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Abstract
The purpose of this paper is to show that in elastoplastic materials cracks can grow only in
an intermittent way. This result is rigorously proved in the framework of a simplified model.

Mathematics Subject Classification 49K10 · 35J05 · 35J25 · 74A45 · 74C05

1 Introduction

In this paper we give a contribution to the mathematical derivation of the properties of the
quasistatic crack growth in elastoplastic materials. The study of this subject has a long history
(see, e.g., [11,14,15]). Our aim is to obtain a precisemathematical result in a simplifiedmodel
where perfect plasticity interacts with crack growth. In particular, under suitable assumptions
we prove that cracks are piecewise constant in time.

In our simplified model the reference configurationΩ is a bounded connected open subset
ofR2 with Lipschitz boundary. We consider only the antiplane case, so that the displacement
u is a function fromΩ intoR. We assume that the cracks and the plastic slips may occur only
on a prescribed segment Γ , whose interior is contained in Ω and whose end-points belong
to ∂Ω . It is not restrictive to assume that Γ := {(x, 0) : a ≤ x ≤ b} for some a < b.

Since there is no plastic part in Ω \ Γ , the displacement u belongs to H1(Ω \ Γ ) and the
elastic energy is given by

1

2

∫
Ω\Γ

|∇u|2dxdy.
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We assume that at each time the crack has the form Γ s
a := {(x, 0) : a ≤ x ≤ s} for some

a ≤ s ≤ b and that the energy spent to produce it is equal to s − a. On Γ b
s := {(x, 0) : s ≤

x ≤ b} the plastic slip is determined by the jump of the displacement:

[u] = u+ − u−,

where u+ and u− are the traces of u on Γ from above and from below. The plastic dissipation
distance between the current displacement u and a previous displacement u0 is given by∫

Γ b
s

|[u] − [u0]| dx .

The evolution is driven by a time-dependent Dirichlet boundary condition u = w(t)
imposed on a prescribed Borel subset ∂DΩ of ∂Ω . We first consider the incremental for-
mulation. Given a subdivision 0 = t0 < t1 < · · · < tn−1 < tn = T of the interval [0, T ],
for i = 1, . . . , n let (ui , si ) be a solution of the incremental minimum problem for the pair
(u, s):

min
u∈H1(Ω\Γ )

u=w(ti ) on ∂DΩ
si−1≤s≤b

{1
2

∫
Ω\Γ

|∇u|2dxdy + s +
∫

Γ b
s

|[u] − [ui−1]|dx
}
.

As in [6] we can prove (Theorem 2.5) that, passing to a subsequence, the piecewise
constant interpolation of (ui , si ) converges, as the fineness of the subdivision tends to zero,
to a quasistatic evolution, i.e., a pair (u, s) which satisfies the following conditions:

(a) (irreversibility) s is nondecreasing on [0, T ];
(b) (equilibrium) for every t ∈ [0, T ]we have u(t) ∈ H1(Ω \Γ ), u(t) = w(t) on ∂DΩ , and

1

2

∫
Ω\Γ

|∇u(t)|2dxdy + s(t) ≤ 1

2

∫
Ω\Γ

|∇û|2dxdy + ŝ +
∫

Γ b
ŝ

|[û] − [u(t)]|dx,

for every û ∈ H1(Ω \ Γ ), with û = w(t) on ∂DΩ , and every ŝ ∈ [s(t), b];
(c) (energy-dissipation inequality) for every t1, t2 ∈ [0, T ], with t1 < t2, we have

1

2

∫
Ω\Γ

|∇u(t2)|2dxdy + s(t2) − s(t1) +
∫

Γ b
s(t2)

|[u(t2)] − [u(t1)]|dx

≤ 1

2

∫
Ω\Γ

|∇u(t1)|2dxdy +
∫ t2

t1

( ∫
Ω\Γ

∇u(τ )∇ẇ(τ )dxdy
)
dτ,

where ẇ is the time-derivative of w.

As in [6] we can obtain (Theorem 2.9) an energy-dissipation balance, using a suitable
notion of dissipation (Definition 2.6). Therefore our notion of quasistatic evolution is for-
mulated within the framework of rate-independent processes developed in [12,13]. When no
plastic slip is present, i.e., [u(t)] = 0 on Γ b

s(t), this evolution agrees, in the antiplane case,
with the variational solution of the crack growth problem introduced in [9] and studied in
[2].

The main result of our paper (Theorem 4.1) is that, if (u, s) satisfies hypotheses (a)-(c),
and w satisfies suitable continuity conditions, then s is piecewise constant. In other words,
the crack growth is jerky. This behaviour is in agreement with the numerical simulations in
[1] and with many experimental results (see, e.g., [7,10]). As a consequence of well-known
results on perfect plasticity (Theorem4.14), from this property of swededuce (Theorem4.15)
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DΩ=∂−
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Γ Γ

Fig. 1 Examples of sets Ω , ∂DΩ , and Γ

that u is piecewice absolutely continuous with values in H1(Ω \ Γ ). A concluding example
(Theorem 5.1) shows that, in general, s is not constant.

A numerical study of the simplified model of the present paper will appear in [5].

2 Formulation of the problem

The reference configuration is a bounded connected open set Ω ⊂ R
2 with Lipschitz bound-

ary ∂Ω . On a prescribedBorel subset ∂DΩ of ∂Ω we shall impose a time-dependent Dirichlet
boundary condition. On its complement ∂Ω \∂DΩ we shall consider the homogeneous Neu-
mann boundary condition.

In our simplified model we assume that the cracks and the plastic slips may occur only on
a prescribed segment Γ := {(x, 0) : a ≤ x ≤ b} contained in Ω , with (a, 0), (b, 0) ∈ ∂Ω

and (x, 0) ∈ Ω for every a < x < b. For every a ≤ s1 ≤ s2 ≤ b we set Γ
s2
s1 := {(x, 0) :

s1 ≤ x ≤ s2}.
We assume that there exists an open neighbourhoodU of Γ in R2 such thatU ∩ (Ω \ Γ )

is the union of two disjoint connected open sets U+ and U− with Lipschitz boundary. We
also assume that for every a < x < b we have (x, y) ∈ U± whenever |y| is small and
±y > 0. Let Ω± be the connected component of Ω \ Γ containingU±. Note that under our
hypotheses we have Ω \ Γ = Ω+ ∪ Ω− and that it may happen that Ω+ = Ω−, if Ω is
not simply connected (see Fig. 1) We set ∂±Ω := ∂Ω± \ Γ and ∂±

DΩ := ∂DΩ ∩ ∂Ω±. We
assume that

∂+
DΩ and ∂−

DΩ have positive one-dimensional measure. (2.1)

Since we are dealing with the antiplane case, the displacement u = u(x, y) is a scalar
function belonging to H1(Ω \Γ ). An admissible crack will be a segment of the form Γ s

a for
some a ≤ s ≤ b. Given a displacement u ∈ H1(Ω \ Γ ), the jump of u across Γ is given by

[u] = u+ − u−,

where u+ is the trace on the side of Γ corresponding to y > 0, and u− is the trace on the
opposite side.
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The Dirichlet boundary condition will be prescribed through a function

w ∈ AC([0, T ]; H1(Ω \ Γ s0
a )) (2.2)

for a suitable s0 ∈ [a, b).

Definition 2.1 Let T > 0, s0 ∈ [a, b), and w ∈ AC([0, T ]; H1(Ω \ Γ
s0
a )). A quasistatic

evolution with boundary value w on ∂DΩ is a pair (u, s), with u : [0, T ] → H1(Ω \ Γ )

measurable and s : [0, T ] → [s0, b], that satisfies the following conditions:

(a) (irreversibility) s is nondecreasing;
(b) (equilibrium) for every t ∈ [0, T ] we have u(t) = w(t) on ∂DΩ and

1

2

∫
Ω\Γ

|∇u(t)|2dxdy + s(t) ≤ 1

2

∫
Ω\Γ

|∇û|2dxdy + ŝ +
∫

Γ b
ŝ

|[û] − [u(t)]|dx,

for every û ∈ H1(Ω \ Γ ), with û = w(t) on ∂DΩ , and every ŝ ∈ [s(t), b];
(c) (energy-dissipation inequality) for every t1, t2 ∈ [0, T ], with t1 < t2, we have

1

2

∫
Ω\Γ

|∇u(t2)|2dxdy + s(t2) − s(t1) +
∫

Γ b
s(t2)

|[u(t2)] − [u(t1)]|dx

≤ 1

2

∫
Ω\Γ

|∇u(t1)|2dxdy +
∫ t2

t1

( ∫
Ω\Γ

∇u(τ )∇ẇ(τ )dxdy
)
dτ.

Remark 2.2 Taking û = w(t) and ŝ = b in condition (b) above, by (2.2) we obtain that there
exists a constant M1 > 0 such that

∫
Ω\Γ

|∇u(t)|2dxdy ≤ M1 for every t ∈ [0, T ]. (2.3)

Together with the measurability of t 	→ u(t) this implies that the last integral in condition (c)
above is well defined. Moreover, since u(t) = w(t) on ∂DΩ , by (2.1)–(2.3) there exists a
constant M0 > 0 such that

∫
Ω\Γ

|u(t)|2dxdy ≤ M0 for every t ∈ [0, T ]. (2.4)

Remark 2.3 Let us now comment on the term∫ t2

t1

( ∫
Ω\Γ

∇u(τ )∇ẇ(τ )dxdy
)
dτ (2.5)

which appears in the energy-dissipation balance. The Euler equation for the equilibrium
condition gives that u(t) is harmonic in Ω \ Γ for every t ∈ [0, T ]. Moreover, if u is
sufficiently regular, the equilibrium condition implies that ∂u(t)

∂ν
= 0 on ∂Ω \ ∂DΩ , where ν

is the outward unit normal to ∂Ω ,
(

∂u(t)
∂ y )+ = (

∂u(t)
∂ y

)− = 0 onΓ
s(t)
a , and

(
∂u(t)
∂ y )+ = (

∂u(t)
∂ y

)−

on Γ b
s(t) (the last property follows easily from (3.8) and (3.9), proved below in a more general

setting). Therefore, since (ẇ)+(τ ) = (ẇ)−(τ ) on Γ b
s(t) (by our assumption on w and s),

integrating by parts we obtain
∫

Ω\Γ
∇u(τ )∇ẇ(τ )dxdy =

∫
∂DΩ

∂u(τ )

∂ν
ẇ(τ )dS,
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where S is the line-measure on ∂DΩ . Thus (2.5) equals
∫ t2

t1

( ∫
∂DΩ

∂u(τ )

∂ν
ẇ(τ )dS

)
dτ. (2.6)

Since ∂u(τ )
∂ν

represents the force acting on the boundary, (2.6) represents the work done by
this force in the interval [t1, t2].

Remark 2.4 The previous remark suggests that Definition 2.1 does not change ifw is replaced
by another function w∗ ∈ AC([0, T ]; H1(Ω \ Γ

s0
a )) such that

w(t) = w∗(t) on ∂DΩ.

This is actually true without any additional regularity assumption. Indeed, if (u, s) is a
quasistatic evolution for w, then

∫
Ω\Γ

∇u(τ )∇ẇ(τ )dxdy =
∫

Ω\Γ
∇u(τ )∇ẇ∗(τ )dxdy for a.e. τ ∈ [0, T ].

This follows from Lemma 3.1, since ẇ(τ ) − ẇ∗(τ ) ∈ H1(Ω \ Γ ), ẇ(τ ) − ẇ∗(τ ) = 0 on
∂DΩ , and [ẇ(τ ) − ẇ∗(τ )] = 0 on Γ b

s(τ ).

The following result shows the existence of a quasistatic evolution with prescribed initial
data.

Theorem 2.5 Let T > 0, s0 ∈ [a, b), u0 ∈ H1(Ω \ Γ ), and let w ∈ AC([0, T ]; H1(Ω \
Γ

s0
a )). Assume that u0 = w(0) on ∂DΩ and

1

2

∫
Ω\Γ

|∇u0|2dxdy + s0 ≤ 1

2

∫
Ω\Γ

|∇û|2dxdy + ŝ +
∫

Γ b
ŝ

|[û] − [u0]|dx,

for every û ∈ H1(Ω \ Γ ), with û = w(0) on ∂Ω , and every s0 ≤ ŝ ≤ b. Then there exists
a quasistatic evolution with boundary value w on ∂DΩ , satisfying the initial conditions
u(0) = u0 and s(0) = s0.

To prove the theorem it is convenient to introduce the notion of dissipation, which is a
particular case of the one considered in [6, Section 2.3].

Definition 2.6 Let u : [0, T ] → H1(Ω \Γ ) and s : [0, T ] → [a, b]. The dissipation of (u, s)
on the interval [t1, t2] ⊂ [0, T ] is defined as:

Diss(u(·), s(·); t1, t2) := sup
k∑

i=1

(
s(τi ) − s(τi−1) +

∫
Γ b
s(τi )

|[u(τi )] − [u(τi−1)]|dx
)

where the supremum is taken over all finite partitions t1 = τ0 ≤ τ1 ≤ · · · ≤ τk = t2.

Proof of Theorem 2.5. The proof is a simplified version of the proof of [6, Theorem 2.5]. We
fix a sequence of subdivisions (t in)0≤i≤n with

0 = t0n < t1n < · · · < tn−1
n < tnn = T , (2.7)

lim
n→∞ max

1≤i≤n
(t in − t i−1

n ) = 0. (2.8)
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For every n we set u0n = u0, s0n = s0, and for every i = 1, . . . , n we define inductively
(uin, s

i
n) as a solution of the incremental minimum problem

min
u∈H1(Ω\Γ )

u=wi
n on ∂DΩ

si−1
n ≤s≤b

{1
2

∫
Ω\Γ

|∇u|2dxdy + s +
∫

Γ b
s

|[u] − [ui−1
n ]|dx

}
, (2.9)

where wi
n := w(t in).

Note that, by the triangle inequality, from (2.9) we obtain that uin satisfies

1

2

∫
Ω\Γ

|∇uin|2dxdy + sin ≤ 1

2

∫
Ω\Γ

|∇û|2dxdy + ŝ +
∫

Γ b
ŝ

|[û] − [uin]|dx, (2.10)

for every sin ≤ ŝ ≤ b and every û ∈ H1(Ω \ Γ ) with û = wi
n on ∂DΩ .

To estimate uin we compare (uin, s
i
n) with (wi

n, s
i
n) in the minimum problem (2.10) and

we obtain

1

2

∫
Ω\Γ

|∇uin|2dxdy ≤ 1

2

∫
Ω\Γ

|∇wi
n |2dxdy +

∫
Γ b
sin

|[uin]|dx ≤ C1 +
∫

Γ b
sin

|[uin]|dx,

(2.11)

for a suitable constant C1 > 0 independent of i and n . By the Trace Inequality there exists
a constant C2 > 0 independent of i and n such that∫

Γ

|[uin]|dx ≤ C2

( ∫
Ω\Γ

|∇uin|2dxdy
)1/2 + C2

( ∫
Ω\Γ

|uin |2dxdy
)1/2

.

Since uin = wi
n on ∂DΩ , by (2.1), (2.2), and the Poincaré Inequality there exists a constant

C3 > 0 independent of i and n, such that∫
Γ

|[uin]|dx ≤ C3

( ∫
Ω\Γ

|∇uin|2dxdy
)1/2 + C3.

Therefore (2.11) gives

1

2

∫
Ω\Γ

|∇uin|2dxdy ≤ C3

( ∫
Ω\Γ

|∇uin|2dxdy
)1/2 + C3 + C1

which implies that there exists a constant C4 > 0 independent of i and n such that∫
Ω\Γ

|∇uin|2dxdy ≤ C4. (2.12)

We now compare (uin, s
i
n) with (ui−1

n + wi
n − wi−1

n , si−1
n ) in the minimum problem (2.9)

and we obtain

1

2

∫
Ω\Γ

|∇uin|2dxdy + sin − si−1
n +

∫
Γ b
sin

|[uin] − [ui−1
n ]|dx

≤ 1

2

∫
Ω\Γ

|∇ui−1
n |2dxdy +

∫ t in

t i−1
n

( ∫
Ω\Γ

∇ui−1
n ∇ẇ(t)dxdy

)
dt + Ri

n,

where

Ri
n := 1

2

∫
Ω\Γ

|∇(wi
n − wi−1

n )|2dxdy.
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Iterating this inequality for every 0 ≤ i < j ≤ n we obtain

1

2

∫
Ω\Γ

|∇u j
n |2dxdy +

j∑
h=i+1

(
shn − sh−1

n +
∫

Γ b
shn

|[uhn] − [uh−1
n ]|dx

)

≤ 1

2

∫
Ω\Γ

|∇uin|2dxdy +
j∑

h=i+1

∫ thn

th−1
n

( ∫
Ω\Γ

∇uh−1
n ∇ẇ(τ )dxdy

)
dτ + Rn,

(2.13)

where Rn := ∑n
i=1 R

i
n . Since w ∈ AC([0, T ]; H1(Ω \ Γ

s0
a )) we have that Rn → 0.

Let un(t), sn(t), and wn(t) be the piecewise constant interpolations of uin , s
i
n , and wi

n
defined by

un(t) := ui−1
n , sn(t) := si−1

n , wn(t) := wi−1
n for t i−1

n ≤ t < t in . (2.14)

Note that by (2.12) we have∫
Ω\Γ

|∇un(t)|2dxdy ≤ C4 for every t ∈ [0, T ] and every n. (2.15)

Inequality (2.13) can be rewritten as

1

2

∫
Ω\Γ

|∇un(t
j
n )|2dxdy + Diss(un(·), sn(·); t in, t jn )

≤ 1

2

∫
Ω\Γ

|∇un(t
i
n)|2dxdy +

∫ t jn

t in

( ∫
Ω\Γ

∇un(τ )∇ẇ(τ )dxdy
)
dτ + Rn .

Since the function t 	→ ( ∫
Ω\Γ |∇ẇ(t)|2dxdy)1/2 is integrable, using (2.8) and (2.15) we

deduce from the previous inequality that there exists R̃n → 0 such that for every 0 ≤ t1 <

t2 ≤ T we have

1

2

∫
Ω\Γ

|∇un(t2)|2dxdy + Diss(un(·), sn(·); t1, t2)

≤ 1

2

∫
Ω\Γ

|∇un(t1)|2dxdy +
∫ t2

t1

( ∫
Ω\Γ

∇un(τ )∇ẇ(τ )dxdy
)
dτ + R̃n .

(2.16)

In particular, by (2.15) this inequality implies that Diss(un(·), sn(·); 0, T ) is bounded uni-
formly with respect to t and n. To continue the proof we need the following lemmas.

Given a set A, let χA be its characteristic function, defined by χA(x) := 1 if x ∈ A and
χA(x) := 0 if x /∈ A.

Lemma 2.7 Assume that ‖un(t)‖H1(Ω\Γ ) andDiss(un(·), sn(·); 0, T ) are bounded uniformly
with respect to t and n. Then there exist a subsequence of (un, sn), not relabelled, a nonde-
creasing function s : [0, T ] → [a, b], and a function g : [0, T ] → L1(Γ ) such that

sn(t) → s(t), (2.17)

[un(t)]χΓ b
sn (t)

→ g(t)χΓ b
s(t)

strongly in L1(Γ ), (2.18)

for every t ∈ [0, T ].
Proof The statement on the convergence of sn is a consequence of Helly’s Theorem. Let D
be a countable dense subset of [0, T ]. By a diagonal argument we can find a subsequence
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of un , not relabelled, and a bounded function v : D → H1(Ω \ Γ ) such that un(t)⇀ v(t)
weakly in H1(Ω \ Γ ) for every t ∈ D. This implies that

[un(t)] → [v(t)] strongly in L2(Γ ) (2.19)

for every t ∈ D.
To prove (2.18) for every t ∈ [0, T ] we introduce the nondecreasing functions

Vn : [0, T ] → R defined by

Vn(t) := Diss(un(·), sn(·); 0, t). (2.20)

ByHelly’s Theorem there exist a subsequence, not relabelled, and a nondecreasing functionV
such that Vn(t) → V (t) for every t ∈ [0, T ].

Let t0 ∈ (0, T ) be a continuity point for both V and s. For every ε > 0 there exists δ > 0
such that |V (t) − V (t0)| < ε and |s(t) − s(t0)| < ε for every t ∈ [0, T ] with |t − t0| < δ.
Let t ∈ D with t0 < t < t0 + δ. Then Vn(t) → V (t) < V (t0) + ε and Vn(t0) → V (t0). By
Definition 2.6 it follows that∫

Γ b
sn (t)

|[un(t)] − [un(t0)]|dx ≤ Diss(un(·), sn(·); t0, t) ≤ Vn(t) − Vn(t0) < ε (2.21)

for n large enough. Moreover, since ‖un(t)‖H1(Ω\Γ ) is uniformly bounded, there exists a
constant C > 0 such that ‖[un(t0)]‖L2(Γ ) ≤ C for every n. This implies that∫

Γ

|[un(t0)]χΓ b
sn (t)

− [un(t0)]χΓ b
sn (t0)

|dx

≤
∫

Γ
sn (t)
sn (t0)

|[un(t0)]|dx ≤ ‖[un(t0)]‖L2(Γ )(sn(t) − sn(t0))
1/2 < Cε1/2

(2.22)

for sufficiently large n. By the triangle inequality (2.21) and (2.22) give∫
Γ

|[un(t)]|χΓ b
sn (t)

− [un(t0)]χΓ b
sn (t0)

|dx < ε + Cε1/2,

and this inequality, together with (2.19), implies that [un(t0)]χΓ b
sn (t0)

is a Cauchy sequence

in L1(Γ ), hence it converges to a function g(t0) ∈ L1(Γ ). Since sn(t0) → s(t0) we have
g(t0) = g(t0)χΓ b

s(t0)
.

Therefore (2.18) holds for all continuity points of both V and s. Since the set of all other
points is at most countable, we can apply again the diagonal argument to extract a further
subsequence along which (2.18) holds for all t . 
�
Lemma 2.8 For every w ∈ H1(Ω \ Γ ), s ∈ [a, b], and g ∈ L1(Γ ) let uw

s,g be the unique
solution of the minimum problem

min
u∈H1(Ω\Γ )
u=w on ∂DΩ

{1
2

∫
Ω\Γ

|∇u|2dxdy +
∫

Γ b
s

|[u] − g|dx
}
. (2.23)

Let wn, w ∈ H1(Ω \ Γ ), sn, s ∈ [a, b], and gn, g ∈ L1(Γ ) be such that

wn → w strongly in H1(Ω \ Γ ), (2.24)

sn → s, (2.25)

gnχΓ b
sn

→ gχΓ b
s

strongly in L1(Γ ). (2.26)

Then uwn
sn ,gn → uw

s,g strongly in H1(Ω \ Γ ).
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Proof Note that the uniqueness of the solution to (2.23) follows easily from the strict convexity
of the functional with respect to ∇u, using (2.1).

We set un := uwn
sn ,gn and u := uw

s,g . From the minimality of un we have

1

2

∫
Ω\Γ

|∇un |2dxdy +
∫

Γ b
sn

|[un] − gn |dx ≤ 1

2

∫
Ω\Γ

|∇wn |2dxdy +
∫

Γ b
sn

|[wn] − gn |dx,

which gives the boundedness of un in H1(Ω \ Γ ), thanks to (2.1). Hence there exist a
subsequence, not relabelled, and a function v ∈ H1(Ω \ Γ ) with v = w on ∂DΩ , such that
un ⇀ v weakly in H1(Ω \ Γ ). Using lower semicontinuity it is easy to prove that v solves
(2.23), hence v = u. By the arbitrariness of the subsequence we conclude that the whole
sequence un converges to u weakly in H1(Ω \ Γ ). To prove the strong convergence we first
observe that [un] → [u] strongly in L2(Γ ) and

1

2

∫
Ω\Γ

|∇un |2dxdy +
∫

Γ b
sn

|[un] − gn |dx

≤ 1

2

∫
Ω\Γ

|∇(u + wn − w)|2dxdy +
∫

Γ b
sn

|[u + wn − w] − gn |dx,

by minimality. By (2.24)–(2.26) this implies

lim sup
n

∫
Ω\Γ

|∇un |2dxdy ≤
∫

Ω\Γ
|∇u|2dxdy,

which, together with the weak convergence, gives ∇un → ∇u strongly in L2(Ω \ Γ ;R2).
Taking (2.1) into account, this implies the strong convergence of un to u. 
�

For every α, β ∈ R we set α ∨ β := max{α, β} and α ∧ β := min{α, β}.
Proof of Theorem 2.5 (continuation) Let s and g be the functions given by Lemma 2.7 and
for every t ∈ [0, T ] let u(t) be the solution of the minimum problem

min
u∈H1(Ω\Γ )

u=w(t) on ∂DΩ

{1
2

∫
Ω\Γ

|∇u|2dxdy +
∫

Γ b
s(t)

|[u] − g(t)|dx
}
.

Let us prove that t 	→ u(t) from [0, T ] into H1(Ω \ Γ ) is measurable. It is enough to
show that t 	→ u(t) is continuous at every continuity point t0 ∈ (0, T ) of both V and s,
where V is defined as in the proof of Lemma 2.7. Let us fix such a point t0 and a sequence
tk → t0. Taking into account Lemma 2.8, since u(tk) = uw(tk )

s(tk ),g(tk )
, it is sufficient to prove

that

g(tk)χΓ b
s(tk )

→ g(t0)χΓ b
s(t0)

strongly in L1(Γ ). (2.27)

By Definition 2.6 and (2.20) we have
∫

Γ

|[un(tk)]χΓ b
sn (tk )

− [un(t0)]χΓ b
sn (t0)

|dx

≤
∫

Γ b
sn (t0∨tk )

|[un(tk)] − [un(t0)]|dx +
∫

Γ
sn (t0∨tk )

sn (t0∧tk )

|[un(t0 ∧ tk)]|dx

≤ Vn(t0 ∨ tk) − Vn(t0 ∧ tk) + ‖[un(t0 ∧ tk)]‖L2(Γ )|sn(tk) − sn(t0)|1/2.
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107 Page 10 of 40 G. Dal Maso, R. Toader

Since ‖un(t)‖H1(Ω\Γ ) is bounded uniformly with respect to n and t , there exists a constant
C > 0 such that∫

Γ

|[un(tk)]χΓ b
sn (tk )

− [un(t0)]χΓ b
sn (t0)

|dx≤Vn(t0 ∨ tk) − Vn(t0 ∧ tk) + C |sn(tk) − sn(t0)|1/2.

Passing to the limit as n → ∞ along a suitable subsequence and using Lemma 2.7, we obtain∫
Γ

|g(tk)χΓ b
s(tk )

− [g(t0)]χΓ b
s(t0)

|dx ≤ V (t0 ∨ tk) − V (t0 ∧ tk) + C |s(tk) − s(t0)|1/2.

Since V and s are continuous in t0, this gives (2.27) and concludes the proof of the measur-
ability of t 	→ u(t).

We now prove the equilibrium condition (b) in Definition 2.1. By (2.10) and (2.14), for
every t and n we have that

1

2

∫
Ω\Γ

|∇un(t)|2dxdy + sn(t) ≤ 1

2

∫
Ω\Γ

|∇û|2dxdy + ŝ +
∫

Γ b
ŝ

|[û] − [un(t)]|dx
(2.28)

for every sn(t) ≤ ŝ ≤ b and every û ∈ H1(Ω \ Γ ) with û = wn(t) on ∂DΩ . In particular,
taking ŝ = sn(t), we see that un(t) satisfies the minimum problem (2.23) with w = wn(t),
s = sn(t), and gn = [un(t)]. Since wn(t) → w(t) strongly in H1(Ω \ Γ

s0
a ), sn(t) → s(t),

and [un(t)]χΓ b
sn (t)

→ g(t)χΓ b
s(t)

strongly in L1(Γ ), by Lemma 2.8 we have

un(t) → u(t) strongly in H1(Ω \ Γ ) (2.29)

for every t ∈ [0, T ].
We now fix t ∈ [0, T ], s(t) ≤ ŝ ≤ b, and û ∈ H1(Ω \ Γ ) with û = w(t) on ∂Ω . We

have to prove that

1

2

∫
Ω\Γ

|∇u(t)|2dxdy + s(t) ≤ 1

2

∫
Ω\Γ

|∇û|2dxdy + ŝ +
∫

Γ b
ŝ

|[û] − [u(t)]|dx . (2.30)

Let ŝn := ŝ ∨ sn(t) and ûn := û + wn(t) − w(t). Since ûn = wn(t) on ∂DΩ and ŝn ≥ sn(t),
by (2.28) we have

1

2

∫
Ω\Γ

|∇un(t)|2dxdy + sn(t) ≤ 1

2

∫
Ω\Γ

|∇ûn |2dxdy + ŝn +
∫

Γ b
ŝn

|[ûn] − [un(t)]|dx .

(2.31)

Since un(t) → u(t) and ûn → û strongly in H1(Ω \ Γ ) by (2.29), while sn(t) → s(t) and
ŝn → ŝ, we can pass to the limit in (2.31) and we obtain (2.30), which gives the equilibrium
condition (b) in Definition 2.1.

We conclude by proving now the energy-dissipation inequality (c) in Definition 2.1.
By (2.16) and by Definition 2.6 we have

1

2

∫
Ω\Γ

|∇un(t2)|2dxdy + sn(t2) − sn(t1) +
∫

Γ b
sn (t2)

|[un(t2)] − [un(t1)]|dx

≤ 1

2

∫
Ω\Γ

|∇un(t1)|2dxdy +
∫ t2

t1

( ∫
Ω\Γ

∇un(τ )∇ẇ(τ )dxdy
)
dτ + R̃n .

for every 0 ≤ t1 ≤ t2 ≤ T and for every n. By (2.29) we can pass to the limit and obtain
condition (c). 
�
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The following theorem shows that the notion of evolution according to Definition 2.1 can
be expressed equivalently by using the notion of dissipation introduced in Definition 2.6.
This shows the analogy with the definition used in [6].

Theorem 2.9 Let T > 0, s0 ∈ [a, b), and w ∈ AC([0, T ]; H1(Ω \ Γ
s0
a )). A pair (u, s) is a

quasistatic evolution with boundary value w on ∂DΩ if and only if u : [0, T ] → H1(Ω \Γ )

is measurable, s : [0, T ] → [s0, b], conditions (a) and (b) of Definition 2.1 are satisfied, and
one of the following two conditions holds:

(c′) (energy-dissipation inequality starting from 0) for every t ∈ [0, T ] we have
1

2

∫
Ω\Γ

|∇u(t)|2dxdy + Diss(u(·), s(·); 0, t)

≤ 1

2

∫
Ω\Γ

|∇u(0)|2dxdy +
∫ t

0

( ∫
Ω\Γ

∇u(τ )∇ẇ(τ )dxdy
)
dτ.

(c′′) (energy-dissipation balance) for every t1, t2 ∈ [0, T ] with t1 < t2, we have

1

2

∫
Ω\Γ

|∇u(t2)|2dxdy + Diss(u(·), s(·); t1, t2)

= 1

2

∫
Ω\Γ

|∇u(t1)|2dxdy +
∫ t2

t1

( ∫
Ω\Γ

∇u(t)∇ẇ(t)dxdy
)
dt .

Proof Let (u, s) be a quasistatic evolution with boundary value w on ∂DΩ . By (c) and
Definition 2.6 we obtain

1

2

∫
Ω\Γ

|∇u(t2)|2dxdy + Diss(u(·), s(·); t1, t2)

≤ 1

2

∫
Ω\Γ

|∇u(t1)|2dxdy +
∫ t2

t1

( ∫
Ω\Γ

∇u(τ )∇ẇ(τ )dxdy
)
dτ,

which clearly implies (c′).
To prove that (a)&(b)&(c′) �⇒ (c′′) we argue as in the proof of the energy balance in [6,

Section 6] and we obtain

1

2

∫
Ω\Γ

|∇u(t)|2dxdy + Diss(u(·), s(·); 0, t)

≥ 1

2

∫
Ω\Γ

|∇u(0)|2dxdy +
∫ t

0

( ∫
Ω\Γ

∇u(τ )∇ẇ(τ )dxdy
)
dτ.

This inequality, together with (c′) gives (c′′) for t1 = 0. The general case for (c′′) follows by
additivity.

The implication (c′′) �⇒ (c) is an immediate consequence of Definition 2.6. 
�

3 Some auxiliary results

In this section we prove a characterization of the solutions of the minimum problems con-
sidered in Lemma 2.8, which are connected with the equilibrium condition (b) in Definition
2.1. This is obtained by means of a suitable weak formulation of their boundary conditions
on Γ . In the last part of the section we present a technical result that will be crucial in the
proof of our main result in Sect. 4.
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107 Page 12 of 40 G. Dal Maso, R. Toader

It is convenient to introduce the notation

H1
0,D(Ω \ Γ ) := {u ∈ H1(Ω \ Γ ) : u = 0 on ∂DΩ}. (3.1)

We also set

∂±U := ∂U± \ Γ , (3.2)

where U and U± are the open sets introduced at the beginning of Sect. 2.

Lemma 3.1 Let w ∈ H1(Ω \ Γ ), s ∈ [a, b], g ∈ L1(Γ ), and let u be the minimiser of

min
u∈H1(Ω\Γ )
u=w on ∂DΩ

(1
2

∫
Ω\Γ

|∇u|2dxdy +
∫

Γ b
s

|[u] − g|dx
)
. (3.3)

Then there exists ψ ∈ L∞(Γ ), with ψ = 0 a.e. on Γ s
a and |ψ | ≤ 1 a.e. on Γ b

s , such that
∫

Ω\Γ
∇u∇ϕ dxdy =

∫
Γ

ψ[ϕ] dx for every ϕ ∈ H1
0,D(Ω \ Γ ). (3.4)

Proof Let ϕ ∈ H1
0,D(Ω \ Γ ). Since u + εϕ = w on ∂DΩ for every ε ∈ R, by minimality

1

2

∫
Ω\Γ

|∇(u + εϕ)|2dxdy +
∫

Γ b
s

|[u] − g + ε[ϕ]|dx

−1

2

∫
Ω\Γ

|∇u|2dxdy −
∫

Γ b
s

|[u] − g|dx ≥ 0.

Developing the square and using the triangle inequality we get

ε

2

∫
Ω\Γ

|∇ϕ|2dxdy +
∫

Ω\Γ
∇u∇ϕdxdy +

∫
Γ b
s

|[ϕ]|dx ≥ 0

for every ε > 0. Taking the limit as ε → 0+ we obtain∫
Ω\Γ

∇u∇ϕdxdy ≥ −
∫

Γ b
s

|[ϕ]|dx .

Using the same inequality also for −ϕ, we deduce that
∣∣∣
∫

Ω\Γ
∇u∇ϕ dxdy

∣∣∣ ≤
∫

Γ b
s

|[ϕ]|dx (3.5)

for every ϕ ∈ H1
0,D(Ω \ Γ ). Given ϕ ∈ H1(U+) with ϕ = 0 on ∂+U , we can extend it by 0

and we obtain a function in H1
0,D(Ω \ Γ ). Therefore (3.5) gives

∣∣∣
∫
U+

∇u∇ϕdxdy
∣∣∣ ≤

∫
Γ b
s

|ϕ+|dx (3.6)

for every ϕ ∈ H1(U+) with ϕ = 0 on ∂+U , where ϕ+ denotes the trace of ϕ on Γ from
above. Moreover, (3.5) gives also∫

U+
∇u∇ϕ dxdy +

∫
U−

∇u∇ϕdxdy = 0 (3.7)

for every ϕ ∈ H1
0 (U ∩ Ω).
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Let μ be the distribution on U ∩ Ω defined by

〈μ, ϕ〉 :=
∫
U+

∇u∇ϕ dxdy = −
∫
U−

∇u∇ϕ dxdy

for every ϕ ∈ C∞
c (U ∩ Ω). By (3.6) it is easy to prove that there exist ψ ∈ L∞(Γ ), with

ψ = 0 a.e. on Γ s
a and |ψ | ≤ 1 a.e. on Γ b

s , such that

〈μ, ϕ〉 =
∫

Γ

ψϕ dx for every ϕ ∈ C∞
c (U ∩ Ω).

By density∫
U+

∇u∇ϕ dxdy =
∫

Γ

ψϕ dx and
∫
U−

∇u∇ϕ dxdy = −
∫

Γ

ψϕ dx

for every ϕ ∈ H1
0 (U ∩ Ω).

Given ϕ ∈ H1(U+) with ϕ = 0 on ∂+U , we can extend it to a function belonging to
H1
0 (U ∩ Ω). Therefore ∫

U+
∇u∇ϕ dxdy =

∫
Γ

ψϕ+ dx (3.8)

for every ϕ ∈ H1(U+) with ϕ = 0 on ∂+U . Similarly we prove that∫
U−

∇u∇ϕ dxdy = −
∫

Γ

ψϕ− dx (3.9)

for every ϕ ∈ H1(U−) with ϕ = 0 on ∂−U , where ϕ− denotes the trace of ϕ on Γ from
below. By taking the sum we get∫

U+∪U−
∇u∇ϕ dxdy =

∫
Γ

ψ[ϕ] dx (3.10)

for every ϕ ∈ H1(U+ ∪U−) with ϕ = 0 on ∂+U ∪ ∂−U .
Let ωk be a sequence in C∞

c (U ∩ Ω), with 0 ≤ ωk ≤ 1, such that ωk → 1 a.e. on Γ .
Given ϕ ∈ H1

0,D(Ω \Γ ) we set ϕk := ωkϕ and ϕ̂k := (1−ωk)ϕ. Then ϕk ∈ H1(U+ ∪U−),

ϕk = 0 on ∂+U ∪ ∂−U , and ϕ̂k ∈ H1
0,D(Ω \ Γ ). Moreover [ϕk] → [ϕ] strongly in L1(Γ ).

Since ϕ = ϕk + ϕ̂k we have∫
Ω\Γ

∇u∇ϕ dxdy =
∫
U+∪U−

∇u∇ϕkdxdy +
∫

Ω\Γ
∇u∇ϕ̂kdxdy. (3.11)

By (3.10) we have ∫
U+∪U−

∇u∇ϕkdxdy →
∫

Γ

ψ[ϕ] dx, (3.12)

while (3.5) gives
∣∣∣
∫

Ω\Γ
∇u∇ϕ̂k dxdy

∣∣∣ ≤
∫

Γ b
s

|[ϕ̂k]| dx → 0. (3.13)

Equality (3.4) follows from (3.11)–(3.13). 
�
Lemma 3.2 Let v, w ∈ H1(Ω \ Γ ), let s ∈ [a, b], let g := [v], and let u be the minimiser
of (3.3). Then the functionψ introduced inLemma3.1 satisfiesψ = −1a.e. on {[u] > g}∩Γ b

s
and ψ = 1 a.e. on {[u] < g} ∩ Γ b

s .
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107 Page 14 of 40 G. Dal Maso, R. Toader

Proof SinceU− has Lipschitz boundary, there exist ũ, ṽ ∈ H1(U ∩ Ω) such that ũ = u and
ṽ = v inU−. Let û, v̂ ∈ H1(U ∩ (Ω \ Γ )) be defined by û := u − ũ and v̂ := v − ṽ, so that
û+ = [û] = [u] and v̂+ = [v̂] = [v] = g on Γ , while û = v̂ = 0 in U−.

Let A := {[u] > [v]} ∩ Γ b
s = {û+ > v̂+} ∩ Γ b

s . To prove that ψ = −1 a.e. on A it is
enough to show that

∫
A

ψϕ+dx +
∫
A

ϕ+dx = 0 (3.14)

for every ϕ ∈ H1(U+)with ϕ = 0 on ∂+U . Let us fix such a ϕ and for every k let ϕk := (ϕ∧
(kω))∨(−kω) ∈ H1(U+), whereω := (û− v̂)∨0.We extend ϕk toΩ \Γ by setting ϕk = 0
on Ω \ (Γ ∪U+). Since ϕk = 0 on ∂+U , the extended function satisfies ϕk ∈ H1

0,D(Ω \Γ ).

For every ε with |ε| < 1
k we have |ε[ϕk]| ≤ |εϕ+

k | ≤ ω+ = (û+ − v̂+)∨ 0 = ([u]− [v])∨ 0
a.e. on Γ b

s . It follows that∫
Γ b
s

|[u] − [v] + ε[ϕk]|dx −
∫

Γ b
s

|[u] − [v]|dx =
∫

Γ b
s

ε[ϕk]dx =
∫

Γ b
s

εϕ+
k dx .

By theminimality of u, repeating the argument at the beginning of the proof of Lemma 3.1
we obtain

ε2

2

∫
Ω\Γ

|∇ϕk |2dxdy + ε

∫
Ω\Γ

∇u∇ϕkdxdy +
∫

Γ b
s

εϕ+
k dx ≥ 0

for every ε ∈ (− 1
k ,

1
k ). Taking the derivative at ε = 0 and using (3.4) we obtain

∫
Γ b
s

ψϕ+
k dx +

∫
Γ b
s

ϕ+
k dx = 0.

Since {ϕ+
k �= 0} ∩ Γ b

s ⊂ A, we obtain
∫
A

ψϕ+
k dx +

∫
A

ϕ+
k dx = 0.

Passing to the limit as k → ∞ we obtain (3.14).
The proof on the set {[u] < g} ∩ Γ b

s is similar. 
�
Lemma 3.3 Letw ∈ H1(Ω \Γ ), s ∈ [a, b], g ∈ L1(Γ ), and let u ∈ H1(Ω \Γ ) with u = w

on ∂DΩ . Suppose that there exists ψ ∈ L∞(Γ ) satisfying (3.4) such that

ψ = 0 a.e. on Γ s
a , (3.15)

ψ = −1 a.e. on {[u] > g} ∩ Γ b
s , (3.16)

ψ = 1 a.e. on {[u] < g} ∩ Γ b
s , (3.17)

|ψ | ≤ 1 a.e. on {[u] = g} ∩ Γ b
s . (3.18)

Then u is the minimiser of (3.3).

Proof Let us fix v ∈ H1(Ω \ Γ ) with v = w on ∂DΩ and let ϕ := v − u. Then ϕ ∈
H1
0,D(Ω \ Γ ). For every ε ∈ [0, 1] we define

f (ε) := 1

2

∫
Ω\Γ

|∇(u + εϕ)|2dxdy +
∫

Γ b
s

|[u] − g + ε[ϕ]|dx,
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and we set

f ′
r (0) := lim

ε→0+
f (ε) − f (0)

ε
.

By convexity the limit exists and

f (1) − f (0) ≥ f ′
r (0). (3.19)

Since

f (1) − f (0) = 1

2

∫
Ω\Γ

|∇v|2dxdy +
∫

Γ b
s

|[v] − g|dx

−1

2

∫
Ω\Γ

|∇u|2dxdy −
∫

Γ b
s

|[u] − g|dx,

by (3.19) the minimality is proved if we show that

f ′
r (0) ≥ 0. (3.20)

By taking the derivative with respect to ε in the first term of the definition of f we obtain

f ′
r (0) =

∫
Ω\Γ

∇u∇ϕ dxdy + lim
ε→0+

1

ε

∫
Γ b
s

(|[u] − g + ε[ϕ]| − |[u] − g|)dx . (3.21)

By (3.16) on {[u] > g} ∩ Γ b
s we have

lim
ε→0+

1

ε

(|[u] − g + ε[ϕ]| − |[u] − g|) = [φ] = −ψ[ϕ]. (3.22)

By (3.17) on {[u] < g} ∩ Γ b
s we have

lim
ε→0+

1

ε

(|[u] − g + ε[ϕ]| − |[u] − g|) = −[φ] = −ψ[ϕ]. (3.23)

Finally, by (3.18) on {[u] = g} ∩ Γ b
s we have

lim
ε→0+

1

ε

(|[u] − g + ε[ϕ]| − |[u] − g|) = |[ϕ]| ≥ −ψ[ϕ]. (3.24)

By the triangle inequality we have

1

ε

(|[u] − g + ε[ϕ]| − |[u] − g|) ≥ −|[ϕ]|
for every ε ∈ (0, 1]. We can now apply the Fatou Lemma and from (3.22)–(3.24) we obtain

lim
ε→0+

1

ε

∫
Γ b
s

(|[u] − g + ε[ϕ]| − |[u] − g|)dx ≥ −
∫

Γ b
s

ψ[ϕ] dx .

Using this inequality, together with (3.4), (3.15), and (3.21), we obtain (3.20). 
�
The following technical result will be used in the proof of Lemma 4.5, which is crucial to
obtain our main result on the jerky crack growth. Let us fix a sequence Ωk of open subsets
of Ω with boundary of class C∞ such that Ωk ⊂⊂ Ωk+1 for every k and Ω \ Γ = ∪kΩk .
For every k we set (see Fig. 2)

Sk := Ω \ (Ωk ∪ Γ ). (3.25)
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Ωk

Ωk Sk

Sk

Ω

Γ

Fig. 2 The sets Ωk and Sk

We now prove the convergence to zero in L∞ of the sequence of harmonic functions zk on
Sk which satisy the homogeneous Dirichlet condition on ∂Ωk , the homogeneous Neumann
condition on ∂Ω , and the nonhomogeneous boundary condition ∂zk

∂ν
= 1 on both sides of Γ .

For every R > 0 let BR = {(x, y) ∈ R
2 : x2+y2 < R2} and B±

R = {(x, y) ∈ BR : ±y > 0}.

Lemma 3.4 For every k let Sk be as in (3.25) and let zk be the solution of
⎧⎪⎪⎨
⎪⎪⎩

zk ∈ H1(Sk), zk = 0 a.e. on ∂Ωk,∫
Sk

∇zk∇ϕ dxdy =
∫

Γ

(ϕ+ + ϕ−) dx

for every ϕ ∈ H1(Sk) with ϕ = 0 a.e. on ∂Ωk .

(3.26)

We extend zk by setting zk := 0 in Ωk . Then zk → 0 strongly in L∞(Ω \ Γ ).

Proof We first prove that

zk → 0 strongly in H1(Ω \ Γ ). (3.27)

By taking ϕ := zk in (3.26) we obtain∫
Ω\Γ

|∇zk |2dxdy =
∫
Sk

|∇zk |2dxdy =
∫

Γ

(z+k + z−k ) dx . (3.28)

Since zk = 0 in Ωk , the Trace Inequality, together with the Poincaré Inequality, gives a
constant c > 0 such that∫

Γ

(z+k + z−k ) dx ≤ c
( ∫

Ω\Γ
|∇zk |2dxdy

)1/2

for k large enough. Together with (3.28) this implies that ∇zk is bounded in L2(Ω \ Γ ),
hence zk is bounded in H1(Ω \ Γ ). Since zk = 0 in Ωk , we deduce that zk⇀0 weakly in
H1(Ω \ Γ ). This implies that z+k + z−k → 0 strongly in L2(Γ ), and (3.28) gives ∇zk → 0
strongly in L2(Ω \ Γ ). Since zk = 0 in Ωk , this proves (3.27).
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By the maximum principle we have

zk ≥ 0 in Sk . (3.29)

Indeed, if we take ϕ := zk ∧ 0 in (3.26) we obtain∫
Sk

|∇(zk ∧ 0)|2dxdy =
∫
Sk

∇zk∇(zk ∧ 0) dxdy =
∫

Γ

((z+k ∧ 0) + (z−k ∧ 0)) dx ≤ 0.

This inequality, together with the boundary condition on ∂Ωk , implies that zk ∧ 0 = 0 in Sk ,
which proves (3.29). Since zk ∈ C∞(Sk ∪∂Ωk) by the regularity theory of elliptic equations,
(3.29) implies that ∂zk

∂ν
≤ 0 on ∂Ωk , where ν is the outer unit normal to Sk . Hence∫

Sk
∇zk∇ϕ dxdy =

∫
∂Ωk

∂zk
∂ν

ϕ ds ≤ 0 (3.30)

for every ϕ ∈ H1
0 (Ω \ Γ ) with ϕ ≥ 0 in Ω \ Γ .

Let us prove that ∫
Ω\Γ

∇zk∇ϕ dxdy ≤
∫

Γ

(ϕ+ + ϕ−) dx (3.31)

for every ϕ ∈ H1(Ω \ Γ ) with ϕ ≥ 0. Let us fix such a ϕ and let ω ∈ C∞
0 (Ω \ Γ ) with

ω ≥ 0 in Ω \ Γ and ω = 1 in Ωk . Then we have∫
Ω\Γ

∇zk∇ϕ dxdy =
∫

Ω\Γ
∇zk∇(ωϕ) dxdy +

∫
Ω\Γ

∇zk∇((1 − ω)ϕ) dxdy (3.32)

By (3.30) we have ∫
Ω\Γ

∇zk∇(ωϕ) dxdy ≤ 0. (3.33)

Since (1 − ω)ϕ = 0 on ∂Ωk and (1 − ω)ϕ± = ϕ± on Γ , by (3.26) we have∫
Ω\Γ

∇zk∇((1 − ω)ϕ) dxdy =
∫

Γ

(ϕ+ + ϕ−) dx . (3.34)

Inequality (3.31) follows from (3.32)–(3.34).
By the maximum principle we have

‖zk‖L∞(Ω\Γ ) ≤ ‖z+k + z−k ‖L∞(Γ ). (3.35)

Indeed, if M := ‖z+k + z−k ‖L∞(Γ ) and we take ϕ := (zk − M) ∨ 0 in (3.31) we obtain
∫

Ω\Γ
|∇((zk − M) ∨ 0)|2dxdy =

∫
Ω\Γ

∇zk∇((zk − M) ∨ 0) dxdy ≤ 0,

which, together with the boundary condition on ∂Ωk , implies that (zk −M)∨0 = 0 inΩ \Γ .
This proves (3.35).

Therefore, to prove the lemma it is enough to show that z+k + z−k → 0 in L∞(Γ ). We
shall prove only that z+k → 0 in L∞(Γ ), since the result for z−k can be proved in the same
way. Let us prove first that zk is uniformly small in the intersection between U+ and a
suitable neighbourhood of (a, 0). Since U+ has Lipschitz boundary, there exist an open
neighbourhood V of (a, 0), a constant R > 0, and a bi-Lipschitz mapΦ : BR → V such that
Φ(B+

R ) = U+ ∩ V . To simplify the exposition we assume a = 0. Since part of the boundary
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of U+ near (a, 0) = (0, 0) is rectilinear, we may assume that there exists α > 0 such that Φ
is the identity map in the sector {(x, y) ∈ BR : 0 ≤ y < αx} and that (b, 0) /∈ BR .

Let vk(x, y) := zk(Φ(x, y)). By (3.31) and bywell known properties of elliptic equations,
there exists a symmetric 2×2 matrix (ai j ) of functions in L∞(B+

R ), satisfying the uniform
ellipticity condition, such that

2∑
i, j=1

∫
B+
R

ai j∂ jvk∂iϕ dxdy ≤
∫

Γ R
0

ϕ dx (3.36)

for every ϕ ∈ H1(B+
R ) with ϕ ≥ 0 in B+

R and ϕ = 0 on ∂+BR := ∂BR ∩ ∂B+
R , where

∂1 = ∂
∂x and ∂2 = ∂

∂ y .
Let H : R → R be the Heaviside function defined by H(x) = 1 for x > 0 and H(x) = 0

for x < 0. Since ∫
B+
R

H∂2ϕ dxdy = −
∫

Γ R
0

ϕ dx

for every ϕ ∈ H1(B+
R ) with ϕ = 0 on ∂+BR , from (3.36) we obtain that

2∑
i, j=1

∫
B+
R

ai j∂ jvk∂iϕ dxdy ≤ −
∫
B+
R

H∂2ϕ dxdy (3.37)

for every ϕ ∈ H1(B+
R ) with ϕ ≥ 0 in B+

R and ϕ = 0 on ∂+BR .
For every (x, y) ∈ B−

R we define vk(x, y) := vk(x,−y), ai j (x, y) := ai j (x,−y) for
i = j , ai j (x, y) := −ai j (x,−y) for i �= j . Note that vk ∈ H1(BR), ai j ∈ L∞(BR), and
that the matrix (ai j ) is uniformly elliptic in BR . Moreover, we define F ∈ L∞(BR) as

F(x, y) :=
{

−H(x) if (x, y) ∈ B+
R ,

H(x) if (x, y) ∈ B−
R .

For every ϕ ∈ H1(B−
R ), with ϕ ≥ 0 in B−

R and ϕ = 0 on ∂−BR := ∂BR ∩ ∂B−
R , we have

2∑
i, j=1

∫
B−

ai j∂ jvk∂iϕ dxdy =
2∑

i, j=1

∫
B+

ai j∂ jvk∂i ϕ̂ dxdy

∫
B−
R

F∂2ϕ dxdy = −
∫
B+
R

H∂2ϕ̂ dxdy.

where ϕ̂(x, y) := ϕ(x,−y). Therefore (3.37) yields

2∑
i, j=1

∫
BR

ai j∂ jvk∂iϕ dxdy ≤
∫
BR

F∂2ϕ dxdy, (3.38)

for every ϕ ∈ H1
0 (BR) with ϕ ≥ 0.

Given 0 < r < R, let v(r) be the solution of the problem
⎧⎪⎪⎨
⎪⎪⎩

v(r) ∈ H1
0 (Br ),

2∑
i, j=1

∫
Br

ai j∂ jv
(r)∂iϕ dxdy =

∫
Br

F∂2ϕ dxdy for every ϕ ∈ H1(Br ).
(3.39)
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Then vk = v(r) + v
(r)
k , where v

(r)
k ∈ H1(Br ) and

2∑
i, j=1

∫
Br

ai j∂ jv
(r)
k ∂iϕ dxdy ≤ 0, (3.40)

for every ϕ ∈ H1
0 (Br ) with ϕ ≥ 0.

By (3.39) and by the global estimates for solutions of Dirichlet problems for elliptic
equations with bounded measurable coefficients (see [16, Théorème 4.2]) for every p > 2
there exists a constant Kp > 0, independent of r , such that

sup
Br

|v(r)| ≤ Kp‖F‖L p(Br )r
1− 2

p . (3.41)

By (3.40) and by the local estimates for sub-solutions of elliptic equations with bounded
measurable coefficients (see [16, Théorème 5.1]) there exists a constant K > 0, independent
of k, such that

sup
Br/2

v
(r)
k ≤ K

( 1

πr2

∫
Br

|v(r)
k |2dxdy

)1/2
.

Since vk = v(r) + v
(r)
k , from these inequalities we get

sup
Br/2

vk ≤ K
( 1

πr2

∫
Br

|vk |2dxdy
)1/2 + Kp(K + 1)‖F‖L p(Br )r

1− 2
p . (3.42)

Since vk(x, y) := zk(Φ(x, y)) ≥ 0 on B+
R , by (3.27) we have that vk → 0 strongly in

L2(B+
R ) and by (3.42) we have

lim sup
k→∞

sup
Vr/2

|zk | ≤ Kp(K + 1)‖F‖L p(Br )r
1− 2

p ,

where Vr/2 := Φ(B+
r/2). Therefore, for every ε > 0 there exist k0 and a neighbourhood W

of (a, 0) such that

sup
W∩U+

|zk | ≤ ε (3.43)

for every k ≥ k0. In a similar way we can prove the same result in a neighbourhood of (b, 0).
For every a < x < b the local estimates at the boundary for solutions to Neumann

problems, together with (3.27), imply that there exist k0 and a neighbourhood W of (x, 0)
such that (3.43) holds. By a covering argument we conclude that z+k → 0 in L∞(Γ ). 
�

We now use the previous lemma to show that the displacement u corresponding to a
quasistatic evolution is bounded in L∞ provided the same property holds for the boundary
value w.

Corollary 3.5 Let T > 0, s0 ∈ [a, b), w ∈ AC([0, T ]; H1(Ω \ Γ
s0
a )), and let (u, s) be a

quasistatic evolution with boundary value w on ∂DΩ according to Definition 2.1. Assume
that w(t) is bounded in L∞(Ω) uniformly with respect to t . Then there exists a constant
M > 0 such that

‖u(t)‖L∞(Ω\Γ ) ≤ M (3.44)

for every t ∈ [0, T ].
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Proof Let us fix k and let Ωk , Sk , and zk be as in Lemma 3.4. Since u(t) is harmonic in
Ω \ Γ , by (2.4) and by the Mean Value Theorem there exists a constant Mk such that

max
Ωk

|u(t)| ≤ Mk (3.45)

for every t ∈ [0, T ]. It is not restrictive to assume that

Mk ≥ ‖w(t)‖L∞(Ω) for every t ∈ [0, T ]. (3.46)

Using the standard argument that leads to the maximum principle we now prove that

|u(t)| ≤ Mk + zk in Sk . (3.47)

By the equilibrium condition (b) in Definition 2.1 and by Lemma 3.1 for every t ∈ [0, T ]
there exists ψ(t) ∈ L∞(Γ ), with ‖ψ(t)‖L∞(Γ ) ≤ 1, such that

∫
Sk

∇u(t)∇ϕ dxdy =
∫

Γ

ψ(t)[ϕ] dx

for every ϕ ∈ H1(Sk) with ϕ = 0 on ∂Ωk ∪ ∂DΩ . By (3.26) we have∫
Sk

∇(Mk + zk)∇ϕ dxdy =
∫

Γ

(ϕ+ + ϕ−) dx

for every ϕ ∈ H1(Sk) with ϕ = 0 on ∂Ωk . Subtracting the first equality from the second one
we get ∫

Sk
∇(Mk + zk − u(t))∇ϕ dxdy =

∫
Γ

(
(1 − ψ(t))ϕ+ + (1 + ψ(t))ϕ−)

dx (3.48)

for every ϕ ∈ H1(Sk) with ϕ = 0 on ∂Ωk ∪ ∂DΩ . Let us take ϕ := (Mk + zk − u(t)) ∧ 0.
Since zk = 0 on ∂Ωk and Mk − u(t) ≥ 0 on ∂Ωk by (3.45), we have that ϕ = 0 on ∂Ωk .
Since zk ≥ 0 on ∂DΩ by (3.29) and Mk − u(t) = Mk − w(t) ≥ 0 on ∂DΩ by (3.46), we
have also ϕ = 0 on ∂DΩ . Therefore (3.48) gives∫

Sk
∇(Mk + zk − u(t))∇(

(Mk + zk − u(t)) ∧ 0
)
dxdy ≤ 0.

This gives (Mk + zk − u(t))∧ 0 = 0 in Sk , which implies u(t) ≤ Mk + zk in Sk . In the same
way we prove that −u(t) ≤ Mk + zk , obtaining (3.47). This inequality together with (3.45)
yields (3.44), since zk ∈ L∞(Sk) by Lemma 3.4. 
�

4 The jerky growth of the cracks

In this section we prove the main result of the paper: under suitable continuity assumptions
on the boundary datum w, for every quasistatic evolution (u, s) the nondecreasing function
s is piecewise constant. In other words, the crack grows only through sudden jumps. More
precisely, we obtain the following result.

Theorem 4.1 Let T > 0, s0 ∈ [a, b), andw ∈ AC([0, T ]; H1(Ω\Γ s0
a ))∩C0([0, T ]; L∞(Ω)).

Let (u, s) be a quasistatic evolution with boundary value w on ∂DΩ , according to Def-
inition 2.1. Then there exist a finite number of times t0, t1, . . . , tm, with 0 = t0 < t1 <

· · · < tm−1 < tm = T , and a finite number s1, s2, . . . , sm of elements of [s0, b], with

123

20



On the jerky crack growth in elastoplastic materials Page 21 of 40 107

s0 ≤ s1 < s2 < · · · < sm−1 < sm ≤ b, such that for every j = 1, . . . ,m we have s(t) = s j
for every t ∈ (t j−1, t j ).

Remark 4.2 The previous theorem does not exclude that s1 �= s(0), i.e., the constant value of
s(t) in the interval [0, t1] might be different from s(0). This means that a jump of the crack
might occur at t = 0. However, if we take u(0) = 0, the energy-dissipation condition (c) in
Definition 2.1 gives

1

2

∫
Ω\Γ

|∇u(t)|2dxdy + s(t) − s(0) +
∫

Γ b
s(t)

|[u(t)]|dx

≤
∫ t

0

( ∫
Ω\Γ

∇u(τ )∇ẇ(τ )dxdy
)
dτ, (4.1)

which implies, by (2.3) and Theorem 4.1,

s1 − s(0) = s(t) − s(0) ≤ M1/2
1

∫ t

0

( ∫
Ω\Γ

|∇ẇ(τ )|2dxdy
)1/2

dτ,

for every t ∈ (0, t1). Taking the limit as t → 0+ we obtain that s1 = s(0). Therefore,
Theorem 4.1 implies that, if u(0) = 0, then s(t) = s(0) for every t ∈ [0, t1).
We now fix the notation we are going to use in the lemmas that will lead to the proof of
Theorem 4.1. Let (u, s) be a quasistatic evolution with boundary valuew on ∂DΩ , according
to Definition 2.1. For every t1, t2 ∈ [0, T ], with t1 < t2, we define

ω1,2 = ω(t1, t2) :=
∫ t2

t1

( ∫
Ω\Γ

∇u(t)∇ẇ(t)dxdy
)
dt

− 1

2

∫
Ω\Γ

(∇u(t2) + ∇u(t1))(∇w(t2) − ∇w(t1))dxdy.

(4.2)

Note that ω1,2 can be interpreted as the difference between the integral on [t1, t2] of the
function t 	→ ∫

Ω\Γ ∇u(t)∇ẇ(t)dxdy and its approximation obtained by replacing ∇u(t)
with (∇u(t2) + ∇u(t1))/2.

To simplify the notation we set

ui = u(ti ), wi = w(ti ), si = s(ti ). (4.3)

By the equilibrium condition (b) we can apply Lemma 3.1 and we obtain that for i = 1, 2
there exists ψi ∈ L∞(Γ ) such that

ψi = 0 a.e. on Γ si
a and |ψi | ≤ 1 a.e. on Γ b

si , (4.4)∫
Ω\Γ

∇ui∇ϕ dxdy =
∫

Γ

ψi [ϕ] dx for every ϕ ∈ H1
0,D(Ω \ Γ ). (4.5)

The first step in the proof of Theorem 4.1 is given by the following result.

Lemma 4.3 Under the assumptions of Theorem 4.1, let 0 ≤ t1 < t2 ≤ T , and let ui , wi , si ,
ψi , and ω1,2 be as in (4.2)–(4.5). Then

1

2

∫
Γ

s2
s1

ψ1[u2 − u1] dx

+1

2

∫
Γ b
s2

(ψ1 + ψ2)[u2 − u1] dx + s2 − s1 +
∫

Γ b
s2

|[u2 − u1]|dx ≤ ω1,2. (4.6)
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Moreover, there exists a constant M, independent of t1, t2, s1, and s2, such that

−1

2

∫
Γ

s2
s1

|[u2 − u1]|dx + s2 − s1 ≤ ω1,2 (4.7)

1

2

∫
Γ b
s2

(ψ1 + ψ2)[u2 − u1] dx +
∫

Γ b
s2

|[u2 − u1]| dx ≤ M(s2 − s1) + ω1,2. (4.8)

Proof By the energy-dissipation inequality (condition (c) in Definition 2.1) we have

1

2

∫
Ω\Γ

(∇u2 + ∇u1)(∇u2 − ∇u1)dxdy + s2 − s1 +
∫

Γ b
s2

|[u2] − [u1]|dx

≤
∫ t2

t1

( ∫
Ω\Γ

∇u(t)∇ẇ(t)dxdy
)
dt . (4.9)

We setϕ := (u2−u1)−(w2−w1) and observe thatϕ ∈ H1
0,D(Ω\Γ ) and that [ϕ] = [u2−u1]

on Γ b
s1 . By (4.4) and (4.5) we obtain

1

2

∫
Ω\Γ

∇u2(∇u2 − ∇u1)dxdy

= 1

2

∫
Ω\Γ

∇u2∇ϕ dxdy + 1

2

∫
Ω\Γ

∇u2(∇w2 − ∇w1)dxdy (4.10)

= 1

2

∫
Γ b
s2

ψ2[u2 − u1] dx + 1

2

∫
Ω\Γ

∇u2(∇w2 − ∇w1)dxdy.

In the same way we obtain

1

2

∫
Ω\Γ

∇u1(∇u2 − ∇u1)dxdy

= 1

2

∫
Γ b
s1

ψ1[u2 − u1] dx + 1

2

∫
Ω\Γ

∇u1(∇w2 − ∇w1)dxdy.

This equality, together with (4.2), (4.9), and (4.10), gives (4.6).
Since |ψi | ≤ 1 a.e. on Γ for i = 1, 2, we have 1

2 (ψ1 + ψ2)[u2 − u1] + |[u2 − u1]| ≥ 0
and ψ1[u2 − u1] ≥ −|[u2 − u1]| a.e. on Γ . Therefore (4.6) implies (4.7).

By Corollary 3.5 there exists a constant M , independent of t1, t2, s1, and s2, such that

|[u2 − u1]| ≤ 2M on Γ .

Since |ψ1| ≤ 1 a.e. on Γ b
s1 , this implies that

1

2

∫
Γ

s2
s1

ψ1[u2 − u1] dx + s2 − s1 ≥ (−M + 1)(s2 − s1) ≥ −M(s2 − s1).

This inequality, together with (4.6), gives (4.8). 
�
To continue the proof of Theorem 4.1 we want to show that under suitable assumptions

on t1, t2, s1, s2 we have

|[u2 − u1]| ≤ 1 a.e. on Γ . (4.11)

This inequality, together with (4.7), gives

s2 − s1 ≤ 2ω1,2, (4.12)
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which is an important intermediate result in the proof. The next lemma is the first step in the
proof of (4.11).

Lemma 4.4 Under the assumptions of Theorem 4.1, for every ε > 0 there exists δ > 0 such
that

‖w2 − w1‖L∞(Ω) < ε, (4.13)

‖u2 − u1‖H1(Ω\Γ ) < ε, (4.14)

whenever

0 ≤ t1 < t2 ≤ T and t2 − t1 < δ, (4.15)

s0 ≤ s1 ≤ s2 ≤ b and s2 − s1 < δ, (4.16)

where ui , wi , and si , i = 1, 2, are defined as in (4.3).

Proof Given a pair of sequences tn1 , t
n
2 ∈ [0, T ], with tn1 < tn2 , we set u

n
i := u(tni ), wn

i :=
w(tni ), sni := s(tni ), and ωn

1,2 := ω(tn1 , tn2 ), where ω is defined in (4.2). To prove the lemma
it is enough to show that

wn
2 − wn

1 → 0 strongly in L∞(Ω), (4.17)

un2 − un1 → 0 strongly in H1(Ω \ Γ ), (4.18)

assuming that tn2 − tn1 → 0 and sn2 − sn1 → 0. The convergence of wn
2 −wn

1 follows from the
fact that w ∈ C0([0, T ]; L∞(Ω)). Note that by Remark 2.2, the convergence tn2 − tn1 → 0
implies that ωn

1,2 → 0, since w ∈ AC([0, T ]; H1(Ω \ Γ
s0
a )). By compactness we may also

assume that there exists t∗ ∈ [0, T ] and s∗ ∈ [s0, b] such that tn1 → t∗, tn2 → t∗, sn1 → s∗,
and sn2 → s∗.

By Remark 2.2 a suitable subsequence satisfies uni ⇀ u∗
i weakly in H1(Ω \ Γ ) for some

u∗
i ∈ H1(Ω \Γ ), for i = 1, 2. This implies in particular that [uni ] → [u∗

i ] strongly in L2(Γ ).
Since wn

i → w∗ := w(t∗) strongly in H1(Ω \ Γ
s0
a ), from the minimality of uni and Lemma

2.8 we deduce that uni → u∗
i strongly in H1(Ω \ Γ ) and that

1

2

∫
Ω\Γ

|∇u∗
i |2 dxdy ≤ 1

2

∫
Ω\Γ

|∇v|2 dxdy +
∫

Γ b
s∗

|[v] − [u∗
i ]|dx

for every v ∈ H1(Ω \ Γ ) with v = w∗ on ∂DΩ .
By the Euler condition (see Lemma 3.1) we obtain that there exist ψn

i ∈ L∞(Γ ), with
|ψn

i | ≤ 1 a.e. on Γ and ψ∗
i ∈ L∞(Γ ), with |ψ∗

i | ≤ 1 a.e. on Γ , such that for i = 1, 2 we
have ∫

Ω\Γ
∇uni ∇ϕ dxdy =

∫
Γ

ψn
i [ϕ] dx for every ϕ ∈ H1

0,D(Ω \ Γ ) and every n,

∫
Ω\Γ

∇u∗
i ∇ϕ dxdy =

∫
Γ

ψ∗
i [ϕ] dx for every ϕ ∈ H1

0,D(Ω \ Γ ). (4.19)

Therefore the convergence of uni to u∗
i in H1(Ω \ Γ ) implies that ψn

i ⇀ ψ∗
i weakly∗ in

L∞(Γ ).
Since 1

2 (ψ
n
1 +ψn

2 )[un2 −un1]+|[un2 −un1]| ≥ 0 (which follows from the fact that |ψn
i | ≤ 1)

and ωn
1,2 → 0, by (4.8) we have

1

2

∫
Γ

(ψn
1 + ψn

2 )[un2 − un1] dx +
∫

Γ

|[un2 − un1]| dx → 0.
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This implies that

1

2

∫
Γ

(ψ∗
1 + ψ∗

2 )[u∗
2 − u∗

1] dx +
∫

Γ

|[u∗
2 − u∗

1]| dx = 0.

Since 1
2 (ψ

∗
1 + ψ∗

2 )[u∗
2 − u∗

1] + |[u∗
2 − u∗

1]| ≥ 0, we deduce that 1
2 (ψ

∗
1 + ψ∗

2 )[u∗
2 − u∗

1] +
|[u∗

2 − u∗
1]| = 0 a.e. on Γ . Using the inequality |ψ∗

i | ≤ 1 a.e. on Γ , we obtain ψ∗
1 = ψ∗

2 on
{[u∗

2 − u∗
1] �= 0}.

As u∗
1 = u∗

2 = w∗ on ∂DΩ , we have u∗
2 − u∗

1 ∈ H1
0,D(Ω \ Γ ). By (4.19) we have

∫
Ω\Γ

∇(u∗
2 − u∗

1)∇ϕ dxdy =
∫

Γ

(ψ∗
2 − ψ∗

1 )[ϕ] dx for every ϕ ∈ H1
0,D(Ω \ Γ ).

Takingϕ = u∗
2−u∗

1 wededuce that∇u∗
1 = ∇u∗

2,which impliesu∗
1 = u∗

2, sinceu
∗
1 = u∗

2 = w∗
on ∂DΩ and (2.1) holds. Therefore the strong convergence of uni to u

∗
i implies (4.18). Since

the result does not depend on the subsequence, (4.18) holds for the whole sequence. 
�
We now complete the proof of (4.11).

Lemma 4.5 Under the assumptions of Theorem 4.1, there exists δ0 > 0 such that (4.11)
holds whenever

0 ≤ t1 < t2 ≤ T and t2 − t1 < δ0, (4.20)

s0 ≤ s1 ≤ s2 ≤ b and s2 − s1 < δ0, (4.21)

where ui and si , i = 1, 2, are defined as in (4.3).

Proof Let Ωk be a sequence of open subsets of Ω with boundary of class C∞ such that
Ωk ⊂⊂ Ωk+1 for every k and Ω \Γ = ∪kΩk . For every k let Sk and zk be defined by (3.25)
and (3.26). By Lemma 3.4 there exists k0 such that

‖zk0‖L∞(Sk0 ) ≤ 1/8. (4.22)

We fix ρ > 0 such that Bρ(x0, y0) ⊂ Ω \Γ for every (x0, y0) ∈ Ωk0 . By the Mean Value
Theorem we have

|(u2 − u1)(x0, y0)| ≤ 1

πρ2

∫
Bρ(x0,y0)

|u2 − u1| dxdy ≤ 1

π1/2ρ
‖u2 − u1‖L2(Ω\Γ ) (4.23)

for every (x0, y0) ∈ Ωk0 . We now fix 0 < ε0 < 1/4 such that ε0/(π
1/2ρ) < 1/4. The

constant δ given by Lemma 4.4 for ε = ε0 will be denoted by δ0. If (4.20) and (4.21) hold,
by (4.23) we have

|(u2 − u1)(x0, y0)| < 1
4 for every (x0, y0) ∈ Ωk0 . (4.24)

Using the standard argument that leads to the maximum principle we now prove that

|u2 − u1| ≤ 1
4 + 2zk0 in Sk0 . (4.25)

By (4.5) we have ∫
Sk0

∇(u2 − u1)∇ϕ dxdy =
∫

Γ

(ψ2 − ψ1)[ϕ] dx

for every ϕ ∈ H1(Sk0) with ϕ = 0 on ∂Ωk0 ∪ ∂DΩ . By (3.26) we have∫
Sk0

∇( 14 + 2zk0)∇ϕ dxdy =
∫

Γ

2(ϕ+ + ϕ−) dx
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for every ϕ ∈ H1(Sk0) with ϕ = 0 on ∂Ωk0 . Subtracting the terms of the first equality from
those of the second one we get
∫
Sk0

∇( 14 + 2zk0 − u2 + u1)∇ϕ dxdy =
∫

Γ

(
(2 − ψ2 + ψ1)ϕ

+ + (2 + ψ2 − ψ1)ϕ
−)

dx(4.26)

for every ϕ ∈ H1(Sk0)with ϕ = 0 on ∂Ωk0 ∪∂DΩ . Let us take ϕ := ( 14 +2zk0 −u2+u1)∧0.
Since zk0 = 0 on ∂Ωk0 and 1

4 − u2 + u1 ≥ 0 on ∂Ωk0 by (4.24), we have that ϕ = 0 on
∂Ωk0 . Since zk0 ≥ 0 on ∂DΩ by (3.29) and 1

4 − u2 + u1 = 1
4 − w2 + w1 ≥ 0 on ∂DΩ by

(4.13), we have also ϕ = 0 on ∂DΩ . Therefore (4.26) gives
∫
Sk0

∇( 14 + 2zk0 − u2 + u1)∇
(
( 14 + 2zk0 − u2 + u1) ∧ 0

)
dxdy ≤ 0.

This gives ( 14 + 2zk0 − u2 + u1) ∧ 0 = 0 in Sk0 , which implies u2 − u1 ≤ 1
4 + 2zk0 in Sk0 .

In the same way we prove that u1 − u2 ≤ 1
4 + 2zk0 , obtaining (4.25).

By (4.22), (4.24), and (4.25) we obtain |u2 − u1| ≤ 1
2 in Ω \ Γ . This implies that

|u+
2 − u+

1 | ≤ 1
2 and |u−

2 − u−
1 | ≤ 1

2 on Γ , which give (4.11). 
�
Inequality (4.11), together with (4.7), gives the following result.

Corollary 4.6 Under the assumptions of Theorem 4.1, let δ0 > 0 be the constant introduced
in Lemma 4.5. Let t1, t2 ∈ [0, T ], with t1 < t2, and let s1, s2, and ω1,2 be defined by (4.2)
and (4.3). If (4.20) and (4.21) hold, then (4.12) is satisfied.

We now consider an interval [τ1, τ2], with no restriction on its length. Iterating esti-
mate (4.12) on the intervals of a suitable subdivision we obtain an estimate on the difference
s(τ2) − s(τ1).

Lemma 4.7 Under the assumptions of Theorem 4.1, let δ0 > 0 be the constant introduced in
Lemma 4.5 and let [τ1, τ2] ⊂ [0, T ]. Suppose that there exists a finite subdivision τ1 = t0 <

t1 < · · · < tm = τ2 of the interval [τ1, τ2] such that

t j − t j−1 < δ0 and s(t j ) − s(t j−1) < δ0 (4.27)

for every j = 1, . . . ,m. Then

s(τ2) − s(τ1) ≤ 2
m∑
j=1

ω(t j−1, t j ), (4.28)

where ω is defined by (4.2).

Proof It is enough to apply Corollary 4.6 to each interval [t j−1, t j ]. 
�
To conclude the proof of Theorem 4.1 we have to show that, under suitable assumptions,

it is possible to find a subdivision such that (4.27) holds and the right-hand side of (4.28)
is arbitrarily small. We shall see (Corollary 4.11) that the latter property is related to the
approximation of a Lebesgue integral by its Riemann sums.

As for (4.27), it is clear that the second inequality follows from an estimate on t j − t j−1

when s is continuous. The following lemma shows that this happens even if s is discontin-
uous provided it is nondecreasing and its jumps have an amplitude less than δ0. For every
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nondecreasing real-valued function s defined on an interval [τ1, τ2] and for every t ∈ [τ1, τ2]
we define

[s](t) := s(t+) − s(t−),

where s(t+) and s(t−) are the right and left limits of s at t , with the convention s(τ1−) =
s(τ1) and s(τ2+) = s(τ2).

Lemma 4.8 Let τ1 < τ2 and let s : [τ1, τ2] → R be a nondecreasing function. Let δ0 > 0 be
such that [s](t) < δ0 for every t ∈ [τ1, τ2]. Then there exists η0 ∈ (0, δ0] such that

s(t2) − s(t1) < δ0 for every t1, t2 ∈ [τ1, τ2] with 0 < t2 − t1 < η0.

Proof Let J be the set of jump points of s, which is at most countable. Let us prove that

sup
t∈J

[s](t) < δ0. (4.29)

This is trivial if the supremum is zero. Otherwise we fix 0 < δ1 < supt∈J [s](t) and we
observe that

sup
t∈J

[s](t) = max
t∈F1

[s](t) < δ0,

where F1 is the finite set defined by F1 := {t ∈ [τ1, τ2] : [s](t) > δ1}. This concludes the
proof of (4.29).

Let δ2 be such that

sup
t∈J

[s](t) + 2δ2 < δ0. (4.30)

Let us decompose s as s = s j + sc, where s j is the pure jump component of s defined by

s j (t) = s(t) − s(t−) +
∑

τ∈J ,τ<t

[s](τ ), (4.31)

while sc is its continuous component.
Let η1 > 0 be such that

sc(t2) − sc(t1) < δ2 (4.32)

whenever 0 < t2 − t1 < η1. On the other hand there exists a finite set F2 ⊂ J such that
∑

t∈J\F2
[s](t) < δ2. (4.33)

Since F2 is finite, the distance between any two distinct points in F2 is larger than some
constant η2 > 0.

Set η0 := η1 ∧ η2 ∧ δ0 and let t1, t2 ∈ [τ1, τ2] with 0 < t2 − t1 < η0. First of all we note
that [t1, t2] contains at most one point τ ∈ F2. Then, by (4.31)–(4.33), we have

s(t2) − s(t1) = s j (t2) − s j (t1) + sc(t2) − sc(t1) ≤ δ2 + [s](τ ) + δ2.

By (4.30) the conclusion follows. 
�
Combining Lemmas 4.7 and 4.8 we obtain the following result.
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Lemma 4.9 Under the assumptions of Theorem 4.1, let δ0 > 0 be the constant given by
Lemma 4.5, and let F be the finite set defined by

F := {t ∈ [0, T ] : [s](t) ≥ δ0}.
Let τ1, τ2 ∈ [0, T ], with τ1 < τ2, be such that

[τ1, τ2] ∩ F = ∅,

and let τ1 = t0 < t1 < · · · < tm = τ2 be a subdivision of the interval [τ1, τ2] such that

t j − t j−1 < η0 (4.34)

for every j = 1, . . . ,m, where η0 is the constant introduced in Lemma 4.8 corresponding
to δ0. Then (4.28) holds.

Proof By Lemma 4.8 the inequality (4.34) implies the second condition in (4.27), so that the
conclusion follows from Lemma 4.7. 
�

The following proposition, related to the approximation of a Lebesgue integral by suitable
Riemann sums, will be used to show that the right-hand side of (4.28) can be made arbitrarily
small by a suitable choice of the subdivision.

Proposition 4.10 Let H be a Hilbert space, let τ1 < τ2, and let f , g : [τ1, τ2] → H be
Bochner integrable functions. Assume that there exists a constant M > 0 such that ‖ f (t)‖ ≤
M for every t ∈ [τ1, τ2], where ‖ · ‖ denotes the norm in H. Then for every integer k ≥ 1
there exists a subdivision τ1 = tk0 < tk1 < · · · < tkmk

= τ2 such that tkj − tkj−1 ≤ 1
k for every

1 ≤ j ≤ mk and
∫ τ2

τ1

( f (t), g(t))dt = lim
k→∞

mk∑
j=1

∫ tkj

tkj−1

( f (tkj ), g(t))dt

= lim
k→∞

mk∑
j=1

∫ tkj

tkj−1

( f (tkj−1), g(t))dt,

(4.35)

where (·, ·) denotes the scalar product in H.

Proof A direct proof of (4.35) can be obtained by adapting the proof in [8, page 63]. We
provide here a short proof based on [4, Lemma 4.12], which guarantees for every k ≥ 1 the
existence of a subdivision τ1 = tk0 < tk1 < · · · < tkmk

= τ2 such that tkj − tkj−1 ≤ 1
k for every

1 ≤ j ≤ mk and

lim
k→∞

mk∑
j=1

∫ tkj

tkj−1

‖ f (t) − f (tkj )‖dt → 0. (4.36)

Let us define Fk : [τ1, τ2) → H by

Fk(t) := f (t) −
mk∑
j=1

f (tkj )χ[tkj−1,t
k
j )
(t) =

mk∑
j=1

( f (t) − f (tkj ))χ[tkj−1,t
k
j )
(t).

By (4.36) we have Fk → 0 in L1([τ1, τ2); H). Since ‖Fk(t)‖ ≤ 2M for every t ∈ [τ1, τ2)
and g is Bochner integrable, we obtain that∫ τ2

τ1

(Fk(t), g(t))dt → 0, (4.37)

123

27



107 Page 28 of 40 G. Dal Maso, R. Toader

which gives the first equality in (4.35). The second one can be proved in the same way. 
�

Corollary 4.11 Under the assumptions of Theorem 4.1, let τ1, τ2 ∈ [0, T ], with τ1 < τ2, and
let ω be defined by (4.2). Then there exists a sequence of subdivisions τ1 = tk0 < tk1 < · · · <

tkmk
= τ2 such that tkj − tkj−1 ≤ 1

k for every 1 ≤ j ≤ mk and

lim
k→∞

mk∑
j=1

ω(tkj−1, t
k
j ) = 0.

Proof It is enough to apply the previous proposition with X := L2(Ω \ Γ ;R2), f (t) :=
∇u(t), and g(t) := ∇ẇ(t). 
�

Proof Let δ0 > 0 be the constant introduced in Lemma 4.5, let η0 > 0 be the constant
introduced in Lemma 4.8 related to δ0, and let F be the finite set defined by

F := {t ∈ [0, T ] : [s](t) ≥ δ0} ∪ {0, T }.
Let τ1, τ2 ∈ [0, T ] be such that τ1 < τ2 and [τ1, τ2] ∩ F = ∅. By Corollary 4.11, for

every ε > 0 we can find a finite subdivision τ1 = t0 < t1 < · · · < tm = τ2 of the interval
[τ1, τ2] such that t j − t j−1 < η0 for every j = 1, . . . ,m and

2
m∑
j=1

ω(t j−1, t j ) < ε.

By Lemma 4.9 we obtain s(τ2) − s(τ1) < ε. By the arbitrariness of ε we deduce that
s(τ2) ≤ s(τ1) and by monotonicity we deduce that s is constant on the interval [τ1, τ2]. It
follows that s is constant in each connected component of [0, T ] \ F . This concludes the
proof. 
�

To prove the regularity of u on [0, T ] \ {t0, t1, . . . , tm}, it is convenient to introduce a
different notion of quasistatic evolution in which the crack does not grow.

Definition 4.12 Let T > 0, s0 ∈ [a, b), and w ∈ AC([0, T ]; H1(Ω \ Γ
s0
a )). A quasistatic

evolution with fixed crack and boundary valuew on ∂DΩ is a function u : [0, T ] → H1(Ω \
Γ ) such that

(a0) (measurability) u : [0, T ] → H1(Ω \ Γ ) is measurable;
(b0) (equilibrium) for every t ∈ [0, T ] we have u(t) = w(t) on ∂DΩ and

1

2

∫
Ω\Γ

|∇u(t)|2dxdy ≤ 1

2

∫
Ω\Γ

|∇û|2dxdy +
∫

Γ b
s0

|[û] − [u(t)]|dx,

for every û ∈ H1(Ω \ Γ ) with û = w(t) on ∂DΩ;
(c0) (energy-dissipation inequality) for every t1, t2 ∈ [0, T ], with t1 < t2, we have

1

2

∫
Ω\Γ

|∇u(t2)|2dxdy +
∫

Γ b
s0

|[u(t2)] − [u(t1)]|dx

≤ 1

2

∫
Ω\Γ

|∇u(t1)|2dxdy +
∫ t2

t1

( ∫
Ω\Γ

∇u(τ )∇ẇ(τ )dxdy
)
dτ.
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Remark 4.13 Taking û = w(t) in condition (b0) above we obtain that there exists a constant
M > 0 such that

1

2

∫
Ω\Γ

|∇u(t)|2dxdy ≤ M +
∫

Γ b
s0

|[u(t)]|dx for every t ∈ [0, T ]. (4.38)

By (2.1) and (2.2), the Trace Inequality, combined with the Poincaré Inequality, implies that
there exists a constant c > 0 such that∫

Γ b
s0

|[u(t)]|dx ≤ c
( ∫

Ω\Γ
|∇u(t)|2dxdy

)1/2 + c.

This inequality and (4.38) imply that ∇u(t) is bounded in L2 uniformly with respect to t .
Togetherwith themeasurability of t 	→ u(t) this ensures that the last integral in condition (c0)
above is well defined.

Theorem 4.14 Let T > 0, s0 ∈ [a, b), and w ∈ AC([0, T ]; H1(Ω \ Γ
s0
a )), and let

u : [0, T ] → H1(Ω \ Γ ) be a quasistatic evolution with fixed crack and boundary value w.
Then u ∈ AC([0, T ]; H1(Ω \ Γ

s0
a )) and

( ∫
Ω\Γ

|∇u(τ2) − ∇u(τ1)|2dxdy
)1/2 ≤

∫ τ2

τ1

( ∫
Ω\Γ

|∇ẇ(τ )|2dxdy
)1/2

dτ (4.39)

for every τ1, τ2 ∈ [0, T ] with τ1 < τ2.

Proof The proof is taken from [3, Theorem 5.2], with obvious simplifications. Let us fix
τ1, τ2 ∈ [0, T ] with τ1 < τ2. From the energy-dissipation condition (c0) between τ1 and τ2
we obtain

1

2

∫
Ω\Γ

|∇u(τ2)|2dxdy +
∫

Γ b
s0

|[u(τ2)] − [u(τ1)]|dx

≤ 1

2

∫
Ω\Γ

|∇u(τ1)|2dxdy +
∫ τ2

τ1

( ∫
Ω\Γ

∇u(τ )∇ẇ(τ )dxdy
)
dτ.

(4.40)

The Euler equation corresponding to the equilibrium condition (b0) of Definition 4.12
(see Lemma 3.1) implies that

−
∫

Ω\Γ
∇u(τ1)∇ϕ dxdy ≤

∫
Γ b
s0

|[ϕ]| dx for every ϕ ∈ H1
0,D(Ω \ Γ ).

Taking ϕ := u(τ2) − u(τ1) − (w(τ2) − w(τ1)) we obtain

−
∫

Ω\Γ
∇u(τ1)∇u(τ2) dxdy +

∫
Ω\Γ

|∇u(τ1)|2dxdy

≤ −
∫

Ω\Γ
∇u(τ1)(∇w(τ2) − ∇w(τ1)) dxdy +

∫
Γ b
s0

|[u(τ2)] − [u(τ1)]|dx,
(4.41)

where we have used the fact that [w(τ1)] = [w(τ2)] = 0 on Γ b
s0 . Adding (4.40) and (4.41)

we get

1

2

∫
Ω\Γ

|∇u(τ2) − ∇u(τ1)|2dxdy ≤
∫ τ2

τ1

( ∫
Ω\Γ

(∇u(τ ) − ∇u(τ1))∇ẇ(τ )dxdy
)
dτ.

Since this holds for every τ2 ∈ (τ1, T ], by the Gronwall Inequality we obtain (4.39)
for every τ2 ∈ (τ1, T ]. This inequality, together with the integrability of the function τ 	→
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( ∫
Ω\Γ |∇ẇ(τ )|2dxdy)1/2, implies that ∇u ∈ AC([0, T ]; L2(Ω \ Γ ;R2)). Since u(t) =

w(t) on ∂DΩ , by (2.1) and the Poincaré Inequality we conclude that u ∈ AC([0, T ]; H1(Ω \
Γ )). 
�
Theorem 4.15 Under the assumptions of Theorem 4.1, for every j = 1, . . . ,m there exists
u j ∈ AC([t j−1, t j ]; H1(Ω \ Γ )) such that u(t) = u j (t) for every t ∈ (t j−1, t j ).

Proof Let us fix 1 ≤ j ≤ m. By Theorem 4.1, we have s(t) = s j for every t ∈ (t j−1, t j ).
Therefore for every τ1, τ2 ∈ (t j−1, t j ) with τ1 < τ2, the function u is a quasistatic evolution
with fixed crack in the sense of Definition 4.12 on the interval [τ1, τ2].

By Theorem 4.14 we obtain (4.39) for every [τ1, τ2] ⊂ (t j−1, t j ). This shows that the
restriction of u to the open interval (t j−1, t j ) can be extended to an absolutely continuous
function u j : [t j−1, t j ] → H1(Ω \ Γ ). 
�
Remark 4.16 Besides the assumptions of Theorem 4.1, suppose also that w(0) = u(0) = 0
and that s(0) = s0. Then there exists u1 ∈ AC([0, t1]; H1(Ω \ Γ )) such that u(t) = u1(t)
for every t ∈ [0, t1). Indeed, (4.1) implies that u(t) → 0 strongly in H1(Ω \ Γ ) as t → 0+.

Theorem 4.17 Let T > 0, s0 ∈ [a, b), andw ∈ AC([0, T ]; H1(Ω \Γ
s0
a )). Let u1, u2 be two

quasistatic evolutions with fixed crack and boundary condition w on ∂DΩ . If u1(0) = u2(0)
then u1(t) = u2(t) for every t ∈ [0, T ].
Proof The proof is taken from [3, Theorem 5.9], with obvious simplifications. Since
u2 ∈ AC([0, T ]; H1(Ω \ Γ )) by Theorem 4.15, from the energy-dissipation condition
(c0) (dividing by t2 − t1, and passing to the limit as t1, t2 → t), we obtain∫

Ω\Γ
∇u2(t)

(∇u̇2(t) − ∇ẇ(t)
)
dxdy ≤ −

∫
Γ b
s0

|[u̇2(t)]|dx (4.42)

for a.e. t ∈ (0, T ).
On the other hand, for every t ∈ [0, T ], the Euler equation (see Lemma 3.1) for the

equilibrium condition (b0) for u1 gives that there exists ψ1(t) ∈ L∞(Γ b
s0) with |ψ1(t)| ≤ 1,

such that∫
Ω\Γ

∇u1(t)∇ϕ dxdy =
∫

Γ b
s0

ψ1(t)[ϕ]dx for every ϕ ∈ H1
0,D(Ω \ Γ ). (4.43)

Since u2(t) = w(t) on ∂DΩ for every t ∈ [0, T ] and u2 ∈ AC([0, T ]; H1(Ω \Γ )), we have
that u̇2(t) − ẇ(t) ∈ H1

0,D(Ω \ Γ ) for a.e. t ∈ (0, T ). Using ϕ = −(u̇2(t) − ẇ(t)) in (4.43)
we obtain

−
∫

Ω\Γ
∇u1(t)

(∇u̇2(t) − ∇ẇ(t)
)
dxdy = −

∫
Γ b
s0

ψ1(t)[u̇2(t)]dx (4.44)

for a.e. t ∈ (0, T ). Since |ψ1(t)| ≤ 1, adding (4.42) and (4.44) we get∫
Ω\Γ

(∇u2(t) − ∇u1(t)
)(∇u̇2(t) − ∇ẇ(t)

)
dxdy ≤ 0 (4.45)

for a.e. t ∈ (0, T ).
In a similar way we obtain∫

Ω\Γ
(∇u1(t) − ∇u2(t)

)(∇u̇1(t) − ∇ẇ(t)
)
dxdy ≤ 0 (4.46)
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for a.e. t ∈ (0, T ). Adding (4.45) and (4.46) we have∫
Ω\Γ

(∇u2(t) − ∇u1(t)
)(∇u̇2(t) − ∇u̇1(t)

)
dxdy ≤ 0 (4.47)

for a.e. t ∈ (0, T ). This implies that the absolutely continuous function t 	→ ∫
Ω\Γ |∇u2(t)−

∇u1(t)|2 has a nonpositive derivative a.e. in [0, T ], thus it is nonincreasing. Since it is 0 at
t = 0 we conclude that ∇u1(t) = ∇u2(t) for every t ∈ [0, T ]. Since u1(t) = u2(t) = w(t)
on ∂DΩ we deduce that u1(t) = u2(t) for every t ∈ [0, T ] by (2.1). 
�
The following corollary is an immediate consequence of Remark 4.16 and Theorem 4.17.

Corollary 4.18 Besides the assumptions of Theorem 4.1, suppose also that w(0) = u(0) = 0
and that s(0) = s0. Then u is uniquely determined in the interval [0, t1).

5 An example

In this section we describe an example of quasistatic evolution (u, s) where s is not constant.
We consider here

Ω := (a, b) × (−h, h), Γ := [a, b] × {0}, ∂DΩ := [a, b] × {−h, h}, (5.1)

for some h > 0. Therefore we have Ω+ = (a, b) × (0, h) and ∂+
DΩ = [a, b] × {h}. The

boundary condition at time t ∈ [0, T ] will be u(t) = t on [a, b] × {h} and u(t) = −t on
[a, b] × {−h}. This leads to the following choice for w(t) ∈ H1(Ω):

w(t)(x, y) := t
y

h
. (5.2)

Let z0 ∈ H1(Ω+) be the solution of the problem
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Δz0 = 0 in Ω+,

z0 = 0 if y = h,
∂z0
∂x = 0 if x = a and x = b,
∂z0
∂ y = 0 if a < x < s0 and y = 0,
∂z0
∂ y = 1 if s0 < x < b and y = 0.

(5.3)

We shall prove that z0 ∈ C0(Ω
+
) (see Remark 5.6 and Lemma 5.7 below). We define z0 in

Ω− by

z0(x, y) := −z0(x,−y) for every (x, y) ∈ Ω−.

Theorem 5.1 Let Ω , Γ , ∂DΩ , and w be as in (5.1) and (5.2). Let T > 0, s0 ∈ (a, b), and let
(u, s) be a quasistatic evolution with boundary condition w on ∂DΩ and initial conditions
u(0) = 0 and s(0) = s0. Assume that

T > T∗ := − inf
Ω+ z0 and

∫
Ω+

|∇z0|2dxdy + s0 > b, (5.4)

where z0 is defined by (5.3). Then s(t) takes at least two distinct values in two nondegenerate
intervals.

123

31



107 Page 32 of 40 G. Dal Maso, R. Toader

Remark 5.2 Since z0(x, y) → y as s0 → a+, the second inequality in (5.4) is surely satisfied
if h > 1 and s0 is sufficiently close to a.

To prove Theorem 5.1 we shall construct a quasistatic evolution u∗ with fixed crack and
boundary condition w such that u∗(0) = 0 and

u∗(t) =
{
t + z0 in Ω+

−t + z0 in Ω− (5.5)

for every t > T∗. If we had s(t) = s0 for every t ∈ [0, T ], by the uniqueness result proved
in Theorem 4.17 we would have u(t) = u∗(t) for every t ∈ [0, T ]. On the other hand, we
shall see that, if

∫
Ω+ |∇z0|2dxdy + s0 > b and condition (5.5) holds, then (u∗(t), s0) does

not satisfy the equilibrium condition (b) in Definition 2.1. This contradiction shows that s
cannot be constantly equal to s0.

The construction of u∗ requires a careful analysis of the properties of the solutions of
some auxiliary minimum problems. Due to the symmetry of the data we shall work in Ω+.
This is justified by the following remark.

Remark 5.3 Since w(t) is odd with respect to y, a function u∗ : [0, T ] → H1(Ω \ Γ ) is a
quasistatic evolution with fixed crack and boundary condition w if and only if it is odd with
respect to y and satisfies the following conditions

(a0) (measurability) u∗ : [0, T ] → H1(Ω+) is measurable;
(b0) (equilibrium) for every t ∈ [0, T ] we have u∗(t) = t on ∂+

DΩ , and

1

2

∫
Ω+

|∇u∗(t)|2dxdy ≤ 1

2

∫
Ω+

|∇û|2dxdy +
∫

Γ b
s0

|û+ − u+∗ (t)|dx (5.6)

for every û ∈ H1(Ω+) with û = t on ∂+
DΩ .

(c0) (energy-dissipation inequality) for every t1, t2 ∈ [0, T ], with t1 < t2, we have

1

2

∫
Ω+

|∇u∗(t2)|2dxdy +
∫

Γ b
s0

|u+∗ (t2) − u+∗ (t1)|dx

≤ 1

2

∫
Ω+

|∇u∗(t1)|2dxdy +
∫ t2

t1

( ∫
Ω+

∂u∗(τ )

∂ y
dxdy

)
dτ.

Indeed, the oddness of u∗(t) with respect to y follows from the uniqueness of the solutions
of problems of the form (3.3) and from the oddness of the data.

To prove (5.5) we need a detailed study of the properties of the solutions of (5.6), which
uses the Euler conditions introduced in Lemmas 3.1–3.3. This analysis requires the results
of the following two lemmas, which give a precise description of the singularities of some
solutions of the Laplace equation with suitable boundary conditions.

For every R > 0 let Γ −
R = (−R, 0) × {0}, and Γ +

R = (0, R) × {0}. In the next lemmas
we identify the point (x, y) with the complex number z = x + iy.

Lemma 5.4 Let R > 0 and let u ∈ H1(B+
R ) be such that Δu = 0 in B+

R ,
∂u
∂ y = 0 on Γ −

R ,

and u = 0 on Γ +
R . Let S0 be defined by

S0(z) := Im(
√
z),

where for y ≥ 0 we use the determination of
√
z such that

√−1 = i . Then

u = cS0 + ureg (5.7)
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for some c ∈ R and ureg ∈ C1(B+
r ) for every 0 < r < R.

Proof Using Schwarz symmetrization principlewemay assume that u is harmonic in BR\Γ −
R

and satisfies the homogeneous Neumann boundary condition on both sides of Γ −
R . By using

the conformal map z 	→ √
z we can write

u(z) = v(
√
z), (5.8)

where v is harmonic on B√
R ∩ {(x, y) : x > 0}, belongs to H1(B√

R ∩ {(x, y) : x > 0}),
and satisfies ∂v

∂ν
= 0 on {(0, y) : −√

R < y <
√
R} and v = 0 on {(x, 0) : 0 < x <

√
R}.

We now extend v to the whole ball B√
R by reflection and we obtain a function, still denoted

by v, which is harmonic on B√
R and satisfies v = 0 on {(x, 0) : −√

R < x <
√
R}.

Therefore, there exists a holomorphic function f defined on B√
R such that

v(z) = Im f (z) for every z ∈ B√
R . (5.9)

We may assume f (0) = 0. Since f is real on the real axis we can write

f (z) =
∞∑
k=1

akz
k,

where ak ∈ R and the series converges uniformly on compact subsets of B√
R . Let g be the

holomorphic function on B√
R defined by

g(z) =
∞∑
k=2

akz
k,

Therefore (5.8) and (5.9) imply (5.7) with c = a1 and

ureg(z) = Im
(
g(

√
z)

)
. (5.10)

Let us fix 0 < r < R. It remains to prove that ureg ∈ C1(B+
r ). Since

∇ureg(x, y) =
(
Im

(g′(√z)

2
√
z

)
,Re

(g′(√z)

2
√
z

))
(5.11)

it is enough to prove that

z 	→ g′(√z)√
z

(5.12)

is continuous on B+
r . Since

g′(z) =
∞∑
k=2

kakz
k−1, (5.13)

the function h(z) := g′(z)/z is holomorphic on B√
R . Therefore we have g′(√z)/

√
z =

h(
√
z), which gives the continuity of (5.12) and concludes the proof. 
�

Lemma 5.5 Let R > 0 and let u ∈ H1(B+
R ) be such that Δu = 0 in B+

R ,
∂u
∂ y = 0 on Γ −

R ,

and ∂u
∂ y = 1 on Γ +

R . Let S1 be defined by

S1(z) := 1

π
Re(z log(−z)).

Then u = S1 + ureg with ureg ∈ C∞(B+
r ) for every r < R.
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Δu = 0

u = t

∂u
∂x

= 0 ∂u
∂x

= 0

∂u
∂y

= 0 ∂u
∂y

= 1 u = 0
0 a s0 σ b

h

Fig. 3 The boundary value problem for utσ

Proof By direct computation we see that S1 ∈ H1(B+
R ), it is harmonic on B+

R and satisfies
the boundary conditions ∂S1

∂ y = 0 on Γ −
R , and ∂S1

∂ y = 1 on Γ +
R . Therefore ureg := u − S1 ∈

H1(B+
R ), it is harmonic and satisfies the homogeneous Neumann boundary condition on

Γ −
R ∪ Γ +

R , and hence on (−R, R) × {0}. The conclusion follows from the regularity theory
for elliptic equations with Neumann boundary condition. 
�

The quasistatic evolution u∗(t)will be constructed by using the solutions of some auxiliary
boundary value problems depending on a parameter σ , and then by choosing a particular
value σt of this parameter. For every t ≥ 0 and for every σ ∈ [s0, b] we consider the solution
utσ ∈ H1(Ω+) of the problem (see Fig. 3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δu = 0 in Ω+,

u = t if y = h,
∂u
∂x = 0 if x = a or x = b,
∂u
∂ y = 0 for a < x < s0 and y = 0,
∂u
∂ y = 1 for s0 < x < σ and y = 0,

u = 0 for σ < x < b and y = 0.

(5.14)

By the continuous dependence on the data, the function utσ is continuous in H1(Ω+) with
respect to t and σ .

Remark 5.6 In the particular case σ = b we have utb = t + z0 where z0 ∈ H1(Ω+) is the
solution of (5.3).

The following two lemmas give some important properties of utσ , which will be used in our
construction of u∗(t).

Lemma 5.7 For every t ≥ 0 and σ ∈ [s0, b] we have utσ ∈ C∞(Ω+ \ {(s0, 0), (σ, 0)}) ∩
C0(Ω+).

Proof The result follows from the regularity theory for elliptic equations; the regularity
near the vertices of the rectangle can be easily obtained by extending utσ through a suitable
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reflection, while the continuity at the points (s0, 0) and (σ, 0) follows from Lemmas 5.4
and 5.5. 
�

Lemma 5.8 Let t ≥ 0 and let σ ∈ [s0, b] be such that utσ ≥ 0 in Ω+. Then

∂utσ
∂x

≤ 0 in Ω+. (5.15)

Proof Let v := ∂utσ
∂x

. By Lemma 5.7 we have that v ∈ C∞(Ω+ \ {(s0, 0), (σ, 0)}) and

satisfies
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δv = 0 in Ω+,

v = 0 if y = h,

v = 0 if x = a or x = b,
∂v
∂ y = 0 if a < x < s0 and y = 0,
∂v
∂ y = 0 if s0 < x < σ and y = 0,

v = 0 if σ < x < b and y = 0.

(5.16)

Case s0 = σ . Let us consider the behaviour of the function utσ near (s0, 0). By Lemma 5.4
we can write

utσ (x, y) = c
√

ρ sin(θ/2) + ureg(x, y) (5.17)

for some constant c and some function ureg ∈ C1(Ω+), where ρ, θ are polar coordinates
around (s0, 0), with θ ∈ [0, π]. We observe that 0 = utσ (x, 0) = ureg(x, 0) for every

s0 < x < b. This implies that ureg(s0, 0) = 0 and ∂ureg
∂x (s0, 0) = 0.

By (5.17) we have utσ (x, 0) = c
√
s0 − x + ureg(x, 0) for every a < x < s0, while the

properties of ureg imply that |ureg(x, 0)| ≤ M |x − s0| for a suitable constant M . Hence the
inequality c < 0 would lead to utσ (x, 0) < 0 for x < s0, x close to s0, in contradiction with
the assumption utσ (x, 0) ≥ 0. This shows that c ≥ 0.

Since

v(x, y) = ∂utσ
∂x

(x, y) = − c

2
√

ρ
sin(θ/2) + ∂ureg

∂x
(x, y), (5.18)

we have

lim sup
(x,y)→(s0,0)

v(x, y) ≤ 0.

Therefore, if v is positive at some point of Ω+, by the maximum principle v attains its
maximum on Ω+ at a point of ∂Ω+ \ {(s0, 0)} where v has a positive value. By (5.16) this
point must be of the form (x0, 0) with a < x0 < s0. By the Hopf Maximum Principle we
should have ∂v

∂ y (x0, 0) < 0, which contradicts (5.16). This shows that we must have v ≤ 0

in Ω+.
Case s0 < σ < b.We have to study the behaviour of the function utσ near the points (s0, 0)

and (σ, 0). By Lemma 5.5 and (5.14), near (s0, 0) we have

utσ (x, y) = 1

π

(
(x − s0) log ρ − y(θ − π)

) + uregs0 (x, y), (5.19)
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where uregs0 is C∞ in a neighbourhood of (s0, 0) in Ω+ and ρ, θ are polar coordinates around
(s0, 0), with θ ∈ [0, π]. Hence

v(x, y) = 1

π
(log ρ + 1) + ∂uregs0

∂x
(x, y), (5.20)

and this implies that

lim
(x,y)→(s0,0)

v(x, y) = −∞. (5.21)

By Lemma 5.4 and (5.14), using polar coordinates r , φ around (σ, 0), with φ ∈ [0, π],
we can write

utσ (x, y) = c
√
r sin(φ/2) + uregσ (x, y), (5.22)

where c ∈ R and uregσ is C1 in a neighbourhood of (σ, 0) in Ω+. This gives

v(x, y) = − c

2
√
r
sin(φ/2) + ∂uregσ

∂x
(x, y). (5.23)

Arguing as in the case s0 = σ we can prove that c ≥ 0 and that uregσ (x, 0) = 0 for every

σ < x < b. Since ∂uregσ

∂x (σ, 0) = 0 we have

lim sup
(x,y)→(σ,0)

v(x, y) ≤ 0. (5.24)

By (5.21) and (5.24), the subharmonic function v ∨ 0 can be extended to a continuous
function on Ω+ which satisfies

(v ∨ 0)(s0, 0) = (v ∨ 0)(σ, 0) = 0. (5.25)

Therefore, if v is positive at some point of Ω+, by the maximum principle for subharmonic
functions v ∨ 0 attains its maximum on Ω+ at a point of ∂Ω+ where v has a positive value.
By (5.16) and (5.25) this point must be of the form (x0, 0)with a < x0 < s0 or s0 < x0 < σ .
By the Hopf Maximum Principle we should have ∂v

∂ y (x0, 0) < 0, which contradicts (5.16).
This concludes the proof of (5.15) for s0 < σ < b.

Case σ = b. In this case the only singular point of v is (s0, 0) and we can repeat the
argument of the previous case with obvious simplifications. 
�

For t ≥ 0 we define

σt := max{σ ∈ [s0, b] : utσ ≥ 0 in Ω+} and u∗(t) := utσt . (5.26)

The existence of the maximum follows easily from the continuous dependence of utσ on σ .
It is easy to see that for t = 0 we have σ0 = s0.

The results of following three lemmas will be used to prove Lemma 5.12, which shows
that u∗(t) is a quasistatic evolution.

Lemma 5.9 Let t ≥ 0. Then

0 ≤ ∂u∗(t)
∂ y

(x, 0) ≤ 1 (5.27)

for every σt < x < b.
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Proof It is not restrictive to assume σt < b. By (5.26) and Lemma 5.8 for every y ∈ (0, h) the
function x 	→ u∗(t)(x, y) is nonnegative and nonincreasing in (a, b). Since u∗(t)(x, 0) =
0 for x ∈ (σt , b), the function x 	→ (u∗(t)(x, y) − u∗(t)(x, 0))/y is nonnegative and
nonincreasing in (σt , b) for every y ∈ (0, h). Taking the limit as y → 0+ we deduce that
x 	→ ∂u∗(t)

∂ y (x, 0) is nonnegative and nonincreasing in (σt , b).
It remains to prove the second inequality in (5.27). If it is not satisfied, by themonotonicity

of x 	→ ∂u∗(t)
∂ y (x, 0) there exists ε ∈ (0, b − σt ) such that

∂u∗(t)
∂ y

(x, 0) > 1 for every x ∈ (σt , σt + ε).

Let σ ∈ (σt , σt + ε). We want to prove that utσ ≥ utσt in Ω+. Setting v := utσ − utσt we have
that v ∈ H1(Ω+) and satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δv = 0 in Ω+,

v = 0 if y = h,
∂v
∂x = 0 if x = a or x = b,
∂v
∂ y = 0 if a < x < s0 and y = 0,
∂v
∂ y = 0 if s0 < x < σt and y = 0,
∂v
∂ y < 0 if σt < x < σ and y = 0,

v = 0 if σ < x < b and y = 0.

Integrating by parts we obtain the weak formulation

∫
Ω+

∇v∇ϕ dxdy = −
∫

Γ σ
σt

∂v

∂ y
ϕ+dx

for every ϕ ∈ H1(Ω+) with ϕ = 0 on Γ b
σ ∪ ∂+

DΩ . Taking ϕ := v ∧ 0 we obtain

∫
Ω+

|∇(v ∧ 0)|2 =
∫

Ω+
∇v∇(v ∧ 0) dxdy = −

∫
Γ σ

σt

∂v

∂ y
(v+ ∧ 0)dx ≤ 0,

which gives ∇(v ∧ 0) = 0. Taking into account the boundary condition v = 0 on ∂+
DΩ we

get v ∧ 0 = 0 in Ω+. This implies v ≥ 0, so that utσ ≥ utσt in Ω+. Therefore utσ ≥ 0 in Ω+,
which contradicts the maximality of σt (see (5.26)), thus concluding the proof of the second
inequality in (5.27). 
�

Lemma 5.10 For every 0 ≤ t1 ≤ t2 we have u∗(t1) ≤ u∗(t2) in Ω+.

Proof Let us fix 0 ≤ t1 ≤ t2. By the maximum principle we have

u∗(t1) = ut1σt1
≤ ut2σt1

in Ω+. (5.28)

By (5.26) this implies σt1 ≤ σt2 . Let v := u∗(t2) − ut2σt1 = ut2σt2 − ut2σt1 ∈ H1(Ω+). By

(5.26) we have ut2σt2 (x, 0) ≥ 0 for x ∈ (σt1 , σt2), while by the last line in (5.14) we have

ut2σt1 (x, 0) = 0 for x ∈ (σt1 , σt2). Hence v(x, 0) ≥ 0 for x ∈ (σt1 , σt2). Thus v satisfies
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δv = 0 in Ω+

v = 0 if y = h,
∂v
∂x = 0 if x = a or x = b,
∂v
∂ y = 0 if a < x < s0 and y = 0,
∂v
∂ y = 0 if s0 < x < σt1 and y = 0,

v ≥ 0 if σt1 < x < σt2 and y = 0,

v = 0 if σt2 < x < b and y = 0.

By using the Maximum Principle (see also the proof of Lemma 5.9) we can prove that v ≥ 0
in Ω+. Together with (5.28), this concludes the proof. 
�
Lemma 5.11 For every 0 ≤ t1 ≤ t2 the function u∗(t2) is the solution of the minimum
problem

min
u∈H1(Ω+)

u=t2on ∂+
DΩ

(1
2

∫
Ω+

|∇u|2dxdy +
∫

Γ b
s0

|u+ − u∗(t1)+|dx
)
. (5.29)

Proof Let us fix 0 ≤ t1 ≤ t2. By (5.14), (5.26), and Lemma 5.9 the function u∗(t2) satisfies∣∣∣∣∂u∗(t2)
∂ y

(x, 0)

∣∣∣∣ ≤ 1 for every x ∈ (s0, b) \ {σt2}.

Moreover, by (5.14) we have

∂u∗(t2)
∂ y

(x, 0) = 1 for every x ∈ (s0, b) such that u∗(t2)(x, 0) > u∗(t1)(x, 0),

since {x ∈ (s0, b) : u∗(t2)(x, 0) > u∗(t1)(x, 0)} ⊂ {x ∈ (s0, b) : u∗(t2)(x, 0) > 0} ⊂
(s0, σt2). By Lemma 3.3 (applied to the odd extension of u∗(t2) to Ω \ Γ ) these properties
of ∂u∗(t2)

∂ y on Γ , together with the boundary conditions of (5.14), imply that u∗(t2) is the
solution of (5.29). 
�
Lemma 5.12 The odd extension to Ω \Γ of the function u∗ defined by (5.26) is a quasistatic
evolution with fixed crack and boundary condition w on each interval [0, T̂ ] with T̂ > 0.

Proof Let us fix T̂ > 0. By Lemma 5.11 for every t the odd extension of u∗(t) to Ω \ Γ

is the solution of the minimum problem (2.23) with w = w(t), with w(t) defined by (5.2),
s = s0, and g = 0. From Lemma 2.8 we deduce that u∗ : [0, T̂ ] → H1(Ω+) is continuous.

To conclude the proof we have to show that u∗(t) satisfies also conditions (b0) and (c0) in
Remark 5.3. Condition (b0) follows from Lemma 5.11. To prove (c0) we fix τ1, τ2 ∈ [0, T̂ ],
with τ1 < τ2 and a sequence of subdivisions τ1 = tk0 < tk1 < · · · < tkmk

= τ2 such that

tkj − tkj−1 ≤ 1
k for every 1 ≤ j ≤ mk . By Lemma 5.11 for every j we have

1

2

∫
Ω+

|∇u∗(tkj )|2dxdy +
∫

Γ b
s0

|u∗(tkj )+ − u∗(tkj−1)
+|dx

≤ 1

2

∫
Ω+

|∇û|2dxdy +
∫

Γ b
s0

|û+ − u∗(tkj−1)
+|dx

for every û ∈ H1(Ω+) with û = tkj on ∂+
DΩ . Taking û = u∗(tkj−1) + w(tkj ) − w(tkj−1),

where w is defined by (5.2), and using Lemma 5.10 we obtain
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1

2

∫
Ω+

|∇u∗(tkj )|2dxdy +
∫

Γ b
s0

(
u∗(tkj )+ − u∗(tkj−1)

+)
dx

≤ 1

2

∫
Ω+

|∇u∗(tkj−1)|2dxdy + (tkj − tkj−1)

∫
Ω+

∂u∗(tkj−1)

∂ y
dxdy + 1

2
(tkj − tkj−1)

2 b − a

h
.

Summing for j = 1, . . . ,mk we obtain

1

2

∫
Ω+

|∇u∗(τ2)|2dxdy +
∫

Γ b
s0

(
u∗(τ2)+ − u∗(τ1)+

)
dx

≤ 1

2

∫
Ω+

|∇u∗(τ1)|2dxdy +
mk∑
j=1

(tkj − tkj−1)

∫
Ω+

∂u∗(tkj−1)

∂ y
dxdy + 1

2

b − a

kh
.

Since u∗ : [0, T̂ ] → H1(Ω+) is continuous, taking the limit as k → ∞ we obtain (c0). 
�
The following lemma will be used to prove Lemma 5.14, which shows that (5.5) holds.

Lemma 5.13 Let z0 ∈ H1(Ω+) be the solution of problem (5.3). Then for every t ≥ 0 we
have u∗(t) ≥ t + z0 in Ω+.

Proof Let us fix t ≥ 0 and let v := u∗(t)− (t + z0). Then v ∈ H1(Ω+) and, by Lemma 5.9,
it satisfies ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δv = 0 in Ω+,

v = 0 if y = h,
∂v
∂x = 0 if x = a or x = b,
∂v
∂ y = 0 if a < x < s0 and y = 0,
∂v
∂ y = 0 if s0 < x < σt and y = 0,
∂v
∂ y ≤ 0 if σt < x < b and y = 0.

Integrating by parts we obtain the weak formulation∫
Ω+

∇v∇ϕ dxdy = −
∫

Γ b
σt

∂v

∂ y
ϕ+dx

for every ϕ ∈ H1(Ω+)with ϕ = 0 on ∂+
DΩ . Taking ϕ := v∧0 and arguing as in Lemma 5.9

we can prove that v ≥ 0 in Ω+. Hence u∗(t) ≥ t + z0 in Ω+. 
�
Lemma 5.14 Let T∗ := − infΩ+ z0, where z0 is the solution of (5.3). If t > T∗, then u∗(t) =
t + z0 in Ω+.

Proof Let us fix t > T∗. ByLemma5.13 there existsη > 0 such thatutσt = u∗(t) ≥ t+z0 ≥ η

inΩ+, hence utσt (x, 0) ≥ η for every x ∈ (σt , b). Since utσt (x, 0) = 0 for every x ∈ (σt , b) by
the last condition in (5.14), we deduce that σt = b. The conclusion follows from Remark 5.6.


�
Proof of Theorem 5.1 By Theorem 4.1 and Remark 4.2 we have s(t) = s1 = s0 for every
t ∈ [0, t1). Moreover, if t1 < T we have also s(t) = s2 for every t ∈ (t1, t2). To prove the
theorem it is enough to show that t1 < T .

Assume, by contradiction, that t1 = T . Since s(t) = s0 for every t ∈ [0, T ), the function
u is a quasistatic evolution with fixed crack and boundary conditionw on each interval [0, T̂ ]
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with 0 < T̂ < T . Let u∗ be the function defined by (5.26). By Lemma 5.12 the odd extension
(with respect to y) of u∗ is a quasistatic evolution with fixed crack and boundary conditionw

on each interval [0, T̂ ] with T̂ > 0. Since u(0) = 0 = u∗(0), by the uniqueness result
proved in Theorem 4.17 we have u(t) = u∗(t) for every t ∈ [0, T ). Let us fix t ∈ (T∗, T ).
By Lemma 5.14 we have u∗(t) = t + z0 in Ω+, which implies (5.5). Taking ŝ = b, û = t
in Ω+, and û = −t in Ω− in the equilibrium condition (b) of Definition 2.1, we obtain

1

2

∫
Ω\Γ

|∇z0|2dxdy + s0 ≤ b,

which contradicts the second inequality in (5.4). This proves that t1 < T and concludes the
proof of the theorem. 
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13. Mielke, A., Roubíček, T.: Rate-independent systems. Theory and application. In: Applied Mathematical
Sciences, vol. 193. Springer, New York (2015)

14. Rice, J.R.: Mathematical analysis in the mechanics of fracture. Technical report (1968). http://esag.
harvard.edu/rice/018_Rice_MathAnalMechFract_68.pdf

15. Rice, J.R., Sorensen, E.P.: Continuing crack-tip deformation and fracture for plane-strain crack growth
in elastic-plastic solids. J. Mech. Phys. Solids 26, 163–186 (1978)

16. Stampacchia, G.: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients
discontinus. Ann. Inst. Fourier (Grenoble) 15, 189–258 (1965)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

40

http://esag.harvard.edu/rice/018_Rice_MathAnalMechFract_68.pdf
http://esag.harvard.edu/rice/018_Rice_MathAnalMechFract_68.pdf

	On the jerky crack growth in elastoplastic materials
	Abstract
	1 Introduction
	2 Formulation of the problem
	3 Some auxiliary results
	4 The jerky growth of the cracks
	5 An example
	Acknowledgements
	References




