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ABSTRACT Symmetries in the data and how they constrain the learned weights of modern deep networks
is still an open problem. In this work we study the simple case of fully connected shallow non-linear neural
networks and consider two types of symmetries: full dataset symmetries where the dataset X is mapped into
itself by any transformation g, i.e. gX = X or single data point symmetries where gx = x, x ∈ X . We prove
and experimentally confirm that symmetries in the data are directly inherited at the level of the network’s
learned weights and relate these findings with the common practice of data augmentation in modern machine
learning. Finally, we show how symmetry constraints have a profound impact on the spectrum of the learned
weights, an aspect of the so-called network implicit bias.

INDEX TERMS Artificial neural networks, symmetry invariance, equivariance.

I. INTRODUCTION AND PREVIOUS WORK
Symmetries are ubiquitous in nature from subatomic particles
to man-made designs, art, and mathematics. It is natural
therefore to suppose that an efficient signal representation
would take advantage of such properties. In this spirit, the
work we propose has the purpose to study, both theoreti-
cally and experimentally, how data symmetries are reflected
in the learned weights of a shallow non-linear fully con-
nected network, one of the simplest prototype architectures
of modern artificial neural networks. In our setting, symme-
tries are understood as identity preserving transformations.
Invariance to symmetries in pattern recognition is an old and
challenging problem [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12]. More recently, in the context of machine
learning, data symmetries have been used to derive and learn
data representations with the properties of equivariance and
invariance (see e.g. [13], [14], [15], [16], [17], [18], [19],
[20], [21], [22], [23], [24], [25], [26], [27], [28]). Interest-
ingly, data symmetries can be explicitly used for reducing
the sample complexity of downstream supervised learning,
e.g., by constructing representations that are invariant to
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transformations irrelevant to the learning task (see e.g. [20],
[29], [30]). For example, when aiming to solve an image
classification task, information such as object position, scale
or rotation should not affect the decision of a neural network.
In fact, representations that reflect symmetries inherent in
the data distribution define a quotient space where points
are equivalent up to transformations. In this space, the sam-
ple complexity of learning (the size of the labeled training
set) can be reduced by some aggregation strategy on the
representation coefficients (e.g. [31], sec. II of [32], [14],
[17], [33], [34]). On the contrary, representations that are
not invariant to label-preserving data transformations have
poor performance, as one can easily see training a network
on a dataset of images and testing on, e.g., random rotations
thereof. Convolutional neural networks (CNNs) for example
have an explicit parametrization for equivariance and robust-
ness to shifts in the input (translations) through convolutions
and pooling, respectively (see also [35]). Other architectures,
e.g. [36], embed specific parametrizations for rotation and
scale invariance. The underlying hypothesis for the ability
of such architectures to efficiently describe the dataset is the
invariance of the single data label to specific transformations.
Let us give a simple example in the case of translations and
natural images. Due to the statistics of the natural images, the
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probability of detection of an edge in an image is (approxi-
mately) independent of the part of the image considered. This
observation is pointing to the fact that an image representation
implemented by a translation equivariant or invariant network
is preferable. This is indeed what happens with CNNs.

However, we can pose the same question from another
point of view: what if instead of enforcing such symmetries
(e.g. translation equivariance by convolutional operations) in
the architecture, we enforce them in the dataset and see how
the learned weights reflect them? Indeed, when such sym-
metries are not imposed by construction, it is not clear how
the network’s learned weights reflect data symmetries. To the
best of our knowledge, a rigorous formulation characterizing
invariance properties of neural network weights in presence
of data symmetries is lacking in the literature.

In this work we partially fill this gap by studying how
simple transformations impact learning in a ReLu shallow
fully-connected network on the MNIST classification task
when learning is achieved through gradient descent. Given
the complexity of real-world image transformations, we begin
by studying smaller, simpler classes of analytically tractable
transformations i.e., those that belong to a group. In partic-
ular, we focus on common real world transformations such
as translations, scales, rotations, and reflections (with respect
to one or multiple axes). However, it should be noted that
groups do not exhaust all possible object-identity preserv-
ing transformations: for example, object deformations or a
change in an object’s style or texture. Nevertheless, the major
advantage of working with groups is that their mathematical
structure is well understood, with many concepts and tools
available for analysis. Specifically, we consider two types of
symmetries (see section II): w.r.t. each single image in the
dataset and w.r.t. the whole dataset. As an example of the
first type of symmetry, we consider images that are symmetric
w.r.t. reflections (vertical or horizontal or both). In this case
each image x is a fixed point for any of the group elements,
e.g. Rx = x, with R denoting the reflection transformation.
An example of the second symmetry is when the dataset X
is composed by images and all their transformations. In this
case the whole dataset is left invariant by the action of any
transformation i.e. RX = X . As we will see later this happens
when the dataset is composed by orbits of data w.r.t. the trans-
formations in the group (transformation-augmented dataset).

Here we provide formal results relating the invariance
properties of the learned weights with the two types of sym-
metries described above and test our predictions with exper-
iments, visualizing the learned weights (for a mathematical
statement of the problem see the beginning of section III).

We start giving some background in section II intro-
ducing the definition of group transformations, orbits and
invariance/equivariance properties of the data representation.
Section III contains the theoretical results of our work.
We first prove equivariance of the gradient of the augmented
loss (Theorem 1). Then

• Corollary 1 characterizes the symmetry properties of the
possible solutions of the data augmented problem.

• Corollary 2 shows that if each single datum is symmetric
then the learned weights must be symmetric.

• Subsection III-B analyzes the case when data are only
symmetric w.r.t. a subset of transformations and when
multiple symmetries are present in the dataset.

• Subsection III-C analyzes how different data augmenta-
tions pose constraints for the learned weights in Fourier
domain. This can be seen as an aspect of the so called
network implicit bias (see [37], [38], [39], [40], [41],
[42], [43], [44]).

In section IV we test our theoretical results in a simple task
of classification on MNIST. The last section summarizes our
results, discusses some problems and future lines of research.

II. THEORETICAL BACKGROUND: GROUPS, INVARIANCE,
AND EQUIVARIANCE
We focus on transformations that have a group structure. We
recall the formal definition of a group (see [45], [46]):
Definition 1: A group (G, ·) is a set of elements G with a

binary composition rule · such that the following properties
hold:

• Closure: composing two group elements results in
another group element.

∀a, b ∈ G, ∃c ∈ G s.t. a · b = c.

• Identity: the identity element belongs to the group.

∃e ∈ G such that ∀ a ∈ G, e · a = a · e = a.

• Inverse: each group element has an inverse.

∀ a ∈ G, ∃a−1 such that a · a−1
= e.

• Associativity:

(a · b) · c = a · (b · c), ∀ a, b, c ∈ G.

We consider the input space X to be a subset of the d dimen-
sional vector space Rd . We denote the transformation of a
point x ∈ X by the group element g ∈ (Rd×d , ·) as the action
of the matrix g ∈ G on the vector x ∈ X i.e. gx := g · x.
Moreover, we consider unitary groups [46] i.e. groups for
which each element g ∈ G is such that ggT = gT g = e.
For simplicity, we also consider discrete groups (or finite
subgroups of continuous groups). The results below can be
generalized to continuous groups by substituting the sums
with integrals. One of the simplest examples of a unitary finite
group isRN , the group of N rotations in the plane R2, whose
elements are 2D rotation matrices of the form

Rθi :=

[
cos(θi) sin(θi)

− sin(θi) cos(θi)

]
∈ R2×2, θi = i

2π
N

with i ∈ [N ], [N ] := {1, 2, . . . ,N }. It is straightforward to
verify that the set of matricesRN := {Rθi : i ∈ [N ]} together
with the operation of 2×2matrixmultiplication form a group.
A key mathematical object in this context is that of an orbit.
Let OrbG(x) denote the orbit of x ∈ X under the group G,
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defined as the set of transformations of x over all elements of
the group:

OrbG(x) := {gx : g ∈ G}. (1)

For the group of plane rotations RN , the orbit of a vector
v ∈ R2 is simply OrbRN (v) := {Rθiv : i ∈ [N ]}, the set
of all rotations of v. The notion of orbit is tightly linked with
themodernmachine learning technique of data augmentation
(see e.g. [22]). Strictly speaking, augmenting the dataset w.r.t.
a group transformation consists of generating a new dataset
containing the old dataset and all its element orbits. Due to
the closure property, an augmented dataset is mapped into
itself by any group element. Let us consider, for simplicity,
a dataset consisting of one signal and its orbit augmentation
under the reflection group G = {e,R}, where R is the reflec-
tion operator flipping right to left and left to right. The action
of any g ∈ G on X corresponds to a permutation of the orbit
elements and we have:

RX = R(x,Rx) = (Rx,RRx) = (Rx, x) = X .

In this case the symmetry occurs at the level of the whole
dataset. In practice, in order to speed up the computations
(see also section III-D), one only uses a few of the element
orbits to perform data augmentation. The second important
case we consider is that of single image symmetry i.e. for all
x ∈ X we have that for all g ∈ G, gx = x. As an example,
consider images of centered butterflies under reflection about
the y-axis. Besides invariance, an important notion in this
context is that of equivariance. For our specific setting we
have the following definition:
Definition 2: A function φ : Rk

→ Rk is called equivari-
ant w.r.t. the group G if and only if

φ(gx) = gφ(x) (2)

for all g ∈ G and x ∈ X.
Invariance can be considered a particular case of equivariance
when φ(gx) = φ(x) for all g ∈ G and x ∈ X . As we
will see, the equivariance property of the gradient descent
associated with the neural network loss will play a crucial
role in deriving symmetry properties of the learned weights.

III. THEORETICAL RESULTS
In the following we present our main theoretical results as
theorems and corollaries. For all the proofs we adopt the
following setting. We consider training data (xi, yi)Ri=1, xi ∈

Rd , yi ∈ R and class predictors ŷ : Rd
→ R of the form

ŷ(x) = vTσ ⟨W , x⟩ (3)

where σ is a function acting component-wise on the scalar
product of W ∈ Rd×k with x ∈ Rd and v ∈ Rk (in
the experiments we used the rectifier linear unit non linear
function (ReLu)).

We consider the loss function

L(W ;X , y) =
1
R

R∑
i=1

ℓ(vTσ ⟨W , xi⟩ , yi), (4)

where ℓ : R → R+ is the individual example loss. In our
experiments we used the cross entropy loss defined, in the
simple case of binary classification as

ℓ(yi, ŷi) = yi log(ŷi) + (1 − yi) log(1 − ŷi)

where ŷi is the predicted label and yi the ground truth.
In the case of data augmentation under G, the dataset is

defined as:

(xi, yi)Ri=1 → (gjxi, yij)
R,|G|

ij=1 (5)

where yij is the label corresponding to gjxi. We note that in
the classification setting we assume the transformations do
not change the object identity i.e. yij = yi, ∀j.
The corresponding group-augmented loss is therefore given
by

La(W ;X , y) =
1
Q

R∑
i=1

|G|∑
j=1

ℓ(vTσ
〈
W , gjxi

〉
, yi), (6)

where Q := R|G|.

A. WEIGHT SYMMETRIES
Having provided the necessary definitions we can now give a
formal statement of the problem we are analyzing:
Problem: Given a shallow neural network parameterized

as in eq.3 and a dataset as in eq. 5 we want to character-
ize the invariance of the trained weights W w.r.t. a finite
group G when the data are singularly or globally symmetric
under G.

In the next sections we will derive properties of the gra-
dient of the losses in eqs. (4),(6) which, by gradient descent,
determine the updates of the network weights to study how
different data symmetries impact the learned weights. Let us
start considering the case of data augmentation i.e. when the
data are globally symmetric. We recall an important result
proving that, in the case the data are augmented with their
full orbits, the gradient descent of the augmented loss is an
equivariant function w.r.t. the group of transformations:
Theorem 1 (See Also, e.g., [18], [47]): Consider the Loss

in eq. (6). The gradient of the Loss is an equivariant function
under G:

∇WLa(gW ;X , y) = g∇WLa(W ;X , y), ∀ g ∈ G.

Proof: Taking the gradient of eq. (6) we have:

∇WLa(W ;X , y)

=
1
Q

R∑
i=1

|G|∑
j=1

ℓ′(vTσ
〈
W , gjxi

〉
, yi)vTσ ′

〈
W , gjxi

〉
gjxi
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Calculating ∇WLa(gW ;X , y) we have:

∇WLa(gW ;X , y)

=
1
Q

R∑
i=1

|G|∑
j=1

ℓ′(vTσ
〈
gW , gjxi

〉
, yi)vTσ ′

〈
gW , gjxi

〉
gjxi

=
1
Q

R∑
i=1

|G|∑
j=1

ℓ′(vTσ
〈
W , gT gjxi

〉
, yi)vTσ ′

〈
W , gT gjxi

〉
gjxi

=
1
Q

R∑
i=1

|G|∑
j=1

ℓ′(vTσ
〈
W , ĝjxi

〉
, yi)vTσ ′

〈
W , ĝjxi

〉
gĝjxi

= g∇WLa(W ;X , y)

where in the fourth line we redefined gT gj = ĝj to get
gj = gĝj. The key property here is the closure of the group of
transformations.
Theorem 1 allows to characterize the symmetry properties

of the set of possible solutions. We have:
Corollary 1: Consider the Loss in eq. 6 and suppose we

initialize the network with symmetric weights i.e. gW0 = W0
for all g ∈ G. Then the learned weights are symmetric WT =

gWT , where WT are the weights at the final learning time T .
Proof: We first notice that due to the property gX =

X , ∇WLa(W ;X , y) = ∇WLa(W ; gX , y). Then by the dot
product structure of the Loss we can see the transformation as
applied to the weights i.e. ⟨W , gx⟩ =

〈
gTW , x

〉
. Thus, using

the equivariance property in theorem 1, we have that for all
g ∈ G:

∇WLa(W ;X , y) = ∇WLa(W ; gX , y)

= ∇WLa(gTW ;X , y)

= gT∇WLa(W ; gX , y).

Therefore each update of the weights in the gradient descent
is group invariant and as a consequence, the learned weights
at time T

WT = W0 − γ

T∑
k=1

∇WLa(Wk ;X , y).

are invariant.
We consider now the case of symmetric data i.e. gx = x

for all x ∈ X , g ∈ G.
Corollary 2: Consider the Loss in eq. (4), with symmetric

data i.e gjxi = xi, ∀ j, i. Then, if gW0 = W0 for all g ∈ G we
have gWT = WT .

Proof: To prove the symmetry of the learned weights we
look at the symmetry of each update of the weight. In order
to do so, as in the previous proof, it is sufficient to prove that
g∇WL(Wk ;X , y) = ∇WL(Wk ;X , y) for all g ∈ G. To see that
this is true consider the weight updates from time k to time
k + 1:

Wk+1 −Wk ∝ ∇WL(Wk ;X , y)

=
1
R

R∑
i=1

ℓ′(vTσ ⟨Wk , xi⟩), yi)vTσ ′
⟨Wk , xi⟩ xi.

The action of g is only applied to the vector xi at the right of
the expression above. By assumption, gxi = xi so we have
that the gradient is symmetric. Therefore, if W0 is invariant,
and given that each single update invariant, WT is invariant.

B. DYNAMICS UNDER PARTIAL OR DIFFERENT
SYMMETRIES
The symmetries studied in the previous sections are extreme
cases in the sense that they involve either the whole dataset or
single data instances. Intermediate situations can occur. In the
following we analyze two of them.

1) PARTIAL SYMMETRIES
In the case of single instance symmetry, it can happen that
the data instances are symmetric only w.r.t. to a subgroup of
the transformations. More precisely, for each xi in the dataset,
we define a stabilizer group as:

Gxi = {g ∈ G, s.t., gxi = xi} (7)

i.e. the set of transformations of the group G that leave xi
unchanged. This set forms a subgroup of the original group.
Thus the gradient update of the weights can be written as

∇WL(W ,X , y) =

∑
i

1
|Gxi|

∑
g∈Gxi

∇WL(W , gxi, yi)

i.e. a sum of terms whose symmetry depends on each stabi-
lizer size. Thus the learned weights symmetry will be driven
by data that have bigger stabilizer sizes, i.e. more symmetric
data.

2) DIFFERENT SYMMETRIES
A different point of view considers that the dataset can be par-
titioned into subsets, each one obeying a different symmetry
i.e.

X =

⋃
p

Xp, gxi = xi, ∀ g ∈ Gp, xi ∈ Xp

i.e. all signals in Xp are symmetric w.r.t. Gp. In this case
the gradient will be composed by addends symmetric w.r.t.
different groups each weighted proportionally to the size of
each Xp. In other words the most symmetric subset of the
signals will dictate the weights symmetry.

C. IMPLICIT REGULARIZATION AND DATA
AUGMENTATION
The idea behind the implicit regularization is that the loss
landscape of a network has many minima, and which mini-
mum one converges to after training depends onmany factors,
including the choice of model architecture and parametriza-
tion [37], [38], the initialization scheme [39] and the opti-
mization algorithm [40], [41], [42]. The implicit regulariza-
tion of state-of-the-art models has been shown to play a criti-
cal role in the generalization of deep neural networks [43],
[44]. Recent theoretical work [37] on L-layer deep linear
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networks proved that (i) fully connected layers induce a
depth-independent ridge (ℓ2) regularizer in the spatial domain
of the networks weights whereas, surprisingly, full-width con-
volutional layers induce a depth-dependent sparsity (ℓ2/L)
regularizer in the frequency domain. Thus implicit regulariza-
tion emerges from a complex interaction between the ANN
architecture, weight initialization scheme, learning rule and
data statistics. In particular, the latter is deeply influenced by
the symmetries in the dataset. In this section we are going
to focus on a particular aspect of the implicit regularization:
the effect of data augmentation or single instance symme-
tries on the Fourier spectrum of the learned weights. We
begin providing a simple example illustrating the impact of
translation augmentation of a function on its spectrum. The
idea beyond translation augmentation is to create an invariant
function w.r.t. the translation transformation. Suppose now
we have a translation invariant function i.e. f : R → R s.t.
f(w + q) = f(w), ∀q ∈ R. Clearly f is constant and f̂(0)
is the only non zero Fourier component, the DC component
(where f̂ indicates the Fourier transform). A way to prove
this intuitive statement is as follows. Consider a translation
invariant function given by

f(w) =

∫
∞

−∞

dt f (w− t), f : R → R.

This is one of the possible ways to construct such a function,
simply by averaging all translated versions of the original
function f . Note that the function f, by the change of variables
t ′ = w− t , is simply the integral of the function and therefore
a constant function. Its Fourier transform, using the identity
̂f (· − t) = eikt f̂ (k) is:

f̂(k) =

∫
+∞

−∞

dt eikt f̂ (k) = δ(k)f̂ (k)

i.e. the function, as expected, is constant and the only
non-zero Fourier component is the DC. Suppose now
we relax these invariance properties asking for robust-
ness/approximate invariance to translations. One way is to
integrate in the interval [−a, a], which is also a more realistic
scenario in translation augmentation where we shift the data
in a finite interval. We have:

f(w) =

∫ a

−a
dt f (w− t) =

∫
+∞

−∞

dt Ind[−a,a](t)f (w− t).

Taking the Fourier and using ̂f (· − t) = eikt f̂ (k)

f̂(k) =

( ∫
∞

−∞

dt eikt Ind[−a,a](t)
)
f̂ (k)

= 2a sinc(2ka)f̂ (k)

where we used the fact that the Fourier transform of an
indicator function is the sinc function.
Thus the effect of averaging over an interval of translations is
to dampen frequencies with a sinc function profile.

The next step is to consider a matrix function and a generic
group G. As we have seen in the previous sections a key
property is that, due to the dot product structure ⟨W , x⟩, the

transformation can be ‘moved’ from the input x to the weights
W i.e.

〈
W , gjxi

〉
=

〈
gTj W , xi

〉
. Thanks to this algebraic prop-

erty we can then consider, in the case of data augmentation,
g as acting on the network weights. Moreover, taking the
Fourier transform, and using the identity [48]

L̂(gW )(K ) = | det g|−1L̂((gT )−1K )

(where K indicated 2D frequencies), being that g is a unitary
matrix the expression simplifies to

L̂(gW )(k) = L̂(gK )

since det(gi) = ±1 and (gT )−1
= (gT )T = g. Thus, the

group G is equivalently acting on the frequency and space
domain. We can therefore extend the results in the previ-
ous sections by considering instead of the Loss its Fourier
transform. As a consequence, when analyzing the average
spectrum of the learned weights, we expect: 1. in the case of
translation augmentation, to see a shrinking in the spectrum
of the learned weights, as argued with a simple example
before; 2. in the case of rotation augmentation a rotationally
symmetric spectrum; 3. in the case of scale augmentation a
typical scale invariant 1/k spectrum and 4. in the case of
mirror symmetry a mirror symmetric spectrum.

D. DATA AUGMENTATION AND STOCHASTIC ORBIT
SAMPLING
In a real scenario not all orbits of the signals are available
and therefore the loss in (6) only contains a few elements
of the signal orbits. A common practice in ML is an ‘‘on
the fly data’’ augmentation where the data are augmented
using a randomly sampled transformation before taking the
stochastic gradient descent step. To understand how the above
theory adapts in such a scenario we show that sampling a
few random orbit elements is sufficient for the results of
the theorems and corollaries to hold. In particular we use
a concentration inequality adapted to the sampling on the
group. Let us define a stochastic sampled loss as:

Lst (W ;X , y) =
1

|BJ ||BG |

∑
i∈BJ

∑
j∈BG

ℓ(σ
〈
W , gjxi

〉
, yi), (8)

where BJ ,BG are respectively the subset of randomly uni-
formly sampled signals and transformations and |BJ |, |BG |

their cardinality. Then, applying Hoeffding’s inequality [49]
gives :

Pr(|Lst (W ;X , y) − La(W ;X , y))| > ϵ) < 2e−
BJ BG ϵ2

C (9)

where C is a fixed constant assuming that the Loss is
bounded. The equation points to the fact that if a few sam-
pled data and transformations are available, the stochastic
augmented loss is expected to be a good approximator of the
augmented loss.
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IV. EXPERIMENTAL VALIDATION
A. OPTIMIZATION
We employed a simple shallow non-linear networkwith ReLu
non linearity trained on MNIST. We used a resized version of
theMNIST images (64×64 instead of 28×28) for better visu-
alization of theweights. The size of the hidden layer was fixed
to 10 for simplicity. Empirically, a higher number of hidden
units simply provided a sparser representation. We used an
Adam optimizer [50] with maximum learning rate of lr =

0.0001 and batch size bs = 1000. We found that this set of
hyperparameters choices allowed us to achieve stable training
for all our experimental settings. We trained each model for
a maximum of 100 epochs until convergence. The accuracy
was varying highly from 60% to 96% due to the varying task
difficulty and fixed number of hidden units. However this is
not a problem within the scope of our study which does not
aim to improve the accuracy nor propose a new algorithm
but to study the impact of data symmetries on the learned
weights. We considered, as explained in the introduction, the
impact of two datamanipulations: data augmentation and data
symmetrization.

B. DATA AUGMENTATION
We employed four common forms of data augmentations:
translation, rotation, scale and flip. We used standard Pytorch
routines for augmentations where each image in the batch
of data used in the gradient is transformed w.r.t. a randomly
sampled transformation. Figure 1 shows how, as predicted
in Corollary 1, the learned weights are invariant to the spe-
cific transformation used for data augmentation. Specifi-
cally, although approximately, the learned weights in the
case of translation augmentation are planar waves of dif-
ferent directions and frequencies (b). Indeed, planar waves
are invariant to translations of the size of the wave period.
(c) reports the case of rotation augmentation: the weights
have a clear rotation symmetry. Note that rotations, in the
case of MNIST pose the problem of label confusion between
the digit 6 and 9 which can be thought as one the rotated
version of the other. However performing the training on
a subset of MNIST that does not contain such digits did
not show any significant difference in the symmetry of the
learned weights. In the case of scale the visual interpretation
is more difficult. To test for scale invariance we employed
the well known fact that the spectrum of scale invariant
images follows approximately a 1/k law. This is because for
a given function h the Fourier transform of h(ax), with a a
scaling positive factor, is (1/a)ĥ(k/a). Thus if ĥ(k) = 1/k
then the Fourier transform of the function is invariant to
rescaling. To test for this we calculated the radial energy
of the averaged spectrum of the filters and plotted it on a
log scale: the profile should look like a straight line with
slope −1. This is approximately true as reported in Figure 2.
In the (e) panel are reported the learned weights when a
flip augmentation is applied. As we can see, the weights are
reflection symmetric.

FIGURE 1. Learned weights in absence of data augmentation (a) and for,
respectively, translation (b), rotation (c), scale (d) and horizontal flip
(e) data augmentations.

FIGURE 2. (Solid): Radial energy of the average spectrum of the filters
learned with scale augmentation. (Dashed): Pure 1/f spectrum for
comparison.

C. DATA SYMMETRIZATION
For data symmetrization we considered four different prepa-
rations of the dataset where each single image in MNIST is
transformed to be symmetric (or approximately symmetric)
w.r.t. the a specific transformation. In particular, for trans-
lation symmetry we simply replicated the central part of
the image three times to implement a specific translation
invariance (Figure 3, (a)). As shown in Figure 4 (a) the
learned weights exactly reflect the symmetry as predicted by
corollary 2. In the case of rotations we substituted each image
of a digit with a superposition of the same digit rotated at
many angles ([0, 10, · · · , 360], Figure 3, (b)) creating in this
way an approximately rotationally invariant image. As we see
in Figure 4, (b) the filters are rotationally invariant although
the phenomenon is less evident than in the case of data
augmentation. In the case instead of scale (Figure 4 and 3, (c))
the spectral test (performed successfully in the case of scale
augmentation) was inconclusive. We think this may be due
to our incorrect strategy to generate a scale invariant image
where few scaled versions of the same image are superposed.
Increasing the number of superposed scaled images on the
other hand drastically degraded the network performance.
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FIGURE 3. Single image (a 9) symmetry for translation (a), rotation (b),
scale (c) and vertical-horizontal flip.

FIGURE 4. Learned weights for, respectively, translation (a), rotation (b),
scale (c) and horizontal-vertical flip (d) single data symmetry.

For the flip symmetry instead (Figure 4 (d)) the filters are
perfectly symmetric. Here we symmetrized the data both
w.r.t. the vertical and horizontal axis performing the following
steps:

x → x + Hflip(x) → x + Vflip(x)

to transform the original image into a vertical and horizontal
reflection invariant image (3 (d)).

D. BIAS IN FOURIER
We tested how different data symmetrizations or augmenta-
tions have an impact on the average of the absolute value
of the Fourier spectrum of the learned weights to confirm
the theory predictions. Figure 5 shows that, in agreement
with the theoretical results reported in IIIC, the averaged
spectrum for translation augmentation (b) is significantly
biased towards lower frequencies w.r.t. the not augmented
case (a). Furthermore, as predicted, in the rotation aug-
mentation case the spectrum has a rotational symmetry (c);
In the case of scale symmetry (d), as illustrated in Figure 2
it shows an approximate scale invariance. Finally, in the case
of flip transformations (e), the spectrum shows a vertical and
horizontal axis of symmetry. For single data symmetrization
the effect is less evident as shown in the second raw spectra of
Figure 5. In particular for translations (b), the border effects,
due to the symmetrization strategy are evident. For rotations
(c) the invariance is less evident than in the case of data
augmentation. For scale, differently from the augmentation
case, the Fourier spectrum decay test failed to prove scale
invariance (d). Instead, for the flip transformation, the Fourier
transform is symmetric as predicted by the theory. We think
that the origin of such partially positive results, as mentioned
above, has to be found in the data symmetrization process
which, as implemented at the moment, not only generates
images that are not completely symmetric but are also very

FIGURE 5. First raw:Averaged spectrum of the learned weights in absence
of data augmentation (a) and for, respectively, translation (b), rotation (c),
scale (d) and horizontal flip (e). Second raw: same but for single image
symmetry.

different from the original ones and significantly degrade
performance in the trained network.

V. CONCLUSION
This work studies how symmetries in the dataset, both at
a global and at a single image level constrain the learned
weights of a fully connected shallow non linear neural
network. We derived results showing how symmetries are
directly inherited in the learned weights and experimentally
confirm our findings. We finally show how these symmetry
constraints have a profound impact on the spectrum of the
learned weights, an aspect of the so called network implicit
bias. In the case of single-image symmetrization the results
only partially confirm the theoretical predictions. We believe
further work will be necessary to generate better symmetric
data.

Although derived for a very simple architecture and dataset
our work poses the basis to tackle the more complex ques-
tion of understanding how the statistics of the training set
are related to the nature of the learning weights. However,
in the case of modern (oftentimes extremely complex) neural
network architectures, a formal rigorous analysis would be
very hard if not impossible. Moreover, many other types of
data symmetries that do not have a group structure should
be taken into consideration. In general it is difficult to
characterize which type of symmetries the network is effec-
tively learning when trained on a dataset where no a priori
symmetries are imposed. This is not only difficult because
those symmetries are unknown but also because what a net-
work is learning depends on its implicit bias, which is also
unknown. Learning and discovering such learned symmetries
will be of great importance when interpret the information
processing operated by the network. Furthermore, as men-
tioned in the introduction, weights symmetries that match
data symmetries allow for a substantial reduction in the sam-
ple complexity of the learning. Those will be topics for future
research.
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