that ospring unless the
ospring and the second parent coincide.

– Property of Partition. It states that two recombinations, the rst of parent a
with a child c of a and b, and the second of parent b with the same child c,
cannot produce a common grandchild e other than c.

If any crossover operator fails to meet any of these properties, it is, by de-
nition, non-geometric.

In this paper, we use two recombination operators: one-point crossover (geo-
metric) and extension ray crossover (non-geometric). Among the (several) exist-
ing crossover operators, we decided to rely on these simple operators for pre-
senting the proposed self-adaptive approach. This choice mitigates the causal
relationship between the use of more complex types of crossover operators and
the results achieved in the experimental phase. One-point crossover [23] is a
mask-based crossover for binary strings that produces ospring in the segment
between the two parents. On the other hand, extension ray crossover [18] extends
the segment passing through both parents, thus producing ospring outside this
segment.

The other operator typically adopted in the GA framework is the mutation.
Anyway, we will not discuss its property in further detail, as the study of this
paper is focused on the crossover operator (we do not use the mutation in the
search process).
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2.2 Convex Combination, Convex Hull, and Convex Search

This section reports the concepts necessary to fully understand the role of geo-
metric and non-geometric operators in the search process and discusses diversity
maintenance strategies in convex search. A convex combination is a combination
of vectors where all coecients, their multiplicative factors, are non-negative and
sum up to 1. A set S closed under convex combinations is a convex set. In this
case, any a, b ∈ S implies ab ⊆ S. The convex hull of this set is the boundary of
its convex closure, also called a convex polytope.

Geometric crossover leads to convex outcomes and reduces the convex hull of
the present generation’s pairs of parents. In other words, the distance between
two children will be smaller than the one between their parents. Intuitively,
this formulates a concept of convex search given that executing selection and
crossover multiple times over any number of generations will lead to a search
space reduction [15]. Figure 1 illustrates a hypothetical spatial evolution from
one generation to the subsequent, showing the modication of the global convex
hull produced by the usage of selection and geometric crossover.

Fig. 1. Convex hull reduction through a generation. Gray dots are the vertex of the
polytope which represents the solution space. Red triangles are the individuals created
through geometric crossover. (Color gure online)

A fundamental problem researchers encounter while creating new search
strategies is the one of premature convergence. It exists where space exploration
leads to nal stages where neither the global optima nor acceptable local optima
are present or will be present because while diminishing the volume of the popula-
tion’s convex hull, these solutions are left out. Diversity maintenance strategies
often focus on creating or maintaining distance between members of the pop-
ulation, and they represent an attempt to counteract premature convergence.
However, these strategies will only have an eect relative to the continuous
volume-decreasing convex polytope. As a consequence, there will be diminishing
returns when it comes to these strategies. In particular, these methods (abstract-
ing from the vast number of dierent implementations) articially increase the
chances of future genetic material propagation of specic individuals in the name
of diversity. This is achieved by augmenting the tness of genotypically remote
individuals and/or by articially reducing the tness of genotypically close indi-
viduals in subpopulations. Phenotype-agnostic methods also exist, focusing only

4



on promoting or demoting certain individuals with the help of genotypic dis-
tances. Each method (or a combination of methods) leads to the same outcome
- the increase of targeted individuals’ probabilities regarding mating/survival
in the population. Cross-generational Probabilistic Survival Selection (CPSS)
reduction [20,21] and tness sharing [6] are examples of these strategies.

Examples of strategies that will disrupt this pattern of diminishing returns
include: 1) the spawning of new random solutions, as they have a non-zero proba-
bility of landing outside the global population’s convex hull, or 2) non-geometric
crossover since it is a local non-convex transformation with a non-zero probabil-
ity of creating ospring outside the global convex hull [9].

3 Related Works

Maintaining the diversity of individuals in the population received greater atten-
tion in recent years. In particular, a wide variety of methods to enhance diversity
have been developed, and for a detailed review of these techniques, the reader
can refer to [7]. In this section, we recall the most commonly-used methods,
including Diversity Control oriented Genetic Algorithm (DCGA) and the Self-
adaption Genetic Algorithm (SA). In the experimental phase, the performance
of these techniques will be compared against our proposed method to assess its
usefulness in improving the GA search process.

Fitness sharing is the most frequently used technique in literature. Here,
population diversity is maintained via introducing a diversity function, which
ensures the mitigation of unbridled head-to-head competition between widely
disparate points in the solution space [6]. Another popular method is determin-
istic crowding, where the diversity issue is solved by forcing every ospring to
compete with one of its parents and eventually replace it if the ospring is not
worse [5]. Most existing diversity-maintenance mechanisms – as the two examples
aforementioned – require problem-specic knowledge to set up specic parame-
ters properly. A clear example is DCGA [21]. In particular, in this method, the
selection criterion exploits the distance between a candidate individual and the
best-performance individual and uses it (based on a probabilistic function) to
produce a higher selection probability for a candidate solution with a larger dis-
tance. Hence, to ensure the eectiveness of the method, the probability function
must be dened properly.

In [10], authors proposed SA to control the diversity of the population with-
out explicit parameter setting. A self-adaptation mechanism is proposed: for
controlling diversity, two measures are introduced: the dierence function, which
computes the degree of dissimilarity, and the contribution, which monitors the
eect of the recombination.

4 Methodology

This section discusses the proposed method. Firstly, Sect. 4.1 provides details
on how to perform diversity maintenance dynamically. Subsequently, Sect. 4.2
provides an in-depth description of how to couple such dynamic diversity main-
tenance with a combination of geometric and non-geometric crossovers.
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4.1 Dynamic Diversity Maintenance

As stated above, one of the principal weaknesses of GA is the premature con-
vergence to a solution, sometimes causing the consequent stuck of the algorithm
in a local optimum. One of the recurrent ideas to overcome this issue is the
maintenance of a certain level of diversity among candidate solutions. This work
proposes a self-adaptation mechanism to control and guarantee diversity in the
population and, simultaneously, to avoid the time-consuming task of setting spe-
cic hyperparameters of the GA.

As proposed in [10], a successful diversity maintenance strategy consists of
looking at the population as a society divided in multiple groups. In this case,
a group is represented by candidate solutions that share similar chromosomes.
This approach promotes recombination between parents of dierent group and,
in the meantime, disincentives crossover among individuals belonging to the same
group. To formalize this concept, two quantities must be introduced: a preference
type, which aects the characteristics of diversity in mating, and contribution,
which measures the merit of each preference type. In this work, we rely on the
same idea to determine the most suitable crossover operator to be used in the
dierent generations of the search process.

Mating. The preference type τ is a parameter that indicates the preference of
an individual to recombine with another one based on their degree of diversity.
It is a positive quantity ranging between 0 ≤ τ ≤ τmax, where τmax is the
maximum preference type. Higher values of τ will lead, intuitively, to ospring
which dier from the parents, thus encouraging diversity among members of the
population.

τ is used to compute the dierence function D as follows:

D(τ, di) = 0.5 +
τ

τmax
(di − 0.5) (1)

where di is the dierence between the rst selected individual x1 and a can-
didate mate yi, calculated as follows:

di =
h(yi, x1)


(2)

where h is the Hamming distance between two individuals, and  is the length
of a chromosome.

At this point, we have all the ingredients to dene how the mating is per-
formed (i.e., for a maximization problem). Once the rst individual x1 is pro-
vided, then its recombination mate x2 is selected in the following way:

x2 = arg max
i∈st

[f(yi)D(τ, di)] (3)

where f is the tness function and st is the tournament size. Thus, a candidate
who has a higher value of D has more chance to be selected as the second parent.
Let us remark that when τ = 0, the probability of selection does not depend on
d, and the mating is just a tness-based selection.
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Diversity Control. Considering that the degree of diversity of the population
is controlled by the preference type, it is necessary to dene a procedure that
correctly updates the value of τ according to the population’s needs. The idea is
to associate a parameter at each possible value of τ , called contribution, which
quanties how solutions with a given preference type produce better quality
ospring. Contribution depends on t (the training epoch) and τ , and it is dened
as the ratio between successful and total crossover:

Contribution(τ, t) =
#SuccCross(τ, t)

#Cross(τ, t)
(4)

At generation t + 1, the probability of choosing τ will be equal to its con-
tribution at generation t. Thus, the more a preference type is associated with
the creation of good-quality individuals, the higher will be the probability for it
to be reused. In this work, we dened a crossover to be successful if produces
at least an ospring with tness equal to or better than both parents. This is
dierent with respect to the approach described in [10], where authors dened as
positive crossover a recombination in which the tness of the resulting ospring
is superior to the one of both the parents. In fact, in the (rare) scenario where
the ospring and its best parent share the same tness value and do not coincide,
the introduction of a new solution may produce a positive eect on the search
process. An example is the presence of a plateau – a part of the space in which
all points have the same tness score – in the tness landscape.

More precisely, the diversity control procedure works as follows:

1. Randomly generates the initial population of individuals and evaluates their
tness.

2. Initialize the contribution equally for each preference type.
3. Select an individual and its partner with the aforementioned mating proce-

dure. Recall that the probability of choosing τ is equal to its contribution.
4. Create two new individuals by crossover and evaluate their tness.
5. Repeat step 4 and 5 for the whole population.
6. Compare the tness of the ospring with the one of their parents. Update

the contribution values consequently.
7. Repeat step 3–6 until a termination criterion is satised.

In this work, to maintain all the preference type values throughout the search
process, we impose a minimum threshold of 10% for each contribution.

4.2 Self-adaptive Crossover

In Sect. 2.1, we introduced two dierent denitions for crossover:

– Geometric crossover, which, if employed alone, decreases the size of the pop-
ulation convex hull, thus being a diversity reducer.

– Non-geometric crossover, which has the ability to behave as a diversity
enhancer method.
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By applying the mating routine described in Sect. 4.1, our objective is to obtain
a method that allows us to self-adapt the choice of crossover operators in the
GA algorithm depending on the specic stage of the search process. The idea is
that most recombination will still be geometric, but occasionally non-geometric
crossover will be applied to avoid the situation of premature convergence where
the global optima may not be contained in the convex hull. Intuitively, this
combination can be described as a phenomenon of conspansion, i.e., material
contraction during space expansion. Contraction is a consequence of the geomet-
ric crossover, while expansion is a consequence of the non-geometric one.

As mentioned above, the procedure described in Sect. 4.1 can be adequately
modied for the selection of the most performing type of crossover. Specically,
non-geometric crossover will be chosen if the parent x1 has preference type
τ = τmax, otherwise geometric one will be used. In fact, a high preference type
indicates the need to augment the diversity in the population. Therefore, when
τ assumes the highest possible value, the crossover technique that is a diversity
enhancer must be selected.

To summarize, when the convex search starts leading to negative eects on
population phenotype, the contribution parameter values associated with prefer-
ence types related to geometric crossover start to decrease. Non-convex search,
as a consequence, will be selected with more probability, as the share of contribu-
tion of the preference type τmax (i.e., the one linked to non-geometric crossover)
will increase. On the other hand, if the non-geometric crossover causes a wors-
ening in the individuals’ tness, the geometric crossover will be preferred by
reducing non-geometric crossover contribution.

Let us emphasize the fact that the expansion of the global convex hull is
not ensured at each step. Firstly, as the choice of which crossover to use is
non-deterministic, it can simply not occur during a generation. Secondly – and
more important – the individuals produced by non-geometric crossover are not
necessarily outside the global convex hull.

We propose and investigate two variants for the self-adaptive crossover intro-
duced, namely P and P’.

P’
1. Tournament selection, size= 3
2. Eliminate tournament winner x1

from population
3. Dierence function tournament,

size=length of the population
4. Eliminate winner x2 from popula-

tion
5. Return children (y1, y2)

P

1. Tournament selection, size= 3
2. Dierence function tournament,

size= 3
3. Return children (y1, y2)

The main dierence between these two variants lies in the selection technique.
In particular, we want to study how dierent approaches in the choice of the
second parent aect the algorithm. In fact, once the rst parent x1 is xed, P
randomly selects only a limited set of candidates and computes the dierence
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function over this set. On the other hand, P’ computes the dierence function
for all the individuals of the population to nd the perfect t x2.

5 Experimental Settings

Table 1. Denitions and optimum values (minimum) of the CEC 2017 benchmark
functions.

No. Functions Opt.

Unimodal functions 1 Shifted and Rotated Bent Cigar 100

2 Shifted and Rotated Sum of Dierent Power 200

3 Shifted and Rotated Zakharov 300

Simple multimodal functions 4 Shifted and Rotated Rosenbrock 400

5 Shifted and Rotated Rastrigin 500

6 Shifted and Rotated Expanded Schaer F6 600

7 Shifted and Rotated Lunacek Bi-Rastrigin 700

8 Shifted and Rotated Non-Continuous Rastrigin 800

9 Shifted and Rotated Levy 900

10 Shifted and Rotated Schwefel 1000

Hybrid functions 11 Zakharov; Rosenbrock; Rastrigin 1100

12 High-conditioned Elliptic; Modied Schwefel; Bent

Cigar

1200

13 Bent Cigar; Rosenbrock; Lunacek bi-Rastrigin 1300

14 High-conditioned Elliptic; Ackley; Schaer F7;

Rastrigin

1400

15 Bent Cigar; HGBat; Rastrigin; Rosenbrock 1500

16 Expanded Schaer F6; HGBat; Rosenbrock;

Modied Schwefel

1600

17 Katsuura; Ackley; Expanded Griewank plus

Rosenbrock; Schwefel; Rastrigin

1700

18 High-conditioned Elliptic; Ackley; Rastrigin;

HGBat; Discus

1800

19 Bent Cigar; Rastrigin; Griewank plus Rosenbrock;

Weierstrass; Expanded Schaer F6

1900

20 HappyCat; Katsuura; Ackley; Rastrigin; Modied

Schwefel; Schaer F7

2000

Composition functions 21 Rosenbrock; High-conditioned Elliptic; Rastrigin 2100

22 Rastrigin; Griewank; Modied Schwefel 2200

23 Rosenbrock; Ackley; Modied Schwefel; Rastrigin 2300

24 Ackley; High-conditioned Elliptic; Griewank;

Rastrigin

2400

25 Rastrigin; HappyCat; Ackley; Discus; Rosenbrock 2500

26 Expanded Schaer F6; Modied Schwefel;

Griewank; Rosenbrock; Rastrigin

2600

27 HGBat; Rastrigin; Modied Schwefel; Bent Cigar;

High-conditioned Elliptic; Expanded Schaer F6

2700

28 Ackley; Griewank; Discus; Rosenbrock; HappyCat;

Expanded Schaer F6

2800

29 15; 16; 17 2900

30 15; 18; 19 3000
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The set of functions used, described in Table 1, is the CEC 2017 function suite [1]
for single-objective real-parameter numerical optimization. The suite is com-
posed of unimodal, multi-modal, hybrid, and composition functions that are
shifted, rotated, and non-separable. Their characteristics of noise and ruggedness
make them excellent candidates for studying the eectiveness of the proposed
approach, as they require dierent degrees of diversity in the population to be
solved eciently. The search space is [−100, 100]D. D = 10, 30 are investigated
in this experimental phase.

Table 2. Experimental settings. All the values of the hyperparameters coincide for
D = 10, 30, except for the length of the chromosome, which is 200 in the former case
and 600 in the second one.

Parameter Value

Population size 400

Length of chromosome {200,600} bits

Number of generation 200

Number of independent run 30

Crossover probability (Pc) 100%

Mutation rate (Pm) 0%

Tournament size 3

To assess the performance of the proposed method, we considered a GA
with a population size equal to 400 and a search process that runs for 200
generations. Thus, the total number of tness evaluations for each experiment
is equal to MaxFES = 80000, i.e., the product between these two quantities.
In this experimental phase, we decided to concentrate our attention only on
crossover operators, whereas mutation is not allowed, to fully understand how
the introduction of non-geometric crossover can impact the overall performance
of the algorithm. As the algorithm is stochastic, 30 runs have been performed
for each benchmark function. Further details concerning the implementation of
the GA are reported in Table 2.

The results obtained by the two variants P and P’ of the self-adaptive
crossover are compared with:

– The vanilla GA.
– Two variants of DCGA: DCGA1 and DCGA2. In particular, we considered

the following DCGA parameters [21] values: for DCGA1, c = 0.01, and a =
0.19, while for DCGA2, c = 0.234, a = 0.5.

– SA, the self-adaptive GA outlined in Sect. 4.1.

This is a relatively broad group of techniques as it considers vanilla GA, variants
of DCGA (which uses a static strategy to maintain diversity), and nally self-
adaptive algorithms: SA (where the crossover operator is xed) and P and P’
(where there is a choice between geometric and non-geometric operators).

Regarding the self-adaption mechanism, we use 4 – (τ ∈ 0, . . . , 3) – preference
levels both for SA, P, and P’ (Figs. 4 and 5).

10



Fig. 2. Median of the tness over the 30 independent runs for the considered benchmark
problems – D = 10.

6 Experimental Results

As stated in Sect. 4.2, the goal of this study is to compare the performance
of our algorithm against a wide range of well-known GA-based methods. The
experimental results, computed over 30 independent runs, are reported through
box-plot for D ∈ {10, 30} in Fig. 2 and Fig. 3. Experimental results show that
the proposed method generally outperforms the other competitors in the vast
majority of the benchmark functions. Specically, at least one algorithm between
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Fig. 3. Median of the tness over the 30 independent runs for the considered benchmark
problems – D = 30

P and P’ leads to an improvement of the tness in 25 functions of the 10-th
dimensional case and in 27 functions of the 30-th dimensional one. The tness
gap between our techniques and the other methods taken into account increases
together with the dimension of the problems, suggesting that our algorithm
is particularly suitable for solving challenging optimization problems in higher
dimensions. On the other hand, when the results of P and P’ are compared,
we obtain that for D = 10 P’ seems to achieve better tness values, while for
D = 30 the two methods show comparable performances.
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Fig. 4. P-values returned by the Mann-Whitney U test with the Bonferroni correction
for each of the 30 functions (D = 10). Green denotes a p-value for which the alternative
hypothesis cannot be rejected. Red denotes a p-value for which the null hypothesis (i.e.,
equal median) cannot be rejected. (Color gure online)

To investigate whether our method signicantly outperforms the others, the
Mann-Whitney U statistical test (computed considering a signicance level α =
0.05 and the Bonferroni correction [14]) results are displayed in Fig. 2 for D = 10,
and in Fig. 3 for D = 30. Based on these results, it is possible to conrm that the
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Fig. 5. P-values returned by the Mann-Whitney U test with the Bonferroni correction
for each of the 30 functions (D = 30). Green denotes a p-value for which the alternative
hypothesis cannot be rejected. Red denotes a p-value for which the null hypothesis (i.e.,
equal median) cannot be rejected. (Color gure online)

proposed technique can produce better performance with respect to the other
competitors – and with a statistical signicance – in the vast majority of the
considered benchmarks.
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Again, Mann-Whitney U statistical tests conrm that we obtain better results
in D = 30 w.r.t. D = 10, conrming the hypothesis that the proposed self-
adaptive method improves the search for the optimal value when the dimension –
and thus, the diculty of the problem – increases.

7 Conclusions

GAs are a popular technique in the EAs family. Despite their success in dif-
ferent domains, they suer from a premature convergence problem, where the
nal population’s convex hull might not include the global optimum. Popula-
tion diversity maintenance strategies are fundamental to counteract this prob-
lem, but the typical GA convex search still reduces the population’s convex
hull over the generations. Thus, the idea of this work is the denition of a self-
adaptive method for counteracting the reduction of the convex hull produced by
the application of geometric crossover and, at the same time, preserving popu-
lation diversity. The paper proposed a self-adaptive method for using geometric
and non-geometric crossover operators in dierent stages of the search process
based on the information provided by the current candidate solutions and accom-
modating the ever-evolving necessities of the underlying search space/problem
topology. To assess the performance of the proposed approach, an extensive
experimental phase was performed considering the CEC 2017 benchmark suite
and comparing our proposal against the vanilla GA and popular diversity main-
tenance techniques. Experimental results clearly show the superior performance
of the proposed method and the advantage provided by using both geometric
and non-geometric crossover in the search process. In the future, we plan to test
the proposed approach with dierent EAs and crossover operators.
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