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Abstract

We introduce a notion of solution to the wave equation on a suitable class of time-dependent domains and 
compare it with a previous definition. We prove an existence result for the solution of the Cauchy problem 
and present some additional conditions which imply uniqueness.
.

1. Introduction

The mathematical formulation of dynamic problems in fracture mechanics leads to the study 
of the wave equation in time-dependent domains (see [9,12,7]). The main feature of these 
problems is that at every time t the solution belongs to a different space Vt . In the case of frac-
ture a typical situation is Vt = H 1(� \ �t), where � is a domain in Rn and �t is a closed 
(n − 1)-dimensional subset of �, which represents the crack at time t (see [6,8,3,14]). The most 
important example of equation we consider is formally written as
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{
ü − �u = f in � \ �t ,

∂νu = 0 on ∂� ∪ �t ,
(1.1)

where ü denotes the second order time derivative of u, �u is the Laplacian of u with respect to 
the spatial variables, and ∂νu is the normal derivative of u.

In this paper we introduce and study a notion of solution to the wave equation on time-
dependent domains in a sufficiently general abstract framework for the spaces Vt , which covers 
the case of increasing cracks �t with homogeneous Neumann boundary conditions both on ∂�

and �t . The boundary condition on ∂� could be easily replaced by a prescribed nonhomoge-
neous Dirichlet condition. The same method applies also to the case of homogeneous Dirichlet 
boundary conditions both on ∂� and �t , but only when t �→ �t is decreasing (see Example 2.3), 
which is not a natural assumption in fracture mechanics.

We compare this definition with the one introduced in [6], which was given under slightly 
stronger assumptions on the data, and we prove that they are equivalent when these assumptions 
are satisfied (see Theorems 2.16 and 2.17). Our definition is based on integration by parts in 
time and does not require a precise definition of the value at time t of the second derivative ü(t), 
which is a critical issue in the case of time-dependent domains (see Proposition 2.13). Actually, 
the boundedness assumptions of [6], which we remove in our paper, are used to simplify the 
definition of ü(t).

Under natural assumptions on the initial data, we prove an existence result for the solution 
to the Cauchy problem, which simplifies the proof of [6] because we can avoid some estimates 
regarding ü(t) (see Theorem 3.1). We also prove that the solution obtained in this way satisfies 
the energy inequality (see Corollary 3.2).

The last part of the paper contains the most relevant original result: some general conditions on 
Vt which imply the uniqueness of the solution to the Cauchy problem (see Theorem 4.3). These 
are given in terms of properties of some linear isomorphisms Qt : Vt → V0 and Rt : V0 → Vt , as 
well as of their derivatives with respect to time.

To illustrate this uniqueness result let us consider the model situation of a rectilinear crack in 
the plane with subsonic speed. In this case we have to solve (1.1) with � =R

2 and �t = {(x1, 0) :
x1 ≤ �(t)}, where � : [0, T ] → R is a prescribed C1,1 function such that

0 ≤ �̇(t) < 1 for every t ∈ [0, T ] . (1.2)

Using the Lipschitz continuity of �̇ and (1.2) it is easy to see that all conditions for uniqueness 
are satisfied (see Example 4.1).

More general assumptions on the sets �t under which the Cauchy problem for (1.1) has a 
unique solution can be expressed in terms of the regularity properties, with respect to space and 
time, of suitable diffeomorphisms of � into itself, mapping �t into �0 (see Example 4.2). These 
assumptions are weaker than those considered in [8] and [3].

2. Formulation of the evolution problem, notions of solution

Let H be a separable Hilbert space, let T > 0, and let (Vt )t∈[0,T ] be a family of separable
Hilbert spaces with the following properties:

(H1) for every t ∈ [0, T ] the space Vt is contained and dense in H with continuous embedding;
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(H2) for every s, t ∈ [0, T ], with s < t , Vs ⊂ Vt and the Hilbert space structure on Vs is the one 
induced by Vt .

The scalar product in H is denoted by (·, ·) and the corresponding norm by ‖ · ‖. The norm in 
Vt is denoted by ‖ · ‖t . Note that for every t ∈ [0, T ], by (H2) we have ‖v‖t = ‖v‖T for every 
v ∈ Vt .

The dual of H is identified with H , while for every t ∈ [0, T ] the dual of Vt is denoted by V ∗
t . 

Note that the adjoint of the continuous embedding of Vt into H provides a continuous embedding 
of H into V ∗

t and that H is dense in V ∗
t . Let 〈·, ·〉t be the duality product between V ∗

t and Vt and 
let ‖ · ‖∗

t be the corresponding dual norm. Note that 〈·, ·〉t is the unique continuous bilinear map 
on V ∗

t × Vt satisfying

〈h,v〉t = (h, v) for every h ∈ H and v ∈ Vt . (2.1)

For 0 ≤ s < t ≤ T we have Vs ⊂ Vt , but since Vs is not dense in Vt the dual space V ∗
t is not 

embedded into V ∗
s . However, it is useful to introduce the natural projection operators from V ∗

t

to V ∗
s .

Definition 2.1. Let s, t ∈ [0, T ] with s < t . The projection map �st : V ∗
t → V ∗

s is defined by

〈�stζ, v〉s := 〈ζ, v〉t for every ζ ∈ V ∗
t and v ∈ Vs .

It is easy to see that �st is continuous, with ‖�stζ‖∗
s ≤ ‖ζ‖∗

t for every ζ ∈ V ∗
t . In general it is 

not injective. Note that by (2.1) we have

�sth = h for every h ∈ H . (2.2)

Moreover, we have

�rs�st = �rt for every r < s < t . (2.3)

Example 2.2. Let � be an open subset of Rn and (�t )t∈[0,T ] be a family of relatively closed 
subsets of �, with �s ⊂ �t for every 0 ≤ s < t ≤ T and Hn−1(�T ) < +∞, where Hn−1 is the 
(n − 1)-dimensional Hausdorff measure. Then the spaces Vt := H 1(� \ �t) and H := L2(�)

satisfy (H1) and (H2).

Example 2.3. Let � be an open subset of Rn and (�t )t∈[0,T ] be a family of relatively closed 
subsets of �, with �t ⊂ �s for every 0 ≤ s < t ≤ T and Hn−1(�0) < +∞. Then the spaces 
Vt := H 1

0 (� \ �t) and H := L2(�) satisfy (H1) and (H2).

Example 2.4. Let � be an open subset of Rn and (�t )t∈[0,T ] be a family of subsets of �, with 
�s ⊂ �t for every 0 ≤ s < t ≤ T and Hn−1(�T ) < +∞. Then the spaces Vt := GSBV 2

2 (�, �t)

introduced in [6, formula (2.1)], together with H := L2(�), satisfy (H1) and (H2).

Let a : VT × VT → R be a bilinear symmetric form satisfying the following conditions:
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(H3) continuity: there exists M0 > 0 such that

|a(u, v)| ≤ M0‖u‖T ‖v‖T for every u,v ∈ VT ; (2.4)

(H4) coercivity: there exist λ0 ≥ 0 and ν0 > 0 such that

a(u,u) + λ0‖u‖2 ≥ ν0‖u‖2
T for every u ∈ VT . (2.5)

For every τ, t ∈ [0, T ] let At
τ : Vt → V ∗

τ be the continuous linear operator defined by

〈At
τu, v〉τ := a(u, v) for every u ∈ Vt and v ∈ Vτ . (2.6)

Note that

‖At
τu‖∗

τ ≤ M0‖u‖t for every u ∈ Vt . (2.7)

Example 2.5. Under the hypotheses of Example 2.2, let (aij ) be a symmetric n × n matrix of 
functions in L∞(�) satisfying the ellipticity condition with a constant c0 > 0:

∑
ij

aij (x)ξj ξi ≥ c0|ξ |2 for a.e. x ∈ � and every ξ ∈ R
n .

Then the bilinear form

a(u, v) :=
∫

�\�T

(∑
ij

aijDjuDiv
)
dx for u,v ∈ H 1(� \ �T ) (2.8)

satisfies (H3) and (H4). Therefore, under suitable regularity assumptions, for every given f ∈ H

the equation At
tu = f provides a weak formulation of the boundary value problem

⎧⎨
⎩

−
∑
ij

Di(aijDju) = f in � \ �t

∂u
∂νa = 0 on ∂� ∪ �t ,

(2.9)

where νa is the conormal corresponding to (aij ), whose components are given by νa
j = ∑

i aij νi .

Given f ∈ L2((0, T ); H), we now study the evolution equation formally written as

{
ü(t) + At

tu(t) = f (t)

u(t) ∈ Vt

on the time interval [0, T ]. In order to give a precise notion of solution we introduce a space of 
t -dependent functions.
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Definition 2.6. V is the space of functions u ∈ L2((0, T ); VT ) ∩ H 1((0, T ); H) such that u(t) ∈
Vt for a.e. t ∈ (0, T ). It is a Hilbert space with the scalar product given by

(u, v)V = (u, v)L2((0,T );VT ) + (u̇, v̇)L2((0,T );H),

where u̇ and v̇ denote the distributional derivatives with respect to t .

It is well known that every function u ∈ H 1((0, T ); H) admits a representative, still denoted 
by u, which belongs to the space C([0, T ]; H). With this convention we have V ⊂ C([0, T ]; H).

Definition 2.7. We say that u is a weak solution of the equation

{
ü(t) + At

tu(t) = f (t)

u(t) ∈ Vt

(2.10)

on the time interval [0, T ] if u ∈ V and

−
T∫

0

(u̇(t), ϕ̇(t))dt +
T∫

0

a(u(t), ϕ(t))dt =
T∫

0

(f (t), ϕ(t))dt (2.11)

for every ϕ ∈ V with ϕ(T ) = ϕ(0) = 0.

Lemma 2.8. Given ϕ ∈ V with ϕ(T ) = ϕ(0) = 0, there exists a sequence of functions ϕj ∈
C∞

c ((0, T ); VT ), with ϕj (t) ∈ Vt for every t ∈ (0, T ), such that

ϕj → ϕ strongly in V . (2.12)

Proof. It is enough to consider ϕ ∈ V with compact support in (0, T ). Indeed, every ϕ ∈ V with 
ϕ(T ) = ϕ(0) = 0 can be approximated by a sequence of functions ϕk ∈ V with compact support. 
For instance, we can take ϕk(t) = ωk(t)ϕ(t) where ωk is the piecewise affine function such that 
ωk = 0 on [0, 1

k
] ∪[T − 1

k
, T ], ωk = 1 on [ 2

k
, T − 2

k
], and ωk is affine on [ 1

k
, 2

k
] and [T − 2

k
, T − 1

k
]. 

Using the fundamental theorem of calculus for H -valued functions and the Hölder inequality it 
can be easily seen that ϕk → ϕ strongly in V .

Assume now that ϕ ∈ V has compact support in (0, T ). For every ε > 0 let ρε be a C∞
function on R with ρε ≥ 0, 

∫
R

ρε = 1 and suppρε ⊂ (0, ε). For ε small enough the function

ϕε := ϕ ∗ ρε : (0, T ) → VT (2.13)

is of class C∞ and has compact support in (0, T ). By (H2) the asymmetry of the convolution 
kernel ρε guarantees that ϕε(t) ∈ Vt for every t ∈ (0, T ), hence ϕε belongs to V . Moreover 
ϕε → ϕ strongly in V . �
Remark 2.9. Let u ∈ V be a function such that (2.11) holds for every ϕ ∈ C∞

c ((0, T ); VT ) with
ϕ(t) ∈ Vt for every t ∈ (0, T ). Using Lemma 2.8 it is easy to see that u is a weak solution of 
(2.10) according to Definition 2.7.
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Proposition 2.10. Let u ∈ V be a weak solution of (2.10) satisfying the initial conditions u(0) = 0
and u̇(0) = 0, the latter in the following strong sense:

lim
h→0+

1

h

h∫
0

‖u̇(t)‖2dt = 0 . (2.14)

Then

−
T∫

0

(u̇(t), ϕ̇(t))dt +
T∫

0

a(u(t), ϕ(t))dt =
T∫

0

(f (t), ϕ(t))dt (2.15)

for every ϕ ∈ V with ϕ(T ) = 0, even if the condition ϕ(0) = 0 is not satisfied.

Proof. Let us fix ϕ ∈ V with ϕ(T ) = 0. For every ε > 0 set

ϕε(t) =
⎧⎨
⎩

t
ε
ϕ(t) t ∈ [0, ε]

ϕ(t) t ∈ [ε,T ] .

Then ϕε ∈ V , ϕε(0) = ϕε(T ) = 0, and by (2.11)

−
T∫

ε

(u̇(t), ϕ̇(t))dt −
ε∫

0

(u̇(t), ϕ̇ε(t))dt +
T∫

ε

a(u(t), ϕ(t))dt +
ε∫

0

a(u(t), ϕε(t))dt

=
T∫

ε

(f (t), ϕ(t))dt +
ε∫

0

(f (t), ϕε(t))dt .

For a.e. t ∈ (0, ε) we have ϕ̇ε(t) = 1
ε
ϕ(t) + t

ε
ϕ̇(t). Since ϕ ∈ C([0, T ]; H), using the Hölder 

Inequality and the absolute continuity of the integral by (2.14) we obtain

∣∣∣
ε∫

0

(u̇(t), ϕ̇ε(t))dt

∣∣∣ ≤
(1

ε

ε∫
0

‖u̇(t)‖2dt
)1/2(1

ε

ε∫
0

‖ϕ(t)‖2dt
)1/2

+
( ε∫

0

‖u̇(t)‖2dt
)1/2( ε∫

0

‖ϕ̇(t)‖2dt
)1/2 → 0 ,

∣∣∣
ε∫

0

a(u(t), ϕε(t))dt

∣∣∣ ≤
ε∫

0

t

ε
|a(u(t), ϕ(t))|dt ≤ M0

ε∫
0

‖u(t)‖t‖ϕ(t)‖t dt → 0 ,

and
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 ∫ε ∫ε
∣∣∣
ε∫

0

(f (t), ϕε(t))dt

∣∣∣ ≤
0

t

ε
|(f (t), ϕ(t))|dt ≤

0

‖f (t)‖‖ϕ(t)‖dt → 0 .

Therefore, passing to the limit as ε → 0 we conclude that (2.15) holds. �
We now want to introduce a different notion of solution of (2.10) (see Definition 2.15), similar 

to the one given in [6, Definition 4.1], which does not use integration by parts with respect to 
time. It requires instead a precise definition of ü(t) for a.e. t ∈ (0, T ), and this is not trivial 
because of the time-dependent constraint u(t) ∈ Vt . We begin by introducing a new function 
space which will allow us to define the pointwise value of ü(t).

Definition 2.11. Given η ∈ L2(0, T ), let Wη be the space of functions u ∈ V such that for every 
τ ∈ [0, T ), the restriction uτ of u to (τ, T ) satisfies

uτ ∈ H 2((τ, T );V ∗
τ ) , (2.16)

‖üτ (t)‖∗
τ ≤ η(t) for a.e. t ∈ (τ, T ) . (2.17)

Note that if σ, τ ∈ (0, T ) with σ < τ then

üσ (t) = �στ üτ (t) for a.e. t ∈ (τ, T ) . (2.18)

Remark 2.12. Let u ∈ Wη for some η ∈ L2(0, T ). For every τ ∈ [0, T ) we consider uτ and üτ

as in Definition 2.11, and note that u̇τ = u̇ a.e. in (τ, T ). By standard properties of distributional 
derivatives of functions with values in Hilbert spaces (see, e.g., [2, Appendix]) there exists a 
negligible set Nτ in (τ, T ) such that

lim
h→0, t+h/∈Nτ

u̇(t + h) − u̇(t)

h
= üτ (t) strongly in V ∗

τ for every t ∈ (τ, T ) \ Nτ , (2.19)

u̇(t) − u̇(s) =
t∫

s

üτ (r)dr for every s, t ∈ (τ, T ) \ Nτ with s < t , (2.20)

where in the right-hand side we have a Bochner integral in the space V ∗
τ . Hence

‖u̇(t2) − u̇(t1)‖∗
τ = ‖u̇τ (t2) − u̇τ (t1)‖∗

τ ≤
t2∫

t1

‖üτ (s)‖∗
τ ds ≤

t2∫
t1

η(s)ds (2.21)

for a.e. t1, t2 ∈ (τ, T ) with t1 < t2. In particular, for τ = 0 we have

‖u̇(t2) − u̇(t1)‖∗
0 ≤

t2∫
t1

η(s)ds (2.22)

for a.e. t1, t2 ∈ (0, T ) with t1 < t2.
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The following proposition provides a pointwise definition of ü(t) as an element of V ∗
t . Similar 

results under slightly different hypotheses have been proved in [6, Lemma 2.2], [8, Lemma 2.2], 
and [14].

Proposition 2.13. Let η ∈ L2(0, T ) and let u ∈ Wη. Then there exist a set E of full measure in 
[0, T ] and, for every t ∈ E, an element ü(t) of V ∗

t such that

lim
h→0+, t+h∈E

u̇(t + h) − u̇(t)

h
= ü(t) weakly in V ∗

t , (2.23)

lim
h→0, t+h∈E

u̇(t + h) − u̇(t)

h
= �τt ü(t) strongly in V ∗

τ for every τ ∈ (0, t), (2.24)

‖ü(t)‖V ∗
t

≤ η(t) . (2.25)

Moreover, for every τ ∈ [0, T ] we have

üτ (t) = �τt ü(t) for a.e. t ∈ (τ, T ) . (2.26)

In other words, the second order distributional derivative üτ in the space V ∗
τ coincides a.e. on 

(τ, T ) with the function t �→ �τt ü(t).

In the proof of Proposition 2.13 we shall use the following result on increasing sequences of 
subspaces of separable Hilbert spaces proved in [6, Lemma 2.3].

Lemma 2.14. Let (Vt )t∈[0,T ] be an increasing family of closed linear subspaces of a separable 
Hilbert space V . Then, there exists a countable set S ⊂ [0, T ] such that for all t ∈ [0, T ] \ S, we 
have

Vt =
⋃
s<t

Vs. (2.27)

Proof of Proposition 2.13. Let D ⊂ (0, T ) be a countable dense set. For every τ ∈ D we con-
sider uτ and üτ as in Definition 2.11. By Remark 2.12 there exists a negligible set Nτ in (τ, T )

such that (2.19) and (2.20) hold for every s, t ∈ (τ, T ) \ Nτ with s < t . Since D is countable, 
there exists a negligible set N in (0, T ) such that (2.19) holds, with Nτ replaced by N , for every 
t ∈ (0, T ) \ N and every τ ∈ D, with 0 ≤ τ < t .

By (2.17) and (2.18), there exists a set E of full measure in (0, T ) such that

E ∩ N = ∅, (2.28)

every t ∈ E is a Lebesgue point of η , (2.29)

every t ∈ E satisfies (2.27), (2.30)

‖üτ (t)‖∗
τ ≤ η(t) < +∞ for τ ∈ D and t ∈ E ∩ (τ, T ) , (2.31)

üσ (t) = �στ üτ (t) for σ, τ ∈ D with σ < τ and t ∈ E ∩ (τ, T ) . (2.32)
8



Let us fix t ∈ E. By (2.27) and by the density of D we have

Vt =
⋃

τ<t,τ∈D

Vτ . (2.33)

Therefore, for every v ∈ Vt there exists an increasing sequence τk → t , with τk ∈ D, and a 
sequence vk converging to v strongly in Vt , with vk ∈ Vτk

for every k. We now define ü(t) ∈ V ∗
t

as the linear function from Vt into R given by

〈ü(t), v〉t := lim
k→∞〈üτk

(t), vk〉τk
for every v ∈ Vt . (2.34)

We have to show that the limit exists, that it does not depend on the approximating sequences 
τk, vk , and that it defines a continuous linear function on Vt . As for the existence of the limit, we 
show that 〈üτk

(t), vk〉τk
satisfies the Cauchy condition. Indeed, if k ≥ h we have, by (2.31) and 

(2.32),

|〈üτk
(t), vk〉τk

− 〈üτh
(t), vh〉τh

| = |〈üτk
(t), vk〉τk

− 〈�τhτk
üτk

(t), vh〉τh
|

= |〈üτk
(t), vk − vh〉τk

| ≤ η(t)‖vk − vh‖t .

A similar argument proves that the limit does not depend on the approximating sequences τk, vk . 
This implies the linearity of the limit with respect to v. By (2.31) it follows that

|〈ü(t), v〉t | ≤ η(t)‖v‖t , (2.35)

which gives ü(t) ∈ V ∗
t and proves the inequality (2.25).

If v ∈ Vτ for some τ ∈ D with τ < t we can take vk = v in (2.34) for every k such that τ ≤ τk . 
By (2.32) this implies that

〈üτk
(t), v〉τk

= 〈�ττk
üτk

(t), v〉τ = 〈üτ (t), v〉τ ,

hence (2.34) yields

〈ü(t), v〉t = 〈üτ (t), v〉τ for τ ∈ D, τ < t, and v ∈ Vτ , (2.36)

which gives

�τt ü(t) = üτ (t) for τ ∈ D, τ < t . (2.37)

Together with (2.19) this implies that

lim
h→0, t+h∈E

u̇(t + h) − u̇(t)

h
= �τt ü(t) strongly in V ∗

τ for every τ ∈ D, τ < t . (2.38)

By the density of D, for σ ∈ (0, t) there exists τ ∈ D with σ < τ < t . By applying �στ to both 
sides of (2.38) we obtain (2.24) (written with τ replaced by σ ), thanks to (2.2) and (2.3).
9



Let us now prove (2.23). By (2.33) for every ε > 0 and for every v ∈ Vt there exist τ ∈ D, 
with τ < t , and w ∈ Vτ , with ‖v − w‖t < ε. Let us fix h > 0, with t + h ∈ E. By (2.1) we have

∣∣∣〈 u̇(t + h) − u̇(t)

h
− ü(t), v

〉
t

∣∣∣ ≤
∣∣∣〈 u̇(t + h) − u̇(t)

h
− ü(t),w

〉
t

∣∣∣
+

∣∣∣( u̇(t + h) − u̇(t)

h
, v − w

)∣∣∣ +
∣∣∣〈ü(t), v − w

〉
t

∣∣∣ . (2.39)

By (2.1), (2.19), and (2.36) we have

lim
h→0, t+h∈E

〈 u̇(t + h) − u̇(t)

h
− ü(t),w

〉
t

= lim
h→0, t+h∈E

〈 u̇(t + h) − u̇(t)

h
− üτ (t),w

〉
τ

= 0 . (2.40)

Since t ∈ E and t + h ∈ E, for every τ ∈ D, with τ < t , by (2.20) and (2.28) we have

u̇(t + h) − u̇(t) =
t+h∫
t

üτ (s)ds .

By (2.17) this gives

‖u̇(t + h) − u̇(t)‖∗
τ ≤

t+h∫
t

η(s)ds ,

hence

(u̇(t + h) − u̇(t), z) ≤ ‖z‖τ

t+h∫
t

η(s)ds for every z ∈ Vτ .

Using (2.30) we obtain

(u̇(t + h) − u̇(t), z) ≤ ‖z‖t

t+h∫
t

η(s)ds for every z ∈ Vt .

Since ‖v − w‖t < ε, we obtain

∣∣∣( u̇(t + h) − u̇(t)

h
, v − w

)∣∣∣ ≤ ε

h

t+h∫
η(s)ds (2.41)
t

10



and, by (2.35),

|〈ü(t), v − w〉t | ≤ εη(t) . (2.42)

By (2.29), (2.39), (2.40), (2.41), and (2.42) we have

lim sup
h→0, t+h∈E

∣∣∣〈 u̇(t + h) − u̇(t)

h
− ü(t), v

〉
t

∣∣∣ ≤ 2εη(t)

By (2.31), taking the limit as ε → 0+ we obtain

lim
h→0, t+h∈E

∣∣∣〈 u̇(t + h) − u̇(t)

h
− ü(t), v

〉
t

∣∣∣ = 0 ,

which proves (2.23).
Let σ ∈ [0, T ]. By (2.37), for every τ ∈ D with σ < τ < T we have

�τt ü(t) = üτ (t) for a.e. t ∈ (τ, T ) .

Applying �στ to both sides of this equality, by (2.3) and (2.18) we obtain

�σt ü(t) = üσ (t) for a.e. t ∈ (τ, T ) ,

which, by the density of D, gives

�σt ü(t) = üσ (t) for a.e. t ∈ (σ,T ) ,

thus proving (2.26). �
Having defined ü(t) as an element of V ∗

t for a.e. t ∈ (0, T ), we can interpret (2.10) as an 
equality in V ∗

t to be satisfied for a.e. t ∈ (0, T ). This leads to the following definition which 
extends to Wη the notion introduced in [6].

Definition 2.15. A function u is a strong-weak solution of the wave equation (2.10) on the time 
interval [0, T ] if u ∈ Wη for some η ∈ L2(0, T ) and for a.e. t ∈ [0, T ]

〈ü(t), v〉t + a(u(t), v) = (f (t), v) for every v ∈ Vt , (2.43)

where for a.e. t ∈ (0, T ) the pointwise value of ü(t) is defined in Proposition 2.13.

In [6, Definition 4.1] the same notion of solution is considered assuming that the a priori 
bounds on ‖u(t)‖t , ‖u̇(t)‖, and ‖ü(t)‖∗

t are uniform with respect to t . Weaker a priori bounds 
were considered in [14].

In the rest of this section we shall prove that the notions of weak solution and strong-weak 
solution coincide.
11



Theorem 2.16. Every strong-weak solution according to Definition 2.15 is a weak solution ac-
cording to Definition 2.7.

Proof. Let u be a strong-weak solution of the wave equation (2.10). Since u ∈ V , we only have 
to check that (2.11) is satisfied. Let us fix ϕ ∈ V with ϕ(0) = ϕ(T ) = 0. We extend ϕ by setting 
ϕ(t) = 0 for t < 0. Let ε > 0 and let ϕε : [0, T ] → VT be defined by ϕε(t) = ϕ(t − ε). Then 
ϕε ∈ V by (H2),

ϕε(t) ∈ Vt−ε for a.e. t ∈ [ε,T ] , (2.44)

and ϕε(t) = 0 for t ∈ [0, ε].
Let us prove that

t �→ (u̇(t), ϕε(t)) is absolutely continuous on [0, T ], (2.45)

d

dt
(u̇(t), ϕε(t)) = (u̇(t), ϕ̇ε(t)) + 〈ü(t), ϕε(t)〉t for a.e. t ∈ [0, T ] , (2.46)

where the pointwise value of ü(t) is defined in Proposition 2.13.
First of all note that it is enough to prove that for every s ∈ [0, T − ε] properties (2.45)

and (2.46) hold with [0, T ] replaced by [s, s + ε]. By (2.44) we have ϕε(t) ∈ Vt−ε ⊂ Vs for 
a.e. t ∈ [s, s + ε] and, by the definition of �st , we have also 〈ü(t), ϕε(t)〉t = 〈�st ü(t), ϕε(t)〉s
for a.e. t ∈ [s, s + ε]. Therefore the restriction ϕε|(s,s+ε) belongs to L2((s, s + ε); Vs) and its 
distributional derivative belongs to L2((s, s + ε); H).

Let v := u|(s,s+ε). Then its distributional derivative v̇ belongs to L2((s, s + ε); H), by (2.16)
in Definition 2.11 its second order distributional derivative v̈ belongs to L2((s, s + ε); V ∗

s ),
and by (2.26) in Proposition 2.13 it satisfies v̈(t) = �st ü(t) for a.e. t ∈ (s, s + ε), hence 
〈v̈(t), ϕε(t)〉s = 〈ü(t), ϕε(t)〉t for a.e. t ∈ (s, s + ε). By Lemma A.1, with ψ = v̇ and ϕ = ϕε , 
we have that

t �→ (v̇(t), ϕε(t)) is absolutely continuous on [s, s + ε],
d

dt
(v̇(t), ϕε(t)) = (v̇(t), ϕ̇ε(t)) + 〈v̈(t), ϕε(t)〉s for a.e. t ∈ [s, s + ε] .

Since s ∈ [0, T − ε] is arbitrary, we obtain (2.45) and (2.46).
By the continuity of translations in L2 we have ϕε → ϕ in L2((0, T ); VT ) and ϕ̇ε → ϕ̇ in 

L2((0, T ); H). Therefore, since u̇ ∈ L2((0, T ); H), we obtain

(u̇(·), ϕε(·)) → (u̇(·), ϕ(·)) in L1((0, T )) , (2.47)

(u̇(·), ϕ̇ε(·)) → (u̇(·), ϕ̇(·)) in L1((0, T )) . (2.48)

Let us prove that

t �→ 〈ü(t), ϕε(t)〉t converges to t �→ 〈ü(t), ϕ(t)〉t in L1((0, T )). (2.49)

Since ϕε → ϕ in L2((0, T ); VT ), for every sequence converging to zero there exists a subse-
quence εj → 0 such that

ϕε (t) → ϕ(t) strongly in VT for a.e. t ∈ (0, T ) .

j

12



Since ϕεj
(t), ϕ(t) ∈ Vt for a.e. t ∈ (0, T ) and Vt is a subspace of VT , we have that

ϕεj
(t) → ϕ(t) strongly in Vt for a.e. t ∈ (0, T ) .

This implies that

〈ü(t), ϕεj
(t)〉t → 〈ü(t), ϕ(t)〉t for a.e. t ∈ (0, T ) .

On the other hand, since u ∈Wη, by (2.25) in Proposition 2.13 we have

|〈ü(t), ϕεj
(t)〉t | ≤ η(t)‖ϕεj

(t)‖T for a.e. t ∈ (0, T ) .

Since ϕε → ϕ in L2((0, T ); VT ), our claim (2.49) follows from the Generalized Dominated Con-
vergence Theorem and from the arbitrariness of the sequence converging to zero.

By (2.45)–(2.49) we obtain that the function t �→ (u̇(t), ϕ(t)) belongs to W 1,1(0, T ) and sat-
isfies

d

dt
(u̇(t), ϕ(t)) = (u̇(t), ϕ̇(t)) + 〈ü(t), ϕ(t)〉t for a.e. t ∈ [0, T ] .

Since t �→ d
dt

(u̇(t), ϕ(t)) and t �→ (u̇(t), ϕ̇(t)) belong to L1((0, T )) we deduce also that t �→
〈ü(t), ϕ(t)〉t belongs to L1((0, T )). As ϕ(0) = ϕ(T ) = 0 we obtain

T∫
0

〈ü(t), ϕ(t)〉t dt = −
T∫

0

(u̇(t), ϕ̇(t))dt . (2.50)

Since by (2.43) we have 〈ü(t), ϕ(t)〉t +a(u(t), ϕ(t)) = (f (t), ϕ(t)) for a.e. t ∈ [0, T ], integrating 
from 0 to T and using (2.50) we obtain (2.11). �

We now complete the proof of the equivalence of the two definitions.

Theorem 2.17. Every weak solution according to Definition 2.7 is a strong-weak solution ac-
cording to Definition 2.15.

Proof. Let u be a weak solution of the wave equation (2.10). We have to show that u ∈ Wη

for some η ∈ L2((0, T )) and that (2.43) holds. To this end, let us fix τ ∈ [0, T ), v ∈ Vτ , and 
ψ ∈ C1

c ((τ, T )). Then the function t �→ ϕ(t) := ψ(t)v belongs to V and ϕ(0) = ϕ(T ) = 0. Using
this function in (2.11) we obtain

−
T∫

τ

(u̇(t), v)ψ̇(t)dt +
T∫

τ

a(u(t), v)ψ(t)dt =
T∫

τ

(f (t), v)ψ(t)dt . (2.51)

For every t ∈ [τ, T ) let At
τ : Vt → V ∗

τ be the continuous linear operator defined by (2.6). Since 
u ∈ L2((0, T ); VT ), it follows that t �→ At

τu(t) from (0, T ) into V ∗
τ is weakly measurable. Since 
13



V ∗
τ is separable, by (2.7) we have that t �→ At

τu(t) belongs to L2((0, T ); V ∗
τ ). Hence, by (2.51)

we have

( T∫
τ

u̇(t)ψ̇(t)dt, v
)

=
〈 T∫

τ

At
τ u(t)ψ(t)dt, v

〉
τ
−

( T∫
τ

f (t)ψ(t)dt, v
)

,

where the first and the third integrals are Bochner integrals in H , while the second one is a 
Bochner integral in V ∗

τ . Since this equality holds for every v ∈ Vτ we deduce that

T∫
τ

u̇(t)ψ̇(t)dt =
T∫

τ

At
τ u(t)ψ(t)dt −

T∫
τ

f (t)ψ(t)dt .

Let uτ be the restriction of u to (τ, T ) as in Definition 2.11. The previous equality shows that 
uτ ∈ H 2((τ, T ); V ∗

τ ) and üτ (t) = −At
τu(t) + f (t) for a.e. t ∈ (τ, T ), which gives

〈üτ (t), v〉τ + a(u(t), v) = (f (t), v) for every v ∈ Vτ . (2.52)

Moreover, (2.7) gives

‖üτ (t)‖∗
τ ≤ M0‖u(t)‖T + C‖f (t)‖ , for a.e. t ∈ (τ, T ) , (2.53)

where C is the norm of the continuous immersion of H into V ∗
T . This shows that u ∈ Wη with 

η(t) := M0‖u(t)‖T + C‖f (t)‖.
Let us fix a countable dense set D in (0, T ). By (2.26) and (2.52) for every τ ∈ D and for a.e. 

t ∈ (τ, T ) we obtain

〈�τt ü(t), v〉τ + a(u(t), v) = (f (t), v) for every v ∈ Vτ .

By the definition of �τt this implies that for a.e. t ∈ (τ, T ) we have

〈ü(t), v〉t + a(u(t), v) = (f (t), v) for every v ∈ Vτ . (2.54)

By the countability of D, there exists a set E of full measure in (0, T ) such that (2.54) holds for 
every t ∈ E and for every τ ∈ D with 0 < τ < t .

By the density of D and Lemma 2.14 we may assume that for every t ∈ E we have

Vt =
⋃

τ<t,τ∈D

Vτ . (2.55)

Let us fix t ∈ E and v ∈ Vt . By (2.55) there exists an increasing sequence τk in D converging to 
t and a sequence vk converging to v strongly in Vt such that vk ∈ Vτk

for every k. By (2.54) we 
have

〈ü(t), vk〉t + a(u(t), vk) = (f (t), vk) for every k . (2.56)

Passing to the limit in k we obtain (2.43). �
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We conclude this section with a result that will be used to prove the existence of a weak solu-
tion to (2.10) satisfying some continuity conditions. For every Banach space X let Cw([0, T ]; X)

be the space of all functions u : [0, T ] → X that are continuous for the weak topology of X. By 
the Banach–Steinhaus Theorem we have Cw([0, T ]; X) ⊂ L∞([0, T ]; X).

Proposition 2.18. Let u ∈ Wη for some η ∈ L2((0, T )). Assume that u ∈ L∞((0, T ); VT )

and u̇ ∈ L∞((0, T ); H). Then, after a modification on a set of measure zero, we have u ∈
Cw([0, T ]; VT ) ∩ C([0, T ]; H) and u̇ ∈ Cw([0, T ]; H) ∩ C([0, T ]; V ∗

0 ).

Proof. We prove only that u̇ ∈ Cw([0, T ]; H) ∩ C([0, T ]; V ∗
0 ). By Remark 2.12 and by the as-

sumption u̇ ∈ L∞((0, T ); H) there exist a set N ⊂ [0, T ] of measure zero and a constant C > 0
such that for every s, t ∈ [0, T ] \ N with s < t we have

‖u̇(t) − u̇(s)‖∗
0 ≤

t∫
s

η(r)dr and ‖u̇(t)‖ ≤ C . (2.57)

Clearly the restriction of u̇ to [0, T ] \ N is strongly continuous in V ∗
0 . Let us prove that it is also

weakly continuous in H . Let tn be a sequence in [0, T ] \ N converging to t ∈ [0, T ] \ N . By 
(2.57) the sequence u̇(tn) is bounded in H , so a subsequence converges weakly in H . Since, by 
(2.57), u̇(tn) converges to u̇(t) strongly in V ∗

0 , we deduce that u̇(tn) converges to u̇(t) weakly
in H .

We now redefine u̇ on N in such a way that u̇ is weakly continuous in H and strongly continu-
ous in V ∗

0 . Let us fix s ∈ N and a sequence sn ∈ [0, T ] \N converging to s. By the first inequality
in (2.57) u̇(sn) is a Cauchy sequence in V ∗

0 , hence it converges to some v∗ strongly in V ∗
0 . By

the second inequality in (2.57) the sequence u̇(sn) is bounded in H , so a subsequence converges 
weakly in H . Therefore v∗ ∈ H and the whole sequence u̇(sn) converges to v∗ weakly in H . We 
define u̇(s) = v∗. A similar argument shows that u̇(s) does not depend on the sequence sn and 
that the function u̇ belongs to Cw([0, T ]; H) ∩ C([0, T ]; V ∗

0 ). �
3. Existence

In this section we prove the existence of a weak solution to (2.10) according to Definition 2.7. 
The solution we construct also satisfies additional regularity properties and the energy inequality.

Theorem 3.1. Given u(0) ∈ V0 and u(1) ∈ H , there exists a weak solution u to (2.10) on [0, T ]
satisfying the initial conditions u(0) = u(0) and u̇(0) = u(1), in the sense that

lim
h→0+

1

h

h∫
0

(‖u(t) − u(0)‖2
t + ‖u̇(t) − u(1)‖2)dt = 0 , (3.1)

and such that

u ∈ Cw([0, T ];VT ) ∩ C([0, T ];H) and u̇ ∈ Cw([0, T ];H) ∩ C([0, T ];V ∗
0 ) . (3.2)
15



Proof. The proof is based on a time-discretization procedure and follows closely the proof of [6, 
Lemma 3.3], with some simplifications due to the fact that we do not need any estimate on ü.

Step 1. Construction of the discrete-time approximants. Given n ∈ N, we set τn := T/n and 
t in := iτn, with i = −1, ..., n. For i = 1, . . . , n we set

f i
n := 1

τn

tin∫
t i−1
n

f (t)dt . (3.3)

We define ui
n for i = −1, ..., n inductively. First,

u−1
n := u(0) − τnu

(1) and u0
n := u(0) ; (3.4)

then, for i = 1, . . . , n, ui
n is a minimizer in Vtin

of the functional

u �→ 1

2

∥∥∥∥u − ui−1
n

τn

− ui−1
n − ui−2

n

τn

∥∥∥∥
2

+ 1

2
a(u,u) − (f i

n, u) . (3.5)

Using the coerciveness of a (see (2.5)), it is easy to see that, if τn < λ
−1/2
0 , then the functional

in (3.5) is convex and bounded from below by ν0
2 ‖u‖2

T − Ci
n, for a suitable constant Ci

n ≥ 0. 
The existence of a minimizer then follows from the lower semicontinuity of the functional with 
respect to the strong (and hence to the weak) convergence in Vtin

.
To simplify the exposition, for i = 0, . . . , n we define

vi
n := ui

n − ui−1
n

τn

. (3.6)

Step 2. Discrete energy estimates. The Euler equation for (3.5) gives

(vi
n − vi−1

n

τn

, ζ
)

+ a(ui
n, ζ ) = (f i

n, ζ ) for every ζ ∈ Vtin
. (3.7)

Taking ζ = ui
n − ui−1

n in (3.7) we obtain

‖vi
n‖2 − (vi

n, v
i−1
n ) + a(ui

n, u
i
n) − a(ui

n, u
i−1
n ) = (f i

n, ui
n − ui−1

n ) .

Since a(u, u) − a(u, v) = 1
2a(u, u) + 1

2a(u − v, u − v) − 1
2a(v, v), and a similar equality holds

for (·, ·), we deduce that

‖vi
n‖2 + ‖vi

n − vi−1
n ‖2 + a(ui

n, u
i
n) + a(ui

n − ui−1
n ,ui

n − ui−1
n )

= ‖vi−1‖2 + a(ui−1, ui−1) + 2(f i, ui − ui−1) .
n n n n n n

16



Summing from i = 1 to some j and using (3.4), we get

‖vj
n‖2 +

j∑
i=1

‖vi
n − vi−1

n ‖2 + a(u
j
n, u

j
n) +

j∑
i=1

a(ui
n − ui−1

n ,ui
n − ui−1

n )

= ‖u(1)‖2 + a(u(0), u(0)) + 2
j∑

i=1

(f i
n, ui

n − ui−1
n ) . (3.8)

Hence (2.5) implies that

‖vj
n‖2 + a(u

j
n, u

j
n) − λ0τ

2
n

j∑
i=1

‖vi
n‖2 ≤ ‖u(1)‖2 + a(u(0), u(0)) + 2τn

j∑
i=1

(f i
n, vi

n) . (3.9)

Step 3. Interpolating functions. We now define un as the piecewise affine function which satisfies 
un(t

i
n) = ui

n for i = −1, . . . , n and is affine on each interval [t i−1
n , t in] for i = 0, . . . , n. Therefore

un(t) = ui−1
n + (t − t i−1

n )vi
n for t ∈ [t i−1

n , t in], (3.10)

u̇n(t) = vi
n for t ∈ (t i−1

n , t in). (3.11)

Note that for every t ∈ [t i−1
n , t in], with i = 1, . . . , n, we have un(t −τn) ∈ V

ti−1
n

⊂ Vt . This implies 
that

un(· − τn) ∈ V . (3.12)

Moreover we consider the piecewise constant function ũn defined for t ∈ (t i−1
n , t in] and i =

0, . . . , n by

ũn(t) := ui
n = un(t

i
n). (3.13)

Rewriting (3.9) using these definitions and the Cauchy Inequality, for every t ∈ (t
j−1
n , tjn ) we

get

‖u̇n(t)‖2 + a(ũn(t), ũn(t)) − λ0τn

t
j
n∫

0

‖u̇n(s)‖2ds

≤ ‖u(1)‖2 + a(u(0), u(0)) +
t
j
n∫

0

‖f (s)‖2ds +
t
j
n∫

0

‖u̇n(s)‖2ds . (3.14)

Since for t ∈ (t
j−1
n , tjn ) we have ũn(t) = u

j
n = u(0) + ∫ t

j
n

0 u̇n(s)ds we obtain that for every ε > 0

‖ũn(t)‖2 ≤ (1 + ε)‖u(0)‖2 + 1 + ε

ε
t
j
n

t
j
n∫
‖u̇n(s)‖2ds ,
0
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which together with (3.14) gives

‖u̇n(t)‖2 + a(ũn(t), ũn(t)) + λ0‖ũn(t)‖2

≤ ‖u(1)‖2 + a(u(0), u(0)) + λ0(1 + ε)‖u(0)‖2 +
t
j
n∫

0

‖f (s)‖2ds + Cε

t
j
n∫

0

‖u̇n(s)‖2ds , (3.15)

where Cε = λ0T
1+2ε

ε
+ 1, and by (2.5) we have

‖u̇n(t)‖2 + ν0‖ũn(t)‖2
T ≤ Bε + Cε

t
j
n∫

0

‖u̇n(s)‖2ds , (3.16)

where Bε = ‖u(1)‖2 + a(u(0), u(0)) + λ0(1 + ε)‖u(0)‖2 + ∫ T

0 ‖f (s)‖2ds. Since t �→ u̇n(t) is 

constant on (tj−1
n , tjn ), we obtain

‖u̇n(t)‖2 + ν0‖ũn(t)‖2
T ≤ Bε + Cε

t∫
0

‖u̇n(s)‖2ds + Cετn‖u̇n(t)‖2 . (3.17)

If Cετn < 1/2 we obtain

1

2
‖u̇n(t)‖2 + ν0‖ũn(t)‖2

T ≤ Bε + Cε

t∫
0

‖u̇n(s)‖2ds . (3.18)

By the Gronwall Inequality it follows that

u̇n(t) is bounded in H uniformly in t and n , (3.19)

which, together with the fact that un(0) = u(0), implies that

un(t) and ũn(t) are bounded in H uniformly in t and n . (3.20)

By (3.18) we also have that

un(t) and ũn(t) are bounded in VT uniformly in t and n . (3.21)

Step 4. Convergence of the interpolating functions. From (3.12) and from the uniform bounds 
(3.19)–(3.21) it follows that the sequence un(· − τn) is bounded in V , hence, there exist a subse-
quence, not relabelled, and a function

u ∈ V (3.22)
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such that

un(· − τn)⇀u weakly in V . (3.23)

Let us prove that

ũn ⇀u weakly in L2((0, T );H) . (3.24)

We begin by observing that for every t ∈ [t i−1
n , t in] we have

ũn(t) − un(t − τn) = un(t
i
n) − un(t − τn) =

t in∫
t−τn

u̇n(s)ds , (3.25)

hence by the Hölder Inequality we have

‖ũn(t) − un(t − τn)‖ ≤ (2τn)
1/2‖u̇n‖L2((0,T );H) . (3.26)

Therefore by (3.19) we obtain that

ũn − un(· − τn) → 0 strongly in L∞((0, T );H) , (3.27)

which together with (3.23) implies (3.24). Similarly we can prove that

un ⇀u weakly in L2((0, T );H) . (3.28)

By (3.21) a subsequence of ũn converges to some ũ weakly in L2((0, T ); VT ). Since the 
embedding of VT in H is continuous, from (3.24) it follows that ũ = u, hence

ũn ⇀u weakly in L2((0, T );VT ). (3.29)

By (3.19) it follows that a subsequence of u̇n converges to some u∗ weakly in L2((0, T ); H). 
Using (3.28) it is easy to see that u∗ = u̇, hence

u̇n ⇀u̇ weakly in L2((0, T );H) . (3.30)

Moreover, from (3.19), (3.21), (3.29), and (3.30) it follows that

u ∈ L∞((0, T );VT ) and u̇ ∈ L∞((0, T );H) . (3.31)

Step 5. The limit function u satisfies the equation. To prove that u satisfies (2.11) it is enough 
to consider ϕ ∈ C∞

c ((0, T ); VT ) with ϕ(t) ∈ Vt for every t ∈ (0, T ), see Remark 2.9. For i =
1, . . . , n we take ϕ(t in) as test-function in (3.7) and sum the corresponding equalities obtaining 
that

n∑(vi
n − vi−1

n

τn

,ϕ(t in)
) +

n∑
a(ui

n, ϕ(t in)) =
n∑

(f i
n, ϕ(t in)) . (3.32)
i=1 i=1 i=1
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Since ϕ has compact support we can use the discrete version of the integration by parts in the 
first sum to obtain

n−1∑
i=1

(
vi
n,

ϕ(t in) − ϕ(ti+1
n )

τn

) +
n∑

i=1

a(ui
n, ϕ(t in)) =

n∑
i=1

(f i
n, ϕ(t in)) (3.33)

for n large enough.
Let now ϕn and ϕ̃n be the functions defined for t ∈ (t i−1

n , t in] and i = 1, . . . , n by

ϕn(t) := ϕ(ti−1
n ) + (t − t i−1

n )
ϕ(t in) − ϕ(ti−1

n )

τn

and ϕ̃n(t) := ϕ(tin) .

Then a(ui
n, ϕ(tin)) = a(ũn(t), ϕ̃n(t)) for every t ∈ (t i−1

n , t in]. Hence

n∑
i=1

a(ui
n, ϕ(t in)) = 1

τn

T∫
0

a(ũn(t), ϕ̃n(t))dt

and

n∑
i=1

(f i
n, ϕ(t in)) = 1

τn

T∫
0

(f (t), ϕ̃n(t))dt .

As u̇n(t) = vi
n and ϕ̇n(t) = 1

τn
(ϕ(t in) − ϕ(ti−1

n )) for every t ∈ (t i−1
n , t in), we have

(
vi
n,

ϕ(t in) − ϕ(ti+1
n )

τn

) = −(
u̇n(t), ϕ̇n(t + τn)

)

for every t ∈ (t i−1
n , t in), so that

n−1∑
i=1

(
vi
n,

ϕ(t in) − ϕ(ti+1
n )

τn

) = − 1

τn

T −τn∫
0

(
u̇n(t), ϕ̇n(t + τn)

)
dt .

Therefore, by (3.33) we obtain that

−
T −τn∫
0

(
u̇n(t), ϕ̇n(t + τn)

)
dt +

T∫
0

a(ũn(t), ϕ̃n(t))dt =
T∫

0

(f (t), ϕ̃n(t))dt . (3.34)

Since ϕn → ϕ strongly in H 1((0, T ); VT ) and ϕ̃n → ϕ strongly in L2((0, T ); VT ) we ob-
tain (2.11).

By Theorem 2.17 we have u ∈ Wη for some η ∈ L2((0, T )). Hence Proposition 2.18 and 
(3.31) imply (3.2).
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Step 6. Initial conditions. It remains to prove (3.1). To this aim it is enough to show that there 
exists a set N of measure zero in [0, T ] such that

u̇(tk) → u(1) strongly in H , (3.35)

u(tk) → u(0) strongly in VT (3.36)

for every sequence tk ∈ (0, T ) \ N converging to 0.
To prove these properties we first claim that there exist a set N1 of measure zero in [0, T ] and 

a positive constant M1 such that

‖u̇(t) − u(1)‖∗
0 ≤ M1t

1/2 (3.37)

for every t ∈ [0, T ] \N1 (we recall that ‖ · ‖∗
0 is the norm in V ∗

0 dual to the norm of V0). To prove
this estimate we use (3.7) and the fact that, by (3.21), ‖ui

n‖T is bounded uniformly with respect 
to n and i. This implies that there exists a positive constant C such that for every n and i

(vi
n − vi−1

n , ζ ) ≤ Cτn‖ζ‖0 + Cτn‖f i
n‖‖ζ‖0 for every ζ ∈ V0 . (3.38)

Hence for every i we have

‖vi
n − vi−1

n ‖∗
0 ≤ Cτn + C

tin∫
t i−1
n

‖f (s)‖ds . (3.39)

Iterating we obtain

‖vi
n − v0

n‖∗
0 ≤ Ctin + C

tin∫
0

‖f (s)‖ds . (3.40)

Taking into account (3.11) and the fact that v0
n = u(1), for a.e. t ∈ (0, T ) we get

‖u̇n(t) − u(1)‖∗
0 ≤ C(t + τn) + C

t+τn∫
0

‖f (s)‖ds , (3.41)

where we set f (s) = 0 for s > T . Integrating with respect to t on (α, β) ⊂ [0, T ] we obtain

β∫
α

‖u̇n(t) − u(1)‖∗
0dt ≤

β∫
α

(
C(t + τn) + C

t+τn∫
0

‖f (s)‖ds
)
dt . (3.42)

Since u̇n ⇀u̇ weakly in L2((0, T ); H) we have also u̇n ⇀u̇ weakly in L2((0, T ); V ∗
0 ). There-

fore, by lower semicontinuity, from (3.42) we obtain
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β∫
α

‖u̇(t) − u(1)‖∗
0dt ≤

β∫
α

(
Ct + C

t∫
0

‖f (s)‖ds
)
dt . (3.43)

By the arbitrariness of α and β it follows that there exists a set N1 of measure zero in [0, T ] such 
that for every t ∈ [0, T ] \ N1

‖u̇(t) − u(1)‖∗
0 ≤ Ct + C

t∫
0

‖f (s)‖ds ≤ Ct + Ct1/2‖f ‖L2((0,T );H), (3.44)

which gives (3.37).
By (3.19) we get that there exists a constant M2 such that ‖u̇n(t)‖ ≤ M2 for a.e. t ∈ (0, T )

and every n, hence

‖un(t) − u(0)‖ ≤ M2t for every t ∈ [0, T ] .
Arguing as in the proof of (3.44), from (3.28) we obtain that there exists a set N2 of measure 
zero in [0, T ] such that

‖u(t) − u(0)‖ ≤ M2t for every t ∈ [0, T ] \ N2 . (3.45)

Starting from (3.15), we now prove that there exists a set N3 of measure zero in [0, T ] such 
that

‖u̇(t)‖2 + a(u(t), u(t)) + λ0‖u(t)‖2

≤ ‖u(1)‖2 + a(u(0), u(0)) + λ0(1 + ε)‖u(0)‖2 +
t∫

0

‖f (s)‖2ds + CεM
2
2 t , (3.46)

for every t ∈ [0, T ] \ N3. We first observe that for every (α, β) ⊂ (0, T ) the functional

ζ �→
β∫

α

(
a(ζ(t), ζ(t)) + λ0‖ζ(t)‖2)dt

is continuous on L2((0, T ); VT ) thanks to (2.4). Since it is convex by (2.5), it is also lower 
semicontinuous in the weak topology of L2((0, T ); VT ). Since u̇n ⇀u̇ weakly in L2((0, T ); H)

and ũn ⇀u weakly in L2((0, T ); VT ), we can apply to (3.15) the arguments used in the proof of 
(3.44) and we obtain (3.46).

Let now N = N1 ∪ N2 ∪ N3. Given a sequence tk → 0 with tk ∈ [0, T ] \ N , by (3.46) we 
obtain

‖u̇(tk)‖2 + a(u(tk), u(tk)) + λ0‖u(tk)‖2

≤ ‖u(1)‖2 + a(u(0), u(0)) + λ0(1 + ε)‖u(0)‖2 +
tk∫

‖f (s)‖2ds + CεM
2
2 tk . (3.47)
0

22



By (3.19) a subsequence of u̇(tk) converges weakly in H . By (3.37) it follows that u̇(tk) con-
verges to u(1) strongly in V ∗

0 and weakly in H . By (3.31) we have that a subsequence of u(tk)

converges weakly in VT . By (3.45) it follows that u(tk) converges to u(0) strongly in H and 
weakly in VT .

On the space H × VT we consider the norm defined by

(h, v) �→ (‖h‖2 + a(v, v) + λ0‖v‖2)1/2 for every (h, v) ∈ H × VT ,

which is equivalent to the product norm by the properties of a (see (2.4) and (2.5)). Using the 
lower semicontinuity of the norm and (3.47), by the arbitrariness of ε we obtain

‖u̇(tk)‖2 + a(u(tk), u(tk)) + λ0‖u(tk)‖2 → ‖u(1)‖2 + a(u(0), u(0)) + λ0‖u(0)‖2 ,

which implies (3.35) and (3.36) and concludes the proof. �
Corollary 3.2. Assume that one of the following conditions is satisfied:

(a) a(u, u) ≥ 0 for every u ∈ VT ;
(b) the embedding of VT into H is compact.

Then for every u(0) ∈ V0 and u(1) ∈ H there exists a weak solution u to (2.10) on [0, T ] which 
satisfies

(1) the initial conditions: u(0) = u(0) and u̇(0) = u(1) in the sense of (3.1);
(2) the continuity conditions: u ∈ Cw([0, T ]; VT ) ∩ C([0, T ]; H) and u̇ ∈ Cw([0, T ]; H) ∩

C([0, T ]; V ∗
0 );

(3) the energy inequality:

1

2
‖u̇(t)‖2 + 1

2
a(u(t), u(t)) ≤ 1

2
‖u(1)‖2 + 1

2
a(u(0), u(0)) +

t∫
0

(f (s), u̇(s))ds (3.48)

for every t ∈ [0, T ].

Proof. Let un, ũn, and u be as in the proof of Theorem 3.1. Then u satisfies conditions (1) 
and (2). To prove the energy inequality (3.48) we use (3.8) and we obtain

‖u̇n(t)‖2 + a(ũn(t), ũn(t)) − λ0τn

tn(t)∫
0

‖u̇n(s)‖2ds

≤ ‖u(1)‖2 + a(u(0), u(0)) + 2

tn(t)∫
0

(f (s), u̇n(s))ds , (3.49)

where tn(t) = t
j
n for t ∈ (t

j−1
n , tjn ).
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If (a) holds, then for every (α, β) ⊂ (0, T ) the functional

ζ �→
β∫

α

a(ζ(t), ζ(t))dt

is lower semicontinuous in the weak topology of L2((0, T ); VT ). Therefore we can apply 
to (3.49) the arguments used in the proof of (3.44) and thanks to (3.19), (3.29), and (3.30) we 
obtain (3.48) for a.e. t ∈ (0, T ). This inequality can be extended to every t ∈ [0, T ] by using (2) 
and the lower semicontinuity with respect to weak convergence of the terms in the left-hand side 
of (3.48).

If (b) holds, then by the Aubin–Lions Theorem (see [1, Theorem 5.1] and [11, Theorem 12.1], 
revisited in [13, Section 8, Corollary 4]) ũn → u strongly in L2((0, T ); H). Adding λ0‖ũn(t)‖2

to both sides of (3.49) we obtain

‖u̇n(t)‖2 + a(ũn(t), ũn(t)) + λ0‖ũn(t)‖2 − λ0τn

tn(t)∫
0

‖u̇n(s)‖2ds

≤ ‖u(1)‖2 + a(u(0), u(0)) + λ0‖ũn(t)‖2 + 2

tn(t)∫
0

(f (s), u̇n(s))ds .

We now argue as in the proof of (3.46) and we obtain

‖u̇(t)‖2 + a(u(t), u(t)) + λ0‖u(t)‖2

≤ ‖u(1)‖2 + a(u(0), u(0)) + λ0‖u(t)‖2 + 2

t∫
0

(f (s), u̇(s))ds ,

for a.e. t ∈ (0, T ). This inequality can be extended to every t ∈ [0, T ] as in case (a) and this 
concludes the proof of (3.48). �
4. Uniqueness

In this section we give some conditions on the family of spaces (Vt)t∈[0,T ] which ensure 
the uniqueness of a weak solution to the Cauchy problem for the wave equation (2.10). These 
conditions describe the regular dependence of the spaces Vt on the parameter t and are expressed 
through the properties of some isomorphisms between Vt and V0 and of their time derivatives. 
More precisely, we assume that:

(U1) for every t ∈ [0, T ] there exists a continuous linear bijective operator Qt : Vt → V0 with 
continuous inverse Rt : V0 → Vt ;

(U2) Q0 and R0 are the identity map on V0;
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(U3) there exists a constant M1 independent of t such that

‖Qtu‖ ≤ M1‖u‖ for every u ∈ Vt and ‖Rtv‖ ≤ M1‖v‖ for every v ∈ V0, (4.1)

‖Qtu‖0 ≤ M1‖u‖t for every u ∈ Vt and ‖Rtv‖t ≤ M1‖v‖0 for every v ∈ V0. (4.2)

Since Vt is dense in H for every t , (4.1) implies that Qt and Rt can be extended to continuous 
linear operators from H into itself, still denoted by Qt and Rt .

The idea of the proof of uniqueness is to transfer a solution u(t) of the wave equation (2.10)
into the space V0 by considering the function u0(t) := Qtu(t). To study the equation satisfied by 
u0 we need to control the behaviour of the operators Qt and Rt with respect to t .

We begin with the properties of Rt , which are simpler to state because the operators Rt are 
defined in a space independent of t . We assume that:

(U4) for every v ∈ V0 the function t �→ Rtv from [0, T ] into H has a derivative, denoted by Ṙtv;
(U5) there exists η ∈ (0, 1) such that

‖ṘtQtv‖2 ≤ ν0(1 − η)‖v‖2
t for every t ∈ [0, T ] and v ∈ Vt , (4.3)

where ν0 is the constant given in (2.5).

By (U4) the function t �→ Rtv is continuous from [0, T ] into H . This property, together with 
(4.2), implies that t �→ Rtv is weakly continuous from [0, T ] into VT . By (U4) and (U5) Ṙt is a 
continuous linear operator from V0 into H and by the Mean Value Theorem for every 0 ≤ s <

t ≤ T and every v ∈ V0 we have the estimate

‖Rtv − Rsv‖ ≤ ν
1/2
0 (1 − η)1/2M1‖v‖0(t − s) . (4.4)

As for Qt , a technical difficulty is due to the fact that its domain of definition depends on t . 
By analogy with (4.4) we assume that:

(U6) there exists a constant M2 such that

‖Qtv − Qsv‖ ≤ M2‖v‖s(t − s) for every 0 ≤ s < t ≤ T and every v ∈ Vs ; (4.5)

(U7) for every t ∈ [0, T ) and for every v ∈ Vt there exists an element of H , denoted by Q̇tv, 
such that

lim
h→0+

Qt+hv − Qtv

h
= Q̇tv strongly in H . (4.6)

By (4.5) for every s ∈ [0, T ) and for every v ∈ Vs the function t �→ Qtv is continuous from [s, T ]
into H . This property, together with (4.2), implies that

t �→ Qtv is weakly continuous from [s, T ] into V0 . (4.7)
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By (4.5) we obviously have

‖Q̇tv‖ ≤ M2 ‖v‖t (4.8)

for every t ∈ [0, T ) and for every v ∈ Vt . Hence Q̇t is a continuous linear operator from Vt

into H . We shall see in Lemma 4.5 below that properties (U6) and (U7) can be used to obtain the 
differentiability of u0(t) = Qtu(t) with respect to t .

To formulate in an easier way the estimates leading to uniqueness it is convenient to introduce 
for every t ∈ [0, T ] the bilinear maps

α(t) : V0×V0 →R defined by α(t)(u, v) := a(Rtu,Rtv) , (4.9)

β(t) : V0×V0 →R defined by β(t)(u, v) := (Ṙtu, Ṙt v) , (4.10)

γ (t) : V0×H →R defined by γ (t)(u, v) := (Ṙtu,Rtv) , (4.11)

δ(t) : H×H → R defined by δ(t)(u, v) := (Rtu,Rtv) − (u, v) . (4.12)

By (2.4), (4.1), (4.2), and (4.3) there exists a constant M3 > 0 such that for every t ∈ [0, T ] we 
have

|α(t)(u, v)| ≤ M3‖u‖0‖v‖0 for every u, v ∈ V0 , (4.13)

|β(t)(u, v)| ≤ M3‖u‖0‖v‖0 for every u, v ∈ V0 , (4.14)

|γ (t)(u, v)| ≤ M3‖u‖0‖v‖ for every u ∈ V0, v ∈ H , (4.15)

|δ(t)(u, v)| ≤ M3‖u‖‖v‖ for every u, v ∈ H . (4.16)

We assume that there exists a constant M4 such that

(U8) the functions t �→ α(t)(u, v), t �→ β(t)(u, v), t �→ γ (t)(u, v), and t �→ δ(t)(u, v) are Lip-
schitz continuous and for a.e. t ∈ (0, T ) their derivatives satisfy

|α̇(t)(u, v)| ≤ M4‖u‖0‖v‖0 for every u, v ∈ V0 , (4.17)

|β̇(t)(u, v)| ≤ M4‖u‖0‖v‖0 for every u, v ∈ V0 , (4.18)

|γ̇ (t)(u, v)| ≤ M4‖u‖0‖v‖ for every u ∈ V0 and v ∈ H , (4.19)

|δ̇(t)(u, v)| ≤ M4‖u‖‖v‖ for every u, v ∈ H . (4.20)

We now consider the simplest example where conditions (U1)–(U8) are satisfied.

Example 4.1. Let � : [0, T ] → R be a C1,1 function such that

0 ≤ �̇(t) < 1 for every t ∈ [0, T ] . (4.21)

We set

�t = {(x1,0) : x1 ≤ �(t)} , Vt = H 1(R2 \ �t) , H = L2(R2) (4.22)

for every t ∈ [0, T ]. Then conditions (H1) and (H2) of Section 2 are satisfied.
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Let a : H 1(R2 \ �T ) × H 1(R2 \ �T ) → R be defined by

a(u, v) =
∫

R2\�T

∇u(x) · ∇v(x)dx .

Then conditions (H3) and (H4) of Section 2 are satisfied with λ0 = ν0 = 1. For every t ∈ [0, T ]
let Qt : H 1(R2 \ �t) → H 1(R2 \ �0) and Rt : H 1(R2 \ �0) → H 1(R2 \ �t) be defined by

(Qtu)(y) = u(y + �(t)e1) and (Rtu)(x) = u(x − �(t)e1) .

It is easy to see that conditions (U1)–(U7) are satisfied and that for every t ∈ [0, T ] we have

(Ṙtu)(x) = �̇(t)D1u(x − �(t)e1) for a.e. x ∈ R
2 .

In particular (U5) follows from this equality thanks to (4.21). This formula also allows to write 
explicit expressions for the bilinear functions (4.9)–(4.12), which imply that (U8) is a conse-
quence of the Lipschitz continuity of �̇.

A more general situation is considered in the following example.

Example 4.2. Let � be a bounded open set in Rn, let M be a C2 manifold of dimension n − 1
in Rn with Hn−1(M) < ∞, and let (�t )t∈[0,T ] be a family of closed subsets of � ∩ M such that 
�s ⊂ �t for 0 ≤ s < t ≤ T . To impose a regular dependence on time, we assume that there exist 
two functions �, � : [0, T ] × � → � of class C1,1 such that the following properties hold for 
every t ∈ [0, T ]:

(a) �(t, ·) and �(t, ·) are diffeomorphisms from � into �;
(b) �(0, x) = �(0, x) = x for every x ∈ �;
(c) �(t, ·) is the inverse of �(t, ·) on �;
(d) �(t, �0) = �t and �(t, �t) = �0;
(e) det∇�(t, x) > 0 for every x ∈ �, where ∇ denotes the spatial gradient;
(f) |�̇(t, y)|2 < 1 for every y ∈ �, where �̇ denotes the partial derivative of � with respect to t .

While conditions (a)–(e) are of qualitative nature, the quantitative condition (f) is related with 
the speed of the relative boundary of �t in M (see the previous example and [8], [3], [4]).

For every t ∈ [0, T ] let Vt = H 1(� \ �t) and H = L2(�) as in Example 2.2. Let a : H 1(� \
�T )×H 1(� \ �T ) → R be defined by

a(u, v) =
∫

�\�T

∇u(x) · ∇v(x)dx .

Then conditions (H3) and (H4) of Section 2 are satisfied with λ0 = ν0 = 1. For every t ∈ [0, T ]
let Qt : H 1(� \ �t) → H 1(� \ �0) and Rt : H 1(� \ �0) → H 1(� \ �t) be defined by

(Qtu)(x) = u(�(t, x)) and (Rtu)(x) = u(�(t, x)) . (4.23)
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It is easy to see that conditions (U1)–(U4), (U6), and (U7) are satisfied and that for every t ∈
[0, T ] and u ∈ H 1(� \ �0) we have

(Ṙtu)(x) = ∇u(�(t, x)) · �̇(t, x) for a.e. x ∈ �, (4.24)

hence we obtain

‖ṘtQtu‖2 ≤
∫

�\�t

|∇u(x)|2|�̇(t,�(t, x))|2dx , (4.25)

so that (U5) follows from assumption (f). To show that (U8) holds we observe that, after a change 
of variables, we can write the bilinear forms α , β , γ , and δ as

α(t)(u, v) =
∫

�\�0

∑
ij

aij (t, x)Diu(x)Djv(x)dx for u,v ∈ H 1(� \ �0)

β(t)(u, v) =
∫

�\�0

∑
ij

bij (t, x)Diu(x)Djv(x)dx for u,v ∈ H 1(� \ �0)

γ (t)(u, v) =
∫

�\�0

∑
i

ci(t, x)Diu(x)v(x)dx for u ∈ H 1(� \ �0), v ∈ L2(�)

δ(t)(u, v) =
∫

�\�0

d(t, x)u(x)v(x)dx for u,v ∈ L2(�) ,

for suitable functions aij , bij , ci , and d which are continuous on [0, T ]×� and Lipschitz contin-
uous in t uniformly with respect to x. By taking the derivatives with respect to t we obtain that 
(4.17)–(4.20) are satisfied.

We are now in a position to state the main result of this section.

Theorem 4.3. Assume (U1)–(U8). Given u(0) ∈ V0, u(1) ∈ H , and f ∈ L2((0, T ); H), there 
exists a unique weak solution u to the wave equation (2.10) on [0, T ] satisfying the initial condi-
tions u(0) = u(0) and u̇(0) = u(1) in the sense that

lim
h→0+

1

h

h∫
0

(‖u(t) − u(0)‖2 + ‖u̇(t) − u(1)‖2 )
dt = 0 . (4.26)

Remark 4.4. By Theorem 3.1 the unique solution satisfies the initial conditions in the stronger 
sense

lim
h→0+

1

h

h∫
0

(‖u(t) − u(0)‖2
t + ‖u̇(t) − u(1)‖2 )

dt = 0 .
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To prove the theorem we need the following lemma.

Lemma 4.5. Assume (U1)–(U3), (U6), and (U7). Let u ∈ V and for every t ∈ [0, T ] let u0(t) :=
Qtu(t). Then the following properties hold:

(a) u0 ∈ L2((0, T ); V0);
(b) u0 is absolutely continuous from [0, T ] into H ;
(c) u̇0 ∈ L2((0, T ); H) and u̇0(t) = Q̇tu(t) + Qtu̇(t) for a.e. t ∈ (0, T ).

Proof. We begin by proving that u0 : [0, T ] → V0 is weakly measurable. Given n ∈ N, we set 
τn := T/n and si

n := iτn, with i = 0, ..., n. For i = 1, . . . , n we define

ui
n := 1

τn

si
n∫

si−1
n

u(t)dt (4.27)

and we set u0
n = 0. Let un : [0, T ] → VT be the step function defined by un(t) = ui−1

n for t ∈
[si−1

n , si
n) and i = 1, . . . , n. Then un(t) ∈ Vt for every t ∈ [0, T ]. Since un → u in L2((0, T ); VT ),

a subsequence of un, not relabelled, satisfies un(t) → u(t) in VT for a.e. t ∈ [0, T ]. For every n
the function t �→ Qtun(t) from [0, T ] into V0 is weakly measurable by (4.7). Since Qtun(t) →
Qtu(t) = u0(t) for a.e. t ∈ [0, T ], we deduce that u0 : [0, T ] → V0 is weakly measurable. Since 
V0 is separable, u0 is measurable, so that (4.2) implies (a).

To prove (b) it is enough to show that for every 0 ≤ s < t ≤ T we have

‖u0(t) − u0(s)‖ ≤ M1

t∫
s

‖u̇(τ )‖dτ + M2

t∫
s

‖u(τ)‖T dτ . (4.28)

To this end we fix a sequence of partitions (t ik) with s = t0
k < t1

k < · · · < tkk = t with max(t ik −
t i−1
k ) → 0 such that

k∑
i=1

‖u(ti−1
k )‖T (t ik − t i−1

k ) →
t∫

s

‖u(τ)‖T dτ (4.29)

The existence of such a sequence of partitions is a consequence of the approximability of the 
Lebesgue integral by suitable Riemann sums (see Lemma A.2 with X = R, f = ‖u‖T , and 
g = 1). We have

‖u0(t) − u0(s)‖ = ‖Qtu(t) − Qsu(s)‖ ≤
k∑

i=1

‖Qtik
u(t ik) − Q

ti−1
k

u(t i−1
k )‖

≤
k∑

‖Qtik
(u(t ik) − u(ti−1

k ))‖ +
k∑

‖Qtik
u(t i−1

k ) − Q
ti−1
k

u(t i−1
k )‖
i=1 i=1
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≤
k∑

i=1

M1‖u(tik) − u(ti−1
k )‖ + M2

k∑
i=1

‖u(ti−1
k )‖T (t ik − t i−1

k ) ,

where the last inequality follows from (4.1) and (4.5). Hence

‖u0(t) − u0(s)‖ ≤ M1

t∫
s

‖u̇(τ )‖dτ + M2

k∑
i=1

‖u(ti−1
k )‖T (t ik − t i−1

k ) .

Passing to the limit for k → ∞ and using (4.29) we obtain (4.28).
To prove (c) we start by the equality

u0(t + h) − u0(t)

h
= Qt+hu(t + h) − Qtu(t)

h

= Qt+h

(u(t + h) − u(t)

h
− u̇(t)

)
+ Qt+hu̇(t) + Qt+hu(t) − Qtu(t)

h
.

For a.e. t ∈ (0, T ) the first term tends to 0 in H thanks to (4.1), while the last term tends to 
Q̇tu(t) for every t ∈ [0, T ) as h → 0+. It remains to show that

lim
h→0+‖Qt+hu̇(t) − Qtu̇(t)‖ = 0 . (4.30)

To this aim, using the density of Vt in H , for every ε > 0 we find vε ∈ Vt such that ‖vε − u̇(t)‖ <
ε. Then we have

‖Qt+hu̇(t) − Qtu̇(t)‖ = ‖Qt+h(u̇(t) − vε)‖ + ‖Qt+hvε − Qtvε‖ + ‖Qt(vε − u̇(t))‖
≤ ‖Qt+hvε − Qtvε‖ + 2M1ε

where the inequality follows from the choice of vε and (4.1). Passing to the limit as h → 0+, by 
(4.5) we get

lim sup
h→0+

‖Qt+hu̇(t) − Qtu̇(t)‖ ≤ 2M1ε .

By the arbitrariness of ε we obtain (4.30). �
Proof of Theorem 4.3. By linearity it is sufficient to prove the uniqueness in the case f = 0, 
u(0) = 0, and u(1) = 0. Let u ∈ V ⊂ C([0, T ]; H) be a weak solution of the wave equation (2.10)
in this case. Suppose by contradiction that there exists t ∈ [0, T ] such that u(t) �= 0 and let

t0 := inf{t ∈ [0, T ] : u(t) �= 0} . (4.31)

Then 0 ≤ t0 < T .
Let u0(t) := Qtu(t). By Lemma 4.5 we have that u0 ∈ L2((0, T ); V0) and u̇0 ∈ L2((0, T ); H). 

Since u(t) = Rtu0(t), arguing as in Lemma 4.5 we can prove that

u̇(t) = Ṙtu0(t) + Rt u̇0(t) for a.e. t ∈ (0, T ). (4.32)
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We fix t1 ∈ (t0, T ] and choose

ϕ0(t) =

⎧⎪⎪⎨
⎪⎪⎩

t1∫
t

u0(s)ds 0 ≤ t ≤ t1 ,

0 t1 ≤ t ≤ T .

(4.33)

It is clear that ϕ0 ∈ C([0, T ]; V0), ϕ̇0 ∈ L2((0, T ); V0), and ϕ̈0 ∈ L2((0, T ); H). Moreover, we 
have

ϕ̇0(t) =
{

−u0(t) 0 ≤ t ≤ t1

0 t1 ≤ t ≤ T
and ϕ̈0(t) =

{
−u̇0(t) 0 ≤ t ≤ t1

0 t1 ≤ t ≤ T .
(4.34)

By the definition of t0 and u0 and (4.34) it follows that

u0(t) = ϕ̇0(t) = ϕ̈(t) = 0 for a.e. t ∈ (0, t0) . (4.35)

For every t ∈ [0, T ] let ϕ(t) := Rtϕ0(t). Arguing as in Lemma 4.5 we can prove that ϕ ∈
L2((0, T ); VT ), that ϕ : [0, T ] → H is absolutely continuous, and that

ϕ̇(t) = Ṙtϕ0(t) + Rt ϕ̇0(t) for a.e. t ∈ (0, T ), (4.36)

hence ϕ̇ ∈ L2((0, T ); H). By the properties of Rt we also have ϕ(t) ∈ Vt for every t ∈ [0, T ]. 
Therefore ϕ ∈ V .

Since ϕ(T ) = 0, in view of (4.26) and Remark 2.10 we can use ϕ as test function in the wave 
equation (2.10) satisfied by u. By (4.32) and (4.36) this leads to the equality

T∫
0

(Ṙtu0(t) + Rt u̇0(t), Ṙtϕ0(t) + Rt ϕ̇0(t))dt =
T∫

0

a(Rtu0(t),Rtϕ0(t))dt ,

which by (4.9)–(4.12), (4.33)–(4.35) gives

t1∫
t0

α(t)(ϕ̇0(t), ϕ0(t))dt −
t1∫

t0

β(t)(ϕ̇0(t), ϕ0(t))dt −
t1∫

t0

γ (t)(ϕ̇0(t), ϕ̇0(t))dt

−
t1∫

t0

γ (t)(ϕ0(t), ϕ̈0(t))dt −
t1∫

t0

(u̇0(t), u0(t))dt −
t1∫

t0

δ(t)(u̇0(t), u0(t))dt = 0 . (4.37)

From (U8), using (4.13)–(4.16) and the properties of u0 and ϕ0, we obtain that the functions 
t �→ ‖u0(t)‖2, t �→ α(t)(ϕ0(t), ϕ0(t)), t �→ β(t)(ϕ0(t), ϕ0(t)), t �→ γ (t)(ϕ0(t), ϕ̇0(t)), and t �→
δ(t)(u0(t), u0(t)) are absolutely continuous on [t0, t1] and that for a.e. t ∈ (t0, t1)
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1

2

d

dt
‖u0(t)‖2 = (u̇0(t), u0(t))

1

2

d

dt

(
α(t)(ϕ0(t), ϕ0(t))

)
= 1

2
α̇(t)(ϕ0(t), ϕ0(t)) + α(t)(ϕ̇0(t), ϕ0(t)) ,

1

2

d

dt

(
β(t)(ϕ0(t), ϕ0(t))

)
= 1

2
β̇(t)(ϕ0(t), ϕ0(t)) + β(t)(ϕ̇0(t), ϕ0(t)) ,

d

dt

(
γ (t)(ϕ0(t), ϕ̇0(t))

)
= γ̇ (t)(ϕ0(t), ϕ̇0(t)) + γ (t)(ϕ̇0(t), ϕ̇0(t)) + γ (t)(ϕ0(t), ϕ̈0(t)) ,

1

2

d

dt

(
δ(t)(u0(t), u0(t))

)
= 1

2
δ̇(t)(u0(t), u0(t)) + δ(t)(u̇0(t), u0(t)) .

Hence, using the equalities ϕ0(t1) = 0, ϕ̇0(t0) = −u0(t0) = 0, from (4.37) we obtain

1

2
α(t0)(ϕ0(t0), ϕ0(t0)) + 1

2

t1∫
t0

α̇(t)(ϕ0(t), ϕ0(t))dt − 1

2
β(t0)(ϕ0(t0), ϕ0(t0))

−1

2

t1∫
t0

β̇(t)(ϕ0(t), ϕ0(t))dt −
t1∫

t0

γ̇ (t)(ϕ0(t), ϕ̇0(t))dt + 1

2
‖u0(t1)‖2 (4.38)

+1

2
δ(t1)(u0(t1), u0(t1)) − 1

2

t1∫
t0

δ̇(t)(u0(t), u0(t))dt = 0 .

By (4.12) we have ‖u0(t1)‖2 + δ(t1)(u0(t1), u0(t1)) = ‖Rt1u0(t1)‖2 = ‖u(t1)‖2, where in the
last equality we have used the definition of u0 and (U1). Therefore, (4.34) and (4.38) give

1

2
a(Rt0ϕ0(t0),Rt0ϕ0(t0)) − 1

2
‖Ṙt0ϕ0(t0)‖2 + 1

2
‖u(t1)‖2

≤ −1

2

t1∫
t0

α̇(t)(ϕ0(t), ϕ0(t))dt + 1

2

t1∫
t0

β̇(t)(ϕ0(t), ϕ0(t))dt (4.39)

−
t1∫

t0

γ̇ (t)(ϕ0(t), u0(t))dt + 1

2

t1∫
t0

δ̇(t)(u0(t), u0(t))dt .

By (2.5), (U3) and (4.3) we have

a(Rt0ϕ0(t0),Rt0ϕ0(t0)) − ‖Ṙt0ϕ0(t0)‖2 ≥ ν0η‖Rt0ϕ0(t0)‖2
t0

− λ0‖Rt0ϕ0(t0)‖2

≥ ν0η

2 ‖ϕ0(t0)‖2
0 − λ0M

2
1‖ϕ0(t0)‖2 .
M1
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Hence by (4.17)–(4.20) from (4.39) we obtain

ν0η

2M2
1

‖ϕ0(t0)‖2
0 + 1

2
‖u(t1)‖2 ≤ λ0M

2
1

2
‖ϕ0(t0)‖2 + M4

t1∫
t0

‖ϕ0(t)‖2
0dt

+M1M4

t1∫
t0

‖ϕ0(t)‖0‖u(t)‖dt + M2
1M4

2

t1∫
t0

‖u(t)‖2dt . (4.40)

We now want to apply the Gronwall Lemma in order to conclude that u = 0 on [t0, t1] provided 
t1 − t0 is small enough. To this end it is convenient to introduce the function

ψ0(t) :=
t∫

t0

u0(s)ds =
t1∫

0

u0(s)ds for t ∈ [t0, t1] , (4.41)

so that

ψ0(t) + ϕ0(t) = ϕ0(t0) = ψ0(t1) for every t ∈ [t0, t1] .

By using the Cauchy Inequality from (4.40) we obtain

ν0η

2M2
1

‖ψ0(t1)‖2
0 + 1

2
‖u(t1)‖2 ≤ λ0M

2
1

2
‖ψ0(t1)‖2

+C

t1∫
t0

‖ψ0(t) − ψ0(t1)‖2
0dt + C

t1∫
t0

‖u(t)‖2dt , (4.42)

where C is a constant depending only on M1 and M4. By (4.1) and (4.41) we have

‖ψ0(t1)‖2 ≤ (t1 − t0)

t1∫
t0

‖u0(t)‖2dt ≤ (t1 − t0)M
2
1

t1∫
t0

‖u(t)‖2dt ,

therefore (4.42) gives

ν0η

2M2
1

‖ψ0(t1)‖2
0 + 1

2
‖u(t1)‖2 ≤ 2C

t1∫
t0

‖ψ0(t)‖2
0dt + 2C(t1 − t0)‖ψ0(t1)‖2

0

+(C + λ0(t1 − t0)M
4
1

2
)

t1∫
t0

‖u(t)‖2dt , (4.43)

so that if t1 − t0 ≤ ν0η
2 we obtain
8CM1
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ν0η

4M2
1

‖ψ0(t1)‖2
0 + 1

2
‖u0(t1)‖2 ≤ 2C

t1∫
t0

‖ψ0(t)‖2
0dt + (C + λ0ν0ηM2

1

16C
)

t1∫
t0

‖u(t)‖2dt .

Let t∗0 := min{T , t0 + ν0η

8CM2
1
}. Since this inequality holds for every t1 ∈ [t0, t∗0 ], we can apply the 

Gronwall Lemma and deduce that ψ0(t) = 0 and u(t) = 0 for every t ∈ [t0, t∗0 ]. This contradicts 
the definition of t0 and concludes the proof. �
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Appendix A

In this section we prove two technical results that were used in the paper. Let V and H be 
Hilbert spaces with V ⊂ H and V dense in H . Let V ∗ denote the dual of V endowed with the 
dual norm. As V ⊂ H and V is dense in H , we have also that H ⊂ V ∗ and H is dense in V ∗. 
The scalar product in H is denoted by (·, ·) and the duality product between V ∗ and V is denoted 
by 〈·, ·〉. It is obvious that

(u, v) = 〈u,v〉 ∀u ∈ H , v ∈ V . (A.1)

The following lemma was crucial in the proof of Theorem 2.16.

Lemma A.1. Let ψ ∈ L2((0, T ); H) with ψ̇ ∈ L2((0, T ); V ∗) and ϕ ∈ L2((0, T ); V ) with ϕ̇ ∈
L2((0, T ); H). Let ω : (0, T ) → R be the function defined by

ω(t) = (ψ(t), ϕ(t)) for a.e. t ∈ (0, T ) .

Then ω ∈ W 1,1((0, T )) and

ω̇(t) = 〈ψ̇(t), ϕ(t)〉 + (ψ(t), ϕ̇(t)) for a.e. t ∈ (0, T ) . (A.2)

We begin by proving the following lemma on the approximability of the Lebesgue integral by 
Riemann sums. The oldest result in this direction is contained in [10]. Our statement is similar 
to [5, Lemma 4.12].

Given a bounded closed interval [a, b], for every irrational s ∈ (0, 1) we consider the finite set

Sk(s) := {a + (s + i
k−1 )(b − a) : i ∈ Z} ∩ (a, b) . (A.3)

Since s is irrational, it is easy to see that Sk(s) has k − 1 elements. Let

t1(s) < · · · < tk−1(s) (A.4)
k k

34



be an increasing enumeration of Sk(s). We set

t0
k (s) := a tkk (s) := b . (A.5)

Lemma A.2. Let [a, b] be a bounded closed interval, let (X, ‖ · ‖) be a Banach space with dual 
(X∗, ‖ · ‖∗), let f : [a, b] → X, g : [a, b] → X∗ be Bochner measurable functions such that ‖f ‖2

and ‖g‖2∗ are integrable, and let N ⊂ (a, b) be a set of measure zero. Then for a.e. s ∈ (0, 1) the 
subdivisions given by (A.3)–(A.5) satisfy

t ik(s) /∈ N for every i and k , (A.6)

and

lim
k→∞

k∑
i=1

t ik(s)∫
t i−1
k (s)

|〈g(t), f (t i−1
k (s)) − f (t)〉|dt = 0 , (A.7)

lim
k→∞

k∑
i=1

t ik(s)∫
t i−1
k (s)

|〈g(t), f (t ik(s)) − f (t)〉|dt = 0 , (A.8)

where 〈·, ·〉 denotes the duality product between X∗ and X In particular, for a.e. s ∈ (0, 1) we 
have

k∑
i=1

〈 t ik(s)∫
t i−1
k (s)

g(t)dt , f (t i−1
k (s))

〉
−→

b∫
a

〈g(t), f (t)〉dt , (A.9)

k∑
i=1

〈 t ik(s)∫
t i−1
k (s)

g(t)dt , f (t ik(s))
〉

−→
b∫

a

〈g(t), f (t)〉dt (A.10)

as k → ∞.

Proof. It is not restrictive to assume a = 0 and b = 1. We extend all functions to 0 outside [0, 1]. 
For every k ≥ 2 and for every s ∈ (0, 1) we have

∑
i∈Z

s+ i
k−1∫

s+ i−1
k−1

‖g(t)‖∗ ‖f (s + i−1
k−1 ) − f (t)‖dt

=
∑
i∈Z

1
k−1∫

‖g(s + i−1
k−1 + τ)‖∗ ‖f (s + i−1

k−1 ) − f (s + i−1
k−1 + τ)‖dτ .
0
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Note that there are at most 2k non-zero elements in the above sums, namely those with i ∈ Ik :=
{i ∈ Z : −k + 1 ≤ i ≤ k}. Integrating with respect to s we obtain

1∫
0

[∑
i∈Z

s+ i
k−1∫

s+ i−1
k−1

‖g(t)‖∗ ‖f (s + i−1
k−1 ) − f (t)‖dt

]
ds

≤
∑
i∈Ik

1
k−1∫
0

[ +∞∫
−∞

‖g(s + i−1
k−1 + τ)‖∗ ‖f (s + i−1

k−1 ) − f (s + i−1
k−1 + τ)‖ds

]
dτ (A.11)

= 2k

1
k−1∫
0

[ +∞∫
−∞

‖g(s)‖∗ ‖f (s − τ) − f (s)‖ds
]
dτ .

By the continuity of the translations in L2(R; X), for every ε > 0 there exists δ > 0 such that

+∞∫
−∞

‖f (s) − f (s − τ)‖2ds < ε (A.12)

for 0 < τ < δ. Thus, from (A.11) and (A.12) we obtain

lim
k→∞

1∫
0

[∑
i∈Z

s+ i
k−1∫

s+ i−1
k−1

‖g(t)‖∗ ‖f (s + i−1
k−1 ) − f (t)‖dt

]
ds = 0 .

Similarly we prove that

lim
k→∞

1∫
0

[∑
i∈Z

s+ i
k−1∫

s+ i−1
k−1

‖g(t)‖∗ ‖f (s + i
k−1 ) − f (t)‖dt

]
ds = 0 .

Therefore for a.e. s ∈ (0, 1) we have

lim
k→∞

∑
i∈Z

s+ i
k−1∫

s+ i−1
k−1

‖g(t)‖∗ ‖f (s + i−1
k−1 ) − f (t)‖dt = 0 , (A.13)

lim
k→∞

∑
i∈Z

s+ i
k−1∫

s+ i−1

‖g(t)‖∗ ‖f (s + i
k−1 ) − f (t)‖dt = 0 . (A.14)
k−1
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We fix an irrational s ∈ (0, 1) such that (A.13) and (A.14) hold, and s + i
k−1 /∈ N for every i ∈ Z

and every integer k ≥ 2.
Using (A.3)–(A.5) we have

k∑
i=1

t ik(s)∫
t i−1
k (s)

‖g(t)‖∗ ‖f (ti−1
k (s)) − f (t)‖dt

=
k−1∑
i=2

t ik(s)∫
t i−1
k (s)

‖g(t)‖∗ ‖f (ti−1
k (s)) − f (t)‖dt +

t1
k (s)∫
0

‖g(t)‖∗ ‖f (0) − f (t)‖dt (A.15)

+
1∫

tk−1
k (s)

‖g(t)‖∗ ‖f (tk−1
k (s)) − f (t)‖dt

The first term in the right hand side of (A.15) is bounded from above by the sum in (A.13) and 
therefore it tends to 0. The second one tends to 0 by the absolute continuity of the integral, while 
the third term satisfies

1∫
tk−1
k (s)

‖g(t)‖∗ ‖f (tk−1
k (s)) − f (t)‖dt =

tk−1
k (s)+ 1

k−1∫
tk−1
k (s)

‖g(t)‖∗ ‖f (tk−1
k (s)) − f (t)‖dt ,

and therefore it tends to 0 by (A.13). This proves that the left-hand side of (A.15) tends to zero 
and clearly this implies (A.7).

Similarly from (A.14) we deduce (A.8). Equalities (A.9) and (A.10) are easy consequences of 
(A.7) and (A.8). �
Proof of Lemma A.1. To prove that ω ∈ W 1,1((0, T )) and that (A.2) holds it is enough to show 
that for a.e. a, b ∈ (0, T ) with a < b we have

ω(b) − ω(a) =
b∫

a

〈ψ̇(t), ϕ(t)〉dt +
b∫

a

(ψ(t), ϕ̇(t))dt . (A.16)

Under our hypotheses on ψ and ϕ, using (A.1) we obtain that there exists a set N ⊂ (0, T ) of 
measure zero such that

ω(b) − ω(a) = (ψ(b),ϕ(b)) − (ψ(a),ϕ(a))

= 〈ψ(b) − ψ(a),ϕ(b)〉 + (ψ(a),ϕ(b) − ϕ(a)) (A.17)

=
〈 b∫

a

ψ̇(t)dt , ϕ(b)
〉
+

(
ψ(a),

b∫
a

ϕ̇(t)dt
)

for every a, b ∈ (0, T ) \ N with a < b.
37



We fix a pair a, b with these properties. By Lemma A.2 there exists an irrational s ∈ (0, 1)

such that the subdivisions (t ik(s))0≤i≤k of the interval [a, b] introduced in (A.3)–(A.5) satisfy 
(A.6)–(A.10) simultaneously for X = V , f = ϕ, g = ψ̇ , and for X = H , f = ψ , g = ϕ̇. By 
(A.6) and (A.17) we obtain

ω(b) − ω(a) =
k∑

i=1

ω(tik(s)) − ω(ti−1
k (s))

=
k∑

i=1

〈 t ik(s)∫
t i−1
k (s)

ψ̇(t)dt , ϕ(t ik(s))
〉
+

k∑
i=1

(
ψ(ti−1

k (s)),

tik(s)∫
t i−1
k (s)

ϕ̇(t)dt
)

By (A.9) and (A.10), passing to the limit as k → ∞ we obtain (A.16). This concludes the 
proof. �
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