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Abstract

We give a new elementary proof of the parallelizability of closed orientable 3-manifolds. We
se as the main tool the fact that any such manifold admits a Heegaard splitting.
2023 Elsevier GmbH. All rights reserved.
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The aim of this note is to present a new, elementary proof of the following classical
theorem [7].

Stiefel’s Parallelizability Theorem. Every smooth closed orientable 3-manifold is
parallelizable.

We recall that a smooth m-manifold M is said to be parallelizable if its tangent bundle
T M is trivial or, equivalently, if there are m vector fields on M which are everywhere
inearly independent. Such an m-tuple of vector fields is said to be a parallelization or
rame field on M . Notice that if M is parallelizable then its Euler characteristic vanishes,
o the only closed connected parallelizable 2-manifold is the torus.

In literature there are other several elementary (as well as less elementary) proofs
f Stiefel’s Parallelizability Theorem, see for example Benedetti and Lisca [1], Durst,
eiges, Gonzalo and Kegel [2], Gonzalo [5], Kirby [6, Chapter VII], Geiges [4, Section
.2], Fomenko and Matveev [3, Section 9.4] and Whitehead [8]. However, as far as we
now, there is no trace in literature of the proof given in the present paper. We believe that
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our proof uses very minimal background, such as some basic facts about Morse theory,
vector bundles, homology and linear algebra, and should be at the level of university
master students.

Hereafter manifolds, submanifolds and maps between them will be smooth, if not
differently stated.

Example. The linear vector fields

u1 = −x2
∂

∂x1
+ x1

∂

∂x2
− x4

∂

∂x3
+ x3

∂

∂x4
,

u2 = −x3
∂

∂x1
+ x4

∂

∂x2
+ x1

∂

∂x3
− x2

∂

∂x4
,

u3 = −x4
∂

∂x1
− x3

∂

∂x2
+ x2

∂

∂x3
+ x1

∂

∂x4

define an orthonormal parallelization of the unit sphere S3. They are obtained by
uaternion multiplication on the left by i , j and k respectively, with x1+x2i +x3 j +x4k ∈

S3
⊂ H ∼= R4. Since u1, u2 and u3 are invariant with respect to the antipodal map − idS3 ,

hey pass to the quotient yielding a parallelization of R P3
= S3/{± idS3}.

roof of the parallelizability theorem. Let M be a closed connected oriented 3-
anifold. We want to prove that there are three vector fields (w1, w2, w3) on M which

re linearly independent at every point.
The manifold M admits a Heegaard splitting, namely a splitting of the form

M = M ′
∪ M ′′,

here M ′ and M ′′ are 3-dimensional handlebodies contained in M of the same genus
g ≥ 0, and

F = ∂ M ′
= ∂ M ′′

= M ′
∩ M ′′

s a closed connected orientable surface of genus g.
Clearly, the handlebodies M ′ and M ′′ can be embedded in R3 (in a standard way)

nd so each one of them is parallelizable, by restricting the canonical frame field of R3.
n this way, we get two parallelizations V ′

= (v′

1, v
′

2, v
′

3) and V ′′
= (v′′

1 , v′′

2 , v′′

3 ) on M ′

nd M ′′ respectively. If V ′ and V ′′ agree along the Heegaard surface F , then they can
e glued together to give a parallelization of M . However, in general this will not be the
ase.

Let us fix a Riemannian metric on M . By Gram–Schmidt orthogonalization we can
ssume that V ′ and V ′′ are orthonormal frame fields that agree with the given orientation
f M .

Let A : F → SO(3) be the change of basis matrix map from the basis V ′

|F to V ′′

|F .
f A were null-homotopic, then V ′ could be continuously changed into V ′′ in a tubular
eighborhood U ∼= F × [0, 1] of F , thus yielding a parallelization of M . Observe that a
ap A : F → SO(3) defined on a surface F is null-homotopic if and only if the induced

omomorphism between fundamental groups is trivial, since this is exactly the condition
or finding a lift to the universal covering S3

→ SO(3), and every map F → S3 is clearly
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null-homotopic. So, we are left to show that the parallelizations V ′ and V ′′ on M ′ and
M ′′, respectively, can be suitably chosen so that the corresponding change of basis matrix

ap A is null-homotopic.
Notice that for every path-connected space X and for every continuous base point-

reserving map f : X → SO(3), the induced homomorphism f∗ : π1(X ) → π1(SO(3)) ∼=

2 is trivial if and only if so is the induced linear map of Z2-vector spaces
f∗ : H1(X;Z2) → H1(SO(3);Z2) ∼= Z2, as it can be immediately realized by considering
he Hurewicz homomorphism π1(X ) → H1(X;Z) and the coefficient homomorphism
H1(X;Z) → H1(X;Z2). Hereafter, by f∗ we mean the map induced in first homology

ith Z2 coefficients.
Next consider any two arbitrary orthonormal positive frame fields W ′

= (w′

1, w
′

2, w
′

3)
n M ′ and W ′′

= (w′′

1 , w
′′

2 , w
′′

3 ) on M ′′. Then we have change of basis matrix maps
′
: M ′

→ SO(3) from the basis W ′ to V ′ and C ′′
: M ′′

→ SO(3) from W ′′ to V ′′, as
ell as the change of basis matrix map B : F → SO(3) from the basis W ′

|F to W ′′

|F .
herefore, we obtain

B = (C ′′

|F )−1
· A · C ′

|F .

n easy computation yields

B∗ = (C ′′

|F )∗ + A∗ + (C ′

|F )∗ : H1(F;Z2) → H1(SO(3);Z2). (1)

ere we are using the elementary fact that for every path-connected Lie group (G, ·)
SO(3) in our case), for every path-connected topological space X and for every
ontinuous maps f, g : X → G we have

( f · g)∗ = f∗ + g∗ : H1(X;Z2) → H1(G;Z2)

here by f · g : X → G we denote the map defined by ( f · g)(x) := f (x) · g(x)
or every x ∈ X (this can be easily shown by first proving the above equality at the
undamental group level, and then using the Hurewicz homomorphism and coefficient
eduction modulo two). So, we are left to show that there exist maps C ′ and C ′′ as
bove such that B∗ = 0. It is actually enough to construct the linear maps C ′

∗
and C ′′

∗
in

omology. Indeed, being M ′ and M ′′ handlebodies, they deformation retract to a bouquet
f g circles M ′ ∼= M ′′

≃ ∨g S1, and so every linear function φ : H1(M ′
;Z2) → Z2

s induced by a map M ′
→ SO(3) obtained by composing a homotopy equivalence

: M ′
→ ∨g S1 with a map ∨g S1

→ SO(3) that suitably sends the i th circle S1
i ⊂ ∨g S1

o the identity matrix if φ(r−1
∗

([S1
i ])) = 0 or to SO(2) ⊂ SO(3) homeomorphically if

(r−1
∗

([S1
i ])) = 1, for every i = 1, . . . , g (and similarly for M ′′).

Next we observe that every α ∈ H1(F;Z2) can be represented by a closed connected
imple curve a ⊂ F . This is obvious if α = 0 as it is the homology class of a circle
n F which is the boundary of a disk. On the other hand, if α ̸= 0 we can consider a
anonical symplectic basis µ1, λ1, . . . , µg, λg of H1(F;Z2), each element of which is so
epresented, and write α = µi1 + · · · + µir + λ j1 + · · · + λ js for some i1 < · · · < ir
nd j1 < · · · < js . Whenever i p = jq , the term µi p + λ jq can be represented by a
losed connected simple curve obtained by the usual crossing desingularization at a single
ransversal intersection point of the two simple curves representing µi p and λ jq , and so

turns out to be the homology class of the disjoint union of finitely many closed simple

urves. It is now enough to join them by suitable pairwise disjoint embedded bands.
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Let i ′
: F → M ′ and i ′′

: F → M ′′ be the inclusion maps. For every α ∈ H1(F;Z2) ∼=
2g
2 , we set α′

:= i ′
∗
(α) ∈ H1(M ′

;Z2) ∼= Zg
2 and α′′

:= i ′′
∗
(α) ∈ H1(M ′′

;Z2) ∼= Zg
2 . Notice

hat i ′
∗

and i ′′
∗

are surjective and so ker(i ′
∗
) and ker(i ′′

∗
) are linear subspaces of H1(F;Z2)

f dimension g.
We now prove that A∗(α) = 0 for every α ∈ ker(i ′

∗
) ∩ ker(i ′′

∗
). Let a ⊂ F be a closed

onnected simple curve representing α. Then, there exist compact connected properly
mbedded surfaces S′

⊂ M ′ and S′′
⊂ M ′′ with ∂S′

= ∂S′′
= a, such that S = S′

∪ S′′

s a closed smooth surface in M .
In the following lemma we show that S admits a parallelizable tubular neighborhood
in M . We then have A|F∩U = (D′′

|F∩U )−1
· D′

|F∩U , where D′ and D′′ are the change of
asis matrix maps from V ′

|M ′∩U and V ′′

|M ′′∩U , respectively, to a fixed positive orthonormal
arallelization of U . This will allow us to conclude, since

A∗(α) = (D′′

|F∩U )∗(α) + (D′

|F∩U )∗(α) = D′′

∗
(α′′) + D′

∗
(α′) = 0,

ince α′
= 0 in H1(M ′

∩ U ;Z2) and α′′
= 0 in H1(M ′′

∩ U ;Z2).
Consider a basis α1, . . . , αk for ker(i ′

∗
) ∩ ker(i ′′

∗
), for some k ≥ 0, and extend it to a

asis of ker(i ′
∗
) by the classes β1, . . . βh and to a basis of ker(i ′′

∗
) by the classes γ1, . . . γh ,

ith h = g − k. Then, α1, . . . , αk, β1, . . . βh, γ1, . . . , γh are linearly independent as they
orm a basis of ker(i ′

∗
) + ker(i ′′

∗
), and so they can be extended to a basis of H1(F;Z2) by

he classes δ1, . . . , δk . It follows that γ ′

1, . . . , γ
′

h, δ
′

1, . . . , δ
′

k form a basis of H1(M ′
;Z2),

nd β ′′

1 , . . . , β ′′

h , δ′′

1 , . . . , δ′′

k form a basis of H1(M ′′
;Z2).

We have already proved that B∗(α j ) = 0 for every j = 1, . . . , k, and for every choice
f the change of basis matrices C ′ and C ′′.

For every choice of the indices we set

C ′

∗
(γ ′

j ) := A∗(γ j ), C ′

∗
(δ′

j ) := A∗(δ j ),

C ′′

∗
(β ′′

j ) := A∗(β j ), C ′′

∗
(δ′′

j ) := 0.
(2)

hen we get linear functions C ′
∗
: H1(M ′

;Z2) → Z2 and C ′′
∗
: H1(M ′′

;Z2) → Z2,
here the identification H1(SO(3);Z2) ∼= Z2 is understood. Such linear functions are

hen induced by smooth maps C ′
: M ′

→ SO(3) and C ′′
: M ′′

→ SO(3), respectively.
By Eqs. (1) and (2) we then obtain B∗ = 0. This, together with the following lemma,

s enough to conclude the proof. □

emma 1. Let M be an orientable 3-manifold and let S ⊂ M be a smooth closed
onnected surface. Then S has a parallelizable tubular neighborhood.

roof. Since every open tubular neighborhood of S in M is diffeomorphic to the total
pace of the normal bundle νS of S in M , it will be enough to prove that νS is determined,
p to bundle isomorphisms, only by S, namely it is independent of the embedding of S in

M , and that every closed surface can be embedded in a certain parallelizable 3-manifold
N . This implies that a tubular neighborhood of S in M is diffeomorphic to a tubular
eighborhood of S in N , which is parallelizable.

If S is orientable, then νS is trivial (hence it is independent of the embedding) because,
y means of an orientation of S and of M , a unit normal vector field can be constructed

3
long S. Moreover, S embeds in R , which is parallelizable.



242 V. Bais and D. Zuddas / Expo. Math. 41 (2023) 238–243

a
a
c
a
w

c
t
s
w

d

a

If S is non-orientable, then it is a connected sum of n copies of R P2, that is
S ∼= #n R P2 for some n ≥ 1, and so it can be embedded in N = #n R P3, which is

parallelizable 3-manifold. Indeed, R P3 is parallelizable as it is shown in the example
bove. Moreover, if M1 and M2 are oriented parallelizable 3-manifolds, then also their
onnected sum M1 # M2 is parallelizable, because any two positive parallelizations of M1
nd M2 can be homotoped to coincide in a tubular neighborhood of the 2-sphere along
hich the connected sum is made.
We are left to prove that νS depends only on S (namely, on the number n of the R P2

onnected summands in our situation). The total space of νS , being diffeomorphic to a
ubular neighborhood of S in M , is orientable. Hence, in order to conclude, it is enough to
how that there exists a unique real line bundle ξ : E → S (up to bundle isomorphisms)
hose total space E is orientable.
Fix a Riemannian metric on the bundle ξ and consider the following commutative

iagram:

Ê E

Ŝ S2 : 1
p

ξξ̂

2 : 1̂

p

where Ŝ is the closed connected orientable surface of genus n − 1, p : Ŝ → S is the
orientable double covering of S, ξ̂ = p∗(ξ ) : Ê → Ŝ is the pullback bundle of ξ via p
and p̂ : Ê → E is the induced fiber-preserving double covering. Since E is orientable,
so is Ê and by the orientable case above we can identify Ê with Ŝ × R by means of
a suitable bundle isomorphism, which can be assumed to be unitary with respect to the
Riemannian metric induced by p̂ on ξ̂ .

The non-trivial covering transformation of p is an orientation-reversing free involution
ι : Ŝ → Ŝ. On the other hand, the free involution ι̂ of Ê ∼= Ŝ × R upstairs, determined
by p̂, is orientation-preserving, and moreover ξ̂ ◦ ι̂ = ι ◦ ξ̂ . Then ι̂ : Ŝ × R → Ŝ × R is
forced to be the map

ι̂(x, t) = (ι(x), −t)

nd hence E ∼= Ê/⟨ι̂⟩ is uniquely determined up to bundle isomorphisms. □

Remark 2. Over a circle there are only two isomorphism classes of line bundles, namely
the trivial one and the non-orientable one. So, for the non-orientable case in the previous
lemma, one could also argue as follows. A line bundle ξ over a surface S depends only
on its restriction over the 1-skeleton (a bouquet of circles), up to bundle isomorphisms.
Assume that the total space is orientable. Therefore, over every circle in the 1-skeleton,
the restriction of ξ must be non-trivial (hence non-orientable) exactly when that circle
has non-trivial normal bundle in S. This determines uniquely the bundle.

Remark 3. More generally, one can consider a smooth oriented rank-3 real vector
bundle ξ : E → M (endowed with a Riemannian metric) and, by taking orthonor-
mal positive trivializations over M ′ and M ′′, there is a change of basis matrix map

A : F → SO(3). The Mayer–Vietoris homology exact sequence applied to the Heegaard
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splitting M = M ′
∪ M ′′ tells us that the boundary map is an isomorphism between

H2(M;Z2) and ker(i ′
∗
) ∩ ker(i ′′

∗
) and, moreover, the restriction A∗| : ker(i ′

∗
) ∩ ker(i ′′

∗
) →

Z2 can be identified with the second Stiefel–Whitney class w2(ξ ) ∈ H 2(M;Z2) =

H2(M;Z2)∗. Then, the argument used in the proof above yields a Heegaard splitting
ased interpretation of the well-known obstruction-theoretic fact that an orientable rank-3
ector bundle ξ over a closed orientable 3-manifold M is trivial if and only if w2(ξ ) = 0.
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