Appendix S1

Synthetic table with all mathematical symbols and equations used in the main text

Variables and indices	Name	Definitions	Details	References
Basic variables				
Ν	Species richness	Number of species in a sample site		
p_i		Relative abundance of species <i>i</i> in the sample site	<i>i</i> ranges from 1 to <i>N</i> with $0 < p_i \le 1$ and $\sum_{i=1}^{N} p_i = 1$.	
d_{ij}		Functional dissimilarity between species <i>i</i> and <i>j</i>	For any <i>i</i> and <i>j</i> , we impose $d_{ij} = d_{ji}$ and $d_{ii} = 0$.	
S _{ij}		Functional similarity between species <i>i</i> and <i>j</i>	If d_{ij} is in the range $[0,1]$, we have $s_{ij} = 1 - d_{ij}$.	
Indices				
$S = 1 - \sum_{i=1}^{N} p_i^2$	Simpson diversity or Gini-Simpson diversity	S is the probability that two individuals drawn at random with replacement from the sampling site belong to different species.		Gini, 1912 Simpson, 1949
$D = \sum_{i=1}^{N} p_i^2$	Simpson dominance	<i>D</i> is the probability that two individuals drawn at random with replacement from the sampling site belong to different species.	D=1-S	Simpson, 1949
$Q = \sum_{i,j=1}^{N} p_i p_j d_{ij}$	Quadratic diversity	<i>Q</i> is the mean functional dissimilarity between two individuals drawn at random with replacement from the sample site.		Rao, 1982

$1-Q = \sum_{i,j=1}^{N} p_i p_j s_{ij}$	Functional homogeneity	Mean functional similarity between two individuals drawn at random with replacement from the sample site.		Ricotta et al., 2016			
$R = \sum_{i \neq j}^{N} p_i p_j s_{ij}$	Functional redundancy	Mean functional similarity between two randomly selected individuals of different species.	R = S - Q $D + R + Q = 1$	Ricotta et al., 2016			
$1-R=1-\sum_{i\neq j}^{N}p_{i}p_{j}s_{ij}$	Functional uniqueness	A measure of the lack of insurance against the loss of ecosystem processes due to local species extinctions	1 - R = D + Q	Ricotta et al., 2016 This paper			
Species' contributions to indices							
$q_i = \left(\sum_{j=1}^N p_j d_{ij}\right)$		Unweighted contribution of species <i>i</i> to functional diversity <i>Q</i>	$Q = \sum_{i=1}^{N} p_i q_i$	This paper			
$r_i = \left(\sum_{j=1, j \neq i}^N p_j s_{ij}\right)$		Unweighted contribution of species <i>i</i> to functional redundancy <i>R</i>	$R = \sum_{i=1}^{N} p_i r_i$ $p_i + r_i + q_i = 1$	This paper			

References

Gini, C. (1912). Variabilità e mutabilità: contributo allo studio delle distribuzioni e delle relazioni statistiche. Studi Economico-Giuridici, Facoltà di Giurisprudenza della Regia Università di Cagliari, Anno III, Parte II.

Rao, C.R. (1982). Diversity and dissimilarity coefficients: a unified approach. Theoretical Population Biology, 21, 24–43.

Ricotta, C., de Bello, F., Moretti, M., Caccianiga, M., Cerabolini, B.E.L., Pavoine, S. (2016). Measuring the functional redundancy of biological communities: a quantitative guide. Methods in Ecology and Evolution, 7, 1386–1395.

Simpson, E.H. (1949). Measurement of diversity. Nature, 163, 688.