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Abstract. We study two classes of quantum spheres and hyperboloids,
one class consisting of homogeneous spaces, which are ∗-quantum spaces
for the quantum orthogonal group O(SOq(3)). We construct line bundles
over the quantum homogeneous space associated with the quantum sub-
group SO(2) of SOq(3). The line bundles are associated to the quantum
principal bundle via representations of SO(2) and are described dually
by finitely-generated projective modules En of rank 1 and of degree com-
puted to be an even integer −2n. The corresponding idempotents, that
represent classes in the K-theory of the base space, are explicitly worked
out and are paired with two suitable Fredhom modules that compute
the rank and the degree of the bundles. For q real, we show how to di-
agonalise the action (on the base space algebra) of the Casimir operator
of the Hopf algebra Uq1/2(sl2) which is dual to O(SOq(3)).
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1. Introduction

The study of integer quantum Hall effect systems on a plane, a sphere or a
hyperboloid is treated in a unified way by group-theoretical methods related
to the symmetry group of the corresponding configuration space [12]. This
leads to the study of gauged Laplacians on line bundles over the corresponding
space, the gauging coming from a connection on the bundle. It is natural to
look for models of Hall systems on noncommutative spaces. These models
will enjoy symmetries coming from quantum groups and lead to potentially
interesting mathematical/physics models. Motivated by this, in the present
paper we consider two classes of quantum spheres and quantum hyperboloids
with quantum symmetry given by the quantum orthogonal group SOq(3).

In the approach of [7], the quantized algebra of functions O(SOq(N))
on the quantum orthogonal group SOq(N) in any dimension is given as an
algebra generated by N2 elements subject to commutation relations that
depend on the entries of a matrix R which is a solution of the quantum
Yang–Baxter equation. The matrix R decomposes in terms of projections
and, as we shall see in Sect. 4, this allows one to introduce quantum spaces
carrying natural coactions of the Hopf algebra O(SOq(N)).

When restricting to O(SOq(3)), a first class of quantum spheres and hy-
perboloids is obtained as real forms of the quantum vector spaces of O(SOq(3))
associated with the q-symmetrizer projection P− in the decomposition of the
R-matrix alluded to before. The nature of the quantum space is determined
by the ∗-structure: for q ∈ R one gets a sphere — the equatorial Podleś
sphere, while for |q| = 1 an hyperboloid.

A second class, described in Sect. 5, is given by quantum homogeneous
SOq(3)-spaces arising from the coaction of the quantum subgroup SO(2) of
SOq(3) on the latter. Again, the ∗-structure discriminates between a quan-
tum 2-sphere — now the standard Podleś sphere, and an hyperboloid. In both
cases the quantum homogenous space is explicitly determined as the subal-
gebra B of coinvariants of O(SOq(3)) for the right coaction of O(SO(2)).
This also makes use of the identification of SLs(2), for s = q

1
2 , as the ‘double

covering’ of SOq(3), that is of the existence of a Hopf algebra isomorphism
between the coordinate algebra O(SOq(3)) and the subalgebra of O(SLs(2))
made of invariant elements for the action of the group Z2 (see Sect. 3.3). The
algebra extension B ⊂ O(SOq(3)) is shown to be an SO(2) quantum princi-
pal bundle (an O(SO(2))-Galois extension). This quantum principal bundle
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has associated (modules of sections of) line bundles coming from the repre-
sentations of SO(2). The modules are given by finitely-generated projective
modules En of rank 1 and degree an even integer −2n. The corresponding
idempotents pn ∈ Mat|2n|+1(B), describing classes in the K-theory of the
algebra B, are explicitly worked out. These idempotents are different from
those usually used for the Podleś sphere, a fact that reflects in a simpler
recursion formula for their trace and thus for an easier computation of their
degree (Proposition 5.3).

For the study of Laplacian operators on the two ∗-quantum homoge-
neous spaces of O(SOq(3)) and of ‘gauged’ Laplacian operators on bundles
over them (in the line of [9]), the last section of the paper is dedicated to the
study of the quantum Casimir element of Uq1/2(sl2), the Hopf algebra dual
to the Hopf algebra O(SOq(3)). For q real, the Casimir operator, which acts
on the left on the algebra B and on modules of sections of lines bundles over
the latter, is diagonalised via the commuting right action of Uq1/2(sl2).

2. The Quantum Special Orthogonal Groups SOq(N)

We recall the construction of the coordinate algebra O(Oq(N)) of the quan-
tum orthogonal group Oq(N); see e.g. [8, §9.3]. Let q ∈ C, q �= 0, fixed. Let
N be an integer. For each index i = 1, . . . , N , let i′ = N + 1 − i and define
ρi = N

2 − i if i < i′, with ρi′ = −ρi and ρi = 0 if i = i′. For all indices
i, j,m, n = 1, . . . , N we define complex numbers

Rij
mn = qδij−δij′ δimδjn + (q − q−1)θ(i − m)(δjmδin − q−ρj−ρmδij′δnm′)

(2.1)

where θ is the Heaviside function, whose value is one for strictly positive
argument and zero otherwise. One considers the free algebra C〈uij〉 gener-
ated over C by N2 elements uij , i, j = 1, . . . , N , modulo the two-sided ideal
generated by elements

∑

k,l

(
Rji

klukmuln − uikujlR
lk
mn

)
, i, j,m, n = 1, . . . , N. (2.2)

Explicitly, the quotient algebra is generated by elements uij subject to rela-
tions

qδij−δij′ ujmuin = qδmn−δmn′ uinujm + λ (θ(n − m) − θ(j − i)) uimujn

+λδij′
∑

k

θ(j − k)q−ρi−ρkukmuk′n

−λδnm′
∑

k

θ(k − m)q−ρm−ρk′ uik′ujk , (2.3)

where we set λ := q − q−1. In concise matrix notations, it is the algebra
generated by the entries of the N × N matrix u = (uij) with relations

Ru1u2 = u2u1R , (2.4)

for R the N2 × N2 matrix of entries R = (Rij
mn) (where i,m are respectively

the row and column block indices, and j, n are respectively the row and
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column index inside each block) and u1 = u ⊗ I, u2 = I ⊗ u with I the unit
matrix.

The algebra O(Oq(N)) is obtained by requiring the generators uij to
satisfy the additional orthogonality (metric) condition

uCutC = I = CutCu , (2.5)

for ut the transpose of u and C = C−1 the invertible matrix of entries
Ckj = δkj′q−ρk . In the classical limit q = 1, the condition (2.5) is the metric
condition defining orthogonal matrices. The condition (2.5) corresponds to
one single additional relation Qq − 1 = 0 (see [8, page 319]), where Qq can
equivalently be expressed in terms of any index j as

Qq =
∑

k

Cj′jCkk′ukjuk′j′ =
∑

k

Cj′jCkk′ujkuj′k′ . (2.6)

The algebra O(Oq(N)) is a Hopf algebra with coproduct Δ, counit ε
and antipode S given on generators respectively by

Δ(ukj) =
∑

m

ukm ⊗ umj , ε(ukj) = δij , S(ukj) = qρj−ρkuj′k′ (2.7)

or in matrix notation Δ(u) = u⊗u, ε(u) = I, S(u) = CutC. The Hopf algebra
O(Oq(N)) is the coordinate algebra of the quantum orthogonal group Oq(N);
in the limit q = 1 it is the coordinate algebra of the complex Lie group O(N).

For N = 2 the construction above results into the (commutative) coor-
dinate Hopf algebra O(O(2)) of the classical group O(2).

2.1. Real Forms

The algebra O(Oq(N)) of the quantum orthogonal group admits different
∗-structures ∗ : O(Oq(N)) → O(Oq(N)), leading to different real forms (see
[8, §9.3.5]). For the present paper we consider the following two choices.

For q ∈ R, define

(ujk)∗ := S(ukj) = qρj−ρkuj′k′ . (2.8)

Then the defining matrix u is unitary, uu† = I = u†u, with (u†)kj = (ujk)∗ =
S(ukj). The resulting Hopf ∗-algebra is the coordinate algebra O(Oq(N,R))
of the compact quantum group Oq(N,R).

For |q| = 1, define

(ujk)∗ := ujk. (2.9)

The resulting Hopf ∗-algebra is the coordinate algebra O(Oq(n, n,R))
of the real quantum group Oq(n, n,R) for N = 2n even, or O(Oq(n, n+1,R))
of the real quantum group Oq(n, n + 1,R) for N = 2n + 1 odd.

The two ∗-structures above correspond respectively to the classical real
groups O(N,R) and O(n, n,R) or O(n, n + 1,R).

The notation before will be used throughout the paper. So we stress
that Oq(N) denotes the complex quantum orthogonal group while Oq(N,R)
and Oq(n, n,R) for N = 2n, or Oq(n, n + 1,R) for N = 2n + 1, are the real
versions.
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2.2. Quantum Spaces and Exterior Algebras

We recall from [7] (see also [8, §8.4.3, §9.3.2]) that the matrix R satisfies a
cubic equation,

(R̂ − qI)(R̂ + q−1I)(R̂ − q1−N I) = 0

in terms of the matrix R̂ = (R̂kj
mn) := (Rjk

mn). Moreover for N > 2, and
assuming (1 + q2)(1 + q2−N )(1 − q−N ) �= 0 (a condition that in particular
excludes q = ±1), the matrix R̂ can be decomposed as

R̂ = qP+ − q−1P− + q1−NP0 , (2.10)

with Pα, α = ±, 0 mutually orthogonal idempotents: P 2
α = Pα, and PαPβ = 0,

for α �= β. In the decomposition (2.10), the matrix P− is the q-symmetrizer
matrix on C

N × C
N

P− =
R̂2 − (q + q1−N )R̂ + q−N+2 I

q−2(1 + q2)(1 + q2−N )
.

This defines the quantum space

V = C
N
q := C〈zm〉/〈P−z1z2〉 (2.11)

as the quotient of the free algebra C〈zm〉 with generators zm, m = 1, . . . N ,
by the two sided ideal generated by relations P−z1z2, with z1 = z ⊗ I and
with z2 = I ⊗ z and z = (zm).

The idempotents P+ and P0 are given by

P+ =
R̂2 − (q1−N − q−1)R̂ − q−N I

(1 + q2)(1 − q−N )
, P0 =

R̂2 − (q − q−1)R̂ − I
(q−N − 1)(1 + q2−N )

and are used to define a quantized exterior algebra

Λq(V ) := C〈em〉/〈P+e1e2, P0 e1e2〉 (2.12)

with generators em, m = 1, . . . N and notation as before.
Both V and Λq(V ) carry a left coaction of O(Oq(N)) given by the

algebra morphisms

zj 
→
∑

k

ujk ⊗ zk , ej 
→
∑

k

ujk ⊗ ek.

The subspace of Λq(V ) made of degree N polynomials is one-dimensional and
thus there is a unique element Dq(u) ∈ O(Oq(N)) such that the coaction is
given by ξ 
→ Dq(u) ⊗ ξ on elements ξ in Λq(V ) of degree N . The element
Dq(u) is called the quantum determinant of the matrix u. It is shown to
belong to the centre of the algebra O(Oq(N)) and to be group-like, that is
Δ(Dq(u)) = Dq(u) ⊗ Dq(u) and ε(Dq(u)) = 1.

The two-sided ideal generated by Dq(u)−1 is a Hopf ideal of O(Oq(N))
and the quotient Hopf algebra O(Oq(N))/〈Dq(u)− 1〉 is the coordinate alge-
bra O(SOq(N)) of the special orthogonal quantum group SOq(N).
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3. The Quantum Orthogonal Group SOq(3)

We specialize the above to the case N = 3. For each index i = 1, 2, 3, one has
i′ = 4 − i so that 1′ = 3, 2′ = 2 and ρ1 = 1

2 , ρ2 = 0 , ρ3 = − 1
2 . The matrix

R = (Rkj
mn) is the lower-triangular matrix

R =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q
0 1
0 0 q−1

0 λ 0 1
0 0 −q

1
2 λ 0 1

0 0 0 0 0 1
0 −q

1
2 λ 0 q−1

0 0 λ 0 1
0 0 0 0 0 q

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.1)

(where λ = q − q−1 as before) with non-zero entries

R11
11 = R33

33 = q R13
13 = R31

31 = q−1 R22
22 = 1 R12

12 = R21
21 = R23

23 = R32
32 = 1

R21
12 = λ R22

13 = −q
1
2 λ R32

23 = λ R31
22 = −q

1
2 λ.

According to the general theory, the Hopf algebra O(Oq(3)) is the free
algebra generated by elements uij , i, j = 1, 2, 3 modulo the ideal 〈Ru1u2 −
u2u1R ; uCutC − I , CutCu = I〉 giving relations (2.2) and (2.5) in the
quotient. In matrix form the antipode is

u = (uij) 
→ S(u) = CutC =

⎛

⎝
u33 q− 1

2 u23 q−1u13

q
1
2 u32 u22 q− 1

2 u12

q u31 q
1
2 u21 u11

⎞

⎠ .

3.1. The Quantum Determinant

From the decomposition (2.10) of the matrix in (3.1), one gets a quantum
space V = C

3
q, and an exterior algebra Λq(V ), both carrying a right coaction

of O(Oq(3)). We will return to C
3
q in Sect. 4 below. Here we consider the

exterior algebra Λq(V ) in (2.12), which allows one to define the quantum
determinant Dq(u).

The graded algebra Λq(V ) is generated in degree one by elements e1, e2, e3

with relations

(e1)2 = 0 , (e3)2 = 0 , (e2)2 = (q
1
2 − q− 1

2 )e1e3 ,
e3e2 = −qe2e3 , e3e1 = −e1e3 , e2e1 = −qe1e2 ,

and coaction of O(Oq(3)) given by ρ : ej 
→ ∑
k ujk ⊗ ek on the generators

and extended to the whole Λq(V ) as an algebra map. From the commutation
relations (3.2) it follows that in degree three all elements are proportional:

ekemen = εkmn w for (say) w := e1e2e3, ∀k, l,m = 1, 2, 3.

The only non zero components of the tensor ε are found to be

ε123 = 1 , ε132 = −q , ε213 = −q , ε231 = q ,

ε312 = q , ε321 = −q2 , ε222 = −q(q
1
2 − q− 1

2 ) . (3.2)
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Hence there exists a unique element Dq(u) ∈ O(Oq(3)) such that ρ(ξ) =
Dq(u) ⊗ ξ for each ξ monomial in Λq(V ) of degree three. For ξ = w =
e1e2e3 one obtains the following explicit formula for the quantum determinant
Dq(u):

Dq(u) = u11u22u33 − qu12u21u33 − qu11u23u32 + qu12u23u31

+qu13u21u32 − q2u13u22u31 − q(q
1
2 − q− 1

2 )u12u22u32 . (3.3)

The quotient Hopf algebra O(Oq(3))/〈Dq(u) − 1〉 is the coordinate algebra
O(SOq(3)) of the special orthogonal quantum group SOq(3).

The determinant Dq(u) admits different equivalent expressions as a de-
gree three polynomial on the generators ujk of O(Oq(3)): for each triple of
indices a, b, c = 1, 2, 3 such that εabc �= 0, being ρ : ej 
→ ∑

k ujk ⊗ ek, one
computes

ρ(eaebec) =
∑

m,n,p

uamubnucp ⊗ emenep =
∑

m,n,p

uamubnucp ⊗ εmnpw

and therefore,

Dq(u) =
∑

m

uamûma , with ûma := ε−1
abc

∑

n,p

εmnpubnucp . (3.4)

We refer to this formula Dq(u) =
∑

m uamûma as the expansion of Dq(u) with
respect to the a-row and we call the element ûma the cofactor of uma and
cof(u) := tû the matrix of cofactors. Notice that each cofactor ûma admits
more than one expression, one for each possible choice of indices b, c such
that εabc �= 0: for each m = 1, 2, 3 one computes

ûm1 =
∑

n,p

εmnpu2nu3p = −q−1
∑

n,p

εmnpu3nu2p

ûm2 = −q−1
∑

n,p

εmnpu1nu3p = q−1
∑

n,p

εmnpu3nu1p

= −q−1(q
1
2 − q− 1

2 )−1
∑

n,p

εmnpu2nu2p

ûm3 = q−1
∑

n,p

εmnpu1nu2p = −q−2
∑

n,p

εmnpu2nu1p .

We explicitly list all of them in Appendix C.
The matrix û of cofactors can be identified with the antipode matrix.

For this we need the following result for which we use explicit commutation
relations of the type (2.3) with the matrix (3.1) as well as the orthogonality
conditions.

Proposition 3.1. Let û = (ûjk)j,k=1,2,3 be the transpose of the matrix of co-
factors, ûma = cof(u)am. Then uû = Dq(u)I.

Proof. The lengthy proof is in Appendix A. �

As a direct consequence of this proposition (and of the uniqueness of the
antipode), in the quotient algebra O(SOq(3)) = O(Oq(3))/〈Dq(u) − 1〉 we
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can then identify the matrix û = (ûjk)j,k=1,2,3 of cofactors with the antipode
matrix:

S(u) =

⎛

⎝
u33 q− 1

2 u23 q−1u13

q
1
2 u32 u22 q− 1

2 u12

q u31 q
1
2 u21 u11

⎞

⎠ = S(u)uû = û = tcof(u) . (3.5)

In particular, for later use in the study of coinvariant elements in Sect. 5
below, we observe we have the following identification among elements of the
second column of the matrix u (or second raw of the matrix S(u)) and the
corresponding cofactors:

q− 1
2 u12 = −u11u23 + u13u21 − (q

1
2 − q− 1

2 )u12u22

= q−1u21u13 − q−1u23u11 + q−1(q
1
2 − q− 1

2 )u22u12

u22 = u11u33 − u13u31 + (q
1
2 − q− 1

2 )u12u32

= −u31u13 + u33u11 − (q
1
2 − q− 1

2 )u32u12

= (q
1
2 − q− 1

2 )−1(u21u23 − u23u21 + (q
1
2 − q− 1

2 )u22u22)

q
1
2 u32 = −qu21u33 + qu23u31 − q(q

1
2 − q− 1

2 )u22u32

= u31u23 − u33u21 + (q
1
2 − q− 1

2 )u32u22 . (3.6)

3.2. Two Real Forms of SOq(3)
As already mentioned above for general N , the Hopf algebra O(Oq(3)) can
be equipped with different real structures (2.8) or (2.9), depending on the
deformation parameter q:

(ujk)∗ = S(ukj) = qρj−ρkuj′k′ for q ∈ R (3.7)
(ujk)∗ = ujk for |q| = 1 . (3.8)

These lead to the Hopf ∗-algebras O(Oq(3,R)) for q ∈ R and O(Oq(1, 2,R))
for |q| = 1. These correspond to the classical real groups O(3,R) and O(1, 2,R).

Moreover, by direct verification, it is easy to check the following.

Lemma 3.2. The exterior algebra Λq(V ) in (3.2) is a ∗-algebra with involution
∗ : Λq(V ) → Λq(V ) defined on generators ek, k = 1, 2, 3 by

e∗
k = qρkek′ for q ∈ R (3.9)

e∗
k = ek for |q| = 1 . (3.10)

Then, for q ∈ R, respectively |q| = 1, the coaction ρ : Λq(V ) → O(Oq(3)) ⊗
Λq(V ), ek 
→ ∑

j ukj ⊗ ej is a ∗-map with respect to the ∗-structures on
O(Oq(3)) defined in (3.7), respectively (3.8).

Lemma 3.3. For q ∈ R, respectively |q| = 1, the quantum determinant Dq(u)
in (3.3) is real with respect to the ∗-structures on O(Oq(3)) defined in (3.7),
respectively (3.8).

Proof. For each three-form ξ ∈ Λq(V ), from ρ(ξ) = Dq(u)⊗ ξ, it follows that
Dq(u)∗ ⊗ ξ∗ = ρ(ξ)∗ = ρ(ξ∗) = Dq(u) ⊗ ξ∗ and thus the quantum determi-
nant is real: Dq(u)∗ = Dq(u). (Alternatively, the Lemma can be proved by
comparing Dq(u)∗ computed from (3.3) with the formula for Dq(u) given by
expanding it with respect to the third row.) �
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It follows that 〈Dq(u) − 1〉 is a ∗-ideal. For q ∈ R, we denote by
O(SOq(3,R)) the quotient Hopf ∗-algebra O(Oq(3,R))/〈Dq(u) − 1〉 with ∗-
structure inherited from that of O(Oq(3,R)) in (3.7). While we denote by
O(SOq(1, 2,R)) the quotient Hopf ∗-algebra O(Oq(1, 2,R))/〈Dq(u)−1〉 with
∗-structure inherited from that of O(Oq(1, 2,R)) in (3.8).

3.3. The Double Covering of SOq(3)
Classically, the complex Lie group SL(2) is a double covering of SO(3). The
quantum analogue of this fact was proven in [4] where it was shown the
existence of a Hopf algebra isomorphism between the coordinate algebra
O(SOq(3)) and the subalgebra O(SLs(2))Z2 of O(SLs(2)), s = q

1
2 , made

of invariant elements for the action of the group Z2. If we denote by a, b, c, d
the generators of O(SLs(2)), the defining matrix and commutation relations
are given by

v :=
(

a b
c d

)
ab = s ba , ac = s ca , bd = s db ,
cd = s dc , bc = cb , ad = da + (s − s−1)bc (3.11)

with moreover ad − s bc = 1. In matrix notation, O(SLs(2)) has coproduct

Δ(v) = v ⊗ v, counit ε(v) = I and antipode S(v) =
(

d −s−1b
−s c a

)
. The al-

gebra O(SLs(2))Z2 is spanned by matrix coefficients of odd-dimensional (the
integer spin ones) irreducible corepresentations of SLs(2) and is generated by
the entries of the matrix

m :=

⎛

⎝
a2 (1 + s2)

1
2 ba −b2

(1 + s2)
1
2 ca 1 + (s + s−1)bc −(1 + s2)

1
2 db

−c2 −(1 + s2)
1
2 dc d2

⎞

⎠ .

With u as before the defining matrix of O(SOq(3)), the Hopf algebra isomor-
phism is

O(SOq(3)) → O(SLs(2))Z2 , u 
→ m. (3.12)

4. The Orthogonal 2-Sphere and Hyperboloid

As mentioned in Sect. 3.1 for the general case, associated with the quantum
group SOq(3) there is a quantum vector space C

3
q. It is defined, as in (2.11),

via the the q-symmetrizer matrix P− in the decomposition (2.10) of the R-
matrix. One has then the free algebra generated by three elements zk, k =
1, 2, 3, modulo an ideal of relations:

O(C3
q) := C〈zk〉/〈P−z1z2〉 . (4.1)

With the R-matrix in (3.1), the algebra relations are given explicitly by

z2z1 = q−1z1z2 , z3z2 = q−1z2z3 , z3z1 = z1z3 + (q
1
2 − q− 1

2 )z2
2 . (4.2)

By construction O(C3
q) carries a left coaction which is an algebra homomor-

phism and is given by

ρ : O(C3
q) → O(SOq(3)) ⊗ O(C3

q) , zk 
→
∑

m

ukm ⊗ zm .
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It is easy to see that the quadratic element

r := q− 1
2 z1z3 + z2

2 + q
1
2 z3z1 (4.3)

belongs to the centre of the algebra and the coaction ρ descends to a coaction
on the quotient algebra O(C3

q)/〈r − 1〉.
There are two ∗-structures, compatible with those of O(SOq(3)) in Sect.

2.1, making O(C3
q) a ∗-algebra. For q ∈ R, the involution is z∗

k = qρkzk′ , or
explicitly,

z∗
1 = q

1
2 z3 , z∗

2 = z2 , z∗
3 = q− 1

2 z1 , (4.4)

while for |q| = 1 the algebra O(C3
q) becomes a ∗-algebra for z∗

k = zk.
For both choices of q the central element r is real, r∗ = r; thus the

quotient algebras O(C3
q)/〈r − 1〉 are left comodules ∗-algebra for the corre-

sponding Hopf ∗-algebras obtained from O(SOq(3)), that is O(SOq(3,R))
and O(SOq(1, 2,R)).

In order to understand the geometry of the quantum spaces described
by the ∗-algebras O(C3

q)/〈r−1〉 we introduce cartesian coordinates. Consider
the following generators:

x1 := μ i 1√
2

(−αz1 + βz3) , x2 := γ z2 , x3 := 1√
2

(αz1 + βz3) (4.5)

with α, β, γ, μ ∈ C such that

αβ = 1
2 (q

1
2 + q− 1

2 ) , γ2 = 1
2 (q + q−1) , μ =

⎧
⎨

⎩

1 if q ∈ R

−i if |q| = 1
.

Provided we choose β = q
1
2 ᾱ for q ∈ R and α = ᾱ, β = β̄ for |q| = 1, the

generators xk are real, x∗
k = xk, for both ∗-structures. The quadratic identity

q− 1
2 z1z3 + z2

2 + q
1
2 z3z1 = 1, in terms of the real generators xk, becomes

μ2x2
1 + x2

2 + x2
3 = 1 . (4.6)

This is the equation of a two-sphere if μ2 = 1, or a hyperboloid if μ2 = −1.
For q ∈ R, we denote by O(S2

q ) the ∗-algebra O(C3
q)/〈r − 1〉, the co-

ordinate algebra of the quantum Euclidean real unit sphere S2
q . It is a left

comodule ∗-algebra for O(SOq(3,R)). The sphere S2
q is in fact the equatorial

Podleś sphere of [13].
For |q| = 1 we denote by O(H2

q ) the ∗-algebra O(C3
q)/〈r − 1〉, the co-

ordinate algebra of the quantum Euclidean hyperboloid H2
q , a left comodule

∗-algebra for O(SOq(1, 2,R)).

4.1. Pre-regular Multilinear Forms

In the spirit of [5], the algebra O(C3
q) in (4.1) can be given via a multilinear

form. Let W be the 3-linear form on C
3 with components

W (vi, vj , vk) =: εijk (4.7)

in the canonical basis {vj , j = 1, 2, 3} of C3, where εijk is the tensor in (3.2).
With reference to the theory of pre-regular multilinear forms (see [5,

Def. 2]) we have the following result



On the Geometry of Quantum Spheres and Hyperboloids Page 11 of 33    37 

Lemma 4.1. The 3-linear form W is pre-regular, that is
(i) there exists an element T ∈ GL(3,C) such that W is T -cyclic: for all

V1, V2, V3 ∈ C
3,

W (V1, V2, V3) = W (T (V3), V1, V2),

(ii) if v ∈ C
3 is such that W (v, ej , ek) = 0 for all indices j, k, then v = 0.

Proof. Define T ∈ GL(3,C) as the linear transformation T (vj) = μjvj for
μ1 = q, μ2 = 1, μ3 = q−1. By direct computation one verifies that W is
such that W (vi, vj , vk) = W (T (vi), vj , vk) on the elements vi of the basis, for
i, j, k = 1, 2, 3, being εijk = μkεkij . �

Lemma 4.2. Let A(W, 2) be the quadratic algebra generated by elements zi,
i = 1, 2, 3, satisfying the three relations

∑

jk

εijk zjzk = 0, for i = 1, 2, 3 . (4.8)

Then A(W, 2) coincides with the algebra O(C3
q) in (4.1).

Proof. By direct check, comparing (4.8) with relations (4.2). �

Remark 4.3. We mention that the relations (4.2) show that the algebra O(C3
q)

is an Artin–Schelter algebra of type S′
1 with q = α−1 (see table (3.11) in [2])

and thus O(C3
q) is a Koszul algebra. As a consequence, for q ∈ R the space

C
3
q is a noncommutative Euclidean space for which there is a canonical gen-

eralization of Clifford algebras [6].

5. The Quantum Homogeneous Spaces

It is known that SO(2) is a quantum subgroup of SOq(3) (see e.g. [14,
Thm. 3.5]). Indeed, it is easily shown that I := 〈uij |i �= j〉 is a Hopf ideal in
O(SOq(3)). The quotient Hopf algebra O(SOq(3))/I is generated by the ele-
ments ũij := π(uij), for π the quotient map π : O(SOq(3)) → O(SOq(3))/I,
and thus has just three generators ũii, i = 1, 2, 3. Their commutation rela-
tions are obtained via the projection π from those of O(SOq(3)). From the
equation (2.3) one gets ũjj ũkk = ũkkũjj , for j, k = 1, 2, 3. In addition, the
metric condition (2.5) requires that ũ11ũ33 = 1 and (by using also the counit
ε) that ũ22 = 1. Thus the Hopf algebra O(SOq(3))/I is indeed a copy of
O(SO(2)), that realises SO(2) as a quantum subgroup of SOq(3).

The construction is compatible with both ∗-structures of O(SOq(3)),
for the two cases q ∈ R or |q| = 1. That is, the ideal I is a ∗-ideal with
respect to both of them and the quotient spaces are hence Hopf ∗-algebras.
In particular, O(SOq(3))/I is isomorphic to the ∗-algebra O(SO(2,R)) in
the case q ∈ R, with (ũkk)∗ = ũkk, for k = 1, 2, and to O(SO(1, 1,R)), with
(ũ11)∗ = ũ22, in the case |q| = 1.

By a general construction, there is then a natural (right) coaction of
SO(2) on SOq(3) given by restriction of the coproduct, written in matrix
notation as
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δ = (id ⊗ π)Δ : O(SOq(3)) → O(SOq(3)) ⊗ O(SO(2))
⎛

⎝
u11 u12 u13

u21 u22 u23

u31 u32 u33

⎞

⎠ 
→
⎛

⎝
u11 u12 u13

u21 u22 u23

u31 u32 u33

⎞

⎠ ⊗
⎛

⎝
z 0 0
0 1 0
0 0 z−1

⎞

⎠ , (5.1)

where we set z := ũ11.
Since δ(uij) =

∑
k uik ⊗ π(ukj) = uij ⊗ π(ujj), it is clear that the

elements b ∈ O(SOq(3)) which are coinvariant for the coaction, δ(b) = b ⊗ 1,
are given in degree one by the span of the elements in the second column
of the defining matrix u of O(SOq(3)) and, in addition, in degree two by
the span of products of any element of the first column with any one of the
third, ui1uj3 or ui3uj1 for indices i, j = 1, 2, 3. Nevertheless, we next show
that all the elements ui1uj3 and ui3uj1 indeed belong to the span of those of
the second column.

Proposition 5.1. The subalgebra of O(SOq(3))

B := O(SOq(3))coO(SO(2)) = {b ∈ O(SOq(3)) | δ(b) = b ⊗ 1}
of coinvariant elements for the coaction δ of (O(SO
(2))) in (5.1) is generated by the three elements ui2, for i = 1, 2, 3.

Proof. We show that the elements ui3uj1 and ui1uj3 can be written as poly-
nomials in the elements of the second column. By taking m = 3, n = 1 in
(2.3), we obtain

q−1ui1uj3 = qδij−δij′ uj3ui1 + λθ(j − i)ui3uj1

−λδij′
∑

k

θ(j − k)q−ρi−ρkuk3uk′1 (5.2)

so it is enough to establish the result for the elements ui3uj1. (We list nev-
ertheless the expressions of all coinvariant elements in terms of the elements
uk2 in Appendix C.) In the proof we will use the identities

u31u13 = u13u31 , u11u13 = q2u13u11 , u31u33 = q2u33u31

obtained from equation (5.2), for suitable choices of indices i, j, and the
identification in (3.6) of the elements of the second column of the matrix u
as cofactors. We will also use the relations

uS(u) =

⎛

⎝
u11 u12 u13

u21 u22 u23

u31 u32 u33

⎞

⎠

⎛

⎝
u33 q− 1

2 u23 q−1u13

q
1
2 u32 u22 q− 1

2 u12

q u31 q
1
2 u21 u11

⎞

⎠ = I

and

S(u)u =

⎛

⎝
u33 q− 1

2 u23 q−1u13

q
1
2 u32 u22 q− 1

2 u12

q u31 q
1
2 u21 u11

⎞

⎠

⎛

⎝
u11 u12 u13

u21 u22 u23

u31 u32 u33

⎞

⎠ = I .

First, by using u31u13 = u13u31 in the equality (uS(u))33 = (S(u)u)11, we
get

u23u21 = u32u12 .
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By comparing the expressions (uS(u))11 = 1 and u22 = û22, we compute

u13u31 = (1 + q)−1(1 − u22 − q− 1
2 u12u32) .

Similarly, from (uS(u))12 = 0 and the expression q− 1
2 u12 = û23 we obtain

u13u21 = q− 1
2 (1 + q)−1(u12 − u12u22) ,

while from (uS(u))13 = 0 and the relation u11u13 = q2u13u11 found before,

u13u11 = −q− 1
2 (1 + q)−1u12u12 .

We proceed by comparing (uS(u))21 = 0 and the expression q
1
2 u32 = û21 and

obtain

u23u31 = q− 1
2 (1 + q)−1(u32 − u22u32)

while (uS(u))23 = 0 and the expression q− 1
2 u21 = û23 gives

u23u11 = −q
1
2 (1 + q)−1(u12 + q−1u22u12) .

Then, from (uS(u))31 = 0 and the relation u31u33 = q2u33u31 we get

u33u31 = −q− 1
2 (1 + q)−1u32u32 .

From (uS(u))32 = 0 and the expression q
1
2 u32 = û21 we have

u33u21 = −(1 + q)−1(q
1
2 u32 + q− 1

2 u32u22) .

Finally, from (uS(u))33 = 1 and the equality û22 = u22 we obtain the last
required relation

u33u11 = (1 + q)−1(q + u22 − q− 1
2 u32u12) .

�

The commutation relations among the generators uk2 of the subalgebra
B of coinvariants are obtained from equations (2.3) for m = n = 2,

qδij−δij′ uj2ui2 = (1 − λθ(j − i))ui2uj2 + λδij′
∑

k

θ(j − k)q−ρi−ρkuk2uk′2

− λq− 1
2 ui1uj3

by substituting the explicit expression of the elements ui1uj3 in terms of the
elements uk2 (as given in Appendix C). They are given by

u32u22 = q−1u22u32 + (1 − q−1)u32, u22u12 = q−1u12u22 + (1 − q−1)u12,

u32u12 = q−2u12u32 + q− 1
2 (1 − q−1)(1 − u22). (5.3)

Moreover from condition (S(u)u)22 = 1 we also obtain

q
1
2 u32u12 + q− 1

2 u12u32 + (u22 − 1)(u22 + 1) = 0 . (5.4)

We will analyse the geometry of B as a quantum ∗-algebra in Sect. 5.1
below. Before we do that, we study the bundle structure of the quantum
homogeneous space B.
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Proposition 5.2. The algebra extension O(SOq(3))co O(SO(2)) ⊂ O(SOq(3))
is Hopf-Galois, that is the canonical map

χ : O(SOq(3)) ⊗B O(SOq(3)) → O(SOq(3)) ⊗ O(SO(2)), a′ ⊗ a 
→ a′δ(a)

is bijective.

Proof. We prove the statement by showing that the total space algebra
O(SOq(3)) is strongly graded (see Thm. 4.3 and Prop. 4.6 of [1]). We as-
sign degree +1 to the elements of the first column of the defining matrix u,
degree −1 to the elements of the third column of the matrix u and degree
0 to the elements of the central column of the matrix u. Let us denote E±1

the collection of all degree ± elements respectively in O(SOq(3)). Clearly
they are modules over E0 = B; a posteriori these are shown to be finitely
generated and projective over B (see [11, Cor. I.3.3]).

In the notation of [1] we have two sequences of elements in E+1

{ξj}3
j=1 = (u11, u21, u31), {βj}3

j=1 = (qu31, q
1
2 u21, u11) (5.5)

and two sequences of elements in E−1

{ηj}3
j=1 = (u33, q

− 1
2 u23, q

−1u13), {αj}3
j=1 = (u13, u23, u33) . (5.6)

These are such that
3∑

j=1

ηjξj = (S(u)u)11 = u33u11 + q− 1
2 u23u21 + q−1u13u31 = 1 (5.7)

and
3∑

j=1

βjαj = (S(u)u)33 = qu31u13 + q
1
2 u21u23 + u11u33 = 1 . (5.8)

The inverse χ−1 : O(SOq(3)) ⊗ O(SO(2)) → O(SOq(3)) ⊗B O(SOq(3)) of
the canonical map, by the general theory of [1], is then given by

χ−1 : a ⊗ zn 
→

⎧
⎪⎨

⎪⎩

∑
J∈{1,2,3}n a ηj1 · · · ηjn ⊗B ξjn · · · ξj1 , for n ≥ 0

a ⊗B 1 for n = 0∑
I∈{1,2,3}−n a βi1 · · · βi−n

⊗B αi−n
· · · αi1 , for n ≤ 0

.

(5.9)

For the convenience of the reader we recall here the proof. If n ≥ 0,

χ ◦ χ−1(1 ⊗ zn) = χ(
∑

J∈{1,2,3}n

a ηj1 · · · ηjn ⊗B ξjn · · · ξj1)

=
∑

J∈{1,2,3}n

a ηj1 · · · ηjn ξjn · · · ξj1 ⊗ zn = 1 ⊗ zn,

using (5.7) on all indices from jn to j1 one after the other. Conversely, if
a ∈ O(SOq(3)) is of degree n, one has δ(a) = a ⊗ zn and thus
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χ−1 ◦ χ(1 ⊗B a) = χ−1(a ⊗ zn) =
∑

J∈{1,2,3}n

a ηj1 · · · ηjn ⊗B ξjn · · · ξj1

=
∑

J∈{1,2,3}n

1 ⊗B a ηj1 · · · ηjnξjn · · · ξj1 = 1 ⊗B a

using the fact that a ηj1 · · · ηjn ∈ B, so that it can cross over the balanced
tensor product, and again (5.7). One proceeds similarly for n ≤ 0. �

5.1. Two ∗-Quantum Homogeneous Spaces of O(SOq(3))

We rename wk := uk2, k = 1, 2, 3, the generators of the subalgebra B of
coinvariant elements of O(SOq(3)). They have commutation relations (5.3)

w3(w2 − 1) = q−1(w2 − 1)w3 , w1(w2 − 1) = q(w2 − 1)w1 ,

w3w1 = q−2w1w3 + q− 3
2 (1 − q)(w2 − 1) (5.10)

and satisfy the quadratic condition

q− 1
2 w1w3 + q

1
2 w3w1 + w2

2 = 1 . (5.11)

This, with the last equation in (5.10), can also be written as

(q
1
2 + q− 1

2 )w1w3 = (1 − w2)(1 + qw2),

(q
1
2 + q− 1

2 )w3w1 = (1 − w2)(1 + q−1w2). (5.12)

It is easy to see that the coaction map δ in (5.1) is a ∗-map, for both q ∈ R and
|q| = 1 and corresponding ∗-structures in Sect. 2.1. Hence B is a ∗-algebra
as well with ∗-structures inherited by those of O(SOq(3)) and given on the
generators wk by

for q ∈ R : (w1)∗ = q
1
2 w3 , (w2)∗ = w2 , (w3)∗ = q− 1

2 w1 ,

for |q| = 1 : (wk)∗ = wk , k = 1, 2, 3 , (5.13)

in parallel with those in (4.4). Moreover, the ∗-algebra B is made of coin-
variant elements of the corresponding real group by a suitable real sub-
group. For q ∈ R, we denote O(S2

q,Gr) the ∗-algebra B of coinvariant ele-
ments of O(SOq(3,R)) with respect to the coaction of its quantum subgroup
O(SO(2,R)). We call O(S2

q,Gr) (the algebra of coordinate functions of) the
quantum (Grassmannian) sphere S2

q,Gr. When q → 1 it reduces to the co-
ordinate algebra over the Grassmannian Gr(1, 3) � SO(3)/SO(2) � S2 of
oriented lines in R

3. In fact, the sphere S2
q,Gr is isomorphic to the standard

Podleś sphere S2
q of [13].

For |q| = 1, we denote O(H2
q,Gr) the ∗-algebra B of coinvariant elements

of the algebra O(SOq(1, 2,R)) with respect to the coaction of its quantum
subgroup O(SO(1, 1,R)). We call O(H2

q,Gr) the algebra of coordinate func-
tions of the quantum hyperboloid H2

q,Gr. In the limit q = 1 it reduces to the
coordinate algebra over the hyperboloid.

Again, as in Sect. 4, the reason for the names and the nature of the
spaces above is made evident when using cartesian coordinates. Let us make
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the following change of generators:

y1 := μ i
1√
2

(−αw1 + βw3) , y2 := w2 , y3 :=
1√
2

(αw1 + βw3)

(5.14)

with α, β, μ ∈ C such that

αβ = q
1
2

(1 + q)
(1 + q2)

, μ =

⎧
⎨

⎩

1 if q ∈ R

−i if |q| = 1
.

Notice that (αβ)∗ = αβ for both choices of q. Provided we choose β = q
1
2 ᾱ

for q ∈ R and α = ᾱ, β = β̄ for |q| = 1, for both ∗-structures in (5.13), the
generators yk are real,

(yk)∗ = yk, k = 1, 2, 3.

Using relations (5.12), we compute

μ2y2
1 + y2

3 =
q

1
2 (1 + q)
(1 + q2)

(w1w3 + w3w1)

= − 1
(1 + q2)

[
(1 + q2)w2

2 − (1 − q)2w2 − 2q
]

and thus in terms of the real generators yk the quadratic condition (5.11)
reads

μ2y2
1 + y2

2 + y2
3 − (1 − q)2

1 + q2
y2 =

2q

1 + q2
. (5.15)

In the classical limit q → 1 this reduces to

μ2y2
1 + y2

2 + y2
3 = 1

which is a two-sphere if μ2 = 1, or a hyperboloid if μ2 = −1.
Let us finally observe (for future use in Sect. 6.1) that by construction

the subalgebra B also carries a left coaction of O(SOq(3)) given by the re-
striction of the coproduct of O(SOq(3)) to the elements uk2 generating B:
the map

ρ = Δ|B : B → O(SOq(3)) ⊗ B , uk2 
→
∑

m

ukm ⊗ um2 (5.16)

makes B a left O(SOq(3))-comodule algebra. The coaction map ρ in (5.16) is
a ∗-map for both values of q and thus B is a comodule ∗-algebra, or quantum
∗-algebra, with respect to the corresponding real forms of O(SOq(3)).

5.2. Line Bundles

In general, given a right H-comodule algebra A with coaction δ : A → A⊗H,
δ(a) = a(0) ⊗ a(1) and a left H-comodule V with coaction γ : V → H ⊗
V , γ(v) = v(−1) ⊗ v(0), sections of the vector bundle associated with the
corepresentation γ can be identified with linear maps φ : V → A which are
H-equivariant

φ(v)(0) ⊗ φ(v)(1) = φ(v(0)) ⊗ S(v(−1)) . (5.17)
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The collection E of such maps is a left B-module for B ⊆ A the subalgebra
of coinvariant elements for the H-coaction.

For the H = O(SO(2)) Hopf-Galois extension B = O(SOq(3))co O(SO(2))

⊂ O(SOq(3)) irreducible corepresentations of O(SO(2)), which are one di-
mensional and labelled by an integer, will yield line bundles. Consider any
such a corepresentation

γn : C → O(SO(2)) ⊗ C, γn(1) = 1 ⊗ z−n (5.18)

for any integer n. From the coaction (5.1) the first column of the matrix
u will transform by z−n while the last column will transform by zn. Thus,
using the generators (5.5) and (5.6), a set of generators of the corresponding
B-module En of sections is given by

ξJ := ξjn · · · ξj1 , J = (j1, · · · , jn) ∈ {1, 2, 3}n for n ≥ 0

αI := αi−n
· · · αi1 , I = (i1, · · · , in) ∈ {1, 2, 3}−n for n ≤ 0 .

(5.19)

Indeed, for n ≥ 0, one finds that

δ(ξJ ) = (ξjn · · · ξj1)(0) ⊗ (ξjn · · · ξj1)(1)
= (ξjn · · · ξj1) ⊗ zn = (ξjn · · · ξj1) ⊗ S(z−n),

thus fulfilling condition (5.18). The case for negative n works similarly. The
modules En are line bundles of degree an even integer −2n. To see this, one
finds suitable idempotents pn in Mat|2n|+1(B) and identifies En � B|n|+1pn

as left B-modules.
The idempotents pn are representatives of classes in the K-theory of B,

[pn] ∈ K0(B). One computes the corresponding rank and degree by pairing
them with non-trivial elements in the dual K-homology, that is with (the class
of) non-trivial Fredholm modules [τ ] ∈ K0(B). For this, one first calculates
the corresponding Chern characters in the cyclic homology ch•(pn) ∈ HC•(B)
and cyclic cohomology ch•([τ ]) ∈ HC•(B) respectively, and then uses the
pairing between cyclic homology and cohomology.

The Chern character of the idempotents pn has a non-trivial compo-
nent in degree zero ch0(pn) ∈ HC0(B) given simply by a (partial) matrix
trace ch0(pn) := tr(pn) and thus ch0(pn) ∈ B. Dually, one needs a cyclic
zero-cocycle, that is a trace on B. There are indeed two such traces com-
ing from two 1-summable even Fredholm modules for B which generate the
K-homology K0(B) and that were worked out in full details in [10].

For the present paper we adapt the construction of the Fredholm mod-
ules in [3]. For this construction we need q ∈ R, a condition that is also in
accord with the fact that the idempotents pn we are finding are projection
for the ∗-structure (3.7) (see Remark 5.4).

The first trace comes from the counit ε of O(SOq(3)). Its restriction to
the subalgebra B = O(S2

q ) ⊂ O(SOq(3)) yields a representation χ0 : B → C

which pulls-back to B the generator of the K-homology of C. The resulting
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Fredholm module for B is given by

H0 = C ⊕ C, π0(b) = χ0(b) ⊕ 0, F0 =
(

0 1
1 0

)
.

This we shall denote [τ0] with corresponding cyclic zero-cocycle τ0 = ch0 [τ0]:

τ0(b) = χ0(b), b ∈ B.

On the generators of B it is given by τ0(w1) = τ0(w3) = 0 and τ0(w2−1) = 0
(and clearly τ0(1) = 1). For the second Fredholm module one needs a second
representation of B as bounded operators. It is explicitly given on �2(N) with
orthonormal basis |n〉 by

χ1(w1) |n〉 = β q−n+2
2

[
1 − q−(n+1)

] 1
2 |n + 1〉

χ1(w3) |n〉 = β q−n+1
2

[
1 − q−(n−1)

] 1
2 |n − 1〉

χ1(w2 − 1) |n〉 = −β2 q−(n+1) |n〉 ,

with β = −(q +1)
1
2 . (The parameter q in [3] is mapped to q− 1

2 here.) For the
above formulas to give bounded operators one needs to assume that q be such
that |q| > 0. This is nor restrictive in that for |q| < 0 the appropriate formulas
for the representation can be obtained from the one above by replacing the
index n with −n: as a consequence the role of w1 and w3 as raising and
lowering operators is exchanged.

The second even Fredholm module [τ1] for B = O(S2
q ) is then given as:

H1 = �2(N) ⊕ �2(N), π1(b) =
(

χ1(b) 0
0 χ0(b) id�2(N)

)
F0 =

(
0 1
1 0

)
.

Thus, the operator χ1(b) − χ0(b) id�2(N) is trace class for all b ∈ B and one
gets a second trace τ1 = ch0 [τ1] on B given by τ1(b) = trH1(χ1(b) − χ0(b)).
It is a trace on B/C, that is it vanishes on C ⊂ B. We need its evaluation on
powers of w2 − 1. One finds

τ1((w2 − 1)k) = trH1(χ1((w2 − 1)k))

= (−1)kβ2kq−k
∑

n

q−nk = (−1)kβ2kq−k 1
1 − q−k

= (−1)k (q + 1)k

qk − 1
. (5.20)

Let us first illustrate the above for the lowest values n = ±1. In these
cases a collection of generators for the modules of sections is given by (u11, u21,
u31) and (u33, u23, u13) respectively. The corresponding idempotents are the
matrices

p+1 :=

⎛

⎝
u11

u21

u31

⎞

⎠ (
u33, q− 1

2 u23, q−1u13

)
, p−1 :=

⎛

⎝
u33

u23

u13

⎞

⎠ (
u11, q

1
2 u21, q u31

)
.

(5.21)
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Since p+1 has entries (p+1)ij = ui1S(u)1j , the identity (5.7) implies that
p+1 is an idempotent p2

+1 = p+1. Similarly, for p−1 of components (p−1)ij =
ui3S(u)3j , the result p2

−1 = p−1 follows from (5.8). From Proposition 5.1 the
entries of p±1 belong to the subalgebra B. Using the list in Appendix C for
quadratic coinvariant elements and the first equality in (5.12), for the partial
trace of these idempotents one computes

tr(p+1) = u11u33 + q− 1
2 u21u23 + q−1u31u13

= 1 + (q − 1)(w2 − 1) +
(q − 1)2

q + 1
(w2 − 1)2. (5.22)

Then, using χ0(w2) = 1 one gets
〈
[τ1], [p+1]

〉
:= χ0 (ch0(p+1))) = 1 .

Finally, using the vanishing of μ over the scalars and (5.20) one gets
〈
[τ1], [p+1]

〉
:= τ1(ch0(p+1)) = −(q − 1)

(q + 1)
q − 1

+ (q − 1)
(q + 1)2

q2 − 1
= −(q + 1) + (q − 1) = −2 . (5.23)

With a similar computation one gets
〈
[τ0], [p−1]

〉
= 1 and

〈
[τ1], [p−1]

〉
= 2.

For a general n ≥ 0 consider two vector valued functions of components

|ψn〉J := ξJ = ξjn · · · ξj1 ,

〈φn|J := ηJ = (ηj1 · · · ηjn), J = (j1, · · · , jn) ∈ {1, 2, 3}n.

We have already observed that from (5.7) one has

〈φn, ψn〉 =
∑

J∈{1,2,3}n

ηj1 · · · ηjn ξjn · · · ξj1 ⊗ zn = 1.

Thus the matrix pn = |ψn〉 〈φn| of components (pn)KJ = ξJηK is an idem-
potent. Similarly, for n ≤ 0 we take

|ψ−n〉I := αI = αi−n
· · · αi1 ,

〈φ−n|I := βI = βi1 · · · βi−n
, I = (i1, · · · , in) ∈ {1, 2, 3}−n

and now 〈φ−n, ψ−n〉 = 1 and the idempotent is the matrix p−n = |ψ−n〉 〈φ−n|.
Using an inductive argument and result (5.23), we show the following.

Proposition 5.3. For n ≥ 0 the modules En are line bundles of degree −2n,
that is

〈
[τ0], [pn]

〉
= 1

〈
[τ1], [pn]

〉
= −2n. (5.24)

For n ≤ 0 one gets
〈
[τ0], [p−n]

〉
= 1 and positive degree

〈
[τ1], [p−n]

〉
= −2n.

Proof. The result rests on a recursion formula for the trace of the idempotents
tr(pn). For n ≥ 0, one finds

tr(pn) =
∑

J

(pn)JJ = 1 +
2n∑

J=1

(q + 1)−J C
(n)
J (w2 − 1)J ,

C
(n)
J =

J−1∏

k=0

(q2n−k − 1). (5.25)
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We prove the formula by induction. We set here T := (q + 1)−1(w2 − 1) to
simplify notation. Firstly, out of the commutation relations (2.3) one finds

u11T
J = q2JT Ju11 , u21T

J = qJT Ju21 , u31T
J = T Ju31 (5.26)

as well as, from the computations in Appendix C, the identities

u11u33 = 1 + (q + q2)T + q3T 2 , q− 1
2 u21u23 = −(q + 1)(T + qT 2) ,

u31u13 = qT 2 . (5.27)

Formula (5.25) is verified for n = 1: it is just (5.22). Assume it holds for n,
then

tr(pn+1) = u11 tr(pn)u33 + q− 1
2 u21 tr(pn)u23 + q−1u31 tr(pn)u13

= tr(p1) +
2n∑

J=1

C
(n)
J

(
u11T

Ju33 + q− 1
2 u21T

Ju23 + q−1u31T
Ju13

)

= tr(p1) +
2n∑

J=1

C
(n)
J T J

(
q2J

(
1 + (q + q2)T + q3T 2

)

− qJ(q + 1)(T + qT 2) + T 2
)

using (5.26) followed by (5.27) for the last identity. Then

tr(pn+1) = tr(p1) +
2n∑

J=1

C
(n)
J T J

(
q2J + (qJ+1 − 1)

(qJ+1 + qJ)T + (qJ+1 − 1)(qJ+2 − 1)T 2
)

= 1 + (q2 − 1)T + (q2 − 1)(q − 1)T 2 +
2n∑

J=1

q2JC
(n)
J T J

+
2n+1∑

J=2

(qJ − 1)(qJ−1 + qJ)C(n)
J−1T

J

+
2n+2∑

J=3

(qJ − 1)(qJ−1 − 1)C(n)
J−2T

J . (5.28)

Finally, using properties

C
(n)
J = (q2n+1−J − 1)C(n)

J−1 , C
(n+1)
J+2 = (q2n+2 − 1)(q2n+1 − 1)C(n)

J

(5.29)

for the coefficients C
(n)
J , we get

tr(pn+1) = 1 + (q2n+2 − 1)T +
(
(q2 − 1)(q − 1) + q4C

(n)
2

+ (q2 − 1)(q + q2)C(n)
1

)
T 2

+
2n∑

J=3

(
q2J(q2n+1−J − 1)(q2n+2−J − 1)
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+ (qJ − 1)(qJ−1 + qJ)(q2n+2−J − 1)

+ (qJ − 1)(qJ−1 − 1)
)
C

(n)
J−2T

J

+ (q2n+1 − 1)
(
(q2n + q2n+1)(q − 1)

+ (q2n − 1)
)
C

(n)
2n−1T

2n+1

+ (q2n+2 − 1)(q2n+1 − 1)C(n)
2n T 2n+2

= 1 + (q2n+2 − 1)T + (q2n+2 − 1)(q2n+1 − 1)T 2

+ (q2n+2 − 1)(q2n+1 − 1)
2n∑

J=3

(
C

(n)
J−2T

J

+ C
(n)
2n−1T

2n+1 + C
(n)
2n T 2n+2

)

=
2n+2∑

J=1

C
(n+1)
J T J .

Being χ0(w2) = 1, or χ0(T ) = 0, one gets
〈
[τ0], [p+n]

〉
= 1.

For the computation of the degree we also proceed by induction. From (5.20)
one has τ1(T J) = (−1)J 1

qJ−1
from which one deduces

τ1(T J+1) = − qJ − 1
qJ+1 − 1

μ(T J) , τ1(T J+2) =
qJ − 1

qJ+2 − 1
μ(T J) .

We use these formulas in the first expression in (5.28) for the trace of pn+1:

τ1(tr(pn+1)) = τ1(tr(p1))

+
2n∑

J=1

C
(n)
J

(
q2JT J + (qJ+1 − 1)(qJ+1 + qJ)T J+1

+ (qJ+1 − 1)(qJ+2 − 1)T J+2
)

= −2 +
2n∑

J=1

C
(n)
J

(
q2J − (qJ − 1)(qJ+1 + qJ)

+ (qJ+1 − 1)(qJ − 1)
)
μ(T J )

= −2 +
2n∑

J=1

C
(n)
J μ(T J )

= −2 + τ1(tr(pn)) = −2(n + 1) .

�

Remark 5.4. For q ∈ R and ∗-structure (3.7), the idempotents p±n = |ψ±n〉
〈φ±n| are self-adjoint, (p±n)∗ = p±n. This follows from the fact that (|ψ±n〉J )∗

= 〈φ±n|J , for each J , being u∗
11 = u33, u∗

21 = q− 1
2 u23 and u∗

31 = q−1u13. In
contrast, the idempotents pn are not self-adjoint for the ∗-structure (3.8)
when |q| = 1.
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6. The Dual Hopf Algebra and the Casimir Element

Aiming at the study of Laplacian operators on the two ∗-quantum homo-
geneous spaces of O(SOq(3)) in Sect. 5.1, and gauged versions on bundles
over them in the line of [9], in this section we study a Casimir element as
a Laplacian operator acting on functions of the base space. This operator is
constructed from the actions of a dual Hopf algebra Uq(sl2).

6.1. The Dual Hopf Algebra Uq(sl2) and Its Real Forms

From Drinfel’d–Jimbo construction of quantum universal enveloping algebras
it is known that Uq1/2(so(3)) � Uq(sl2). On the other hand as recalled in
Sect. 3.3, there is an isomorphism O(SOq(3)) � O(SLq1/2)(2)Z2 . We shall
then work out a dual pairing between O(SOq(3)) and Uq1/2(sl2).

The algebra Uq1/2(sl2) is generated by elements K,K−1, E, F subject
to the relations

K±E = q±1EK± , K±F = q∓1FK± , EF − FE =
K − K−1

q
1
2 − q− 1

2

together with KK−1 = K−1K = 1. It is a Hopf algebra with coproduct,
counit and antipode given respectively by

Δ(K±1) = K±1 ⊗ K±1 , Δ(E) = E ⊗ K + 1 ⊗ E , Δ(F ) = F ⊗ 1 + K−1 ⊗ F ,

ε(K±1) = 1 , ε(E) = 0 , ε(F ) = 0

S(K±1) = K∓1 , S(E) = −EK−1 , S(F ) = −KF .

See e.g. [8, §3.1].
The non zero values of the pairing 〈·, ·〉 : Uq1/2(sl2)×O(SOq(3)) → C on

the algebra generators, besides 〈1, ukk〉 = 1 for k = 1, 2, 3, and 〈K±1, 1〉 = 1,
are found to be

〈K,u11〉 = q−1 , 〈K,u22〉 = 1 , 〈K,u33〉 = q

〈K−1, u11〉 = q , 〈K−1, u22〉 = 1 , 〈K−1, u33〉 = q−1 ,

〈E, u21〉 = αη , 〈E, u32〉 = −αq
1
2 η ,

〈F, u12〉 = α−1η , 〈F, u23〉 = −α−1q− 1
2 η , (6.1)

where η := (q
1
2 + q− 1

2 )
1
2 and α ∈ C \ {0}. The extra parameter α in (6.1)

can be re-absorbed by the Hopf algebra automorphism of Uq1/2(sl2) which
rescales E 
→ α−1E, F 
→ αF , K 
→ K [8, Prop. 3.6]. We hence fix α = 1.
The pairing extends to the whole algebras by the rules 〈fg, a〉 = 〈f ⊗
g,Δ(a)〉 = 〈f, a(1)〉〈g, a(2)〉 and 〈f, ab〉 = 〈Δ(f), a⊗b〉 = 〈f(1), a〉〈f(2)b〉, for all
f, g ∈ Uq1/2(sl2) and a, b ∈ O(SOq(3)). It satisfies 〈1, a〉 = ε(a), 〈f, 1〉 = ε(f)
and 〈S(f), a〉 = 〈f, S(a)〉 for each f ∈ Uq1/2(sl2) and a ∈ O(SOq(3)).

It follows by standard arguments in Hopf algebra theory that each left
(respectively right) O(SOq(3))-comodule algebra A carries a right represen-
tation � (respectively left representation �) of the dual algebra Uq1/2(sl2).
In details, if A is a left comodule algebra via ρ : A → O(SOq(3)) ⊗ A,
a 
→ a(−1) ⊗ a(0), then A carries the right action

� : A ⊗ Uq(sl2) → A , a � f := 〈f, a(−1)〉a(0), a ∈ A, f ∈ Uq(sl2).
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If A is a right comodule algebra via δ : A → A ⊗ O(SOq(3)), a 
→ a(0) ⊗ a(1),
then A carries the left action

� : Uq(sl2) ⊗ A → A , f � a := a(0)〈f, a(1)〉, a ∈ A, f ∈ Uq(sl2).

For A = O(SOq(3)) with left and right coactions given by the coproduct, the
right and left actions of Uq1/2(sl2) on generators ujk of O(SOq(3)) read

ujk � f = 〈f, ujm〉umk and f � ujk = ujm〈f, umk〉.
Explicitly, the right action is

u1k � K±1 = q∓1u1k , u2k � K±1 = u2k , u3k � K±1 = q±1u3k ,

u1k � E = 0 , u2k � E = η u1k , u3k � E = −q
1
2 η u2k ,

u1k � F = η u2k , u2k � F = −q− 1
2 η u3k u3k � F = 0 , (6.2)

and the left action is given by

K±1 � uj1 = q∓1uj1 , K±1 � uj2 = uj2 , K±1 � uj3 = q±1uj3 ,

E � uj1 = η uj2 , E � uj2 = −q
1
2 η uj3 , E � uj3 = 0 ,

F � uj1 = 0 , F � uj2 = η uj1 F � uj3 = −q− 1
2 η uj2 . (6.3)

Since the left coaction of O(SOq(3)) on itself descends to B =
O(SOq(3))co O(SO(2)), see (5.16), the right action (6.2) preserves B. Explic-
itly, on the generators wk := uk2 of B, the action � : B ⊗ Uq(sl2) → B is
given by

w1 � K±1 = q∓1w1 , w2 � K±1 = w2 , w3 � K±1 = q±1w3 ,

w1 � E = 0 , w2 � E = η w1 , w3 � E = −q
1
2 η w2 ,

w1 � F = η w2 , w2 � F = −q− 1
2 η w3 w3 � F = 0 . (6.4)

For the left action (6.3) this is not the case. The generators E and F do not
preserve B while the generator K does and acts as the identity. Its left action
is indeed dual to the right coaction in (5.1) of the generator z of O(SO(2))
on O(SOq(3)) and we could equivalently define the algebra B of coinvariant
elements as made by invariants for K,

B = {b ∈ O(SOq(3)) |K � b = b}. (6.5)

Depending on the values of the deformation parameter q, the Hopf alge-
bra Uq1/2(sl2) can be equipped with the following real structures [8, §3.1.4]:

• if q ∈ R, there are two (non equivalent) ∗-structures:

(K±1)∗ = K±1 , E∗ = FK , F ∗ = K−1E (6.6)

with corresponding Hopf ∗-algebra Uq1/2(su2) (this is the compact real
form) and

(K±1)∗ = K±1 , E∗ = −FK , F ∗ = −K−1E (6.7)

with corresponding Hopf ∗-algebra Uq1/2(su1,1);
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• if |q| = 1 there is only one ∗-structure given by

(K±1)∗ = K±1 , E∗ = −E , F ∗ = −F . (6.8)

The corresponding Hopf ∗-algebra is Uq1/2(sl2(R)). Classically the Lie
algebras su1,1 and sl2(R) are isomorphic.

The pairing (6.1) induces a pairing between the real forms Uq1/2(su2) and
O(SOq(3,R)) and between the real forms Uq1/2(sl2(R)) and O(SOq(1, 2,
R)). Indeed the conditions

〈f∗, a〉 = 〈f, S(a)∗〉 , 〈f, a∗〉 = 〈S(f)∗, a〉 (6.9)

are satisfied for each f ∈ Uq1/2(sl2) and a ∈ O(SOq(3;R)) or f ∈ Uq1/2(sl2(R))
and a ∈ O(SOq(1, 2,R)). On the other hand, the condition (6.9) for the pair-
ing (6.1) is not satisfied for the algebra Uq1/2(su1,1).

We need some notation. For n ∈ N the q-integer is defined as

[n] := [n]
q

1
2

:=
q

n
2 − q−n

2

q
1
2 − q− 1

2
. (6.10)

One has [n] = q
−n+1

2
∑n−1

j=0 qj with property [n] = [2][n − 1] − [n − 2].
When the deformation parameter q is not a root of unity, the centre of

the algebra Uq1/2(sl2) is generated by the (quadratic) Casimir element (see
[8, §3.1.1]):

Cq := EF +
q− 1

2 K + q
1
2 K−1

(q
1
2 − q− 1

2 )2
= FE +

q
1
2 K + q− 1

2 K−1

(q
1
2 − q− 1

2 )2

=
1
2
(EF + FE) +

q
1
2 + q− 1

2

(q
1
2 − q− 1

2 )2
(K + K−1). (6.11)

We next show how to diagonalise the Casimir operator as an operator
acting on the left on the algebra B. For this one uses the right action of
Uq1/2(sl2) to construct a basis of eigenfunctions, since clearly Cq � (a � f) =
(Cq � a) � f . As mentioned, while E and F do not preserve B, both the
products EF and FE do. On the other hand, the generators K,K−1 act on
B as the identity and hence

q− 1
2 K + q

1
2 K−1

(q
1
2 − q− 1

2 )2
� b =

q− 1
2 + q

1
2

(q
1
2 − q− 1

2 )2
b, b ∈ B.

Thus, we can remove from the Casimir an additive constant and consider the
operator

Cq := Cq − q− 1
2 + q

1
2

(q
1
2 − q− 1

2 )2
= EF = FE (6.12)

acting on the left on the algebra B. On the generators wk := uk2, k = 1, 2, 3,
of B, the action of Cq is easily found to be

Cq � wk = [2]wk, k = 1, 2, 3. (6.13)

Now, from [8, §4.5.2] one knows that there is a vector space decomposition

B = ⊕J∈NVJ
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into irreducible representations VJ of Uq1/2(sl2). The spaces VJ are given by

VJ = span{wJ
3 � Em} = span{wJ

1 � Fm}, m = 0, 1, . . . , 2J. (6.14)

Thus wJ
3 (or wJ

1 ) is the highest (or lowest) weight vector of the representation.

Theorem 6.1. For any J ∈ N the space VJ is made of eigenfunctions of the
operator Cq with eigenvalue [J ][J + 1]:

Cq � a = [J ][J + 1] a, ∀a ∈ VJ . (6.15)

Proof. In view of (6.14) it is enough to show the identity for the highest weight
vector wJ

3 . Clearly, if Cq �wJ
3 = [J ][J +1]wJ

3 , then for each m = 0, 1, . . . , 2J ,

Cq � (wJ
3 � Em) = (Cq � wJ

3 ) � Em = [J ][J + 1](wJ
3 � Em) .

Indeed we can show the result at once for the lowest and highest weight
vectors. Using the coproduct Δ(EF ) = EF ⊗ K + K−1 ⊗ EF + q−1EK−1 ⊗
FK + F ⊗ E and recalling from (6.3) that K and K−1 act as the identity on
the elements of B, the operator Cq acts on the product of two elements a, a′

as

Cq � (aa′) = ((EF ) � a)a′ + a((EF ) � a′)

+q−1(E � a)(F � a′) + (F � a)(E � a′)
= (Cq � a)a′ + a(Cq � a′)

+q−1(E � a)(F � a′) + (F � a)(E � a′) . (6.16)

We hence need to compute the action of E and F on any power wJ
� of w�,

� = 1, 3. By induction on n one shows that

E � wn
� = −q

1
2

( n−1∑

j=0

q−j

)
ηwn−1

� u�3 = −q−n
2 +1 [n] ηwn−1

� u�3

F � wn
� =

( n−1∑

j=0

q−j

)
ηwn−1

� u�1 = q
n−1
2 [n] ηwn−1

� u�1 ,

where [n] is the q
1
2 -number in (6.10). Next, we prove by induction that Cq �

wn
� = [n][n + 1]wn

� . The result holds for the base case n = 1, as already
observed in (6.13). Assume it holds for n, then, by also using (6.16), we
compute

Cq � (wn+1
� ) = (Cq � wn

� )w� + wn
� (Cq � w�)

+ q−1(E � wn
� )(F � w�) + (F � wn

� )(E � w�)

= [n][n + 1]wn+1
� + [2]wn+1

� − q−n
2 [2][n]wn−1

� u�3u�1

− q
n
2 [2][n]wn−1

� u�1u�3

where, from Appendix C,

u�1u�3 = −q
3
2 (1 + q)−1w2

� , u�3u�1 = −q− 1
2 (1 + q)−1w2

� .

We hence obtain that wn+1
� is an eigenfunction of Cq with eigenvalue

[n][n + 1] + [2] + q−n+1
2 [2][n](1 + q)−1 + q

n+3
2 [2][n](1 + q)−1 =
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= [n][n + 1] + [2] + q−n+2
2 [n] + q

n+2
2 [n] .

Next, by explicit computation one verifies that

[2] + q−n+2
2 [n] + q

n+2
2 [n] = [n + 1]([2][n + 1] − 2[n])

so that, finally,

Cq � (wn+1
� ) = [n + 1]

(
[n] + [2][n + 1] − 2[n]

)
wn+1

� = [n + 1][n + 2]wn+1
�

where we have used the property [2][n + 1] − [n] = [n + 2] of q-numbers. �

The above analysis is valid, when q is real, for the ∗-algebra Uq1/2(su(2))
acting on the algebra B = O(S2

q,Gr) of the standard Podleś sphere. The more
complicated case of Uq1/2(sl2(R)) that involves unbounded representations
(see [15]) will be studied elsewhere.

Appendix A. Proof of Proposition 3.1

From the definition (3.4), we are left to show that
∑

m udmûma = 0, for all
indices a �= d. Notice that for each index a = 1, 2, 3 (and for each m) we
can always choose an expression of the cofactor ûma = ε−1

abc

∑
n,p εmnpubnucp

for which a, b, c are all different. So either d = b or d = c. Without loss of
generality we can take d = b (that is, of the two equivalent expressions of the
cofactor with a �= b �= c we can take the one where the index b is equal to d).
Thus, fixing mutually different indices a, b = d, c, we compute

εadc

∑

m

udmûma =
∑

m,n,p

εmnpudmudnucp

=
∑

m,n

εmn1udmudnuc1 +
∑

m,n

εmn2udmudnuc2

+
∑

m,n

εmn3udmudnuc3

= q(ud2ud3 − qud3ud2)uc1 − q(ud1ud3 − ud3ud1

+(q
1
2 − q− 1

2 )ud2ud2)uc2

+(ud1ud2 − qud2ud1)uc3 . (A.1)

We then use equation (2.3) for elements udm on the same row:

q1−δd2udmudn = qδmn−δmn′ udnudm + λθ(n − m)udmudn + δd2λq− 1
2 u1mu3n

−λδnm′
∑

k

θ(k − m)q−ρm−ρk′ udk′udk . (A.2)

For d �= 2, this yields

qud3ud2 = ud2ud3 , qud2ud1 = ud1ud2 ,

q2ud3ud1 = ud1ud3 ,

(1 + q−1)ud1ud3 = q−2ud1ud3 + q−1ud3ud1 − q− 1
2 λud2ud2.
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The first two relations imply the vanishing of the (polynomial) coefficients of
uc1 and uc3. The last two when combined yield

(1 + q−1)ud1ud3 = (1 + q−1)ud3ud1 − (1 + q−1)(q
1
2 − q− 1

2 )ud2ud2

and the coefficient of uc2 vanishes as well.
For d = 2 the computation is more involved. Equation (A.1) becomes

εa2c

∑

m

u2mûma = q(u22u23 − qu23u22)uc1 − q(u21u23 − u23u21

+(q
1
2 − q− 1

2 )u22u22)uc2 + (u21u22 − qu22u21)uc3 ,

(A.3)

with the coefficients of the ucp that do not vanish, in contrast to the case
d = 1, 3. We hence need to proceed differently: the idea is to express the
coefficients as polynomials in u3ku1j for the case c = 1 or as polynomials in
u1ku3j for the case c = 3. We start with the coefficient of uc1. The equation
(A.2) yields

u23u22 = u22u23 + q− 1
2 λu13u32

(1 + q−1)u22u23 = u23u22 + qu22u23 + q− 1
2 λu12u33.

When combined, these yield

u22u23 − qu23u22 = (q
1
2 − q− 1

2 )(u12u33 − qu13u32).

This can also be written as

u22u23 − qu23u22 = (q
1
2 − q− 1

2 )(qu33u12 − u32u13)

when using the commutation relations

q−1u13u32 = u32u13 , q−1u12u33 = u33u12 + λu32u13

obtained from (2.3), for suitable choices of indices.
Analogously, for the coefficient of uc3, from equation (A.2) we obtain

u22u21 = u21u22 + q− 1
2 λu12u31

(1 + q−1)u21u22 = u22u21 + qu21u22 + q− 1
2 λu11u32.

When combined, these yield

u21u22 − qu22u21 = (q
1
2 − q− 1

2 )(u11u32 − qu12u31).

This can also be written as

u21u22 − qu22u21 = (q
1
2 − q− 1

2 )(qu32u11 − u31u12)

when using the commutation relations

q−1u12u31 = u31u12 , q−1u11u32 = u32u11 + λu31u12

again obtained from (2.3), for suitable choices of indices.
Finally, the coefficient of uc2 in (A.3) is proportional to the cofactor û22:

u21u23 − u23u21 + (q
1
2 − q− 1

2 )u22u22 = (q
1
2 − q− 1

2 )û22

= (q
1
2 − q− 1

2 )
[
u11u33 − u13u31 + (q

1
2 − q− 1

2 )u12u32

]
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= (q
1
2 − q− 1

2 )
[
−u31u13 + u33u11 − (q

1
2 − q− 1

2 )u32u12

]
.

We then return to (A.3). For c = 1 equation (A.3) reads

−q2
∑

m

u2mûm3 = q(u22u23 − qu23u22)u11 + (u21u22 − qu22u21)u13

− q
(
u21u23 − u23u21 + (q

1
2 − q− 1

2 )u22u22

)
u12

= (q
1
2 − q− 1

2 )
[
q(qu33u12 − u32u13)u11 + (qu32u11 − u31u12)u13

− q
( − u31u13 + u33u11 − (q

1
2 − q− 1

2 )u32u12

)
u12

]

= q(q
1
2 − q− 1

2 ) u32

[ − u13u11 + u11u13 + (q
1
2 − q− 1

2 )u12u12

]
,

where in the last equality we have used

u12u11 = q−1u11u12 and u13u12 = q−1u12u13 ,

obtained once again from (2.3). From (2.3) we also obtain

u13u11 = q−2u11u13,

(1 + q−1)u11u13 = q−1u13u11 + q−2u11u13 − q− 1
2 λu12u12

which, when combined, give

u11u13 = u13u11 − (q
1
2 − q− 1

2 )u12u12

and then
∑

m u2mûm3 = 0.
Similarly, for c = 3 equation (A.3) reads

∑

m

u2mûm1 = q(u22u23 − qu23u22)u31 + (u21u22 − qu22u21)u33

− q
(
u21u23 − u23u21 + (q

1
2 − q− 1

2 )u22u22

)
u32

= (q
1
2 − q− 1

2 )
[
q(u12u33 − qu13u32)u31 + (u11u32 − qu12u31)u33

− q
(
u11u33 − u13u31 + (q

1
2 − q− 1

2 )u12u32

)
u32

= q(q
1
2 − q− 1

2 )u12

[
u33u31 − u31u33 − (q

1
2 − q− 1

2 )u32u32

]
,

where in the last equality we have used

u32u31 = q−1u31u32 , u33u32 = q−1u32u33 ,

obtained once again from (2.3). From (2.3) we also obtain

u33u31 = q−2u31u33,

(1 + q−1)u31u33 = q−1u33u31 + q−2u31u33 − q− 1
2 λu32u32

which, when combined, give

u31u33 = u33u31 − (q
1
2 − q− 1

2 )u32u32

and then
∑

m u2mûm1 = 0. This concludes the proof of Prop. 3.1.
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Appendix B. Commutation relations in Oq(3)

In this appendix we compute explicitly the commutation relations (2.3) among
the generators uij of the algebra Oq(3), for j = 1, 3, which we need for com-
puting the coinvariant elements in Proposition 5.1.

As before λ = q−q−1, and ρ1 = 1
2 , ρ2 = 0, ρ3 = − 1

2 . Moreover, for each
index k = 1, 2, 3, k′ = 3 − k so that 1′ = 3, 2′ = 2 and 3′ = 1.
Commutation Relations ui1 uj1

For m = n = 1, Eq. (2.3) reduces to

qδij−δij′ uj1ui1 = (q − λθ(j − i))ui1uj1 + λδij′
∑

k

θ(j − k)q−ρi−ρkuk1uk′1 ,

from which

u21u11 = q−1u11u21 , u31u11 = q−2u11u31 ,

u31u21 = q−1u21u31 , (u21)2 = −q− 3
2 (1 + q)u11u31 .

(B.1)

Commutation Relations ui3 uj3. For m = n = 3, Eq. (2.3) has an expression
analogous to that for m = n = 1:

qδij−δij′ uj3ui3 = (q − λθ(j − i))ui3uj3 + λδij′
∑

k

θ(j − k)q−ρi−ρkuk3uk′3

and one has

u23u13 = q−1u13u23 , u33u13 = q−2u13u33 ,

u33u23 = q−1u23u33 , (u23)2 = −q− 3
2 (1 + q)u13u33 .

(B.2)

Commutation Relations ui1 uj3. For m = 3 and n = 1, Eq. (2.3) gives

q−1ui1uj3 = qδij−δij′ uj3ui1 + λθ(j − i)ui3uj1 − λδij′
∑

k

θ(j − k)q−ρi−ρkuk3uk′1

from which

u13u11 = q−2u11u13, u21u13 = q u13u21, u23u11 = q−1u11u23 − λu13u21 ,

u23u21 = q−1u21u23 + q− 1
2 λu13u31 , u31u23 = q u23u31 , u31u13 = u13u31,

u33u11 = u11u33 + (1 − q−1)λu13u31 + λq− 1
2 u21u23,

u33u21 = q−1u21u33 − λu23u31 , u33u31 = q−2u31u33 (B.3)

The quotient algebra by the ideal generated by Qq −1 gives the algebra
O(Oq(3)), where the element Qq in (2.6) can be written as

Qq = u11u33 + q
1
2 u21u23 + qu31u13 = u11u33 + q

1
2 u12u32 + qu13u31

= q− 1
2 u12u32 + u22u22 + q

1
2 u32u12 = q− 1

2 u21u23 + u22u22 + q
1
2 u23u21

= q−1u13u31 + q− 1
2 u23u21 + u33u11 = q−1u31u13 + q− 1

2 u32u12 + u33u11 ,

the diagonal entries of the matrices S(u)u and uS(u).
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Appendix C. Cofactors and Coinvariant Elements

We list all the cofactors of the elements of the defining matrix u:

û11 = u22u33 − qu23u32 = −q−1u32u23 + u33u22

û21 = −qu21u33 + qu23u31 − q(q
1
2 − q− 1

2 )u22u32

= u31u23 − u33u21 + (q
1
2 − q− 1

2 )u32u22

û31 = qu21u32 − q2u22u31 = −u31u22 + qu32u21

together with

û12 = −q−1u12u33 + u13u32 = q−1u32u13 − u33u12

= −q−1(q
1
2 − q− 1

2 )−1(u22u23 − qu23u22)

û22 = u11u33 − u13u31 + (q
1
2 − q− 1

2 )u12u32

= −u31u13 + u33u11 − (q
1
2 − q− 1

2 )u32u12

= (q
1
2 − q− 1

2 )−1(u21u23 − u23u21 + (q
1
2 − q− 1

2 )u22u22)

û32 = −u11u32 + qu12u31 = q−1u31u12 − qu32u11

= (q
1
2 − q− 1

2 )−1(−u21u22 + qu22u21)

and finally

û13 = q−1u12u23 − u13u22 = −q−2u22u13 + q−1u23u12

û23 = −u11u23 + u13u21 − (q
1
2 − q− 1

2 )u12u22

= q−1u21u13 − q−1u23u11 + q−1(q
1
2 − q− 1

2 )u22u12

û33 = u11u22 − qu12u21 = −q−2u21u12 + q−1u22u11 .

Next, we list all quadratic coinvariant elements ui3uj1 and ui1uj3 as
polynomials in the elements of the second column uk2 =: wk. From the proof
of Proposition 5.1 we have

u13u11 = −q− 1
2 (1 + q)−1w2

1 , u13u21 = q− 1
2 (1 + q)−1 w1 (1 − w2) ,

u13u31 = (1 + q)−1(1 − w2 − q− 1
2 w1w3),

u23u11 = −q
1
2 (1 + q)−1(1 + q−1w2)w1 ,

u23u21 = w3w1 ,

u23u31 = q− 1
2 (1 + q)−1 (1 − w2) w3 ,

u33u11 = (1 + q)−1(q + w2 − q− 1
2 w3w1)

u33u21 = −q− 1
2 (1 + q)−1 w3 (q + w2) , u33u31 = −q− 1

2 (1 + q)−1w2
3 .

Formulas for the elements ui1uj3 are recovered by using (5.2), or explic-
itly (B.3), and also the commutation relations (5.10)

w3(w2 − 1) = q−1(w2 − 1)w3 , w1(w2 − 1) = q(w2 − 1)w1 ,

qw3w1 = q−1w1w3 + (q− 1
2 − q

1
2 )(w2 − 1)
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or equivalently

w3w2 = q−1w2w3 + (1 − q−1)w3 , w2w1 = q−1w1w2 + (1 − q−1)w1 ,

w3w1 = q−2w1w3 + q− 3
2 (1 − q)(w2 − 1)

with (5.11): q− 1
2 w1w3 + q

1
2 w3w1 + w2

2 = 1. Finally for the remaining coin-
variant elements

u11u13 = −q
3
2 (1 + q)−1w2

1 , u11u23 = −q
1
2 (1 + q)−1w1 (1 + q w2) ,

u11u33 = (1 + q)−1(1 + qw2 − q
3
2 w1w3)

u21u13 = q
1
2 (1 + q)−1w1 (1 − w2) , u21u23 = w1w3

u21u33 = −q
1
2 (1 + q)−1(1 + q w2)w3

u31u13 = (1 + q)−1(1 − w2 − q− 1
2 w1w3)

u31u23 = q
1
2 (1 + q)−1 (1 − w2) w3 , u31u33 = −q

3
2 (1 + q)−1w2

3.
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