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Abstract: Most collaborative robots (cobots) can be taught by hand guiding: essentially, by manually
jogging the robot, an operator teaches some configurations to be employed as via points. Based on
those via points, Cartesian end-effector trajectories such as straight lines, circular arcs or splines are
then constructed. Such methods can, in principle, be employed for cart-mounted cobots (i.e., when
the jogging involves one or two linear axes, besides the cobot axes). However, in some applications,
the sole imposition of via points in Cartesian space is not sufficient. On the contrary, albeit the overall
system is redundant, (i) the via points must be reached at the taught joint configurations, and (ii) the
undesirable singularity (and near-singularity) conditions must be avoided. The naive approach,
consisting of setting the cart trajectory beforehand (for instance, by imposing a linear-in-time motion
law that crosses the taught cart configurations), satisfies the first need, but does not guarantee
the satisfaction of the second. Here, we propose an approach consisting of (i) a novel strategy for
decoupling the planning of the cart trajectory and that of the robot joints, and (ii) a novel variational
technique for computing the former in a singularity-aware fashion, ensuring the avoidance of a class
of workspace singularity and near-singularity configurations.

Keywords: shoulder singularity; kinesthetic teaching; iterative methods; inverse kinematics; redundant
manipulators

1. Introduction

In addition to being able to operate side by side with humans, one of the remarkable
skills of collaborative robots (also known as cobots) is their ability to be programmed by
hand guiding.

Hand guiding is the process of making the robot compliant with external forces by
the human operator, thus setting the desired via points by manually moving the end-
effector into the corresponding poses [1]. Via points are employed to specify geometric
primitives, such as line segments, circular arcs or splines, that constitute the trajectories
to be executed by the robot. When compared to other robot teaching methods, such as
jogging through teach pendant, or offline programming, hand guiding is an easier and
faster procedure [2], and it is advantageous especially when production flexibility is a major
concern. There are several ways to refer to hand-guided programming; e.g., kinesthetic
teaching, manual guidance [3], force guidance [4], lead-through programming [5], or walk-
through programming [6]. In [7], a manual guidance approach is used in a human–robot
cooperative system, and is applied to the transportation and assembly of workpieces in
a production line. Ref. [8] proposes a precision hand-guiding approach of industrial
manipulators with obstacle avoidance capability. A sensorless hand-guiding method based
on torque control is designed, and tested on a 6 degrees of freedom (d.o.f.) manipulator,
in [9]. Ref. [10] describes a precision hand-guiding approach based on the end-effector
force/torque measurements, and a compensation of the tool weight/inertia.

Given the Cartesian space trajectories resulting from the hand guiding taught via
points, the next step is to achieve suitable joint trajectories as results of inverse kinematics
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(IK) [11,12]. In the case of 6 d.o.f. manipulators, or more precisely, when the robot has
the exact number of degrees of freedom required to accomplish a given task, there is
one-to-one matching between the end-effector pose and the joint angles (up to a finite
number of different configurations [13], of which, in the case of hand guiding, exactly one is
prescribed). However, in the case of redundant manipulators (which have more degrees of
freedom than those strictly required to execute the task) the same end-effector pose might
be reached by an infinite number of joint trajectories. A challenge, in this setting, is that
of choosing one among those joint trajectories, simultaneously exploiting the additional
degrees of freedom in order to accomplish secondary objectives, e.g., collision avoidance,
singularity avoidance, or satisfaction of joint constraints (see [14] for a thorough review of
the redundancy resolution methods). On the other hand, for some practical applications,
such as the one shown in Section 2, it is also necessary to avoid unpredictable configurations
at a taught end-effector pose. In other words, the redundancy resolution algorithm should
not lead to the desired Cartesian trajectory by means of joint configurations different from
the taught ones.

To the authors’ knowledge, in manual guidance applications, there is no general
approach to exploit the redundancy and ensure, at the same time, that the taught end-
effector poses are achieved at the taught joint configurations. Indeed, typically, hand-
guiding approaches are mainly focused on Cartesian trajectory tracking only [8,10,15–17].
A related, but different, concept is that of cyclicity, namely the property of obtaining
the same joint configurations when a certain task is repeatedly executed by a redundant
manipulator [18–22]. However, we deal with a stricter requirement: the joint configurations
must not only be the same when the task is repeatedly executed, but, in addition, the joint
trajectories must cross the taught configurations.

The contribution of the present paper is twofold: (1) we show that the kinematic
inversion of a particular redundant manipulator (specifically, a cobot mounted on a cart)
can be decoupled into the computation of a singularity-aware cart motion law, followed by
a standard kinematic inversion for the robot (the mentioned computation can ultimately
be reduced to a particular path planning problem); (2) we propose a variational approach
to compute the singularity-aware cart motion law. The proposed approach, which has
been validated in simulation, can be generalized to a more complex scenario, where more
than one linear axis is added to the overall kinematic chain. The problem considered
in the present paper has significant importance in the industrial practice. Indeed, in
flexible manufacturing systems, kinesthetic teaching is extremely useful, since it avoids
time-consuming offline programming that is not convenient for small-batch or even one-
of-a-kind production [23–25]. When employing kinesthetic teaching, the operator himself
takes into account several secondary (but important) tasks, e.g., obstacle avoidance, proper
approach to the workpiece, constraints due to cables and many more. Those constraints are
handled by a proper choice of the via points, under the implicit assumption that the via
point will be reached with a robot configuration which is the same configuration of the robot
at time of teaching that via point. However, when the overall system is redundant, such an
assumption does not hold any more, but the secondary tasks still need to be accomplished.
The present work addresses this problem, allowing the operator to rely on a one-to-one
correspondence between taught via points and joint configurations. The remainder of the
manuscript is organized as follows. Section 2 describes the problem addressed, and also
provides a useful formalism for the subsequent sections. In Section 3, the proposed solution
is formally presented. Section 4 shows numerical simulations of the proposed approach
performed on a 6 d.o.f. robotic arm mounted on a linear-axis cart. Finally, conclusions and
future works are discussed in Section 5.

2. Cart-Mounted Cobot, Redundancy and Shoulder Singularity

A motivating application for the present work is the robotic soldering of large work-
pieces. Hand guiding is particularly advantageous to this end, because it allows us to
program soldering trajectories (which are frequently composed of straight lines and/or
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circular arcs) with just a few manually taught points. This benefit is even more evident in
flexible production systems, in which small, or even unitary, lots of items are processed.
Clearly, the offline programming time–effort in this case is greater than the time taken by
the human operator to manually guide the robot.

In the following, we consider a 6 d.o.f manipulator mounted on a cart, such as the
one depicted in Figure 1. Hand-guiding programming can be employed on such a system,
provided that the jogging involves the cart as well.

Figure 1. Example of cart-mounted robot. The yellow cylinder represents the near-singularity volume
to be avoided by the end-effector (shoulder singularity).

The cart, besides extending the effective workspace of the manipulator (allowing us to
process larger workpieces), introduces an additional prismatic joint in the kinematic chain,
thus leading to an overall redundant robotic system. Such a redundancy raises two issues,
related to each other, namely (1) the actual joint configurations at the taught via points, and
(2) the shoulder singularity avoidance, hereafter described in detail.

2.1. Actual Joint Configurations

The taught via points must be reached at the corresponding taught joint configuration.
A practical reason for this requirement is the need to mix Cartesian and joint-space motions;
for instance, a taught configuration may be the starting configuration of a joint-space
motion primitive (such as a homing movement). However, when employing a standard
redundancy resolution algorithm [14], there is no guarantee that the actual taught joint
configuration will be reached.

A straightforward way to circumvent the problem is to set the cart trajectory before-
hand (for instance, by imposing a linear-in-time motion law that crosses the taught cart
configurations), thus losing a degree of freedom. The remaining 6 are then exploited,
via inverse kinematics, to get the desired end-effector motion. Since, in that case, the
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actual kinematic inversion operates on a non-redundant system, the unpredictable con-
figurations are avoided. Meanwhile, the ability of redundant robots to avoid the singu-
larity is lost. In particular, in the following, we focus our attention on avoiding shoulder
singularity conditions.

2.2. Shoulder Singularity Avoidance

As is well known, singularity is an essential problem related to the kinematics of
robotic arms [26–31]. Using q and p to denote the joints, and the end-effector pose variables,
respectively, the differential kinematics are described by

ṗ = J(q)q̇, (1)

where J(q) is the Jacobian matrix at configuration q. The configurations leading to rank
drops of J(q) are termed kinematic singularities. Such an algebraic characterization has
a physical counterpart: those configurations correspond to reduced mobility of the end-
effector, i.e., some operational space velocities ṗ cannot be achieved, no matter how the joint
velocity q̇ is chosen. Moreover, in the neighbourhood of a singularity, small velocities in
the operational space may lead to large velocities in the joint space. An in-depth treatment
of the subject is outside the scope of the present work (the reader is referred to Chapter 3
of [13]). Here, we only point out that (i) we are facing the shoulder singularity problem, which
is a particular kind of arm singularity [13] and, (ii) in the case of redundant manipulators,
several techniques exist [14] to exploit the redundancy in order to avoid the problems
caused by the kinematic singularities.

Shoulder singularity occurs when the wrist of a manipulator is located on the rotational
axis of the base [13] (i.e., the first joint), and may easily occur when the robot is mounted,
as in Figure 1, and the workpiece lies below the robot.

From a practical standpoint, not only singular, but also near-singular configurations
must be avoided, meaning that the robot flange must stay clear of the cylindrical avoidance
zone, highlighted in yellow in Figure 1. Hereinafter, we will refer to the above zone as the
non-admissible volume.

A possible approach to avoid singularities without relying on manipulator redundancy
is through variational path planning (VPP) [32], which consists of constructing a path
functional, and optimizing this functional over all possible paths using standard methods
of variational calculus.

2.3. Problem Statement

In the present paper, we face the following problem. Given a set of N taught
poses P =

{
p(1), p(2), . . . , p(N)

}
, and a set of corresponding joint configurations Q ={

q(1), q(2), . . . , q(N)
}

, both constructed during the hand-guiding procedure, the goal of
the sought redundancy resolution algorithm is to simultaneously fulfill the following
requirements:

• Obtain a prescribed motion (e.g., straight line or circular arc) when moving from p(j)

to p(j+1);
• Reach each p(j) ∈ P with the corresponding q(j) ∈ Q joint configuration ∀j ∈

{1, 2, . . . , N} (Section 2.1);
• Avoid (shoulder) singular and near-singular configurations (Section 2.2).

More specifically, let q(j) and q(j+1) be two subsequent taught configurations, corre-
sponding to the poses p(j) and p(j+1), respectively, and let p(t), with t ∈

[
tj, tj+1

]
, be the

desired motion law from the pose p(j) = p(tj) to the pose p(j+1) = p(tj+1). Denoting by



Robotics 2022, 11, 79 5 of 15

f (q) the forward kinematics function of the overall system, and assuming q(tj) = q(j), the
aim is to find a joint motion law q(t), such that:

• f (q(t)) = p(t) ∀t ∈
[
tj, tj+1

]
,

• q(tj+1) = q(j+1),

• singular and near-singular configurations are avoided.

(2)

The authors are not aware of current solutions to that problem. In the following
sections, two redundancy resolution schemes will be compared to the proposed approach,
to show that neither of the two is able to accomplish the goals expressed by (2).

3. Proposed Approach

Consider the cart-mounted manipulator depicted in Figure 1 (for the sake of illustra-
tion, we report an inverted-mounted robot, but the proposed approach is valid for any
other mounting choice).

We use q(t) = [q0(t) q1(t) . . . q6(t)]
> to denote the configuration of the overall system

at time t, where q0(t) is the cart position, while qk(t) and k = 1 . . . 6 are the joint angles of the
manipulator, at time t. Let the set C = C(q(t)) denote the non-admissible cylindrical volume
of radius rC , corresponding to the configuration q(t). Likewise, let the point P = P(q(t)) be
the origin of the flange reference frame. If the pose of the flange is represented by the tuple
(x, y, z, φ, θ, ψ) with respect to a certain fixed reference frame, then P will be represented
by (x, y, z) with respect to the same frame. Then, to avoid singularity, the condition to be
enforced (by a proper choice of q(t)) is:

P(q(t)) 6∈ C(q(t)), ∀t ∈
[
tj, tj+1

]
, (3)

where tj and tj+1 are the initial and the final time of the desired motion law, respectively.
However, according to the shoulder singularity condition described in Section 2.2, it is easy
to recognize that C depends on the cart position q0 only:

C = C(q0(t)),

while P is completely specified as a function of time:

P = P(t),

since it is nothing more than the translational part of the flange desired motion law. Then,
condition (3) becomes

P(t) 6∈ C(q0(t)) ∀t ∈
[
tj, tj+1

]
. (4)

As a consequence, setting q0(t), t ∈
[
tj, tj+1

]
(i.e., the cart motion law) beforehand, such

that (4) is satisfied, is sufficient to obtain a singularity-free trajectory.
We now introduce a fixed reference frame whose x-axis matches with the cart di-

rection axis. The z-axis is aligned with the axis of the first manipulator joint (i.e., the
non-admissible cylinder axes in Figure 1), and the y-axis is such that the overall reference
frame is right-handed.

We use (xP(t), yP(t)) to denote the coordinates of the projection of the flange Cartesian
point P(t) onto the plane x− y (i.e., the plane containing x and y), and by (xC(t) = q0(t), 0)
the coordinates of the cart in the same plane. Then, the singularity avoidance condition (4)
is equivalent to the imposition of (xP(t), yP(t)) outside the circle centered in (xC(t), 0) with
radius rC :

(xP(t)− xC(t))
2 + y2

P(t) > r2
C ∀t ∈

[
tj, tj+1

]
, (5)

For any fixed t̄ ∈
[
tj, tj+1

]
, and the corresponding (xP(t̄), yP(t̄)), the previous inequal-

ity is satisfied for
xC(t̄) ∈

[
−∞, λ−(t̄)

]
∪
[
λ+(t̄),+∞

]
,
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where λ−(t̄) and λ+(t̄) are the real roots of the polynomial:

λ2 − 2xP(t̄)λ + x2
P(t̄) + y2

P(t̄)− r2
C . (6)

If the roots are non-real, then the inequality is satisfied for all xC, i.e., for any cart position.
We assume that the desired Cartesian motion law p(t) is continuous (this is not a

restriction, since a basic requirement for a motion law is continuity with respect to time),
then (xP(t), yP(t)) is continuous as well; consequently, the coefficients of (6) are continuous
with respect to time. Thus, the roots λ−(t) and λ+(t) describe two continuous curves in t
that, in accordance with (6), define for each t a (possibly empty) non-admissible interval for
xC(t). Figure 2 reports an example of such curves and the resulting non-admissible region
(in light orange). Any cart motion law xC(t) from xC(tj) = q0(tj) to xC(tj+1) = q0(tj+1) that
does not intersect the non-admissible region, e.g., the green curve in Figure 2, guarantees
the satisfaction of (5). On the contrary, any cart motion law intersecting the non-admissible
region will result in a singular or near-singular configuration for some t (i.e., violation
of (5)); thus, it is itself non-admissible. The red straight line in Figure 2 (corresponding
to a linear-in-time motion of the cart from xC(tj) to xC(tj+1)) is an example of such non-
admissible motion laws.

xC(tj)

xC(tj+1)

λ+(t)

λ−(t)

t

x
C

Figure 2. Example of the non-admissible region (light orange) enclosed within the λ−(t) and the
λ+(t) curves. The green curve is an example of a cart motion law xC(t) that guarantees the satisfaction
of (5). The red curve is an example of a non-admissible cart motion law xC(t), since it violates (5).

The above considerations allow us to conclude that the singularity avoidance can be
achieved by establishing a proper motion law of the cart, which in turn amounts to finding
a curve from xC(tj) to xC(tj+1) that does not intersect with the non-admissible region.
Such a problem can be interpreted as constrained (the constraint is due to the fact that the
trajectory cannot go backward in time) path planning with obstacle avoidance, which can
be solved with many tools [33,34]. In the following, we employ a variational approach.

Specifically, we consider the following functional, which associates a non-negative
cost with each function xC(·) : [tj, tj+1] −→ R:

F(xC(·)) =
∫ tj+1

tj

H(xC(t))dt + α
∫ tj+1

tj

(
dxC(t)

dt

)2

dt, (7)



Robotics 2022, 11, 79 7 of 15

where H is a density function, and α > 0 is a parameter that weights the contribution of
the regularization term, which penalizes irregular motion laws. H is null in the admissible
region, and positive in the non-admissible region, increasing as the argument moves toward
the center of the region. Then, we formulate the following minimization problem:

x∗C(·) = arg min F(xC(·))
s.t. xC(tj) = q0(tj),

xC(tj+1) = q0(tj+1)

(8)

We solve a discretized version of (8) iteratively, starting from a linear-in-time initial
guess. The minimizer x∗C(·) is the sought cart motion law, provided that the first term of (7)
is null. In practice, the minimization problem does not need to be solved (i.e., it is not neces-

sary to reach a minimum), but it is sufficient to find a xC(·), such that
∫ tj+1

tj
H(xC(t))dt = 0.

In two cases, there is no admissible cart motion law. With reference to Figure 2,
the first (trivial) case occurs when xC(tj), and/or xC(tj+1), lie within the non-admissible
region. Clearly, in that case, any curve joining the points will intersect the non-admissible
region. The other case occurs whenever xC(tj) > λ+(tj), while xC(tj+1) < λ−(tj+1) (or
vice versa), and the polynomial (6) has real roots for all t ∈ [tj, tj+1]. Both situations can be
easily detected at time of formulating the discretized problem, but cannot be circumvented.
In both cases, indeed, the start and/or the final configuration are not compatible with
the desired motion law, meaning that the latter can only be achieved entering the non-
admissible region. In other words, the singularity or near/singularity is unavoidable.
Possible solutions are (1) Modifying the initial and/or final configuration; (2) Shrinking the
non-admissible volume. The former requires the operator’s intervention.

As soon as the cart motion law has been computed, a standard IK algorithm (the
resolved rate motion control [13]) is applied to a modified pose motion law p′(t), precisely:

p′(t) = translx(p(t),−xC(t)), ∀t ∈
[
tj, tj+1

]
, (9)

where translx(p, δ) operates a translation of the pose p of an amount δ along the x-axis.
Such a kinematic inversion operates on a fixed robot model, whose configuration is fully
specified by qk(t), k = 1, . . . , 6 (i.e., the cart is ignored); thus, there is no redundancy to
account for.

A neat overview of the steps to be performed in order to experimentally implement
the proposed approach can be found in Algorithm 1. In Algorithm 2, on the other hand,
we provide the operations flow to be performed in order to determine the optimal cart
motion law.

Algorithm 1 Variational approach description: the main steps.

Collect N end-effector poses p(1), p(2), . . . , p(N) and the corresponding joint configura-
tions q(1), q(2), . . . , q(N)

Set the end-effector motion law p(t)

Find the optimal cart motion law, minimizing Equation (10) . See Algorithm 2

Apply a standard IK algorithm to the motion law described by Equation (9)

Merge the cart motion law and the IK solution and apply it to the robot
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Algorithm 2 Find the optimal cart motion law.

Require:
• N end-effector poses p(1), p(2), . . . , p(N)

• the corresponding joint configurations q(1), q(2), . . . , q(N)

• the motion law p(t) , ∀t ∈
[
tj, tj+1

]
, from p(tj) = p(j) to p(tj+1) = p(j+1), with

j = 1, 2, . . . N − 1
• the non-admissible cylinder radius rC
• the discretization time step ∆

Ensure: the optimal cart motion law q0

q0 ← [ ] . cart motion as empty array
for j← 1 to N − 1 do

. project the poses pj , pj+1
P(tk) = (xP(tk) , yP(tk))← pk = (xk, yk, zk, φk, θk, ψk) , k = j , j + 1

. project the cart position
(xC(tk) , 0)← (q0(tk) , 0), k = j , j + 1

. check the solution feasibility at tj and tj+1
if ‖P(tj)−

(
xC(tj) , 0

)
‖ > rC ) and (‖P(tj+1)−

(
xC(tj+1) , 0

)
‖ > rC ) then

is f easible← true
else

is f easible← f alse
end if

if is f easible then
M = (tj+1 − tj)/∆j . discr. time instants in current interval

. minimize cost function Equation (10) in interval [tj , tj+1]

q(j)
0 ← arg min(10) . cart motion law in interval [tj , tj+1]

q0 ←
[
q0 q(j)

0

]
. collect cart motion law

else
throw a proper error message
break

end if
end for
return q0

3.1. On the Convergence to a Feasible Solution

As far as the convergence to a feasible solution is concerned, we point out that in its
discrete formulation (see Section 4), the algorithm is guaranteed to converge to a (possibly
local) minimum of the functional, but there is no guarantee that the minimum leads to

a feasible trajectory, since it may correspond to a
∫ tj+1

tj
H(xC(t))dt > 0. The parameter α,

and the shape of the non-admissible region in the plane (t, xC), determine the number
and the shape of the local minima of the functional. As a consequence, a crucial role is
played by the initial guess, which may lead to different local minima. In this respect, a
strategy that might be preferable to selecting a linear initial guess (which may cross the
non-admissible region) is that of choosing an admissible-by-construction, albeit possibly
irregular, trajectory using the functional F as a regularizer. The density can then be removed

from F, and
∫ tj+1

tj
H(xC(t))dt = 0 employed as a constraint.

A numerical example of such a strategy is reported in the next section.
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4. Simulations

The performed experiments have been deployed on an iMac Pro (2017) with
a 3.2 GHz Intel Xeon W 8-core processor and using Matlab 2021b, and consist of
moving the flange of a Universal Robots UR10 manipulator, which has 6 d.o.f.,
from pose p(1) = (0.2607, 0.1354, 1.4551, −2.6348, 0.7090, −0.1134) to pose p(N) =
(0.8531, −0.2549, 1.4551 − 0.1648, 0.7090, −0.1134) (the first three components of each
pose represent the coordinates x, y, and z in m, while the last three elements are the Eu-
ler angles in rad, expressing the following order of rotation: z-axis, y-axis, x-axis) along
a straight line, in which the cart moves from q(1)0 = 0.50 m to q(N)

0 = 0.75 m, and the

remaining joints from q(1)1:6 = [−1.235, −1.7272, 0.7000, −1.0000, 1.5951, −0.0311]rad to

q(N)
1:6 = [1.235, −1.7272, 0.7000, −1.0000, 1.5951, −0.0311]rad. The non-admissible cylin-

der has a radius rC = 200 mm.
The functional employed for testing the proposed variational approach is a discretized

version of (7):

F =
M

∑
i=1

H(xC(i)) + α
M−1

∑
i=1

(xC(i)− xC(i + 1))2, (10)

where M is the number of discrete time steps considered (for simplicity, applying a properly
chosen time discretization step ∆j to every time interval [tj , tj+1]), and α is the regulariza-
tion weight. For the trajectory reported in Figure 3 , lasting 200 s, N was chosen to be 5068,
and α was set equal to 0.01.

50 100 150 200

200

400

600

800

t [sec]

x
C

Figure 3. Cart trajectories attempts along x-axes with respect to the singularity area (light orange) in
variational approach. The thicker orange line is the trajectory solution of the minimization problem (8).
The blue straight line represents the initial guess of (8).

The density H increases linearly from 0 to 1 when moving toward the center of the
non-admissible interval [λ−(i), λ+(i)], as shown in Figure 4.
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λ−(i) λ+(i)

1

xC

H
(x

C
)

Figure 4. Density H as a function of the cart coordinate.

The minimization is performed iteratively, in a gradient descent fashion, starting
from a linear-in-time (non-admissible) initial guess, represented in blue in Figure 3. In
the same figure, some other intermediate candidate solutions are represented. The entire
minimization procedure requires 53,707 iterations, and lasts ∼7.95 s to find the optimal
solution on the previously defined hardware and software. The resulting cart motion law
is represented in Figure 5a.

The proposed approach is compared with two other techniques.
The first one is the trivial approach consisting of attributing an arbitrary motion law to

the cart, from q0(tj) to q0(tj+1), followed by IK applied to the modified pose motion law (9).
In particular, we choose a linear-in-time motion, represented in Figure 5b, and we will refer
to it as a linear approach. Such a method does not guarantee the avoidance of singular and
near-singular configurations, as it is clear from Figure 5b, where the cart trajectory crosses
the non-admissible region.

The second technique is a well-known redundancy resolution scheme [14] that exploits
redundancy to locally maximize an objective function w(q). Henceforth, we will refer
to it as the redundant approach. Omitting the time dependency for easy notation, with
J(q) ∈ R7×6 denoting the Jacobian at configuration q, and J†(q) denoting its pseudo-inverse,
the redundancy resolution scheme is:

q̇ = J†(q) ṗ +
[

I − J†(q)J(q)
](∂w(q)

∂q

)>
, (11)

where the operator
[
I − J†(q)J(q)

]
projects the gradient of w(q) onto the null space of the

Jacobian (thus, it does not affect the task). We implemented a discretized version of (11) [35],
and employed the following objective function:

w(q) = −1
2

6

∑
k=0

(
qk − qk,mid

qk,max − qk,min

)2
, (12)

corresponding to the requirement of keeping each joint angle qk close to the mid value of
a certain range [qk,min, qk,max]. Indirectly, such an objective function enforces singularity
avoidance, since the chosen ranges are such that mid values are well away from the singular
and near-singular configurations. This is apparent from Figure 5c, where the cart trajectory
does not intersect the non-admissible region.
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Figure 5. Cart motion as a function of time (dark orange) with respect to the singularity area (light
orange) in all the approaches that have been compared. Both the variational and the redundant
approach exhibit effective behavior in addressing the singularity avoidance problem presented in
Section 2.2.

In the performed experiment, we consider qmin = [0, −2π, −2π, −2π, −2π, −2π, −2π],
and qmax = [1, 2π, 2π, 2π, 2π, 2π, 2π].

In Figures 6–8, we can observe the joints trajectories achieved using each of the three
compared approaches against their respective target values (dashed lines).

0 40 80 120 160 200

−1 000

−500

0

500

t [sec]

q i
(t
)

linear

Figure 6. Joint references (dashed), and joint trajectories in time resulting from linear approach. Each
colour is related to a specific joint qi i ∈ {0, . . . , 6}. The revolute joints are expressed in rad, while the
cart displacement joint is expressed in m.

In the linear case (Figure 6), we can observe unacceptable joint behavior due to the
crossing of the non-admissible volume, as previously shown in Figure 5b. These results
highlight the inefficacy of the linear method in addressing the two problems presented in
Sections 2.1 and 2.2.
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Figure 7. Joint references (dashed), and joint trajectories in time resulting from redundancy approach.
Each color is related to a specific joint qi i ∈ {0, . . . , 6}. The revolute joints are expressed in rad, while
the cart displacement joint is expressed in m.
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Figure 8. Joint references (dashed), and joint trajectories in time resulting from variational approach.
Each color is related to a specific joint qi i ∈ {0, . . . , 6}. The revolute joints are expressed in rad, while
the cart displacement joint is expressed in m.

In the redundant case, despite being able to keep the cart outside the singularity zone
(Figure 5c), the desired joint values are not reached, as clearly shown in Figure 7. Therefore,
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even if the redundant approach allows us to address the problem stated in Section 2.2, it
fails the challenge outlined in Section 2.1.

The proposed variational approach, in contrast with the other two approaches above,
is effective at both avoiding shoulder singularity (Figure 5c) and reaching target joints
(Figure 8).

Finally, in Figure 9, we report the candidate solutions at different iterations when
employing the strategy mentioned in Section 3.1, i.e., starting from an admissible-by-
construction initial guess. Specifically, the initial guess is discontinuous motion, in which
the cart moves in one step from its initial position to the maximum of the allowed range
(1000 mm), and at the end goes back to the final value in a single step. Clearly, such a
motion law is unacceptable, but the functional acts a regularized and the final solution is
the same as before.

50 100 150 200

200

400

600

800

1 000

t [sec]

x
C

Figure 9. Cart trajectories attempts along x-axes with respect to the singularity area (light orange)
in variational approach with admissible initial guess in (8). The thicker orange line is the trajectory
solution of the minimization problem (8).

5. Conclusions

We have described how to generate joint trajectories for a hand-guided cobot mounted
on a cart, guaranteeing singularity avoidance, whilst imposing the joint configurations at
the taught via points. The proposed method allows decoupling of the kinematic inversion
of the manipulator mounted on a cart into the computation of a singularity-aware cart
motion law, and a standard kinematic inversion for the robot. As an application example,
we considered a 6 d.o.f. manipulator mounted on a cart, capable of straight-line movements.
Comparing the results with those of a classic technique for redundant robots, we have
shown the effectiveness of the proposal on the imposition of the joint configurations at
the taught via points. The approach can be applied to any manipulator affected by the
shoulder singularity; in particular, to any anthropomorphic manipulator. Moreover, it
can be easily extended to configurations involving two linear axes besides the cobot axes,
allowing for planar cart movements. Apart from being tailored to a very specific (albeit
significant) problem, the main limitation of the proposed method is that it lacks a theoretical
guarantee of the admissibility of the optimal solution, since the constraints are incorporated
in the cost. However, as explained in Section 3.1, the limitation can be circumvented by
employing admissible-by-construction initial guesses. The potential of using a combination
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of prismatic joints, as additional d.o.f. for a manipulator, in coping with a broader class of
singularity and near-singularity configurations will be the object of further investigation.
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23. Simonič, M.; Petrič, T.; Ude, A.; Nemec, B. Analysis of methods for incremental policy refinement by kinesthetic guidance. J.
Intell. Robot. Syst. 2021, 102, 5. [CrossRef]

24. Dean-Leon, E.; Ramirez-Amaro, K.; Bergner, F.; Dianov, I.; Lanillos, P.; Cheng, G. Robotic technologies for fast deployment of
industrial robot systems. In Proceedings of the IECON 2016–42nd Annual Conference of the IEEE Industrial Electronics Society,
Florence, Italy, 24–27 October 2016; pp. 6900–6907. doi: 10.1109/IECON.2016.7793823. [CrossRef]

25. Li, P.; Jiang, P.; Zhang, G. An enhanced DMAIC method for feature-driven continuous quality improvement for multi-stage
machining processes in one-of-a-kind and small-batch production. IEEE Access 2019, 7, 32492–32503. [CrossRef]

26. Bedrossian, N.; Flueckiger, K. Characterizing spatial redundant manipulator singularities. In Proceedings of the ICRA,
Sacramento, CA, USA, 9–11 April 1991; pp. 714–719.

27. Burdick, J.W. On the inverse kinematics of redundant manipulators: Characterization of the self-motion manifolds. In Advanced
Robotics: 1989; Springer: Berlin/Heidelberg, Germany, 1989; pp. 25–34.

28. Shamir, T. The singularities of redundant robot arms. Int. J. Robot. Res. 1990, 9, 113–121. [CrossRef]
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