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Abstract
The growing diffusion of the latest information and communication technologies in different
contexts allowed the constitution of enormous sensing networks that form the underlying tex-
ture of smart environments. The amount and the speed at which these environments produce
and consume data are starting to challenge current spatial data management technologies.
In this work, we report on our experience handling real-world spatiotemporal datasets: a
stationary dataset referring to the parking monitoring system and a non-stationary dataset
referring to a train-mounted railway monitoring system. In particular, we present the results
of an empirical comparison of the retrieval performances achieved by three different off-the-
shelf settings to manage spatiotemporal data, namely the well-established combination of
PostgreSQL +PostGISwith standard indexing, a clustered version of the same setup, and then
a combination of the basic setup with Timescale, a storage extension specialized in handling
temporal data. Since the non-stationary dataset has put much pressure on the configurations
above, we furtherly investigated the advantages achievable by combining the TSMS setup
with state-of-the-art indexing techniques. Results showed that the standard indexing is by far
outperformed by the other solutions, which have different trade-offs. This experience may
help researchers and practitioners facing similar problems managing these types of data.
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1 Introduction

In the last decades, we experienced an unprecedented data deluge whose cause is the rapid
spread of the latest ICT technologies. In particular, the Internet of things (IoT) computing
paradigm, which enables the seamless integration of everyday objects through the network,
has been identified as one of the principal sources of massive data production. As of now,
the IoT has also been recognized as the key enabler for the establishment of the so-called
intelligent environments in various operational contexts [1] like smart cities [2], in which it
is fundamental for parking monitoring systems [3] or energy management [4]. On the other
hand, the IoT is the foundational technology for Smart Factories [5], where it is essential for
production chain assets integration or predictive maintenance on critical assets [6].

Despite smart environments being built for different purposes, it is possible to identify
some common elements in their architectures. On the one hand, we recognize smart-
environment’s backbone in vast sensor networks spread over differently sized geographical
areas [7, 8]. On the other hand, these systems are mainly thought to collect continuous and
heterogeneous amounts of data, constantly flowing over the system, which must be managed
for future usage.

Storing and retrieving such massive data streams is mainly entrusted to specialized
database management systems (DBMSs), which usually treat such data as time-series [9,
10]. However, given the intrinsically geographical nature of sensor networks and produced
data, they need to provide further attention to the spatial component, too [11]. Indeed, accord-
ing to some recent studies, spatial data will increase in the next years and location-aware
information will constitute more than 20% of the data produced every day [12–14]. There-
fore, the ability to efficiently store and search vast spatial and temporal data collections is
a fundamental requirement of the present-day data management architectures [15–17]. It
follows that the choice of the most appropriate DBMS will be guided only in part by the
form and nature of the data. Indeed, in a typical analytical setting, we need proper support for
both structures and operators in order to comply with the demanding performance constraints
imposed by context-specific applications [18, 19].

Despite the considerable number of DBMSs available on the market, few of them can
provide adequate support for spatiotemporal data storage and retrieval. Firstly, time series
management systems (TSMS) are specifically designed to manage temporal data [20, 21].
Then, the NoSQL systems are general-purpose databases that proved notable performances
in managing extensive temporal data collections, while their support for geospatial data
are usually considered limited [14, 22]. Finally, relational DBMSs (RDBMS) have been
historically a reference in the management of geospatial data [14, 23], while their capabilities
inmanagingmassive (temporal) datawere generally considered poor [20, 24]. In the last case,
the advent of TSMS allowed RDBMSs to increase their ability to manage massive temporal
data. However, to the best of our knowledge, RDBMS performances are poorly studied in
the literature.

In this study, we provide experience in handlingmassive spatial datawith a prominent tem-
poral component, with two state-of-the-art Commercial Off The Shelf (COTS) RDBMS: the
first one which is a combination of a well-established geospatial system, namely PostgreSQL
[25] + PostGIS [25]. The second one is an extension of the former, where we introduced a
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TSMS, more specifically Timescale [24]. We evaluated these two solutions with two real-
world datasets with different spatial components (i.e., static and dynamic), obtaining this
way four different valuable contexts.

Our objective is to evaluate the temporal complexity and disk space footprint of considered
system, with different indexing and optimizations, under different real-world constraints.

The remainder of the paper is organized as follows. In Sect. 2 we provide an overview
of considered Commercial Off-The-Shelf (COTS) DBMSs and related works. In Sect. 3, we
describe the employed real-world datasets, along with our evaluation setup. Finally, in Sect. 4
we report on results achieved. Finally, some remarks conclude the paper.

2 Commercial TSMS and spatial database

Despite the renewed interest in spatial and temporal data analytics optimization [4, 16, 26–
28], few studies have been conducted in assessing the performances of commercial DBMS
in managing both massive dimensions [15, 29]. However, the management of massive time-
series data produced by IoT sensors boosted the interest of academics and enterprises in
the study and development of ad hoc DBMSs, namely the time series management systems
(TSMS) [20], as can be seen in some recent studies [10, 30, 31]. Even if TSMS provide state-
of-the-art performances in managing temporal data streams, they provide limited support (if
any) to spatial data. For example, InfluxDB [32] one of the principal representatives for the
TSMS category, provides an experimental support only for 2D data points, and S2Geometry
indexing [33]. On the other hand, existing relational DBMSs (RDBMSs) solutions improved
performances of their geospatial add-on data over the years, and nowadays are considered
among the most reliable solutions for this kind of data [14, 15, 22]. Similarly, also traditional,
NoSQLDBMSs provide only a limited support for spatial data management, in terms of data
types (e.g., 3D points, 2D points, polygons), operators and indexing structures [14, 22, 34,
35]. For example, MongoDB, a widely used NoSQL database belonging to the document-
store category, supports various geometry objects, while limiting the spatial indexing support
at 2Dsphere [14]

Presently, amere support for the spatial dimension is not sufficient, as the IoT data presents
massive influence dimensions of temporal dimension too. Despite NoSQLs have emerged as
a remedy to RDBMSs shortcomings in handling big data, they demonstrated lower perfor-
mances in managing massive time-series if compared to TSMS [10, 31]. In addition, NoSQL
stores proved to be unreliable in retrieving massive spatial data if compared to RDBMS [22].
Conversely, RDBMSs offer higher reliability while handling spatial data [15, 22] and proved
to be a suitable option in handling massive temporal data [31]. In addition, consolidated solu-
tions based on RDBMS for spatial data management, namely PostgreSQL [25] and PostGIS
[36], have been extended to face challenges deriving from the massive aspect of temporal
data from IoT, with capabilities offered by modern TSMS (i.e., Timescale [24]). However,
up to our knowledge, available studies do not report on the usage of these systems to manage
both dimensions at the same time.

To this end, the COTS DBMS selected for this study are PostgreSQL [25], PostGIS [36]
and TimeScale [24] which are described in Sect. 2.1. Then, assuming temporal indexing
as imposed by the evaluated TSMS, we investigated the combination with different spatial
indexing techniques among those available (see Sect. 2.2).
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2.1 The considered COTS DBMSs

In this work, we studied above-mentioned COTSDBMS performances with different settings
to manage with two types of typical, massive datasets generated by IoT sensor networks
presenting stationary and non-stationary spatial components. In particular, we evaluate the
potential advantages and trade-offs derived by introducing a time series management system
(TSMS) on top of a well-established COTS database for spatial data management. Thus,
we start from the established combination of PostgreSQL and PostGIS, a widely adopted
technological solution for spatial data management. Then we extend it with TSMS [20]
capabilities by leveraging the freely available Timescale extension for PostgreSQL.

2.1.1 PostgreSQL

PostgreSQL [25] is an object-relational DBMS (ORDBMS), sparkling from a project of the
University of Berkley, currently open source and multi-platform. It is widely used in many
different contexts and applications for industrial, government, and academic purposes (e.g.,
[31, 37, 38]). According to Brewer’s CAP Theorem [39], PostgreSQL is classified as AC, as
it is focused on high Availability and strong consistency. Based on the relational data model,
PostgreSQL supports a large part of the ISO/IEC SQL standard and offers total compliance
with ACID properties. At the time of the experiment, the official documentation stated "[...]
on the version 12 release in October 2019, PostgreSQL conforms to at least 160 of the
179 mandatory features for SQL:2016 Core conformance. As of this writing, no relational
database meets full conformance with this standard." A key feature of PostgreSQL is the
possibility of adding plug-ins to increment the capabilities and features offered by theDBMS.
To date, several plug-ins are available for domain-specific demands, like spatial (PostGIS),
temporal (TimeScale), Full Text Search engine (OpenFTS), etc.

2.1.2 PostGIS

PostGIS [36] is one of the key extensions of PostgreSQL, intended to add support for geo-
graphic objects and location queries [23] in a manner that is compliant with the Simple
Feature Access specifications from ISO/Open Geospatial Consortium (OGC) [40]. PostGIS,
like PostgreSQL, is open-source. In particular, PostGIS adds to PostgreSQL a wide range
of methods to represent spatial objects; for example, it uses WKT (Well Known Text) and
WKB (Well Known Binary) to express different geometry types, spanning from simple 2D
coordinates to 3D spatial data objects to support 3DZ, 3DM and 4D coordinates. As for data
indexing, PostGIS adds support for R-tree [41] and Block Range INdex (BRIN) [42] (see
Sect. 2.2.2 spatial indexes. Indeed, let us note that traditional index structures, based on the
one-dimensional ordering of key values, like the B-trees, do not work with spatial data, as
the search space is multidimensional.

2.1.3 Timescale

Timescale [24, 43] is TSMS [20], intended as an extension of PostgreSQL. Based on the
relational model, Timescale transactions comply with ACID properties. Moreover, it offers
the advantages of being SQL-compliant tomanageTime-Series data and the ability to perform
joins among time-series and standard relational tables. Timescale physically orders records
by a mandatory temporal field, on which an index (usually a B-tree [44, 45]) is defined by
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default, like in other TSMSs [20]. The data model stores values in Hypertables, namely
tables internally partitioned into smaller tables called chunks. The maximum period covered
by a chunk (called chunk_time_interval) should be established at Hypertable’s creation.
Then an optional vertical partitioning could be performed based on a meaningful column by
specifying the amount or a split function. This way, Timescale breaks extensive tables into
an unspecified number of smaller ones, doing the same for indexes. So retrieval operations
can be broken up into smaller operations, allowing parallelization and resulting in better
performances. Of course, handling such a structure is harder since each operation on a table
could involve a Hypertable. To make a chunk behave like a regular table, timescale internally
splits the operation according to involved hypertables, resulting in more complex query
planning transparent to end-users. It is worth noting that Timescale’s partitioning presents
some similarities with partitioning techniques, such as sharding [46], adopted by NoSQL
storage systems.

2.2 Spatial indexing in the considered COTS DBMS

As analytic solutions based on information collected via IoT sensor networks should provide
fast data access over voluminous collections, proper data indexing solutions are a funda-
mental prerequisite [15, 27]. Choosing the best combination of indexes depends on analytics
tasks and data (type and shape). Among the spatial indexing structures supported by the
considered COTS DBMS, we decided to compare two different indexes that showed notable
performances when dealing with trajectories data [15], namely the R-tree (a dense index)
and the spatial BRIN (a sparse index). Although both structures present some advantages
when dealing with spatial data, to the best of our knowledge, no studies compare their char-
acteristics in the presence of different types of massive spatial or spatiotemporal data. In the
following, we provide a deeper description of considered indexing structures.

2.2.1 R-tree index

The R-tree is a tree-like indexing structure employed to speed-up search operations on multi-
dimensional data like spatial ones. In the case of spatial data, it acts by approximating groups
of spatial objects (e.g., points, polygons) by a Minimum Bounding Rectangle (MBR) [47],
namely the minimum rectangle capable of containing all the objects belonging to the group.
In a further step of approximation a group can contain both spatial objects or MBRs. A group
reunites both MBRs or actual spatial objects based on spatial proximity. At the leaves level,
every node contains pointers to actual spatial data (red rectangles in Fig. 1). On the other
hand, internal nodes recursively point to other nodes represented by an MBR (black and blue
rectangles in Fig. 1). So, the root node will be an MBR recursively containing all internal
and leaf nodes. To perform a searching operation, we will define a search filter consisting
of a generic polygon that will be compared with every MBR encountered along a path. The
search stops when it reaches spatial data in leaf nodes or if the intersection between the filter
and any MBR is empty.

It is worth noting that a non-empty intersection with the MBR of an internal node causes
the filter to compare against the MBRs of all child nodes, which can also produce an empty
result. This means that a larger filter implies a greater probability of wasting resources and
time.
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Fig. 1 An example of a bi-dimensional R-tree, reproduced from [47]

Although this index has demonstrated its efficiency in targeted analyses of spatial data
[15], its effectiveness in the presence of a massive temporal component has been barely
studied.

2.2.2 Spatial BRIN index

A Block Range Index (BRIN) is a sparse indexing structure [15, 48] used to improve per-
formances on extensive collections (e.g., tables). It assumes the existence of a correlation
between the indexed dimension and the internal collection ordering. It groups large tables in
fixed disk page range units, storing the maximum and the minimum value for each unit and
associates an MBR enclosing all tuples belonging to that range. Inserting or updating a tuple
inside a page range causes an update to the associated page range when necessary. On the
other hand, a cancellation does not cause any updates. As for R-trees, a filter is represented
by a generic polygon. The query processor will scan only index entries for which the inter-
section between the search polygon and MBRs is not empty. This structure tries to keep the
overlap between the MBRs as low as possible, allowing for scanning the minimum amount
of storage memory necessary to return the result. In contrast with R-tree, the Spatial BRIN
performs better as the search polygon gets wider on dense spatial data.
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DeviceId integer
ArrivalTime timestamp
DepartureTime timestamp
DurationSeconds integer
StreetMarker text
Sign text
Area text
StreetId integer
StreetName text
BetweenStreet1 text
BetweenStreet2 varcharinteger
SideOfStreet varchar(1)
InViolation bool
VehiclePresent integer bool

parking_event

lat double precision
lon double precision
the_geom geometry
marker_id integer
meter_id text
bay_id text
last_Edit timestamp
rd_seg_id integer
road_desc text
road_between_1 text
road_between_2 text

bay_location

Fig. 2 Entity relation diagram for the considered mobility dataset

3 The empirical evaluation setup

This section describes the evaluation process of the considered COTS DBMSs with massive
spatiotemporal data from different mobility contexts. In particular, Sect. 3.1 describes the two
real-world datasets used during the assessment. Then, Sect. 3.3 describes typical data requests
for each considered dataset and the metrics employed to evaluate results. Finally, Sect. 3.2
describes all the investigated settings designed on top of the considered COTS DBMSs.

3.1 The considered spatiotemporal datasets

As sensor networks can generate considerable amounts of spatiotemporal data at an unprece-
dented rate [49–51], it is not uncommon to have datasets of many Gigabytes per month or
even per week. In this study, we employ two real-world spatiotemporal datasets with different
geographical characteristics. The stationary dataset from Melbourne’s parking monitoring
system represents the typical fixed-position data stream produced in a Smart City. Then, the
non-stationary dataset from a rail monitoring system is an example of the non-stationary data
produced by IoT-based monitoring systems. Please note that both datasets have a massive
temporal component, making it challenging to manage such data with standard databases.

The stationary dataset

The considered stationary dataset comes from the on-street parking monitoring system
deployed in theMunicipality ofMelbourne, the capital city of the Australian state of Victoria.
It consists of more than 4000 sensors and approximately 480 street segments across the Mel-
bourne Central Business District (CBD). The collected data were made publicly available,
both as real-time data through some APIs, both as aggregate historical data, in downloadable
format [52]. Let us note that, like in other similar projects [53], in this case, the instrumented
area is just a fraction of the total urban area.

We focused on a dataset containing such parking data, from 2011 to 2017, for a total
of about 275 Million records. The conceptual model, expressed as an Entity Relationship
Diagram (ERD), is reported in Fig. 2. More in detail, the database schema comprises two
tables: bay_location and parking_events. The first one represents the parking stalls, contain-

123



2070 V. N. Vitale et al.

ing information about the geographical location of each parking bay, the shape, the road
segment it belongs to, the bay identifier, and the sensor’s ID. The second entity models park-
ing availability information collected by deployed sensors. Here, each tuple describes the
state of the parking spot, whether it is free or occupied, plus some additional information to
link it to a sensor and a parking bay. This table is richly populated with temporal data and
represents the most prominent part of the dataset.

As a consequence, each spatiotemporal query performed on this dataset (e.g., retrieve all
the parking events in a range of 500 mt from the Stadium on a specific day) requires joining
these two tables, to get spatial filtering from bay_locations and temporal filtering and parking
data from the parking_events.

When implemented inPostgreSQLwith the spatial extensionPostGIS, this dataset required
about 40GB of storage space without considering the size for the indexing.

The non-stationary dataset

Nowadays, it is usual to use mobile probes to monitor roads, railways, movable objects and
other infrastructures [54, 55]. Therefore, vast amounts of spatiotemporal data are continuously
and constantly collected from ad hoc monitoring sensor networks [56, 57], probe vehicles
[57–60] and crowd-sourced devices [2, 60].

The dataset we will use was collected from a rail probe monitoring system mounted on
a train. It allows for continuous monitoring of rails and related elements as trains run over
the railways during duty hours. The system comprises a number of 3-axial accelerometers,
mounted on a wagon’s axle-boxes recording expected and anomalous vibrations. Sensors are
connected to a control unit which stores, combines and enriches acquired measurements with
spatiotemporal pathways and contextual information. The dataset covers a period of 30 days
and a stretch of about 2kms, for a total of about 58 Million of records.

This dataset is a typical example of raw sensor measurements collected to monitor the
health status of a railway infrastructure. In more general scenario, the payload of similar
systems could be incremented with additional sensor sources such as such as gyroscopes,
inertial measurement units, or optical measurement devices. In these dataset, one of the
possible dimensional roll-up can take into account, as a possible independent variable, the
distance of the central unit from a reference point on the railway line: the raw measures are
then analyzed in ETL processes to derive quantitative information about the infrastructure
as a function of space.

We designed a conceptual model composed of two parts expressed by ERDs in Figs. 3 and
4. The first part of the model is made by the tables TripInfo and GeneralData (see Fig. 3),
reporting respectively generic information about the trip and measurements made from sen-
sors during a trip. Hence, we extended the model with the GeoPartitioning table (see Fig. 4)
which indicates spatial partitioning over specific routes, and it is meant to be used to fil-
ter GeneralData. The GeoPartitioning table joins with the GeneralData table through the
tot_pk_m attribute, which expresses the extension of the railway from a reference point. The
GeneralData table contains the prominent part of the dataset, the attributes time and geog
indicate respectively a unix-like timestamp expressed in nanoseconds and geographical coor-
dinates (expressed as a point) for each acquisition. Measurements from each accelerometer
are indicated with the generic attributes x y z followed by < id > referred to the sensor.

When ingested in PostgreSQL with the spatial and temporal extensions, this dataset
required about 16GB of storage space. The storage space doesn’t include the size of the
indexes.
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time int4
totpk_m int4
relpk_m int4
geog int4
x<n> int4
y<n> float8
z<n> float8
speed_m_s double int4

GeneralData
Id int4
time timestamp
direction int4
routeId int4
speed int4

TripInfo

Fig. 3 Base entity relation diagram for the considered non-stationary dataset

Fig. 4 ERD of the spatial
partitioning table for the
considered non-stationary dataset cluster int4

routeId int4
start_centimeterint4
end_centimeter int4

GeoPartitioning

3.2 The investigated COTS databases settings

To assess pros and cons of introducing a commercial TSMS like Timescale on top of estab-
lished spatial databases, two combinations of the considered systems were defined, namely
PostgreSQL + PostGIS (the Baseline) and PostgreSQL + PostGIS + Timescale. Let us note
that, one of the main differences while using Timescale is a different ordering of the records
within the physical files on the mass storage. This motivated us to investigate whether dif-
ferences in performances (if any) might be due to the new algorithms and data structures of
the TSMS or simply to the different physical ordering of the records. As a consequence, a
further setting has been defined, exploiting the possibility offered by PostgreSQL to impose
a physical ordering of the records in the files: such operation is named clustering.

So the considered off-the-shelf settings are:

(1) (Baseline) The relational DBMS PostgreSQL with the spatial extension PostGIS, with
an R-tree on the spatial dimension. We will refer to this as PostGIS.

(2) The relational DBMS PostgreSQL with the spatial extension PostGIS, using advanced
data sorting and indexing capabilities of the DBMS, with an R-tree on the spatial dimen-
sion. We will refer to this as Clustered PostGIS.

(3) The relational DBMS PostgreSQL with the spatial extension PostGIS and with the time-
series management extension timescale which not requires an explicit ordering on time
(see Sect. 2.1.3), a kind of storage solution specialized in handling temporal data, with
an R-tree on the spatial dimension. We will refer to this as PostGIS + Timescale.

In the above-mentioned three settings, an R-tree index has been defined on the spatial field.
This further index proved to be most effective in the presence of a fixed spatial dimension
and to present higher selectivity [15]. However, the non-stationary dataset presents a massive
and unrestricted spatial component, which is likely to induce performance deterioration in
presence of an R-tree index. This motivated us to investigate further aspects regarding spatial
indexing in the presence of massive, non-stationary, spatial data streams. To this end, we add
more settings based on the PostGIS + Timescale configuration:

(1) To reduce the impact of indexing on storage, we used aBRIN index on the spatial attribute
from the massive table. We will refer to this as PostGIS + Timescale BRIN.
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(2) To evaluate the impact of a higher level of fragmentation, we partitioned the monitored
route and accordingly the massive table. The spatial index is defined on the partitioning
table rather than on the massive one. We will refer to this as PostGIS + Timescale
Secondary Partition (SP).

(3) Since secondary partitioning introduces a higher parallelization level, we decided to
introduce an R-tree index also on themassive table to evaluate its impact on performances.
We will refer to this as PostGIS + Timescale Secondary Partition (SP) R-tree.

(4) To reduce the impact on disk size, we decided to introduce a BRI N index also on the
massive table with secondary partitioning. We will refer to this as PostGIS + Timescale
Secondary Partition (SP) BRIN.

In Tables 1 and 2 we summarize the characteristics of the investigated settings.

Database tuning

Firstly, the default parameters of the database have been tuned to leverage the workstation’s
resources with each configuration. In particular, following also official documentation guide-
lines, we increased: the number of parallel workers to 16, namely the maximum number of
processor’s threads; shared_buffers to 8GB; work_mem to about 13MB, which represents the
amount ofmemory used by a single query for small sorts and hash tables; effective_cache_size
to 49GB, which, according to the official documentation, "Sets the planner’s assumption
about the effective size of the disk cache that is available to a single query.... it is used
only for estimation purposes....", has the effect of favouring an index scan rather than a disk
sequential scan. In order to present the results of the above proposed settings, it is first nec-
essary to understand some peculiarities of the data indexing employed during experiments.
The choice of the proper indexes is a crucial part of database tuning. Indeed, the lack of
suitable indexes will lead to the scan of the entire files from the disk during the execution of
a query, with catastrophic impact on performances. Conversely, too many indexes will slow
down data ingestion and occupy relevant amount of space on the disk. In addition, executing
a query over secondary index is one of the most difficult and common case. Indeed, as seen
in [61], a secondary index scan may or may not work better than a full sequential scan, and
the system needs to perform access path selection to choose the best access method, relying
on run-time characteristics during optimization. In our study, we defined indexes as follows.

Stationary dataset indexing

Since the bay_locations table represent only the parking spot data and does not contain any
temporal information, only two small size indexes are defined on it. The first is a B-tree on
the meter_id attribute, used to search locations by the ID of the sensor. The second one is an
R-Tree/BRIN on the attribute the_geom, used to speed up the spatial queries. Then we have
the parking_events table, containing the massive amount of temporal data that is handled
differently in each of the three settings. In the PostGIS setting, a B-tree index has been
defined on the ArrivalTime attribute, to support time-based queries. Since this attribute is not
the primary key, records in the files on the storage memory are not physically ordered by this
field.As a consequence, the B-tree index onArrivalTime is a secondary, dense index.A B-tree
was defined on the StreetMarker attribute, which is a ForeignKey for the bay_locations table,
to optimize the join. In the Clustered PostGIS setting, the attribute ArrivalTime becomes the
physical ordering field of the records, and thus the corresponding index becomes clustered.
Finally, in the PostGIS + Timescale setting, we transform the parking_events table in an
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Table 1 Characteristics of the investigated settings for both the stationary and non-stationary datasets

Setting Technologies Characteristics

PostGIS PostgreSQL, PostGIS,R-tree B-Tree on time attribute. R-Tree on
space attribute

Clustered PostGIS PostgreSQL, PostGIS, R-tree B-Tree on time. R-Tree on space
attribute. Clustered on B-Tree

PostGIS + Timescale PostgreSQL, PostGIS,
Timescale, R-tree

B-Tree on time. R-Tree on space
attribute. Hypertable natively ordered
on time

PostGIS + Timescale BRIN PostgreSQL, PostGIS,
Timescale, BRIN

B-Tree on time. BRIN on space attribute.
Hypertable natively ordered on time

Table 2 Characteristics of the additional investigated settings for the non-stationary dataset

Setting Technologies Characteristics

PostGIS + Timescale BRIN PostgreSQL, PostGIS,
Timescale, BRIN

B-Tree on time. BRIN on space attribute.
Hypertable natively ordered on time.

PostGIS + Timescale Secondary
Partition (SP)

PostgreSQL, PostGIS,
Timescale, R-tre

B-Tree on time. R-Tree on partitioning
table. Hypertable natively ordered on
time. Secondary partitioning on space.

PostGIS + Timescale Secondary
Partition (SP) R-tree

PostgreSQL, PostGIS,
Timescale, R-tree

B-Tree on time. R-Tree on partitioning
and massive tables. Hypertable
natively ordered on time. Secondary
partitioning on space.

PostGIS + Timescale Secondary
Partition (SP) BRIN

PostgreSQL, PostGIS,
Timescale, R-tree,
BRIN

B-Tree on time. R-Tree on partitioning
table. BRIN on the massive table.
Hypertable natively ordered on time.
Secondary partitioning on space.

Hypertable, optimized for time series filtering, with a default interval dimension of 1 week.
Being mandatory for each Hypertable, chunks are physically ordered by the time index (i.e.,
ArrivalTime), improving both range and specific value searches on the temporal attribute.

Not stationary dataset indexing

In each considered setting, the TripInfo table has no indexes since it contains only information
about the trip and the train. On the GeneralData table, containing massive spatiotemporal
data, we defined a B-tree index on the time attribute to support time-based filtering. As for
the stationary dataset, the B-tree index has been used as a clustering index in the Clustered
PostGIS setting. Then in the PostGIS + Timescale setting, it has been used for Hypertable
partitioning in 1-week chunks. As theGeneralData table contains also the spatial component,
we defined an R-tree index on the geog to support spatial filtering (see Table 1). Since the
spatial component has different nature in this context and impacts performances differently,
we introduced further settings to be investigated(see Table 2). In particular, we introduce the
BRIN spatial index in place of an R-tree on the GeneralData table. It is supposed to reduce
resources used to store the index and increment performance if the index is defined on top of
an attribute that follows table’s physical ordering. Since the spatial dimension is as prominent
as the temporal one, we introduce secondary partitioning on top of the GeneralData table.
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In particular, we define the dimensional table GeoPartitioning that contains rail’s spatial
partitions referenced by the spatial attribute from GeneralData. We obtained this table by
partitioning the route in sections of similar length, based on the characteristics of the trips
and of the railway section. After some investigation, we assumed an average section length
of 120ms based on some railway characteristics. Table 2 summarizes also the features of the
additional investigated settings.

3.3 Experimental setup

To evaluate the consequences of introducing a TSMS on top of a GIS for managing massive
mobility data, we first empirically compared the achievable performances using the station-
ary dataset, consisting of 275 million records, in which the temporal dimension is the most
prominent. Then to assess the performance in the presence of both massive spatial and tem-
poral dimensions, we employed the non-stationary dataset, consisting of 58 million records,
in which the spatial component varies along with time.

The experiments were executed on a workstation equipped with an eight-core Ryzen
3800x processor, 64GB RAM, and a Samsung M.2 SSD with a storage capacity of 1TB.

For the stationary dataset, the results will report the average of five runs of the spatiotem-
poral query reported in Listing 1, for each parameter combination and each setting. Note that,
based on previous studies regarding the use case of a user searching for a parking space [3,
30, 62] and that of an officer looking for parking violations [63], we derived a query and a
set of parameters representing the considered use cases. The considered ERD, along with the
query and the related set of parameters, are aimed at a practical comparison of the considered
architectures under conditions depicted in the considered use cases.

For the non-stationary dataset, wewill report the average of five runs of the spatiotemporal
queries showed in Listing 2,3,4, for each parameter combination, each setting and each
spatial indexing technique. Note that, in this case, the considered combinations of queries
and parameterswere defined togetherwith the industrial partner of the research, being domain
experts of the railway monitoring scenario. Queries are designed to let an analyst recover
enough data to evaluate the railway’s health state. To this end, the temporal filter resolution
varies to let the railway sections’ health be assessed during different periods (E.g., days,
weeks, months) based on data acquired by various instrumented trains. In the same way, the
spatial filter resolution varies to consider interactions with nearby railway sections or related
equipment like railway switches [64, 65].

To let every considered storage solution operate in the same initial conditions and eliminate
the caching policies’ effects, the workstation was rebooted after each single execution.

To summarize, we will compare three basic configurations, in which the main difference
resides in the physical arrangement of the records on disk. Starting from these configurations,
we will compare the impact of two spatial index types. On the one hand, we rely on a
tree-structured index (i.e., the R-tree) usually indicated for queries aimed at selecting well-
defined (relatively small) quantities of data. On the other hand, we will consider a block
index (i.e., the BRIN) which misses the refined superstructure of tree-based indexes and is
usually employed for retrieving large-grained data collection. This comparison is based on
two real-world examples, whose considered queries and parameters represent a wide range
of relatively typical situations, ranging from very fine-grained data retrieval to larger-grained
data retrieval.

Based on configurations defined in Sect. 3.2, we are going to compare the impact of
two spatial index types, namely a tree-structured index, i.e., the R-tree, mainly suited for
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relatively small data selections and ablock index, i.e., theBRIN,which conversely is primarily
recommended for large-grained data recovery. Note that a block index usually misses a fine-
grained search superstructure,which speeds up the search in tree-based indexes, thus resulting
in a thinner and lightweight (in terms of required disk space) data structure. So a naive
assumption would be to expect that the execution of a query on a range index should take far
more time than the exact same query executed on a tree-based index. Still, the assumption is
not necessarily true and it depends on a number of conditions in concrete contexts. Therefore,
wewill evaluate the impact of both indexes under different real-world constraints represented
by datasets, queries and parameter settings described in this section, which span from the
most selective (i.e., fine-grained) queries to coarser ones.

Stationary dataset retrieval

We investigated many spatiotemporal queries, obtaining homogeneous results. To simplify,
we will describe in detail only one query, reported in Listing 1, meant to represent typical
data retrievals that a Decision Maker of a Smart City might perform to get a better vision
on mobility phenomena. Such a location-based query is designed to retrieve all the parking
events that happened in a specific Range from a given Center, in a time interval going from
StartInterval to EndInterval.

Listing 1 The parametric spatiotemporal query we used in our experiments on the Melbourne dataset.

SELECT ∗
FROM p a r k i n g _ e v e n t s AS PE JOIN b a y _ l o c a t i o n s AS BL

ON PE . S t r e e t M a r k e r = BL . m a r k e r _ i d
WHERE PE . A r r i v a l T i m e >= S t a r t I n t e r v a l

AND PE . A r r i v a l T i m e < E n d I n t e r v a l
AND PE . D e p a r t u r e T im e < E n d I n t e r v a l
AND s t _ d w i t h i n ( BL . the_geom , Cen t e r , Range )

To evaluate the proposed settings, we fixed the center of each spatiotemporal query in
Lonsdale Street, then we varied spatial and temporal parameters. In particular, the range
parameter varies among 100, 500 and 1000ms, while the length of time period varies among
1,2,3,7,14 and 21 days. Note that, characteristics such as event density can impact perfor-
mance, for example, when increasing the search radius and time interval or similarly when
moving the search to denser areas. For this reason, the search area is centred on Lonsdale
Street, which is located insideMelbourne’s central business district, an area with a high park-
ing events density and the first area where parking monitoring sensors have been installed.

Non-stationary dataset retrieval

To evaluate the performances of the mentioned systems, we designed a query (See Listing 2)
representing the typical retrieval task that a railway maintenance decision-maker would per-
form. The query is designed to retrieve all the measurements made during trips happened
between StartInterval to EndInterval, in a certain Range from a point of interest (Center).
We employ such query to evaluate all the mentioned systems.

As Timescale offers the possibility to add a secondary partitioning dimension over a
timestamp or an integer attribute, we partitioned the GeneralData table over the tot_pk_m
attribute. To take advantage of partitioning while filtering the dataset with spatial operators,
we extended the schema with theGeoPartitioning table. To evaluate such setting, we defined
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two queries (SeeListings 3 and 4) expressing the same information need from that inListing 2,
such queries are meant to be used in a two-step filtering. Experimental settings with this type
of filtering will be marked as 2step. In particular, the query in Listing 3 performs the spatial
filtering on the GeoPartitioning table, obtaining the parameters MaxPk and MinPk (i.e.,
maximum and minimum values referred to tot_pk_m). Then, these parameters are used in
the query 4 to filter out theGeneralData table, in combination with time filtering parameters
StartInterval and EndInterval, and with spatial filtering parameters Range and Center.

Listing 2 The parametric spatiotemporal query we used in our experiments on the non-stationary dataset, for
the configurations R-tree and BRIN.

SELECT ∗
FROM Ge n e r a l D a t a
WHERE t ime BETWEEN S t a r t I n t e r v a l AND E n d I n t e r v a l

AND s t _ d w i t h i n ( geom , Cen t e r , Range )

Listing 3 The parametric Spatial filtering query we used in our experiments on the non-stationary dataset to
retrieve spatial partitions, on configurations with secondary partitioning.

SELECT MIN ( s t a r t _ c e n t i m e n r ) , MAX( e n d _ c e n t i m e t e r )
FROM G e o P a r t i t i o n i n g
WHERE s t _ d w i t h i n ( c l u s t e r , Cen t e r , Range )

Listing 4 The parametric spatiotemporal query we used in our experiments on the non-stationary dataset to
retrieve data from the main table in combination with the query in Listing 3,on configurations with secondary
partitioning.

SELECT ∗
FROM Ge n e r a l D a t a
WHERE t ime BETWEEN S t a r t I n t e r v a l AND E n d I n t e r v a l

AND t o t _ p k _m be tween MinPk AND MaxPk
AND s t _ d w i t h i n ( geom , Cen t e r , Range )

During the experimental evaluation, the center of each query was fixed at the beginning
of the monitored route. As for the stationary dataset, the spatial range varies among 100, 500
and 1000ms (about half of the monitored route), while the time period size varies among
1,3,5,7,9,11,13,15 days. The process consists of the execution of 5 runs, for each combination
of queries and parameters, and then of the evaluation of performances. Let us note that, for
the two-step filtering experiments, we included in the retrieval time calculation also the time
occurring between the execution of the two queries (see Listings 3 and Listing 4).

Evaluation metrics

As already done in some works on DBMS benchmarks (e.g.: [31]), our experimental pro-
tocol aims at the assessment of specific performance indicators, evaluated in some typical
situations. In this case, the most used indicator is the Retrieval Time (see Table 3) expressed
in seconds, which allows evaluating performances of typical retrieval tasks. Another key
metric to assess the effectiveness of a Data Management solution is theDisk Occupancy (see
Table 3) for each considered dataset, including also the space required for indexes. However,
to allow the comparison of resources used by both datasets, we express the disk usage of
indexes as a percentage of the raw data part stored in PostgreSQL.
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Table 3 Selected Evaluation Metrics

Metrics

Retrieval Time Time to retrieve data and return records with respect to the baseline, i.e., PostGIS, (Percentage)

Disk OccupancyPercentage of space required to store indexes with respect to data (Percentage)

Fig. 5 Average retrieval time reduction for queries on stationary data with range of 100ms, expressed in
Percentage with respect to PostGIS configuration

4 Results and discussion

In Figs. 5, 6, 7 and in Table 4, are reported the results achieved on the stationary datasets, with
the query reported in Listing 1. As we can see, the improvement in terms of performances
due to the introduction of Timescale is remarkable. In fact, the setting PostGIS + Timescale
requires on average 96% less time than the baseline (i.e.,PostGIS setting)with each parameter
combination. Considering the maximum query extension, i.e., with a range of 1000mt and
21 days, the PostGIS + Timescale setting took 98% less time with respect to the baseline.
On the other hand, with filtering parameters set to 100mt range and a period of 1 day, the
PostGIS + Timescale setting required 96% less time compared to the baseline.

It is worth noting that also the Clustered PostGIS setting generates a significant improve-
ment over the baseline, highlighting that the physical ordering of the records has a deep impact
on the execution time, as expected. On average, Clustered PostGIS reduces the time required
to run the query by about 62%. Nevertheless, the performances of PostGIS + Timescale set-
ting are by far better thanClustered PostGIS, so the optimization offered by Timescale makes
an important difference in the presence of a prominent temporal dimension. Although both
PostGIS + Timescale and PostGIS + Timescale BRIN configurations showed a comparable
performance increment with respect to the baseline, the BRIN index induces a performance
increment which is proportional to the spatial filter size.

In Fig. 8, we report indexes disk requirements of the three settings in terms of disk occu-
pancy percentage with respect to the data portion. Let us remember that, when implemented
in PostgreSQL, the stationary dataset occupies 40GB without indexes. As we can see, con-
figurations involving Timescale need about 4% more than other settings to store temporal
indexes. It is due to the table partitioning (chunks of one week) operated by Timescale. In
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Fig. 6 Average retrieval time reduction for queries on stationary data with range of 500ms, expressed in
Percentage with respect to PostGIS configuration

Fig. 7 Average retrieval time reduction for queries on stationary data with range of 1000ms, expressed in
Percentage with respect to PostGIS configuration

this case, the spatial index requires an unimportant percentage of space, which is subject to
a reduction when switching from an R-tree to a BRIN index. On the other hand, the indexes
used to filter the massive data streams based on the parking spot (i.e. Foreign Key Index in
Fig. 8) require almost the same space as the temporal index.

Figures 9, 10, 11 and Table 5, report the most significant results achieved per combi-
nations of system setting, parameters and queries (reported in Listings 2,3,4). The setting
with the "2step" mark is referred to two-step filtering experiments made with queries in
Listings 3,4. For brevity, we omitted the results achieved with settings PostGIS + Timescale
Secondary Partition (SP) R-tree and PostGIS + Timescale Secondary Partition (SP), also in
the two-step filtering version, as they showed performances comparable or worse than BRIN
based settings. Compared to the baseline, the introduction of Timescale let us to achieve
an improvement of 17% in the worst (see PostGIS + Timescale configuration in Fig. 11)
and 89% in the best case (see PostGIS + Timescale BRIN configuration in Fig. 10). Let us
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Table 4 This table describes the achieved standard deviation (in seconds) during experiments on the stationary
dataset

Time Solution 100 MT 500 MT 1000 MT

1 day Clustered PostGIS 0.05 0.01 0.02

1 day PostGIS + Timescale 0.003 0.009 0.04

1 day PostGIS + Timescale BRIN 0.003 0.008 0.05

2 day Clustered PostGIS 0.01 0.03 0.01

2 day PostGIS + Timescale 0.006 0.006 0.04

2 day PostGIS + Timescale BRIN 0.005 0.0067 0.05

3 day Clustered PostGIS 0.01 0.02 0.02

3 day PostGIS + Timescale 0.008 0.026 0.24

3 day PostGIS + Timescale BRIN 0.008 0.024 0.23

7 day Clustered PostGIS 0.01 0.02 0.04

7 day PostGIS + Timescale 0.019 0.023 0.078

7 day PostGIS + Timescale BRIN 0.021 0.026 0.08

14 day Clustered PostGIS 0.007 0.02 0.12

14 day PostGIS + Timescale 0.015 0.035 0.049

14 day PostGIS + Timescale BRIN 0.019 0.034 0.05

21 day Clustered PostGIS 0.08 0.08 0.21

21 day PostGIS + Timescale 0.015 0.058 0.062

21 day PostGIS + Timescale BRIN 0.014 0.061 0.067

Fig. 8 Indexes’ disk occupancy in percentage with respect to disk space required by the data component—
stationary dataset

note that, with the not-stationary dataset, the Clustered PostGIS setting performed worse
than any other, with a slight performance deterioration with respect to the baseline. After
an analysis of the query execution plans, we faced that both PostGIS and Clustered PostGIS
settings access data mainly through the spatial index, being considered the most selective
one, even if the temporal dimension reflects the physical ordering of records, or if we are
retrieving half of the dataset. On the other hand, since Timescale splits data in multiple
fragments, it accesses data through the temporal index. Then it filters records based on the
spatial condition or vice versa. Choosing the right spatial filtering approach is fundamental
also with improvements achieved by Timescale. In fact, BRIN-based settings showed better
performances in terms of retrieval time and disk usage, with respect to R-tree based R-tree
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Fig. 9 Average retrieval time reduction for queries on not-stationary data with range of 100ms, expressed in
Percentage with respect to PostGIS configuration

Fig. 10 Average retrieval time reduction for queries on not-stationary data with range of 500ms, expressed in
Percentage with respect to PostGIS configuration

index. Even with secondary partitioning, Timescale brings performance improvements with
respect to the baseline setting, with an increment spanning from a minimum of about 20%
to a maximum 88%.

In Fig. 12, we reported the space requirements for the not-stationary dataset. Let us note
that in this case the PostGIS + Timescale BRIN setting, brings a considerable disk usage
reduction with respect to PostGIS and Clustered PostGIS settings. As expected, the PostGIS
+ Timescale BRIN and PostGIS + Timescale - SP BRIN settings performed better than any
other, as BRIN indexes are known for the low disk occupancy and complexity.

Clearly, physical ordering on the primary search dimension is crucial in improving per-
formances of retrieval tasks over massive temporal data. Although PostgreSQL can order
records physically, it is essential to note that sorting (i.e., clustering) data are a costful oper-
ation that must be performed after every update on the ordering attribute. In fact, sorting the
stationary dataset in the Clustered PostGIS setting required about 79min. On the other hand,
Timescale acts like an instance of PostgreSQL in continuous sorting of the records, splitting
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Fig. 11 Average retrieval time reduction for queries on not-stationary data with range of 1000ms, expressed
in Percentage with respect to PostGIS configuration

Table 5 This table describes the achieved standard deviation (in seconds) during experiments on the non-
stationary dataset

Time Solution 100 MT 500 MT 1000 MT

1 Day Clustered PostGIS 0.11 0.45 0.87

1 Day PostGIS + Timescale 0.03 0.12 0.21

1 Day PostGIS + Timescale BRIN 0.06 0.14 0.15

1 Day PostGIS + Timescale − SP BRIN 0.08 0.10 0.11

1 Day PostGIS + Timescale − SP BRIN 2step 0.03 0.06 0.19

7 Day Clustered PostGIS 0.28 0.35 1.34

7 Day PostGIS + Timescale 0.11 0.72 0.39

7 Day PostGIS + Timescale BRIN 0.15 0.46 2.17

7 Day PostGIS + Timescale − SP BRIN 0.17 0.36 0.71

7 Day PostGIS + Timescale − SP BRIN 2step 0.06 0.32 1.21

15 Day Clustered PostGIS 0.49 0.57 0.66

15 Day PostGIS + Timescale 0.13 1.01 3.07

15 Day PostGIS + Timescale BRIN 0.60 1.13 2.17

15 Day PostGIS + Timescale − SP BRIN 0.42 0.64 2.4

15 Day PostGIS + Timescale − SP BRIN 2step 0.27 0.98 2.53

the overhead of the ordering phase in the ingestion phase on smaller time-ordered tables. This
way, Timescale guarantees a collection of physically time-ordered tables, rapidly searchable
and able to fit working memory completely. As a minor drawback, Timescale requires to set
some parameters (i.e., the chunk_time_interval) to achieve and maintain such performances
without excessive disk usage increment.

Therefore, Timescale demonstrated to be effective in managing both stationary and not-
stationary spatial data. It shows better performances compared to bothPostGIS andClustered
PostGIS settings with any parameters combination. Furthermore, Timescale also shows its
effectiveness with state-of-the-art spatial indexes on secondary search dimensions by signif-
icantly increasing retrieval performances.
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Fig. 12 Indexes’ disk occupancy in percentage with respect to disk space required by the data component-not
stationary dataset

5 Threats to validity

In this section, we report on threats about this first pilot experience, that may have influenced
results and their generalizability.

Threats to internal validity These threats regard experimental-related factors that could
limit the confidence in results presented.

The choice to perform five executions for each possible query represents a trade-off
between the time required to execute each query and the large number of parametric con-
figurations for each query in each use case considered for each storage solution. However,
to mitigate the effects of this choice, we performed a complete restart of the workstation
after every single execution (see Sect. 3.3), thus obtaining similar execution conditions and
removing the effects of caching policies. This study used a single hardware optimization for
all storage settings considered. On the one hand, this leaves open further optimization possi-
bilities that depend on different hardware configurations. On the other hand, this allowed us
to compare the solutions considered in the same operating conditions, exploiting in the same
way available hardware resources.

Threats to external validity These threats limit the generalizability of the experimental
results.We considered two different types of spatiotemporal data. The respective investigated
configurations, as well as the employed datasets, are based on real use-cases and, therefore,
may show similar biases to some extent. As we considered two very specific types of spa-
tiotemporal data, in which the geographical component is fixed (like in the stationary dataset)
or, in any case, is constrained to specific geographical areas (like rail sections in the non-
stationary dataset), the results hold for similar scenario. Thus, different forms of spatial data,
such as trajectories, may exhibit different behaviours. Furthermore, we considered a generic
query aimed only at massive data points retrieval based on filters which vary over massive
dimensions (i.e., spatial and temporal). However, under different analytic conditions which
require data aggregation or ad hoc filtering (e.g., subqueries), system performance might be
affected differently.

In this study, we considered one hardware configuration, alongwith some ad hoc optimiza-
tions. This can limit the generalizability of our findings on configurations with different CPU
architectures, reduced working memory (RAM) availability or multi-node configurations.
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In addition, we focused on the performance improvements, in terms of running time, over
a baseline configuration rather than measuring actual resource usage (e.g. CPU/RAM/Disk
usage). This allowed us to compare the performance of considered storage solutions from a
hardware-agnostic point of view, while leading to a somewhat uncertain performance com-
parison in terms of physical resources required.

6 Conclusions

The way we see cities, factories, houses and many other structures is undergoing a significant
transformation due to the integration of state-of-the-art ICT technologies like IoT, Cloud,
Big Data, etc. To succeed in such transformation, the capacity to manage and analyze data
effectively is of paramount importance.

In this work, we reported on an empirical experience in handling massive spatiotemporal
datasets with both stationary and non-stationary spatial components. The stationary dataset
covers about seven years of on-street parking availability from the municipality of Mel-
bourne (AU). The non-stationary dataset covers about a month of rail monitoring through a
train-mounted system. In particular, we compared an established setting for spatial data man-
agement, i.e., PostgreSQL and PostGIS, with an optimized version (i.e., clustered) and with
a third method based on an advanced Time Series Management System (i.e., Timescale),
providing some techniques optimized to manage massive temporal data in the modern
technological context depicted by IoT. Furthermore, we assessed the effectiveness of two
state-of-the-art spatial indexing techniques in the presence of massive, non-stationary data.
Then we compared them with a simple approach aimed at improving both performances and
resource usage on top of a TSMS.

The empirical experiment was conducted with complex spatiotemporal queries, specifi-
cally designed for each dataset, involving multiple location-based and temporal parameters.
The results show that Timescale can outperform by far any other option. On the other
hand, it requires more disk space and some additional parameters to be set to create the
Database. However, it is possible to combine Timescale’s characteristics with simple parti-
tioning approaches to mitigate resource usage and improve performances. It is worth noting
that if the primary search dimension is also the physical ordering one, the possibility offered
by PostgreSQL to specify the sorting attribute impacts the results in a dramatic way.

As future evolution, we are interested in evaluating the effectiveness of the proposed solu-
tion using different online data sources, eventually combined with streams of other incoming
data.Another interesting aspectwould be the comparisonwithDBMSbased on non-relational
data models, like the graph-based ones, which also support spatial primitives.
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