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A B S T R A C T 

The evolution of the Kelvin–Helmholtz Instability (KHI) is widely used to assess the performance of numerical methods. 
We employ this instability to test both the smoothed particle hydrodynamics (SPH) and the meshless finite mass (MFM) 
implementation in OPENGADGET3 . We quantify the accuracy of SPH and MFM in reproducing the linear growth of the KHI 
with different numerical and physical set-ups. Among them, we consider: (i) numerical induced viscosity, and (ii) physically 

moti v ated, Braginskii viscosity, and compare their effect on the growth of the KHI. We find that the changes of the inferred 

numerical viscosity when varying nuisance parameters such as the set-up or the number of neighbours in our SPH code are 
comparable to the differences obtained when using different hydrodynamical solvers, i.e. MFM. SPH reproduces the expected 

reduction of the growth rate in the presence of physical viscosity and reco v ers well the threshold level of physical viscosity 

needed to fully suppress the instability. In the case of galaxy clusters with a virial temperature of 3 × 10 

7 K, this level corresponds 
to a suppression factor of ≈10 

−3 of the classical Braginskii value. The intrinsic, numerical viscosity of our SPH implementation 

in such an environment is inferred to be at least an order of magnitude smaller (i.e. ≈10 

−4 ), re-ensuring that modern SPH 

methods are suitable to study the effect of physical viscosity in galaxy clusters. 

Key words: hydrodynamics – instabilities – turbulence – methods: numerical – galaxies: clusters: intracluster medium. 
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 I N T RO D U C T I O N  

everal astrophysical systems feature a continuous fluid with a 
elocity shear or two fluids in contact of that stream in opposite
irections. As time passes, these fluids evolve into a turbulent regime 
here they mix. This mixing process is primarily driven by the 
elvin–Helmholtz Instability (KHI), where a small perturbation on 

he interface between the two fluids evolves to an instability with a
nal curled-up state that leads to a mixture of both fluids. 
The creation of this vortex, a characteristic of the KHI, plays a

undamental role in many environments. Among them, the Intraclus- 
er Medium (ICM; Nulsen 1982 , 1986 ), where thermal conduction 
nd turbulence are key processes. The KHI has been observed in 
old fronts moving through the ICM (e.g. Breuer et al. 2020 ; Ge
t al. 2020 ): it can partially disrupt them, leading to the creation of
bays’ on their surface (e.g. Walker et al. 2017 ). KHIs can also affect
he metallicity profile of galaxy clusters, due to the mixing between 
he Interstellar Medium (ISM) of galaxies infalling into the cluster 
nd the ICM (e.g. Rebusco et al. 2005 ). As a consequence, the ICM
ets enriched with metals (from the more metal-rich ISM) and cools 
utside-in, providing additional gas to form new stars (M ̈uller et al.
021 ). 
 E-mail: tmarin@usm.lmu.de 
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Although the growth of the KHI can potentially lead us to the
isruption of a cold front (e.g. ZuHone, Markevitch & Johnson 
010 ; Roediger et al. 2011 ), several cold fronts are observed to be
table: this suggests that viscosity and magnetic fields can suppress 
he instability growth (e.g. Vikhlinin, Markevitch & Murray 2001 ; 

arkevitch & Vikhlinin 2007 ). The viscosity of the ICM plays a
undamental role in the growth of the KHI. Observations of these
nstabilities provide us with an estimate of the ICM viscosity, even
f its actual value is still under debate. By measuring the observed
mplitude of the KHI and comparing results with predictions from 

imulations, the level of suppression experienced by the evolving 
erturbation can be quantified and hence the ICM viscosity can 
e estimated. Interestingly, Roediger et al. ( 2013b ) and ZuHone
t al. ( 2015 ) analysed the effect that anisotropic viscosity along with
agnetic fields has on the suppression of the KHI in cold fronts,
ithout reaching a conclusive agreement. Other works investigated 

he impact that the ICM viscosity has on the evolution of buoyant
ubbles inflated by AGN jets (Sijacki & Springel 2006 ; Dong &
tone 2009 ). They found that the expanding bubbles might be an

mportant source of heating of the ICM (see also Fabian et al. 2005 ).
o this end, viscosity must suppress the KHIs so the cavities might
emain stable for longer than a crossing time (e.g. Reynolds et al.
005 ). 
Due to its importance in nature, the KHI is commonly used to test

umerical codes, such as AREPO (Springel 2010 ), GIZMO (Hopkins 
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015 ), or TENET Schaal et al. ( 2015 ). In astrophysical simulations, a
ode that succeeds at reproducing the growth of the KHI is expected
o properly capture fluid mixing and turbulence, which is essential
hen dealing with the evolution of simulated systems. 
Different numerical methods have been introduced to perform

stroph ysical h ydrodynamical simulations, which can be mainly
ivided into two types: Eulerian mesh-based methods (e.g. Evans &
a wle y 1988 ; Stone & Norman 1992 ), with and without adaptive
esh refinement (AMR; Berger & Colella 1989 ) and Lagrangian

moothed particle hydrodynamics (SPH; Gingold & Monaghan
977 ; Lucy 1977 ). In grid-based methods, the volume of the whole
omain is discretized into cells, and a Riemann problem is solved
etween the two states that meet at each plane separating adjacent
ones. Solving a Riemann problem produces implicitly entropy when
uxes from different thermodynamic states mix in one single cell:
s a consequence, there is no need to add numerical dissipation
rtificially. Ho we ver, some finite volume schemes introduce artificial
iscosity to stabilize the solver, which is the case of the early version
f ZEUS (Stone & Norman 1992 ). Nevertheless, mesh-based methods
re not strictly Galilean-inv ariant: therefore, dif ficulties can arise
hen e.g. simulating galaxies in high-velocity orbits, where galaxy
elocity is larger than the sound speed of the medium (Springel 2010 ).
n addition, dissipation terms are purely numerical and sensitive to
he absolute velocity of the flow, which means that the mixing occurs
ven when no physical motivation exists (Wadsley, Veeravalli &
ouchman 2008 ). 
Conversely, in SPH the fluid is discretized in comoving mass

lements, leading to Galilean-invariance and exact momentum,
nergy, angular momentum, and entropy conservation. Due to the
onservation of entropy, no energy dissipation occurs, which is, in
urn, a huge advantage o v er grid codes. However, this becomes a
roblem in treating discontinuities and mixing processes properly
s a consequence of spurious surface tension at the interface
etween the two fluids (Agertz et al. 2007 ). This was solved by
rice ( 2008 ) by introducing an artificial conductivity (AC), which
emo v es the surface tension and allows the mix between the fluids.
 physically moti v ated artificial viscosity (AV) term must be also

dded (Monaghan & Gingold 1983 ; Monaghan 1992 ) to characterize
he Reynolds number in a simulated flow (Wadsley et al. 2008 ). As
 result, shocks can be treated correctly, removing the post-shock
scillations and noise. Nevertheless, there has been some contro v ersy
n the past with SPH schemes due to the fact that they tend to suppress
he growth of the KHI (Agertz et al. 2007 ; McNally, Lyra & Passy
012 ). Increasing the number of neighbours could solve this problem,
aused by the ‘E 0 error’ (Read, Hayfield & Agertz 2010 , see also
ection 3.4 , for details) and which scales sub-linearly with resolution.
hile this solution does not apply to a cubic spline kernel, it can be

seful when adopting Wendland kernels (Wendland 1995 ; Dehnen &
ly 2012 ). By increasing the number of neighbours, the KHI can be

uccessfully evolved also with SPH codes (Tricco & Price 2013 ; Hu
t al. 2014 ). 

To combine the advantages of both grid and SPH schemes,
aburov & Nitadori ( 2011 ) suggested the idea of mixing both
ethods based on the mathematical formulation by Vila ( 1999 )

nd Lanson & Vila ( 2008 ). This leads to a consistent Lagrangian
eshless scheme where the artificial dissipation comes up naturally,

ike in grid methods. The idea was later developed by Hopkins ( 2015 )
ith the introduction of a meshless finite mass (MFM) method based
n kernel discretization of the volume and on a higher order gradient
stimator. A weighted kernel is employed, which determines how the
olume is partitioned at any point of the fluid among the neighbours
o keep the mass constant. Then the fluxes between the particles
NRAS 517, 5971–5991 (2022) 
re computed taking the weighted kernel into account and using a
iemann solver between the particles inside that volume. This allows

he particles to mo v e with the flow leading to Galilean-invariance;
nergy, mass, and momentum are conserved and there is no need for
rtificial diffusion terms (Dav ́e, Thompson & Hopkins 2016 ). 

Despite Moore ( 1979 ) proposed an approximation to the exact
volution equation for incompressible fluids, no analytic solution for
he non-linear KHI has been achieved yet in the case of compressible
uids. Without an analytical solution, one must rely on reference
imulations as an approximation to the true solution. To this end,
obertson et al. ( 2010 ) and McNally et al. ( 2012 ) studied the
arly linear evolution of the KHI, which was later expanded to
he non-linear regime by Lecoanet et al. ( 2015 ) and Tricco ( 2019 ),
etting a benchmark for later comparisons. In their papers, they
sed smoothed initial conditions to a v oid the growth of undesired
odes excited by the discontinuity (e.g. Abel 2011 ; Kawata et al.

012 ; Obergaulinger & Aloy 2020 ). In grid codes, the smooth initial
onditions are used to suppress truncation errors that can act as
eeds of secondary instabilities. This is a particular effect of the
econd order nature of most Finite Volume reconstruction schemes
nd typically vanishes when using a lower order reconstruction with
arger dif fusi vity. The cause of this is that, with increasing con-
ergence order in grid codes, edges become sharper and truncation
rrors become more significant. Ho we ver, it has been shown that an
ptimal growth without the seed of secondary instabilities of the KHI
an be also achieved by employing discontinuous initial conditions
e.g. Hopkins 2015 ; Wadsley, Keller & Quinn 2017 ). Differently
han in grid codes, a higher order construction in SPH typically
mplies a larger volume that is smoothed, making edges less sharp and
moothing out the truncation error, leading to a natural suppression
f secondary instabilities. 
The aim of this paper is to study the evolution of the KHI

nd the mixing processes carried out by this instability during
he linear re gime. F or this purpose, we employ the SPH and the

FM schemes implemented in OPENGADGET3 and set discontinuous
nitial conditions to trigger the KHI. We aim at studying how fluid

ixing works depending on the code employed in an idealized set-up
hich allows us to reach a higher resolution than in state-of-the-art

osmological simulations. Additionally, we want to analyse the effect
f physical viscosity in these type of processes and study how this
ould affect the fluid mixing depending on the amount of viscosity
mplemented. 

This paper is organized as follows: In Section 2 we present the
quations of hydrodynamics for the ideal and non-ideal cases. In
ection 3 we describe in detail the numerical methods used in

his paper together with the different sets of simulations employed
see also Table 1 ). The results obtained with SPH are shown in
ection 4 . In Section 5 we compare the results obtained with
PH with the ones obtained using MFM. Once we have deeply
nalysed the results obtained for ideal fluids, in Section 6 we
tudy how the addition of physical viscosity affects the previous
esults (see also Table 2 ). Finally, we test different initial con-
itions in Section 7 to see the effect the y hav e in triggering 
he KHI. 

 T H E O R E T I C A L  C O N S I D E R AT I O N S  

.1 Equations of fluids 

quations of hydrodynamics rule the motion of fluids. These equa-
ions describe the conservation of mass, momentum, and energy. In
he case of inviscid fluids, they can be written as: 
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Table 1. Description of all of simulations employed in this work. 

Label Code Kernel N ngb IC AC Phys. Visc. Number of runs 

OG-SPH SPH Wendland C 

6 

150–350 Murante et al. ( 2011 ) Constant No 5 
150–350 No Perturbation Constant No 5 

295 No Perturbation Time Dependent No 1 
295 Murante et al. ( 2011 ) Constant 10 −4 η − 10 −2 η 11 

150, 295 No Perturbation Constant 10 −4 η − 10 −2 η 22 

OG-MFM MFM Wendland C 

6 150, 200, 295 Murante et al. ( 2011 ) – No 3 
150–350 No Perturbation – No 5 

OG-SPH-Read SPH Wendland C 

6 150, 295 Read et al. ( 2010 ) Constant No 2 

OG-MFM-Read MFM Wendland C 

6 150, 295 Read et al. ( 2010 ) – No 2 
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∂ρ

∂t 
+ 

∂( ρv k ) 

∂x k 
= 0 , (1) 

∂( ρv i ) 

∂t 
+ 

∂ 

∂x k 
( ρv i v k + δik P ) = 0 , (2) 

∂( ρe) 

∂t 
+ 

∂ 

∂x k 
[ ( ρe + P ) v k ] = 0 . (3) 

ere, ρ is the fluid density, v the velocity, P the pressure, e = u + 

1 
2 v 

2 

he total energy per unit mass, and u the specific internal energy. For
n ideal gas, the pressure is related to the density via the equation of
tate 

 = ( γ − 1) ρ u, (4) 

being the adiabatic index. In the case of an ideal monoatomic gas
= 5/3. 
Ho we ver, real fluids are viscous and the amount of their viscosity

etermines their properties and behaviour. Hydrodynamic equa- 
ions of ideal fluids must be modified to account for the friction
etween particles of viscous fluids. The continuity equation ( 1 )
oes not change, whereas the momentum and the heat transfer 
quations are altered (see e.g. Landau & Lifshitz 1987 ). 

The viscosity-induced friction between particles leads to a change 
f their momentum. This is given by an additional term in equa-
ion ( 2 ), which becomes: 

∂( ρv i ) 

∂t 
+ 

∂ 

∂x k 
( ρv i v k + δik P ) = 

∂σik 

∂x k 
. (5) 

ere, σ ik is the viscous stress tensor defined as 

ik = η

(
∂v i 

∂x k 
+ 

∂v k 

∂x i 
− 2 

3 
δik 

∂v l 

∂x l 

)
+ ζ δik 

∂v l 

∂x l 
. (6) 

he second term on the right-hand side is the bulk viscosity term,
here ζ is the bulk viscosity coefficient. Since it only depends on 

he divergence of the velocity, it becomes rele v ant when there is a
apid compression or expansion of the fluid, i.e. shocks. The first
erm on the right-hand side is the shear viscosity term and η is the
hear viscosity coefficient (dynamic viscosity). This was derived by 
raginskii (Braginskii 1958 ; Braginskii 1965 ) for a fully ionized, 
nmagnetized plasma and reads: 

= 0 . 406 
m 

1 / 2 
i T 

5 / 2 
i 

( Ze) 4 ln 
 

, (7) 

here m i is the mass of the proton, T i is the temperature of the
lasma, Ze is the ion charge, and ln 
 is the Coulomb logarithm.
lugging equation ( 6 ) into ( 5 ) we get: 
(
∂v i 

∂t 
+ v k 

∂v i 

∂x k 

)
= − ∂P 

∂x i 
+ 

∂σik 

∂x k 
, (8) 

(
∂v i 

∂t 
+ v k 

∂v i 

∂x k 

)
= − ∂P 

∂x i 
+ 

∂ 

∂x k 

[
η

(
∂v i 

∂x k 
+ 

∂v k 

∂x i 
− 2 

3 
δik 

∂v l 

∂x l 

)]

+ 

∂ 

∂x i 

(
ζ

∂v l 

∂x l 

)
. (9)

oth η and ζ are positive functions of P and of the temperature T :
ince they vary along the fluid, η and ζ cannot be taken off the partial
eri v ati ves. 
Equation ( 3 ) can be written in vector form as 

∂( ρe) 

∂t 
= −∇ · [ ( ρe + P ) v ] . (10) 

he internal friction also contributes to the energy flux density 
right-hand side). This contribution is v · σ . If the temperature is
ot constant, there is also a heat transfer due to thermal conduction,
hich reads κ∇T , where κ is the coefficient of thermal conductivity

e.g. Landau & Lifshitz 1987 ). By adding those terms, equation ( 3 )
ecomes: 

∂( ρe) 

∂t 
= −∇ · [ ( ρe + P ) v − v · σ − κ∇T ] . (11) 

.2 Kelvin–Helmholtz instability 

 2D linear analysis of the KHI (e.g. Junk et al. 2010 ) shows that
he y -velocity of the perturbation grows e xponentially ∼e xp [ i · n ·
 ]. n is the mode of the perturbation: 

 = 

[
k 2 v 2 x ( α2 − α1 ) 

] + i 

[ 

νk 2 

2 
±

√ 

ν2 k 4 

4 
+ 4 k 2 v 2 x α1 α2 

] 

, (12) 

here k is the wavenumber of the perturbation, v x is the velocity of
ne of the fluids (in the laboratory frame of reference), and ν is the
inematic viscosity. α1 and α2 are defined as 

1 = 

ρ1 

ρ1 + ρ2 
, α2 = 

ρ2 

ρ1 + ρ2 
. (13) 

he real part of equation ( 12 ) deals with the oscillatory behaviour of
he KHI and is not of interest here. The imaginary part determines
hether the KHI decays (positive solution of the square root) or
rows exponentially (negative solution), damped by ν. 
In the ideal case where ν = 0, equation ( 12 ) becomes: 

 = 

[
k 2 v 2 x ( α2 − α1 ) 

] + i 
[±2 kv x ( α1 α2 ) 

1 / 2 
]
. (14) 
MNRAS 517, 5971–5991 (2022) 
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Figure 1. Graphical description of the ICs set in our simulations. 
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xpressing the exponential growth of the perturbation as ∼exp [ i ωt ],
ne can write the growth time of the KHI as 

KH = 

2 π

ω 

= 

2 π

2 kv x ( α1 α2 ) 1 / 2 
= 

λ

�v x 

( ρ1 + ρ2 ) 

( ρ1 ρ2 ) 1 / 2 
, (15) 

here �v x is the velocity difference between the two fluids ( �v x =
 v x ) and λ = 

2 π
k 

the wavelength of the perturbation. 

 N U M E R I C A L  IMPLEMENTATION  

.1 Set-up 

e set up the initial conditions (ICs) following Murante et al. ( 2011 ).
e create a 3D box (see Fig. 1 ) with 774 144 particles of equal mass

 m = 3.13 × 10 −8 ), using a cubic lattice with periodic boundary
onditions. The size of the box in internal units 1 is � x = 256, � y =
56, and �z = 8. The domain satisfies: 

, T , v x = 

{
ρ1 , T 1 , v 1 | y| < 64 
ρ2 , T 2 , v 2 | y| > 64 

(16) 

ensities, temperatures, and x -velocities are: ρ1 = 6.26 × 10 −8 , ρ2 =
.13 × 10 −8 ; T 1 = 2.5 × 10 6 , T 2 = 5 × 10 6 ; v 1 = −40 and v 2 = 40,
espectively. The density and temperature ratio is constant, i.e. R ρ =
1 / ρ2 = T 2 / T 1 = 2, ensuring a pressure equilibrium in the system.
ith these ICs, the Mach number corresponds to M 1 = v 1 / c 1 ≈ 0.23

or the first fluid and M 2 = −v 2 / c 2 ≈ 0.17 for the second one. The
nitial properties of both fluids can be seen in Fig. 1 . 

We introduce a small perturbation in the y -velocity at y Int = ±64
equation 17 ) to trigger the instability. This is similar to Read et al.
NRAS 517, 5971–5991 (2022) 

 The internal units correspond to the basic Gadget units, where mass is given 
n 10 10 M �, length in kpc and velocity in km s −1 . We use a mean molecular 
eight of ≈0.588. In this paper we will al w ays refer to internal units. 

3

O  

o  

A  
 2010 ), but values have been adapted to our ICs: 

 y = −δv y 

[ 

sin 

(
2 π ( x + λ/ 2) 

λ

)
exp 

( 

−
(

y − y Int 

σ

)2 
) 

+ sin 

(
2 πx 

λ

)
exp 

( 

−
(

y + y Int 

σ

)2 
) ] 

. (17) 

ere, λ= 128 is the wavelength of the perturbation, δv y = | v x | /10 = 4
s the amplitude and σ = 0.2 λ is a scaling parameter to control the
idth of the perturbation layer. Table 3 summarizes the set-up. 

.2 Artificial diffusion in SPH 

e have mitigated difficulties of traditional SPH schemes in treating
ontact discontinuities and shocks (due to the SPH entropy con-
erving nature), by implementing artificial diffusion mechanisms
e.g. Monaghan & Gingold 1983 ; Monaghan 1992 ; Price 2008 ), as
etailed below. 

.2.1 Artificial conductivity 

he artificial conductivity (AC; Price 2008 ) is introduced in OPEN-
ADGET3 to treat discontinuities in the internal energy and capture
ixing processes properly (we follow the notation introduced by
eck et al. 2016 ). The AC implemented can be time dependent

labelled in our simulations as ‘TD A C’), where the variation of
nternal energy due to AC reads: 

d u i 

d t 

∣∣∣∣
cond 

= 

N ∑ 

j= 1 

m j 

ρij 

( u j − u i ) α
c 
ij v 

sig , c 
ij F ij . (18) 

ere, v sig , c 
ij is the signal velocity, F ij = ( F ij ( h i ) + F ij ( h j )) / 2 is the

ymmetrized scalar part of the kernel gradient terms ∇ i W ij ( h i ) =
 ij ˆ r ij , ρ ij = ( ρ i + ρ j )/2 is the symmetrized density and αc 

ij = ( αc 
i +

c 
j ) / 2 is the symmetrized conduction coefficient. The sum spreads
 v er N = N ngb , the number of neighbours. The signal velocity depends
n the pressure gradient (see Price 2008 ): 

 

sig , c 
ij = 

√ 

| P i − P j | 
ρij 

. (19) 

he AC coefficient is defined as 

c 
i = 

h i 

2 

|∇u | i 
| u i | , (20) 

here the time dependence stems from the dependence on the internal
nergy and on its gradient, which is computed using 

 ∇u ) i = 

1 

ρi 

N ∑ 

j= 1 

m j ( u j − u i ) ∇ i W ij . (21) 

hen αc 
i is larger than a threshold value (in our case αmax = 1.0),

e set αc 
i = αmax . 

Simulations which feature a constant AC have αc 
i = 1 . 0 (see

able 1 ). 

.2.2 Artificial viscosity 

PENGADGET3 includes artificial viscosity (AV) to damp post-shocks
scillations and reduce kernel distribution noise. Since in ideal fluids
V is not needed away from shocks, a switch triggers viscosity in

art/stac3042_f1.eps


Physical and numerical viscosity in the KHI 5975 

s
a

d  

t

H  

f  

v

 

o
(  

d

v

w  

2
 

h  

s

f

w  

i  

w
a

D

R

w  

a
s
f

A

w  

p
r

ξ

T

α

2

W  

w

α

w  

d  

o
S

3

W  

s
a

j  

f  

d

σ

s  

r

w  

t

 

w  

S

T

 

s  

t  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/517/4/5971/6772459 by U
niversita degli Studi di Trieste user on 24 O

ctober 2023
hocks but keeps it inactive otherwise. Our implementation of an 
daptive AV reads: 

d v i 
d t 

∣∣∣∣
visc 

= 

1 

2 

N ∑ 

j= 1 

m j 

ρij 

( v j − v i ) αv 
ij f 

shear 
ij v 

sig , v 
ij F ij . (22) 

An additional term accounting for the variation of internal energy 
ue to AV offsets the work done against the viscous force in the
hermal reservoir. It reads: 

d u i 

d t 

∣∣∣∣
visc 

= −1 

2 

N ∑ 

j= 1 

m j 

ρij 

( v j − v i ) 2 αv 
ij f 

shear 
ij v 

sig , v 
ij F ij . (23) 

ere, αv 
ij = ( αv 

i + αv 
j ) / 2 is the symmetrized viscosity coefficient,

 

shear 
ij = ( f shear 

i + f shear 
j ) / 2 the symmetrized shear flow limiter, and

 

sig , v 
ij the pairwise signal velocity. 

The signal velocity 2 (Monaghan 1997 ) aids in switching on or
ff the AV, depending on whether two particles are approaching 
 v ij · ˆ r ij ≤ 0) or mo ving a way ( v ij · ˆ r ij > 0), respectiv ely. It also
etermines the strength of the AV and measures the particle disorder: 

 

sig , v 
ij = 

{
c s ,i + c s ,j − β v ij · ˆ r ij , v ij · ˆ r ij ≤ 0; 
0 , v ij · ˆ r ij > 0 , 

(24) 

here c s is the sound speed of the particle and β = 3 (see Beck et al.
016 ). 
To a v oid a shear viscosity that could lead to sub-optimum be-

aviour in simulations of shear flows, Balsara ( 1995 ) suggested the
hear flow limiter: 

 

shear 
i = 

|∇ · v | i 
|∇ · v | i + |∇ × v | i + σi 

, (25) 

ith σ i = 0.0001 c s, i / h i for numerical stability reasons. When there
s a shock, the limiter is dominated by |∇ · v | i and thus, f shear 

i � 1,
hile if there is a shearing flow, the limiter is dominated by |∇ × v | i 

nd f shear 
i � 0. 

The viscosity coefficient αv 
i is computed following Cullen & 

ehnen ( 2010 ), which use the shock indicator 

 i = 

1 

ρi 

N ∑ 

j= 1 

sign ( ∇ · v ) j m j W ij , (26) 

here sign ( ∇ · v ) j is ne gativ e and, therefore, R i � −1 when there is
 shock. Nevertheless, R i cannot distinguish between pre- and post- 
hock regions. To determine the direction of the shock, an additional 
actor, A i , exploits the time deri v ati ve of the velocity divergence: 

 i = ξi max (0 , −( ̇∇ · v ) i ) , (27) 

here ( ̇∇ · v ) i < 0 indicates a pre-shock region and ( ̇∇ · v ) i > 0 a
ost-shock region. ξ i indicates the ratio of strength of the shock and 
eads: 

i = 

∣∣2(1 − R i ) 4 ( ∇ · v ) i 
∣∣2 ∣∣2(1 − R i ) 4 ( ∇ · v ) i 

∣∣2 + | ∇ × v | 2 i 
. (28) 

he target value αloc , v 
i of AV is therefore: 

loc , v 
i = αmax 

h 

2 
i A i 

h 

2 
i A i + ( v sig 

i ) 2 
. (29) 
 Note that this signal velocity is not the same as for the AC ( 19 ). 

o
(  

T  

t

hen αloc , v 
i < αv 

i , the latter is set to αloc , v 
i . If αloc , v 

i > αv 
i , α

v 
i decays

ith time and the value is calculated by integrating: 

v̇ 
i = 

(
α

loc , v 
i − αv 

i 

) v 
sig 
i 

lh i 

, (30) 

here we set l = 4.0 (Beck et al. 2016 ), which specifies the
ecay length of the AV. We set an initial value αv 

i = 0 . 02 in all
ur simulations unless a different initial value is specified (see 
ection 4.3 ). 

.3 Physical viscosity 

hile AV is necessary for the correct behaviour of SPH in treating
hocks with ideal fluids, the physical viscosity rules viscous fluids 
ccording to the Navier–Stokes equation. 

The physical viscosity implemented in OPENGADGET3 follows Si- 
acki & Springel ( 2006 ). Taking into account the summation notation
or repeated Greek indices, the viscous stress tensor (equation 6 ) is
iscretized as: 

αβ

∣∣∣
i 
= η

(
∂v α

∂x β

∣∣∣∣
i 

+ 

∂v β

∂x α

∣∣∣∣
i 

− 2 

3 
δαβ

∂v γ

∂x γ

∣∣∣∣
i 

)
+ ζ δαβ

∂v γ

∂x γ

∣∣∣∣
i 

. (31) 

The implementation of the shear and bulk viscosity is made 
eparately. The change in the acceleration due to the shear viscosity
eads: 

d v α
d t 

∣∣∣∣
i, shear 

= 

N ∑ 

j= 1 

m j 

[ 

ηi σαβ

∣∣
i 

ρ2 
i 

(∇ i W ij ( r, h i ) 
) ∣∣∣

β
+ 

+ 

ηj σαβ

∣∣
j 

ρ2 
j 

(∇ i W ij ( r, h j ) 
) ∣∣∣

β

] 

, (32) 

here the product of η and σ gives the shear part of the viscous stress
ensor. 

As for the bulk viscosity, it is calculated using 

d v α
d t 

∣∣∣∣
i, bulk 

= 

N ∑ 

j= 1 

m j 

[
ζi ∇ · v i 

ρ2 
i 

∇ i W ij ( r, h i ) + 

+ 

ζj ∇ · v j 

ρ2 
j 

∇ i W ij ( r, h i ) 

] 

. (33) 

The friction due to viscosity causes an increase in the entropy,
hich is computed using the entropic function A i (see Sijacki &
pringel 2006 for details) as: 

d A i 

d t 

∣∣∣∣
shear 

= 

1 

2 

γ − 1 

ρ
γ−1 
i 

ηi 

ρi 

σ 2 
i (34) 

d A i 

d t 

∣∣∣∣
bulk 

= 

γ − 1 

ρ
γ−1 
i 

ζi 

ρi 

( ∇ · v i ) 
2 . (35) 

he additional variations to the internal energy read: 

d u i 

d t 

∣∣∣∣
shear 

= 

1 

2 

ηi 

ρi 

σ 2 
i , (36) 

d u i 

d t 

∣∣∣∣
bulk 

= 

ζi 

ρi 

( ∇ · v i ) 
2 . (37) 

Since the bulk viscosity only becomes rele v ant in presence of
hocks, we set ζ = 0 in our set-up, and only take the shear viscosity
erm into account. In order to simulate fluids with different amounts
f viscosity, we take fractions of the shear viscosity coefficient η
equation 7 ). We assume a constant fluid temperature of 3 × 10 7 K.
his is inside the range of ICM and circumgalactic medium (CGM)

emperatures, although might not be extended to the ISM regime. 
MNRAS 517, 5971–5991 (2022) 
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.4 Kernel functions 

ur set-up features a density step: this is the case of an irregular
article distribution. As a consequence, the so-called ‘E 0 error’ (e.g.
ead et al. 2010 ; Hu et al. 2014 ) may arise, caused by particles
ot being perfectly arranged according to an ordered pattern. This
rror is the attempt of SPH to restore the particle order and it can
roduce spurious results in fluid mixing (e.g. Hopkins 2013 ; Beck
t al. 2016 ; Wadsley et al. 2017 ). The ‘E 0 error’ can be reduced by
ncreasing N ngb . Ho we ver, a high N ngb leads to the ‘pairing instability’
e.g. Schuessler & Schmitt 1981 ; Price 2012 ) with a cubic spline 
ernel. 

The ‘pairing instability’ is prone to kernel functions with a non-
ositiv e definite F ourier transform and it dominates the evolution
f the system for large N ngb . Dehnen & Aly ( 2012 ) proposed a
endland function as a kernel (Wendland 1995 ) to address the ‘E 0 

rror’ and the ‘pairing instability’ simultaneously. In this work, we
mploy a Wendland C 

6 kernel in all our simulations corrected for
ias in the central density. Ho we ver, we point out that employing
 higher N ngb also implies a larger computational time (especially
n MFM, where a larger set of Riemann problems has to be 
olved). 

.5 Set of simulations 

e have performed a total of 56 simulations using the code OPEN-
ADGET3 , an impro v ed v ersion of P-GADGET2/3 (Springel 2005 ),
mploying a modern SPH implementation (Beck et al. 2016 ) and
 new MFM scheme (Groth et al, in preparation). We used four
ifferent set-ups (see Table 1 for a summary): 

(i) Five simulations use SPH, the fiducial ICs described in Sec-
ion 3.1 , and a constant AC to provide an ideal benchmark for
omparison. In other five runs we do not introduce any initial pertur-
ation in the y -velocity, while an additional run has no perturbations
ut includes a TD A C in order to measure the intrinsic viscosity
nd diffusion of the code. Moreo v er, we perform: elev en runs with
ifferent amounts of physical viscosity with initial perturbation,
leven simulations without initial perturbation with N ngb = 150 and
leven runs without initial perturbation using N ngb = 295. The runs
ith physical viscosity will provide us information on how viscosity

ffects the KHI and the measurement of the total viscosity of the
ode. 

(ii) Three runs adopt the fiducial KHI set-up using MFM and five
ther runs are carried out without initial perturbation for comparison
ith the runs with SPH. 
(iii) Two additional simulations with SPH using the ICs described

n Read et al. ( 2010 ) (see Section 7 ). These runs allow us to explore
ow the simulation results are sensitive to the adopted ICs. 
(iv) Two additional runs with MFM and the ICs described in Read

t al. ( 2010 ) (see Section 7 ) for comparison with the runs using the
ducial ICs with MFM. 

 RESULTS  F O R  SPH  

n the first set of simulations, we used OG-SPH and varied N ngb to
nvestigate the fluid mixing properties as a function of N ngb . Fig. 2
hows the colourmaps of the density at different times for both N ngb =
50 and N ngb = 295. In a first qualitative approach, the colourmaps
how that the instability fully develops showing the characteristic roll
f the KHI in both cases, although the growth with N ngb = 150 (top
ow) is slightly slower than N ngb = 295 (bottom row). In addition, at
 = 0.5 τKH with N ngb = 295 some secondary instabilities can be seen.
NRAS 517, 5971–5991 (2022) 
hese are caused by the contact discontinuity not being in perfect
ressure equilibrium, which triggers a sound wave travelling across
he volume. Ho we ver, the secondary instabilities are successfully
uppressed at later times, allowing only the main mode to grow. This
eads us to a highly symmetric result at later times. 

.1 Growth of the KHI 

.1.1 Amplitude analysis 

heory predicts that the initial perturbation triggers the instability
nd its amplitude starts to increase approximately linearly until it
aturates with a height of ∼λ/2 (see e.g. Roediger et al. 2013a ).
he amplitude is expected to decrease afterwards, as each billow
airs with the adjacent ones (e.g. Rahmani, Seymour & Lawrence
014 ). The height of the roll is a good indicator of how good the
ode captures the evolution of the KHI, and, conversely, which code
uppresses more the instability and prevents its growth. The top panel
f Fig. 3 shows the amplitude reached by the roll depending on N ngb 

see appendix A for a description of the method employed to compute
he amplitude). 

The height reached by the rolls depends on N ngb : for N ngb ≤ 250,
he amplitude reached is smaller than 0.5 λ; for N ngb > 250, the
ode is able to reach a height > 0.5 λ. The plot also shows a general
inear growth until approximately t = τKH (vertical dashed line),
hich is what we expect for the ideal case. Ho we ver, despite the

imulations correspond to the ideal case, there is some intrinsic
iscosity that delays the reach of the maximum amplitude. Each
ode has a different amount of numerical viscosity (see Section 4.3 )
nd this explains why the runs using a higher N ngb evolve faster than
he ones with a lower N ngb . 

.1.2 Velocity analysis 

he y -velocity is expected to grow exponentially until t = τKH 

see Section 2.2 ). To measure the growth rate of the instability,
epending on N ngb , we calculate how the y -velocity of the particles
hanges with time. This tells us how well a code can reproduce
he KHI. To compute the amplitude of the y -velocity we use a
iscrete convolution of the sinusoidal perturbation (see appendix B
or a detailed description of the method; Sijacki & Springel 2006 ;
bergaulinger & Aloy 2020 ). 
The results shown in the bottom panel of Fig. 3 exhibit a general

inear trend (note that the y axis is in log scale) with an initial
ecrease of the amplitude of the velocities. This is due to the loss of
inetic energy of the particles by moving along the y axis through a
uid streaming in the opposite direction (e.g. Junk et al. 2010 ). The
ore viscous a fluid is, the more significant is the loss of kinetic 

nergy. 
The results show a correlation between N ngb and the growth rate

f the y -velocity, with the simulation with N ngb = 150 growing the
lowest. This analysis also agrees with the results observed in the
rowth of the height of the roll during the linear phase, where the
mplitude of the run with N ngb = 150 evolved the slowest, followed
y the case with N ngb = 200. The run with N ngb = 250 has a similar
 -velocity at early times compared to the cases with N ngb = 295
nd N ngb = 350. Ho we ver, the maximum velocity reached is lower
han the runs with higher N ngb , which explains why the height of the
olls also follows a similar trend at the beginning, but the maximum
mplitude reached is smaller. Such a difference in the growth rate
an be also explained in terms of the numerical viscosity of each
ode (see Section 4.3 ). 
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Figure 2. Projection of the mass weighted density for four different times (left to right) and two different N ngb , with N ngb = 150 (top row) and N ngb = 295 
(bottom row), using OG-SPH. In both cases the instability can fully develop showing its characteristic roll. However, with N ngb = 150 the growth is slightly 
slower compared to the case with N ngb = 295. 
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.2 Diffusion 

n important consequence of the KHI is the mixing process between 
he two fluids. Diffusion of thermal energy is the main mixing process 
t early times due to the fact that the roll has not formed yet. The
ixing comes from the mo v ement of the particles and redistributes

nergy from regions with high specific internal energy to regions with 
ow specific internal energy. In the case of SPH, it must be added
rtificially via the artificial conductivity, which makes it difficult to 
dentify whether the amount added is too high or too low. For that
urpose, in this section, we analyse how diffusive is Gadget’s SPH-
olver, depending on N ngb with a constant AC and a time-dependent 
 C (TD A C). 
Since AC widens the fluid interface by smoothing the discontinuity 

ue to the random mo v ement of the particles, we analyse the
hickness of the interface at early times to measure the amount 
f diffusion of the code (as described in appendix C ). For this
nalysis, we run the simulations again without adding any ini- 
ial perturbation. Despite no initial perturbation is added, some 
mall scale instabilities can be triggered numerically, affecting our 
easurement. To a v oid that, we compute the diffusion only until

 = 0.4 τKH . 
Fig. 4 shows the evolution of the amplitude of the interface: the

iffusion of the code is independent of N ngb when a constant AC is
sed. In contrast, the results obtained with a TD A C show that, when
he AC is not constant, a much lower diffusive state can still enable
he growth of the instability. The TD A C reduces the diffusion of the
ode to the minimum value needed to reproduce the instability. This
uggests that the constant AC added artificially to the code is higher
han the one needed and produces more dif fusi ve results than the one
xpected. As a result, there might be an excess of mixing between the
wo fluids in the long-term evolution when constant AC is applied 
hroughout the simulation. 
.3 Intrinsic viscosity 

he results shown in sections 4.1.1 and 4.1.2 reveal that each code
as an intrinsic viscosity depending on N ngb . For a lower N ngb this
ntrinsic viscosity produces a slo wer gro wth of the instability and a
ower height of the rolls. 

Fig. 5 shows that the AV is successfully reduced at early times
ndependently of the initial value we set. This means that the intrinsic
iscosity observed does not arise from the AV added in OG-SPH, but
t is intrinsic to the code and depends on N ngb . For a more quantitative
nalysis, we measured the intrinsic viscosity of each code following 
he method explained in appendix D and obtained the results shown
n Table E1 and Fig. 9 . These results show that, in the case of OG-
PH, the run with N ngb = 150 has the largest amount of intrinsic
iscosity and, as soon as N ngb is increased, the intrinsic viscosity is
educed. The runs with N ngb = 250, N ngb = 295, and N ngb = 350
av e a v ery similar viscosity, which could explain the similar rate of
rowth measured and shown in the bottom panel of Fig. 3 . Ho we ver,
he o v erall intrinsic viscosity of OG-SPH remains low in all cases
nd, despite some influence in the development of the KHI, it does
ot suppress its growth. 

 RESULTS  F O R  MFM  

e also tested the MFM scheme (e.g. Gaburov & Nitadori 2011 ;
opkins 2015 ; Hubber, Rosotti & Booth 2018 ) implemented in our

ode OPENGADGET3 , with the same set-up as OG-SPH using different
 ngb . Details on our MFM implementation are presented in Groth
t al. (in preparation). The ‘E 0 error’ problem does not occur in
FM-like schemes, so we should be able to get satisfactory results
ith a low N ngb and, in principle, there is no need of using a Wendland
ernel. That is why the cubic spline kernel is widely used with MFM
n cosmological simulations (e.g. Dav ́e et al. 2016 ; Hopkins et al.
MNRAS 517, 5971–5991 (2022) 
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M

Figure 3. Top panel: Temporal evolution of the height of the rolls for different 
N ngb with OG-SPH. The amplitude of the rolls is dependent on N ngb , where 
the expected height of ∼λ/2 is not reached with a low N ngb , but it is reached 
for the runs with N ngb > 250. The instability reaches the maximum amplitude 
at times later than ∼1 τKH , which can be due to some intrinsic viscosity of 
the code. Bottom panel: Change of amplitude of the y -velocity with time for 
the different N ngb using OG-SPH. The run with N ngb = 150 shows a slower 
growth compared to the others and, as soon as we increase N ngb , the instability 
grows faster. This speed difference in the growth of the instability depending 
on N ngb is the consequence of the intrinsic viscosity of the codes. The small 
decay at early times is due to the loss of kinetic energy of the particles by 
moving along the y axis through a fluid flowing in the opposite direction. 
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Figure 4. Measurement of diffusion for the different runs at early times. 
The simulations with a constant AC (solid lines) happen to be e xcessiv ely 
dif fusi ve compared to the ones with a TD A C (dash-dotted line), which keeps 
the dif fusion lo w at early times. This might produce an excess of mixing in 
the runs with a constant AC in the long-term evolution. 

Figure 5. Change of the average AV with time in the whole simulation 
domain for three different initial values for the runs with N ngb = 150 (dashed 
lines) and N ngb = 295 (solid lines). The AV is successfully reduced at early 
times, showing that it does not affect our results. The fact that the runs with 
N ngb = 150 decrease slightly faster is because the decay of the AV depends 
on the smoothing length of the kernel (see equation 30 ), which depends on 
N ngb . 
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018 ; Rennehan 2021 ). Ho we ver, we found that with a cubic spline
ernel the secondary instabilities are not successfully suppressed,
llowing their growth and provoking the breakdown of the billow
see appendix F ). Because of this, we preferred to use a Wendland
 

6 kernel in our simulations with OG-MFM. 
In Fig. 6 we show the column density for N ngb = 150 and N ngb =

95. The rolls can successfully grow in both cases leading to a
ymmetric system at late times. Both shapes are similar and, despite
he runs with N ngb = 150 show some secondary instabilities in the
NRAS 517, 5971–5991 (2022) 
nner parts of the roll, they do not introduce the breakdown of the
illow. The spiral of the billows is clearly visible, indicating a lower
iffusion compared to OG-SPH. 

art/stac3042_f3.eps
art/stac3042_f4.eps
art/stac3042_f5.eps


Physical and numerical viscosity in the KHI 5979 

Figure 6. Same plot as in Fig. 2 but using OG-MFM in this case. Despite N ngb is the same as the one we used in OG-SPH, the results of the two runs are more 
similar. Some secondary instabilities can be seen growing with N ngb = 150 at t = 2 τKH , but they do not lead to the breakdown of the billow. Also, the billows 
in this case are much less dif fusi ve compared to OG-SPH. 
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.1 Growth of the KHI 

.1.1 Amplitude analysis 

e perform the same analysis done for OG-SPH for a reliable 
omparison between OG-SPH and OG-MFM. In the top panel of 
ig. 7 we show how the amplitude changes with time for the cases
ith N ngb = 150, N ngb = 200, and N ngb = 295. The growth of the three

nstabilities is very similar, reaching a maximum amplitude close to 
λ/2. The total height reached is slightly lower for a higher N ngb .
o we ver, the dif ference between the three runs is o v erall ne gligible.

n comparison with the results with OG-SPH (see top panel of Fig. 3 ),
he peak is reached at later times in OG-MFM, which suggests a larger
mount of intrinsic viscosity of OG-MFM. 

.1.2 Velocity analysis 

he results obtained when analysing the growth rate of the insta-
ility (see bottom panel of Fig. 7 ) show a very similar behaviour
ndependently of N ngb . By comparing with OG-SPH (bottom panel 
f Fig. 3 ), the slope is steeper in OG-SPH, meaning that the KHI
volves faster in OG-SPH than in OG-MFM. The reason for this is
ikely the intrinsic viscosity of the code and could explain why the

aximum peak is reached later in OG-MFM than in OG-SPH. 

.2 Diffusion 

n classic SPH methods, artificial diffusion terms are necessary to 
nable fluid mixing. Ho we v er, in Goduno v-type Riemann based
ethods, such as MFM, diffusion is naturally added as a resolution-

ependent mechanism due to the formulation of the equations of 
otion in a finite volume (FV) scheme. This procedure typically 

ircumvents the introduction of artificial diffusion terms to stabilize 
he scheme numerically. Although diffusion in mesh codes is purely 
umerical due to the advection error, its value is close to the expected
hysical diffusion when the velocity of the fluids is low (e.g. Wadsley
t al. 2017 ). To this end, we plot the results in Fig. 8 together with
he diffusion measured for OG-SPH with a constant AC and with a
ime-dependent AC. 

The results show that the OG-MFM runs are less dif fusi ve than
he runs with OG-SPH and constant AC. This confirms the statement
ade in Section 4.2 that a constant AC introduces too much diffusion

n our results. Ho we ver, the dif fusion obtained with the TD A C run
s comparable to the ones obtained with OG-MFM. This means that
he TD A C indeed reduces the artificial conductivity to the minimum
alue needed, a v oiding o v ermixing. 

.3 Intrinsic viscosity 

lthough we are simulating ideal fluids, as we analysed in Section 4.3 
or the case of OG-SPH, hydro solvers happen to have some intrinsic
iscosity that can affect the results of our simulations. In the case
f OG-SPH this viscosity depended on N ngb , finding that the case
ith N ngb = 150 produces the most viscous fluids. In this section, we

ompute the intrinsic viscosity of OG-MFM for the different N ngb 

n order to compare the results with the ones obtained with OG-
PH. We show the results of the intrinsic viscosity obtained from
G-MFM together with the ones from OG-SPH in Table E1 and
lot them in Fig. 9 . In all the cases, the fluids simulated with OG-
FM are more viscous compared to the ones simulated with OG-

PH. This could explain the differences observed between the results 
ith OG-SPH and OG-MFM analysed in sections 5.1.1 and 5.1.2 .
o we ver, despite the analysis reveals a larger amount of intrinsic,
umerical viscosity in OG-MFM compared to OG-SPH, this excess 
f intrinsic viscosity does not inhibit the growth of the KHI and the
olls can properly develop. In contrast to the flat trend of OG-SPH,
he intrinsic viscosity of OG-MFM tends to increase when a higher
 ngb is employed. The amount of intrinsic viscosity of the code might
ary depending on the slope limiter employed. In our simulations, 
MNRAS 517, 5971–5991 (2022) 
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Figure 7. Top panel: Evolution of the height of the billows depending on 
N ngb with OG-MFM. The amplitude of the rolls does not depend on N ngb and 
the three runs perform similarly. All the runs reach an amplitude of ∼λ/2. 
Ho we ver, the maximum is reached later compared to OG-SPH. Bottom panel: 
Growth of the y -velocity in OG-MFM depending on N ngb . The three runs have 
a very similar behaviour. If we compare these results with the ones we got 
with OG-SPH (bottom panel of Fig. 3 ), the results with OG-MFM are less 
steep than OG-SPH, which means that the instability gro ws slo wer and can 
explain that the maximum in the amplitude is reached later. 
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Figure 8. The runs with OG-MFM are less dif fusi ve at early times than 
OG-SPH due to the fact that the diffusion is not added artificially, but it is 
intrinsic to the code. Ho we ver, the run with TDAC follows a similar trend to 
OG-MFM. 

Figure 9. Amount of intrinsic viscosity depending on N ngb . The amount of 
intrinsic viscosity seems to decrease with N ngb in OG-SPH. Whereas, using 
OG-MFM, it tends to increase with N ngb , reaching a larger intrinsic viscosity 
than OG-SPH for a high N ngb . 

v  

a
 

r  

B  

3 As mentioned before, for the viscosity we will assume a constant temperature 
of the fluids of 3 × 10 7 K to match the typical conditions within the ICM. 
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e have used the slope limiter suggested by Springel ( 2010 ) for the
oving mesh code AREPO . 

 EFFECT  O F  PHYSICAL  VISCOSITY  

he viscosity of a fluid can determine its properties and behaviour,
o in order to study this effect, we introduce viscosity in the system
o quantify how previous results change when the assumption of
nviscid fluid does not hold an ymore. F or this purpose, we use the
G-SPH code with N ngb = 295 to study the behaviour of the system
epending on the amount of viscosity implemented. Since physical
NRAS 517, 5971–5991 (2022) 
iscosity has not been implemented yet in our OG-MFM code, we
nalyse the behaviour of viscous fluids using OG-SPH only. 

In order to study the effect that physical viscosity has on our
esults, we run 11 different simulations with 11 different fractions of
raginskii viscosity. 3 Table 2 shows the 11 different fractions with
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Table 2. Different amounts of viscosity employed in our simulations with the actual viscosity computed for both N ngb = 150 and N ngb = 295 
and their deviation with respect to the theoretical value. 

Fraction ˆ η ν Actual ν Deviation Actual ν Deviation 
( η) ( N ngb = 150) ( N ngb = 150) ( N ngb = 295) ( N ngb = 295) 

10 −4 1.379 × 10 −7 3 .305 9.57 ± 0.15 6.26 (189 . 53 per cent) 5.69 ± 0.31 2.38 (72 . 15 per cent) 
2.5 × 10 −4 3.449 × 10 −7 8 .263 14.68 ± 0.38 6.42 (77 . 65 per cent) 10.15 ± 0.21 1.89 (22 . 83 per cent) 
5 × 10 −4 6.897 × 10 −7 16 .527 23.41 ± 0.65 6.88 (41 . 65 per cent) 18.20 ± 0.32 1.67 (10 . 13 per cent) 
7.5 × 10 −4 1.035 × 10 −6 24 .790 31.46 ± 0.97 6.67 (26 . 91 per cent) 26.32 ± 0.34 1.53 (6 . 17 per cent) 
10 −3 1.379 × 10 −6 33 .053 39.25 ± 0.80 6.20 (18 . 75 per cent) 34.37 ± 0.36 1.25 (3 . 77 per cent) 
1.5 × 10 −3 2.069 × 10 −6 49 .580 55.27 ± 0.76 5.69 (11 . 48 per cent) 50.10 ± 0.55 0.52 (1 . 05 per cent) 
2 × 10 −3 2.759 × 10 −6 66 .106 70.66 ± 1.64 4.55 (6 . 89 per cent) 66.50 ± 0.56 0.39 (0 . 60 per cent) 
2.5 × 10 −3 3.449 × 10 −6 82 .633 87.34 ± 1.28 4.71 (5 . 70 per cent) 83.08 ± 1.47 0.45 (0 . 54 per cent) 
5 × 10 −3 6.897 × 10 −6 165 .265 169.3 ± 2.9 4.07 (2 . 46 per cent) 168.0 ± 4.1 2.76 (1 . 67 per cent) 
7.5 × 10 −3 1.035 × 10 −5 247 .898 249.9 ± 9.2 2.00 (0 . 81 per cent) 247.2 ± 9.0 −0.70 (0 . 28 per cent) 
10 −2 1.379 × 10 −5 330 .530 326.9 ± 3.6 −3.64 (1 . 10 per cent) 334.0 ± 5.5 3.48 (1 . 05 per cent) 
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4 For this fit we used the time interval of [0.05 τKH , τKH ] to a v oid the initial 
decay of the velocity at early times. 
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he corresponding value of the dynamic viscosity in internal units, as
ell as the corresponding value of kinematic viscosity ( ν). Taking 

ractions of viscosity mimics the effect that magnetic field has in 
iscosity, which is suppressed in the direction of the magnetic field. 
Note that the kinematic viscosity is defined as 

= 

η

ρ
, (38) 

hich means that it depends on the density of the fluid. Since we have
wo different fluids but the dynamic viscosity is the same for both
f them, in our analysis we have computed the kinematic viscosity
sing the mean value of the kinematic viscosities of each fluid. 
As a first qualitative result, Fig. 10 shows the mass-weighted 

rojected density for three different viscosities, 10 −2 η (top), 10 −3 η

centre), and 10 −4 η (bottom). With a large amount of viscosity the 
nstability is fully suppressed and the roll is no longer developed, 
ut as soon as we decrease the amount of viscosity, the instability
ppears and grows with higher amplitude. In the particular case with 
 viscosity of 10 −4 η, the shape of the roll happens to be similar to
he ones we got for the ideal case (see Fig. 2 ). 

.1 Growth of the KHI 

.1.1 Amplitude analysis 

n order to study the effect of physical viscosity in detail, we perform
he same analysis we did for the ideal case with OG-SPH. By

easuring the height of the rolls we are able to study the level
f suppression that the KHI suffers depending on how viscous the 
ystem is. The top panel of Fig. 11 shows that the amplitude is reduced
hen the fluids are more viscous due to the fact that the friction
etween particles reduces the kinetic energy causing the KHI not to 
evelop. This means that the instability is fully suppressed for the 
imulations with the highest viscosities, and as soon as the fluids are
ess viscous, the instability is able to develop with larger amplitudes. 
t early times we can see some increase of the amplitude due to the
ixing of the fluids triggered by the thermal conduction. Ho we ver,

fter this, the amplitude does not grow anymore. Despite the case 
ith 10 −4 η reaches an amplitude of almost λ/2, we can observe 
 difference compared to the ideal case with OG-SPH and N ngb =
95, where the maximum height reached is larger than the viscous 
ase. 
.1.2 Velocity analysis 

o analyse the growth of the KHI we compute the y -velocity as
e did in Section 4.1.2 and show the results in the bottom panel of
ig. 11 . Due to friction, the more viscous the system is, the slower the
HI grows. For higher amounts of viscosity, the rate of the growth
f the y -velocity until t = τKH is reduced until a certain amount of
iscosity where, instead of increasing exponentially (positive slope), 
he growth decreases exponentially (negative slope). We consider the 
mount of viscosity where the slope changes as the major indication
or full suppression. For viscosities higher than this threshold the 
nstability decays, i.e. it is fully suppressed. 

By fitting a linear function to our data we can estimate when the
lope changes its sign, and therefore, the viscosity threshold. 4 We 
btain that the viscosity threshold computed numerically is between 
 . 5 × 10 −3 η and 2 × 10 −3 η. This translates to a kinematic viscosity
hreshold in the range of ν = [49.580–66.106] (see Table 2 ). 

For a validation of our numerical result, we estimate this viscosity
hreshold theoretically using three different approaches suggested by 
oediger et al. ( 2013a ). 
The growth of the KHI described in Section 2.2 is only true for a

teady background flow ( ∂ v x / ∂ t = 0), which is strictly speaking only
rue for low values of the viscosity. For higher values of the viscosity,
e cannot assume a steady background flow anymore ( ∂ v x / ∂ t �= 0)
ue to the fact that the viscosity smooths out the x -velocity gradient
see appendix D ). Therefore, we cannot get an analytical solution
nd we need to make different assumptions to estimate this viscosity
hreshold. 

For the first estimate, we use the fact that the physical viscosity
mooths out the velocity gradient over a length ±d above and below
he interface. As demonstrated by Chandrasekhar ( 1961 ), the KHI is
uppressed for wavelengths smaller than ∼10 d . Now, we make use
f the diffusion length l D 

= ±2 
√ 

νt , which measures how much the
nterface gets widened by diffusion at time t . If we take into account
hat in the inviscid case it takes t = τKH for the instability to grow, we
an calculate the width of the interface at that time and see whether
he instability is able to grow or not. If λ < 10 l D ( t = τKH ), the KHI
ill be suppressed, and otherwise it will grow. So using the definition
f τKH (equation 15 ), we obtain 

< 10 l D 

( τKH ) = 20 
√ 

ντKH (39) 
MNRAS 517, 5971–5991 (2022) 
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Figure 10. Projection of the mass weighted density for four different times (left to right) and three different values of the physical viscosity from higher 
viscosity (top row) to lower viscosity (bottom row) using OG-SPH. The run with the highest viscosity 10 −2 η (top row) suppresses completely the growth of 
the KHI. In the case of 10 −3 η (middle row) the instability is partially suppressed but there is still some growth of the perturbation. With a low viscosity 10 −4 η

(bottom row) the instability can grow properly showing similar results to the ideal case. 
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λ2 

400 
< ν

λ

�v x 

( ρ1 + ρ2 ) 

( ρ1 ρ2 ) 1 / 2 
(40) 

> νCrit = 

λ �v x 

400 

( ρ1 ρ2 ) 1 / 2 

( ρ1 + ρ2 ) 
. (41) 

sing our values inferred from our initial set-up, we get a critical
iscosity of νCrit = 12.07, which is below what we calculated
umerically. Ho we ver, as Roediger et al. ( 2013a ) state, the interface
s being smoothed out continuously, and therefore comparing the
avelength of the perturbation with the diffusion length at t = τKH 

s somewhat arbitrary. 
For the second estimate, we assume that the effect of the viscosity

ominates when the viscous dissipation time-scale, which is given
y τ ν = d 2 / ν, is shorter than the KH time-scale τKH . As mentioned
efore, the KHI is suppressed if λ < 10 d , so we can write d as d =
/10. Now, if we compare both time-scales we get 

KH > τν (42) 

λ

�v x 

( ρ1 + ρ2 ) 

( ρ1 ρ2 ) 1 / 2 
> 

λ2 

100 ν
(43) 

> νCrit = 

λ �v x 

100 

( ρ1 ρ2 ) 1 / 2 

( ρ1 + ρ2 ) 
. (44) 
NRAS 517, 5971–5991 (2022) 
nder these assumptions, the critical value of the viscosity is four
imes bigger than before, leading to νCrit = 48.27. This threshold
orrelates much better with our results and is in the range of values
e measured. 
Finally, we made a third estimate assuming that the instability is

uppressed when it reaches its maximum height and the width of
he x -velocity gradient is bigger than the height of the roll. The roll
sually reaches a height of λ/2 at t = τKH , so this means that at t =
KH the width of the x -velocity gradient must be larger than λ/2 

λ

2 
< l D 

( τKH ) = 2 
√ 

ντKH (45) 

λ2 

16 
< ν

λ

�v x 

( ρ1 + ρ2 ) 

( ρ1 ρ2 ) 1 / 2 
(46) 

> νCrit = 

λ �v x 

16 

( ρ1 ρ2 ) 1 / 2 

( ρ1 + ρ2 ) 
. (47) 

his gives us a value of νCrit = 301.70, which is too large for our
imulations. This can be due to the fact that we assumed that the
aximum height is reached at t = τKH . Ho we ver, by considering the

op panel of Fig. 3 , one can see that it is reached at later times. If, for
xample, instead of considering that the maximum height is reached
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Figure 11. Top panel: Height of the rolls depending on how viscous the 
fluids are. For the most viscous case (10 −2 η), the amplitude barely increases, 
but as soon as we decrease the viscosity of the system, the rolls reach a higher 
amplitude until we have 10 −4 η, where the rolls reach an amplitude close to 
λ/2. Ho we ver, this height is smaller than the one reached in the ideal case 
with OG-SPH and N ngb = 295. Bottom panel: Evolution of the y -velocity 
depending on the amount of viscosity of the system. In a very viscous system 

(10 −2 η) the KHI decays exponentially, while the case with the lowest amount 
of viscosity (10 −4 η) follows a similar path to the ideal case. The amount of 
viscosity that produces no growth of the y -velocity (slope zero) characterizes 
a viscosity threshold abo v e which the KHI is fully suppressed. This threshold 
can be determined numerically and compared to a theoretical estimate. 
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t t = τKH , we consider that it is reached at t = 2 τKH , the value for
he critical viscosity is reduced by half. 

Additionally, we do our estimate depending on the exact smooth- 
ng of the x -velocity gradient. As explained in appendix D , the x -
elocity gradient is smoothed out following 

 x ( y) = | v x 0 | erf 

(
y 

2 
√ 

νt 

)
. (48) 
his formula arises from solving the Rayleigh problem (also known 
s Stokes first problem; Stokes 1851 ; F.R.S. 1911 ) for a viscous fluid
here there are two flat plates located at the boundaries. These plates

uddenly accelerate to some fixed constant velocities in opposite 
irections, leading to the velocity profile shown in equation ( 48 )
e.g. Drazin & Riley 2006 ). In our case we do not have fixed plates
oving at constant velocities, which means that the particles at the

oundaries will progressively slow down and the theoretical result 
ill not be valid anymore. 
The more viscous the system is, the faster the system will mo v e

way from the initial state of the Rayleigh problem. Assuming that
he instability is not suppressed if at t = τKH the system still follows
quation ( 48 ), i.e. the particles at the boundaries still mo v e at their
nitial v x , one can estimate the maximum viscosity that allows this
ehaviour. 
We also assume that our boundaries correspond to the particles at

 = ±λ/2, which is the height that the rolls are expected to reach.
nly at t = 0 the particles mo v e e xactly at the initial x -velocity,

o in order to do this calculation, we consider three different cases:
e consider that the particles still mo v e at their initial v x when

he y mo v e 10 per cent slower than the initial v x , when the y mo v e
 per cent slower and 0 . 1 per cent slower. After this computation we
ot 

(i) 10 per cent slower → νCrit = 66.02 
(ii) 1 per cent slower → νCrit = 45.00 
(iii) 0 . 1 per cent slower → νCrit = 33.97. 

Given the values obtained by these estimates, we can see that
he results we obtained for the viscosity threshold are in agreement
ith what we have estimated. These estimates were made using very
eneral and ideal assumptions and we cannot rely much the exact
 alue we got. Ho we v er, we can observ e that our results are in keeping
ith theoretical expectations. 

.2 Ener gy conser v ation 

s the simulation runs, the friction between particles produces a 
oss of kinetic energy, turning it into internal energy, and since the
omain is a closed system with periodic boundary conditions, the 
otal energy has to be conserved as a function of time. To test how
ell the code conserves energy, we first compute the mean kinetic

nergy per unit mass of the whole simulation domain by summing
p the kinetic energy contributed by each particles and dividing by
he total number of particles. We repeat the procedure for the internal
nergy per unit mass of the system. 

In Fig. 12 , we show the variation of the internal (top panel) and
inetic energy (bottom panel) of the system normalized to the initial
otal energy for each run. For higher values of viscosity, there is

ore friction between particles and more kinetic energy is turned 
nto internal energy. The symmetry between the two panels shows 
he conversion of kinetic into internal energy and the conservation of
nergy of the system. By summing up the two values to compute the
otal energy we find that the runs with physical viscosity conserve
he 99.992 per cent of the total energy and the run without physical
iscosity the 99.986 per cent. We note that, while energy is largely
onserved in both cases, the performance of the runs with viscosity
n terms of energy conservation is slightly impro v ed. 

.3 Total viscosity 

inally, we measure the actual viscosity of the system and compare
t to the Braginskii viscosity, implemented in the code. For the
MNRAS 517, 5971–5991 (2022) 
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Figure 12. Top panel: Variation of the mean internal energy per unit mass 
normalized to the initial total energy. Bottom panel: Variation of the mean 
kinetic energy per unit mass normalized to the initial total energy. The runs 
with a higher viscosity transform more kinetic energy into internal energy 
and, the symmetry of the two plots, demonstrates the conservation of energy 
in all the runs. We use the same colour code as the previous plots (Fig. 11 ). 
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Figure 13. Numerical computation of the total viscosity of the system against 
the theoretical viscosity we implement. One would expect a one-to-one 
relation (black dashed line). In the run with N ngb = 295 the data follows 
a linear function with a slope of 1.001631 ± 0.000013, but an intercept of 
1.3 ± 0.3, which is slightly higher than the one expected. In the case of N ngb = 

150, the slope is 0.973146 ± 0.000009 and the intercept 7.04 ± 0.17, which 
corresponds to a shift upwards of the data. 
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omputation of the ef fecti ve viscosity of the fluids in our simulations,
e do the same analysis we made in Section 4.3 but with the
ifference that we have now a theoretical value to compare with
nd validate our method. After computing the total viscosity of our
imulations and calculating the average value for different times, we
nd a small standard deviation errors, meaning that the results are
onsistent in time. These results can be seen in Table 2 . 

Overall, there is a good correlation between the theoretical
alue and the computed one. The relative errors 5 are quite low
 ∼ 1 per cent ), with the highest error being 5 . 45 per cent in the less
iscous case. 
In order to see the correlation between the theoretical (input)

alue and the actual (from the fit) value of the viscosity for the
ifferent runs, we plot the viscosity we obtained numerically versus
he theoretical one in Fig. 13 . For comparison, we show the cases
ith N ngb = 150 and N ngb = 295. Since they are expected to be the

ame, we would expect a relation with a slope of 1 and the intercept
t y = 0 (black dashed line). Hence, we fit our points to a linear
unction. 

In the case of N ngb = 295 the data follows a linear trend with
 slope of 1.001631 ± 0.000013, meaning that the growth is what
e could expect, but an intercept of 1.3 ± 0.3, which means that

he actual viscosity is slightly higher than the theoretical one. This
iscrepancy becomes more rele v ant in the case of N ngb = 150,
here the slope is 0.973146 ± 0.000009, also close to one, but

he intercept is higher than in the previous case. In this case the
ntercept is 7.04 ± 0.17, showing a systematic shift upwards. This
ystematic increase is likely due to the intrinsic numerical viscosity
f the code, which is acting alongside the physical, Braginskii type
iscosity that we implemented in the code. This would explain the
NRAS 517, 5971–5991 (2022) 

 The relative errors are calculated dividing the absolute error by the value 
nd multiplying by 100. 

s  

n  

c  

n

arger viscosity for N ngb = 150 versus N ngb = 295. Note that the
ontribution of the intrinsic viscosity to the total viscosity of the
ode in the case of N ngb = 150 is similar to the value of intrinsic
iscosity measured in the ideal case, but in the case of N ngb = 295
he contribution is smaller. This means that in the latter case, when
he viscosity is low enough, the system will be go v erned by the
ntrinsic viscosity of the code and the physical viscosity will be 
egligible. 

 D E P E N D E N C E  O N  T H E  I C S  

n order to test how robust our results are against a change in the ICs,
e adopt a new set of IC following the suggestions of Read et al.

 2010 ) (OG-SPH-Read and OG-MFM-Read). For completeness, we
re going to compare the results obtained with both ICs to see how
he set-up employed affects the growth of the KHI. 

Now, the domain consists of periodic boundary conditions defined
y � x = 1, � y = 1 and �z = 1/32 and satisfies: 

, T , v x = 

{
ρ1 , T 1 , v 1 | y| < 0 . 25 
ρ2 , T 2 , v 2 | y| > 0 . 25 

. (49) 

The densities and temperatures ratio R ρ = ρ1 / ρ2 = T 2 / T 1 is equal
o two, same as in the ICs given by our fiducial set-up. Since
o particular density or temperature is specified, we use the same
ensities and temperatures we were using ( ρ1 = 6.26 × 10 −8 and
2 = 3.13 × 10 −8 ; T 1 = 2.5 × 10 6 and T 2 = 5 × 10 6 ). No x -velocity

s specified either, but the mach number is set to be M 2 = −v 2 / c 2 
0.11 and M 1 = M 2 

√ 

R ρ ≈ 0 . 15. Due to the fact that the mach
umber is given by the x -velocity and the speed of sound, but the
peed of sound is given by the temperature, the x -velocities must be
et to v 1 = −26 and v 2 = 26 in order to fulfil the value of the mach
umbers. Despite the small length of the box in the z direction, the
ode is written to ensure that no particle is counted twice during the
eighbour finding. 
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Table 3. Differences between the ICs used for triggering the KHI in OG-SPH and OG-MFM (Murante 
et al. 2011 ) and the ones in OG-SPH-Read and OG-MFM-Read (Read et al. 2010 ). 

Box Size v x v y (equation 17 ) Mach number 

OG-SPH 

OG-MFM 

256 × 256 × 8 
v x 1 = −40 
v x 2 = + 40 

λ = 128 
σ = 0 . 2 λ

δv y = | v x | / 10 = 4 
y Int = ±64 

M 1 ≈ 0 . 23 
M 2 ≈ 0 . 17 

OG-SPH-Read 
OG-MFM-Read 

1 × 1 × 1/32 
v x 1 = −26 
v x 2 = + 26 

λ = 0 . 5 
σ = 0 . 2 λ

δv y = | v x | / 8 = 3 . 25 
y Int = ±0 . 25 

M 1 ≈ 0 . 15 
M 2 ≈ 0 . 11 
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The perturbation that triggers the instability is produced at the 
nterface between the two fluids, at y Int = ±0.25 and is given by
quation (58) in Read et al. ( 2010 ). The equation is equal to the one we
mployed to trigger the instability in previous sections (equation 17 ), 
ut the first term on the right-hand side has a ne gativ e sign. This
ntroduces a phase shift in the perturbation between the top and 
ottom interface. In this case, the wavelength of the perturbation is
= 0.5, the scale parameter σ remains the same, σ = 0.2 λ and 

he initial amplitude of the perturbation is δv y = | v x | /8 = 3.25. A
ummary of all the differences can be seen in Table 3 . 

For a qualitative comparison of the results, Fig. 14 shows the 
olumn density of the runs with OG-SPH-Read and N ngb = 150 and
 ngb = 295 (top and bottom ro w, respecti vely). The shape of the rolls
ith N ngb = 295 does not differ much from the ones obtained with
G-SPH (see Fig. 2 ), while we can see a difference in the results
sing N ngb = 150. In contrast to OG-SPH, the instability does not
chieve the roll shape obtained with OG-SPH. It is also worth noting
he shift between the top and the bottom rolls due to the phase shift
f the y -velocity on the top and bottom interface in the ICs. 
Due to the small distance between the interfaces, the flow might 

ot remain constant away from the instability and, therefore, the top 
nstabilities could in principle affect the bottom ones and vice versa. 
o we ver, in appendix G we show that top and bottom instabilities
o not affect each other’s growth. 

.1 Results for SPH 

o obtain a more quantitative comparison between the two different 
et-ups, we plot in the top panel of Fig. 15 the change of the height of
he rolls with time for both cases: solid lines represent the runs with
G-SPH and the dashed lines the ones with OG-SPH-Read. Both set-
ps show a similar growth of the amplitude depending on N ngb at early
imes but, in agreement with the qualitative analysis done before, the 

aximum amplitude reached by OG-SPH-Read with N ngb = 150 is 
maller (below 0.4 λ) compared to the runs using OG-SPH (close to
/2). The run employing OG-SPH-Read and N ngb = 295 reaches a 
aximum amplitude similar to the run with OG-SPH and N ngb = 

50, which is close to the expected value of λ/2. Despite both runs
ith N ngb = 295 follow a similar path until t = τKH , the case using
G-SPH is able to reach a higher maximum amplitude compared to 

he run using OG-SPH-Read. 
The way in which the height of the rolls evolves with time can be

xplained with the results for the growth of the y -velocity, which we
how in the bottom panel of Fig. 15 . For the case of N ngb = 150 the
nstability grows faster and for a longer time with OG-SPH than with
G-SPH-Read, which explains why it reaches a higher amplitude. 

n the case of N ngb = 295, the rate of growth is very similar at
arly times, which explains that the growth of the amplitude in both
ases is very similar until t = τKH . Then the run with OG-SPH-Read
tabilizes, while the one with OG-SPH keeps growing, reaching 
 larger velocity. The growth of the y -velocity with OG-SPH and
 ngb = 150 is less steep but grows for a longer time compared to
G-SPH-Read with N ngb = 295, which explains why the amplitude 
ro ws slo wer at early times but reaches the same maximum height. 

.2 Results for MFM 

inally, we show the results for OG-MFM in the top panel of Fig. 16
or the evolution of the height of the billows for the simulations
ade with N ngb = 150 and N ngb = 295. In this case, in contrast to
PH, the results for the amplitude with both set-ups follow a very
imilar behaviour, where the discrepancy is negligible. In both cases 
he run with N ngb = 150 evolves faster and reaches a larger amplitude
han the run with N ngb = 295. Despite the behaviour of the height
f the rolls is similar with both set-ups, the bottom panel of Fig. 16
hows that the growth of the y -velocity is similar at early times,
ut then it differs at later times between the two different ICs. The
uns with OG-MFM reach higher velocities than OG-MFM-Read for 
oth N ngb = 150 and N ngb = 295, although this does not trigger a
ubstantial difference in the height of the rolls between the two set-
ps. Comparing the results depending on N ngb in each set-up, we find
hat the differences in OG-MFM-Read for the two cases are larger
han the ones obtained in OG-MFM. 

Overall, we find that OG-SPH with a low N ngb ( N ngb = 150) can
e sensitive to the ICs and lead to different results depending on
he set-up employed, while with a higher N ngb ( N ngb = 295) the
esults appear to be similar independently of the set-up. In the case
f OG-MFM, the results of the amplitude of the rolls are very similar
ndependently of the ICs and N ngb , but the evolution of the y -velocity
hows larger discrepancies between the two set-ups. 

To study the origin of these differences between OG-SPH-Read 
nd OG-MFM-Read, we run the simulations again but using a 
ifferent set-up. We employed the ICs suggested in Read et al. ( 2010 ),
ut we used v x 1 = ± − 40 , v x 2 = 40 and δv y = | v x | /10 = 4 (labelled
s RMvy). This means that we used the same Mach number and
he same amplitude of the perturbation employed in OG-SPH and 
G-MFM. After running the simulations, we reco v er the behaviour

ound with OG-SPH in the linear regime (see Fig. 17 ). This suggests
hat the velocity of the fluids can modify the intrinsic viscosity of the
ode in our SPH scheme, while no significant change is found when
sing MFM. This makes us think that our MFM implementation is
ore stable against thermal to kinetic energy ratio variations than 
PH. 
MNRAS 517, 5971–5991 (2022) 
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Figure 14. Colourmap of the densities using OG-SPH-Read. In this case the behaviour with N ngb = 295 is similar to the ones with OG-SPH (see Fig. 2 ), but 
using N ngb = 150 the instability cannot develop as much as with OG-SPH. 
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 C O N C L U S I O N S  

n this work, we carried out a detailed investigation of fluid mixing
omparing our implementation of SPH and MFM in the code
PENGADGET3 . First, we tested the ability of the code to capture

he KHI. Then, we performed different simulations after including
hysical viscosity to the system to analyse the behaviour of the KHI
n viscous fluids. Additionally, we changed the original set-up and
tudied the impact of the ICs on final results for both SPH and MFM.
ur key conclusions are: 

(i) In all the runs with OG-SPH the instability can fully develop the
haracteristic roll of the KHI, which is visible in all cases. Ho we ver,
he growth rate when the highest N ngb is assumed is faster than in
he case with N ngb = 150 and N ngb = 200. In the latter two cases, a
ower maximum amplitude is reached, which is however still close
o the maximum expected value ( ∼λ/2; Roediger et al. 2013a ). In
he cases with N ngb = 295 and N ngb = 350 the billows manage to
row higher than λ/2, and we can observe the fastest growth rate for 
he KHI. 
y computing the diffusion of the code we could observe that a
onstant AC in OG-SPH might be too dif fusi ve, while a TD A C
educes the diffusion to the minimum needed to trigger the KHI. In
rder to understand how viscous are the systems that we simulated,
e measured the intrinsic viscosity of the code. We showed that,

or the case with N ngb = 150, the fluids are more viscous compared
o the other runs, which could explain why the KHI grows slower;
hile with N ngb ≥ 250 the intrinsic viscosity reaches a minimum

nd remains stable for higher N ngb . Despite the higher viscosity
ound in the case with N ngb = 150, the o v erall viscosity allows in all
ases the complete development of the instability. We showed that
his intrinsic viscosity has nothing to do with the artificial viscosity
mplemented in OG-SPH, which is successfully suppressed at early
imes independently of N ngb . 

(ii) In agreement with OG-SPH, the results obtained with OG-
FM fulfil the expectations independently of N ngb . Ho we ver, one
NRAS 517, 5971–5991 (2022) 
eeds at least N ngb = 150 in order to successfully suppress the growth
f the secondary instabilities. Abo v e N ngb = 150 the evolution of
he amplitude of the rolls and the y -velocity is very similar for all
he cases studied with OG-MFM. The growth of the KHI is slower
ith OG-MFM than with OG-SPH: as a consequence, the maximum

mplitude is reached at later times. This is due to the fact that the
ntrinsic viscosity in OG-MFM is higher than in the cases with OG-
PH. Ho we v er, this e xcess of intrinsic viscosity does not suppress the

nstability. By analysing how diffusive OG-MFM is, we found that it
s less dif fusi ve than OG-SPH with a constant AC, but the behaviour
s similar to the run with OG-SPH and TD A C. In conclusion, one
eeds at least N ngb = 150 to successfully reproduce the KHI but it
ust be taken into account that OG-MFM is computationally more
 xpensiv e than OG-SPH and, the higher N ngb , the more e xpensiv e it
ecomes. 
(iii) To test the Braginskii viscosity implemented in OPENGAD-

ET3 , we computed again the amplitude of the billows using OG-
PH, showing that the instability cannot grow in a highly viscous
uid, but the height of the rolls increases when decreasing the amount
f viscosity. By measuring the evolution of the y -velocity we found a
iscosity threshold ( ≈ 10 −3 η) where, for viscosities higher than this
hreshold, the KHI is fully suppressed and for smaller amounts of
iscosity the instability is able to grow exponentially. We computed
he threshold numerically and compared it with three different
heoretical estimates and one numerical estimate, concluding that the
hreshold computed numerically is in agreement with these estimates.
n terms of energy conservation, the higher the viscosity in the
imulations, the more kinetic energy is turned into internal energy. In
his process, the code is conserving al w ays more than 99.99 per cent
f the total energy . Additionally , we measured the actual viscosity
f the system and compared it to the theoretical viscosity we had
mplemented, observing that the ef fecti ve viscosity of the system
ends to be higher than the one we implement. This effect could be
xplained if the intrinsic viscosity of the code is taken into account,
eaning that the total viscosity of the system we simulate is not only

art/stac3042_f14.eps
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Figure 15. Top panel: Height of the rolls with N ngb = 150 and N ngb = 295 
using OG-SPH (solid lines) and OG-SPH-Read (dashed lines). The maximum 

amplitude reached with N ngb = 295 is close to λ/2 in both cases, but the one 
reached with N ngb = 150 is smaller with OG-SPH-Read than with OG-SPH. 
Bottom panel: Evolution of the y -velocity for the cases with N ngb = 150 and 
N ngb = 295 with OG-SPH (solid lines) and OG-SPH-Read (dashed lines). 
The performance of N ngb = 150 with the new ICs is worse than with our ICs, 
showing a slower growth of the instability. The results with N ngb = 295 show a 
faster growth using OG-SPH. Although the slower growth of OG-SPH-Read, 
the rolls reach a maximum amplitude close to λ/2. 
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Figure 16. Top panel: Growth of the amplitude of the rolls in the case of 
OG-MFM and OG-MFM-Read with N ngb = 150 and N ngb = 295. In both 
cases the behaviour is very similar independently of the initial set-up we use 
to trigger the KHI. Bottom panel: Evolution of the y -velocity with time for the 
runs using OG-MFM and OG-MFM-Read with N ngb = 150 and N ngb = 295. 
The growth of the y -velocity differs at later times between the two set-ups, 
where the runs using OG-MFM reach higher velocities than the cases with 
OG-MFM-Read. Additionally, the differences in the results depending on 
N ngb are larger with the OG-MFM-Read set-up than with OG-MFM. 
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he physical viscosity we implement, and the intrinsic viscosity of 
he code contributes as well. This contribution is also dependent on 
 ngb , where the case with N ngb = 150 shows a larger contribution
ompared to the run with N ngb = 295. 

(iv) The run with OG-SPH and N ngb = 150 is very sensitive to
he initial set-up employed to trigger the KHI. In the case with OG-
PH-Read the rolls cannot grow as much as they do with OG-SPH
nd the roll shape does not fully develop. Despite the rolls obtained
ith OG-SPH and N ngb = 295 reach a higher amplitude, the ones
ith OG-SPH-Read manage to reach a height close to λ/2. With 
G-MFM-Read, ho we ver, the behaviour is similar independently of 
he set-up employed to trigger the instability. 

(v) A change in the initial velocity of the fluids introduces a
odification in the intrinsic viscosity of the code, which happens 

o be more sensitive in OG-SPH than in OG-MFM. This means that
G-MFM is more stable against variations of the thermal to kinetic

nergy ratio than OG-SPH. 

In summary, OPENGADGET3 successfully reproduces the linear 
rowth of the KHI using different hydro solvers with different 
umerical and physical set-ups. We find that the changes of the
nferred numerical viscosity in our different set-ups of our SPH 

mplementation are comparable to the differences between the SPH 
MNRAS 517, 5971–5991 (2022) 

art/stac3042_f15.eps
art/stac3042_f16.eps


5988 T. Marin-Gilabert et al. 

M

Figure 17. Top panel: Growth of amplitude with N ngb = 150 and N ngb = 

295 with OG-SPH set-up (solid lines), the original OG-SPH-Read set-up 
(blue and green dashed lines) and the RMvy set-up (red and violet dashed 
lines). Bottom panel: Evolution of the y -velocity with OG-SPH set-up (solid 
lines), the original OG-SPH-Read set-up (blue and green dashed lines) and 
the RMvy set-up (red and violet dashed lines). When using RMvy, we reco v er 
the original behaviour of OG-SPH in both the amplitude evolution and the 
growth of the y -velocity. 
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nd MFM results. In general the SPH results are more sensitive to
he details of the set-up and it is recommended to use TD A C in order
o a v oid o v ermixing. Nev ertheless, SPH reproduces the e xpected
eduction of the growth rate in the presence of physical viscosity
nd reco v ers v ery well the threshold lev el of physical viscosity
eeded to fully suppress the instability. In the case of galaxy clusters
ith a virial temperature of 3 × 10 7 K, this level corresponds to a

uppression factor of ≈10 −3 of the classical Braginskii value. The
ntrinsic, numerical viscosity of our SPH implementation is found to
e only half the value obtained for the MFM implementation; within
n ICM environment, this corresponds to a value smaller by an order
f magnitude (i.e. ≈ 10 −4 η). All the tests presented are re-ensuring
NRAS 517, 5971–5991 (2022) 
hat modern SPH methods are suitable to study the effect of physical
iscosity in galaxy clusters. 
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m  
PPENDI X  A :  AMPLI TUDE  O F  T H E  RO LLS  

he method employed to compute the height of the rolls is similar to
he one described in Roediger et al. ( 2013a ). We focus only on the
pper half of the domain (since the domain is symmetric, we choose
nly the upper half, and therefore, the total amount of particles is
educed by half). Then we mark every particle depending if they are
red’ (denser fluid) or ‘blue’ (lighter fluid) at t = 0 so we can trace
hem later. Once we have marked every particle, we divide the half
omain in 100 bins along the y direction and calculate the amount of
red’ and ‘blue’ particles in every bin for every snapshot. The top of
he billow will correspond to the lowest bin where at least 95 per cent
f the particles are ‘blue’, while the bottom will be the highest bin
ith at least 95 per cent of ‘red’ particles. Finally, we compute the

mplitude of the roll by calculating the distance between the top and
he bottom of the billow for every snapshot. 

PPENDI X  B:  G ROW T H  O F  T H E  VELOCITY  

e use the discrete convolution suggested by McNally et al. ( 2012 )
o compute the amplitude M of the initially excited mode. We have
dapted the formula to our ICs, leading to 
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here h i is the smoothing length, λ the wavelength of the perturba-
ion, and N is the total number of particles in the domain. For the
omputation of M , we used only one quarter of the full domain in
rder to take only one perturbation for the calculation. 

PPENDI X  C :  C O M P U TAT I O N  O F  DI FFUS IO N  

e set up the same ICs like in our KHI box, but this time without
d-hoc seeded perturbation. Then we divide the whole initial density 
omain in 20 bins and we choose the bins with the highest and lowest
ensity. These are going to be our thresholds to consider if a particle
elongs to the high density part or to the low density one (see left plot
f Fig. C1 ). Now, for each snapshot, we take the positive values of y ,
ivide them in 115 bins, and compute the mean density in each bin.
hen we consider the width of the interface to be the distance between 

he rightmost ‘dense’ bin and the leftmost ‘light’ bin (see right-hand
lot of Fig. C1 ). At later times some numerical instabilities can grow,
nd therefore, affect our results, so we computed the diffusion until
 ∼ 0.4 τKH . 

PPENDI X  D :  I NTRI NSI C  VISCOSITY  O F  T H E  

YSTEM  

he effect of viscosity is to smooth out the velocity gradient between
he two fluids by momentum diffusion, and therefore, the more 
iscosity a system has, the more the gradient is smoothed out and the
ore difficult it is to develop the instability. The x -velocity profile is
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M

Figure C1. Left-hand panel: Plot of density against y position at t = 0.4 τKH , 
where the upper red dashed line indicates the minimum density for a particle 
to be considered ‘dense’ and the lower red dashed line the maximum density 
for a particle to be considered ‘light’. Right-hand panel: Plot of the density 
against y position for positive values of y also at t = 0.4 τKH , where the two 
vertical red dashed lines indicate the width of the interface. 

Figure D1. Fit of the analytic formula D1 to our data for the computation 
of the kinematic viscosity for the different simulations. It starts from a 
discontinuity in the x -velocity profile at t = 0 and, as time passes, the x - 
velocity gradient is smoothed out by viscosity. The crosses represent our data 
and the solid lines the fit of the analytic function, coded by different colours 
for different times. 
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Table E1. Values of the intrinsic viscosity of the codes de- 
pending on N ngb . 

Intrinsic viscosity 
N ngb OG-SPH OG-MFM 

150 6.78 ± 0.38 8.62 ± 1.47 
200 4.73 ± 0.57 9.49 ± 1.32 
250 4.10 ± 0.83 11.50 ± 2.00 
295 3.78 ± 0.73 10.50 ± 2.07 
350 4.30 ± 0.96 11.74 ± 2.07 

b  

t  

(

A
V

T  

o  

v

A
O

T  

F  

M
a

t  

r  

N  

t  

i  

n  

s  

r  

A
O

T  

a  

d  

r  

a  

w  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/517/4/5971/6772459 by U
niversita degli Studi di Trieste user on 24 O

ctober 2023
moothed out following 

 x ( y) = | v x 0 | erf 

(
y 

2 
√ 

νt 

)
, (D1) 

here the interface is set at y = 0, | v x 0 | is the initial x -velocity of
ne of the fluids (the two fluids have the same speed but in opposite
irections) and ν is the kinematic viscosity of the system. In order
o calculate the intrinsic viscosity of the system, we simulate our
wo fluids without any initial perturbation and we fit the analytical
unction D1 to our data at different times with the kinematic viscosity
s a free parameter. To do so, we use only the top half of the full
omain and we displace it to set the interface at y = 0. We then divide
he half domain in 127 bins and compute the mean x -velocity of each
NRAS 517, 5971–5991 (2022) 
in at five different times. Finally, we calculate the average value of
he five fits in order to get a value for the total viscosity of the system
see Fig. D1 ). 

PPENDI X  E:  VA LUES  O F  I NTRI NSI C  

ISCOSITY  F O R  OG-SPH  A N D  OG-MFM  

he values obtained after computing the intrinsic viscosity depending
n N ngb for OG-SPH and OG-MFM are shown in Table E1 . These
alues are plotted in Fig. 9 . 

PPENDI X  F:  CUBI C  SPLINE  K E R N E L  IN  

G-MFM  

he ‘E 0 error’ does not take place in MFM simulations, so in order

igure F1. Colourmaps of the density from the simulation run with OG-
FM using a cubic spline kernel and N ngb = 32. Results shown for t = τKH 

nd t = 2 τKH . 

o check the behaviour of the KHI with a lower N ngb , we additionally
un a simulation using OG-MFM with a cubic spline kernel and
 ngb = 32. As Fig. F1 shows, the KHI can grow successfully and

he mixing of the fluids takes place as expected. Ho we ver, although
t is computationally less e xpensiv e, the secondary instabilities are
ot properly suppressed and are able to grow leading to a non-fully
ymmetric result, pushing away the simulations from the expected
esult (see Robertson et al. 2010 ; McNally et al. 2012 , for reference).

PPENDI X  G :  DOUBLE-SI ZE  BOX  USI NG  

G-SPH-READ  

o test whether the top instabilities affect the bottom instabilities
nd vice versa, we rerun the simulations with OG-SPH-Read, but
oubling the distance between the two contact discontinuities. The
esulting box has a length in the y axis of � y = 2 and the interfaces
re set at y = ±0.5. The colourmap in Fig. G1 shows the original run
ith the OG-SPH-Read set-up using N ngb = 295 (top row) and its
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O Figure G2. Growth of amplitude and velocity with time with N ngb = 150 
and N ngb = 295 with the original OG-SPH-Read set-up (dashed lines) and 
with a box two times larger in the y direction (dotted lines). 
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igure G1. Colourmaps of the density from the simulation run with OG-
PH-Read (top row) and using OG-SPH-Read 2x (bottom row), which 
orresponds to a box two times larger in the y direction. Both simulations
sing N ngb = 295. Despite the different sizes of the boxes, the same region
as been plotted for comparison. The black dashed line in the bottom row
ndicates where the cut-off has been made. 

ounterpart with the larger box (bottom row, labelled as OG-SPH- 
ead 2x). The same regions as the original set-up has been plotted

or comparison (the cut off has been marked with a black dashed
ine). The growth of both instabilities shows a very similar shape, 
uggesting that the instabilities of the top and bottom interfaces are 
ot affecting each other. This is supported by Fig. G2 , where we plot
 comparison of the growth of the amplitude and velocity (dashed 
ines OG-SPH-Read and dotted lines OG-SPH-Read 2x). The growth 
f the amplitude and v y follows the same path in both set-ups for the
inear regime (which is what we are interested in in this paper). In
he non-linear regime some differences can be seen, but o v erall the
ehaviour is very similar. The same results can be observed using
G-SPH. 
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