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APPENDIX A: PHYSICAL PARAMETER COMBINATION

In this section we verify if the independent derivation of the three
physical properties, i.e. redshift, stellar mass, and SFR, bring to some
unrealistic galaxies. Some examples of these objects are low-mass
galaxies at high-z or low-mass quiescent galaxies, as both galaxy pop-
ulations would be undetectable given the considered observational
limits.
In Figure A1 we report the M∗−SFR plane of galaxies with

S/N > 3 using the true values of the physical properties. In the same
Figure we show, as example, the M∗−SFR plane using the physical
properties derived with the DLNN with only Euclid filters for galax-
ies with S/N > 3. In addition, as a proxy for the star-formation main-
sequence (MS, e.g. Noeske et al. 2007), we derive the median SFR
value at different redshift, after selecting only star-forming galaxies,
approximated as galaxies with log10[SFR/(M� yr−1)] ≥ −10.5.

We can see that the derived SFR, stellar mass, and redshift are
not completely unrelated, even if they have been derived indepen-
dently. Indeed, the MS is present and its normalisation increases
with redshift, as observed in the literature (e.g. Speagle et al. 2014;
Schreiber et al. 2016) and as visible when considering the true val-
ues for the physical parameters. In addition, the number of quiescent
galaxies (log10[SFR/(M� yr−1)] < −10.5) derived using DLNN or
CNN varies between the 95-114% respect to their number in the
input samples, indicating that the sSFR is recovered well enough for
their identification.
Therefore, given the presence of the MS and the little variation

on the recovered number of quiescent galaxies, we can conclude that
there are no significant evidence of galaxies with nonphysical com-
binations of SFR, stellar mass, and redshift, even if these quantities
are derived independently. We leave to future works the investiga-
tion of possible improvement when deriving the mentioned physical
properties simultaneously with a single network as well as the full
analysis of the derived MS and sSFR.

APPENDIX B: SENSITIVITY ANALYSIS

To understand the importance of the different inputs considered in
this work, we performed a sensitivity analysis (Guyon & Elisseeff
2003) of the parameter space used for redshift, stellar mass, and SFR
estimations. For this test we considered the mock catalogue with
S/N > 3 and nine input bands, i.e. the four Euclid filters and the u,
g, r , i, and z ground-based ones.
In particular, we used the Light Gradient BoostingModel (LGBM;

Ke et al. 2017) as the base regression model to perform different
feature space analyses, using the knowledge basemade by the training
and testing sources and the related true targets. We optimised the
model hyper-parameters through an automatic grid search for each
of the regression use cases (redshift, stellar mass, and SFR), we also
introduced six additional random features in the parameter space,
made by a simple white noise. We then derived the informative
contribution given by the input features by alternating four different
methods, including:

• a feature importance calculation based on a standard tree-based
method (i.e., XGBoost; Sagi & Rokach 2021);
• a Recursive Feature Elimination (RFE; Chen& Jeong 2007) that

recursively fits a supervised algorithm considering a smaller sets of
features. The excluded features are the ones that are considered less
important according to the magnitude of some weights (e.g., the
coefficients of linear models, or the feature importances for tree-
based models).

Figure A1. M∗−SFR plane for all galaxies with S/N > 3 considering the
true values for redshift, stellar-mass, and SFR (top) and the values derived
using a DLNN with four Euclid filters (bottom). Coloured lines indicate
the median SFR of the star-forming galaxies (i.e. log10[SFR/(M� yr−1)] ≥
−10.5) at z = 1 to 4. On the top left of each panel we report the total
number of object in the sample and the number of quiescent galaxies (i.e.
log10[SFR/(M� yr−1)] > −10.5).

• Boruta (Kursa et al. 2010), which is a wrapper-based technique
for feature selection. In particular, we iteratively fitted a supervised
algorithm (a tree-based model) on an extended version of the tabular
data. The extended version, in each iteration, is composed of the orig-
inal data with a horizontally attached shuffled copy of the columns.
In each iteration, we maintained only the features that have a higher
importance than the best of the shuffled features and are better than
the expected random chance (using a binomial distribution).
• the SHAP method (SHapley Additive exPlanations; Lipovetsky

& Conklin 2001; Štrumbelj & Kononenko 2013; Lundberg & Lee
2017), which was demonstrated to be effective on mitigating the
effects in the selection of high-frequency or high-cardinality features.
Taken from cooperative game theory, this method allows us to derive
the contributions given by the presence, or absence, of the different
input features.

We repeated the feature analysis for different training and testing by
splitting seeds to mitigate randomness in data selection. We mixed
the aforementioned methods through five different combinations, i.e.
standard tree-based importance alone, RFE and standard tree-based
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Figure B1. The feature importance calculation based on a standard tree-based
method for redshift (top), stellar mass (centre), and SFR (bottom). Red bars
indicate random features, while the blue ones are the nine considered filters.

importance, RFE and SHAP importance, Boruta and standard tree-
based importance, and Boruta and SHAP importance.
In Figure B1 we show the results for the feature importance calcu-

lation based on the standard tree-based method as example, but the
other bring to similar results. Overall, for all redshift, stellar mass,
and SFR the optical bands have a high importance, while the IE band
is the less relevant. This may be caused by the wide wavelength range
of the IE filter that is already covered, but with higher spectral resolu-
tion, by the r , i, and z bands. It is however necessary to consider that
the importance of the IE filter may increase for galaxies, a minority
in our mock catalogue, that are too faint to be observed in the single
r , i, and z filters.

APPENDIX C: SED FITTING RESULTS

In this section we give more details on results derived with the SED
fitting described in Section 4.

In particular, we report in Figure C1 the results for the redshift.
Some of the most extreme outliers, when only the Euclid filters are
as input, are galaxies between z = 1 and 2 that are wrongly classified
as galaxies at z = 4 − 5. This is due to 4000-break that is wrongly
identify by the the SED fitting code as the Lyman-break at 912, due
to the limited wavelength coverage. However, when nine filters are as
input, the improvement is not limited to these extreme outliers, but
the general dispersion at z < 2 is reduced.
In Figure C2 we show the results for the stellar mass. As the stellar

mass is derived in the same run as the redshift, a wrong redshift
estimation will influence the stellar mass derivation. This explain the
spread visible in the stellar mass derived when only Euclid filters are
considered as input.

Finally, in Figure C3 we report the results for the SFR, as derived
with SED fitting. The estimation largely improves when considering
nine filters as inputs instead of four filters. This may be due to two
reasons: i) a improvement in the redshift estimation, as mentioned
before for the stellarmass; ii) the presence of the u-band filterwhich is
more sensitive to SFR than the IE band, being at shorter wavelengths.
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Figure C1. Same as Figure 4, but for the SED fitting.

Figure C2. Same as Figure 7, but for the SED fitting.

Figure C3. Same as Figure 14, but for the SED fitting.
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