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Asymptotic stability of kink with internal
modes under odd perturbation

Scipio Cuccagna and Masaya Maeda

Abstract. We give a sufficient condition, in the spirit of Kowalczyk—
Martel-Munoz—Van Den Bosch (Ann PDE 7(1):Paper No. 10, 98, 2021),
for the local asymptotic stability of kinks under odd perturbations. In
particular, we allow the existence of quite general configuration of inter-
nal modes. The extension of our result to moving kinks remains an open
problem.

1. Introduction
In this paper, we consider the problem of the asymptotic stability of kink
solutions of the (1 + 1) dimensional nonlinear scalar field model

Ouy + W/ (u1) =0, (t,2) € R*! | where O = 97 — 02 (1.1)
We can write the above problem as

_ 92 /
Oy <u1> :J< Opur + W (u1)> , UL, UD : RIF! — R, where J := < 0 1) .

u9 (15) —-10

(1.2)

Our nonlinear potential W is an even C'°° function such that

3¢ > 0s.t. W) =W'(¢) =0, w?:=W"(¢)>0and Vh € (—(,¢), W(h)> 0.
(1.3)

Under assumption (1.3), it is well known that an odd kink solution exists, see

Lemma 1.1 of Kowalczyk et al. [26].

Proposition 1.1. There exists odd H € C*(R) satisfying H" = W'(H). Fur-

thermore, we have H'(x) > 0, limy_oo H(z) = ¢, |H(z) — ¢| < e “I*l and

VE>1, [H® (2)] <p eIl
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Remark 1.2. By A < B, we mean that there exists C' > 0 s.t. A < B. The
implicit constant C' is independent of important parameters (e.g. in the claim
of Proposition 1.1, the implicit constants are independent of z but depends on

k).

The purpose of this paper is to study the case when the kink has internal
modes, but only in the context of odd solutions of (1.2). We set H = (H,0).
We denote by ®[z] the refined profile, introduced later in Sect. 1.2, where

z=1(21,...,2N), (1.4)

encodes the discrete modes and where ®[0] = H. In analogy to Kowalczyk et
al. [26] we set

EOdd = {U. € Llloc(R R2) : E Lgven(R)7
up € L23q(R), «/ W(up) € Lgven )} and (1.5)
Egy={ucEyq: u)eclLl? . (R), usc Liyy(R), u —H € L?1;(R)}.

(1.6)

For any u, there is a natural identification, a natural ¢rivialization in fact, of
the tangent space

TuEn = H' where H® := H3,4(R,R) x H:;H(R,R). (1.7)

There is a natural distance in Eg, given by |[u—v||sy1. Our main result is the
following.

Theorem 1.3. Under Assumptions 1.6, 1.8 and 1.12 given below, for any e > 0
and a > 0, there exists a §g > 0 s.t., for all odd functions

u(0) € Ey satisfying 0 := ||u(0) — H|lp < do (1.8)
and for the corresponding solution u of (1.2), we have

u(t) = ®[z(t)] + n(t) for appropriate z € C(R,CY) and n € C(R,H"),
(1.9)

and , for I =R and (z) = (1 + z2)Y/2,

/ e~ ()12 ) < €. (1.10)
and

lim z(t) =0 . (1.11)

t—oo

In Sect. 10 we show that the ¢® model, when near the ¢* model, satisfies
our repulsivity hypothesis.

Remark 1.4. e The local well-posedness of (1.2) in Ey in a small neigh-
borhood of the kink is known, see section 3.1 of Kowalczyk et al. [26].



e Under the assumption that u(0) is odd, then u(t) is odd for all ¢, by
uniqueness. For general perturbations and also for boosted kinks, Kowal-
czyk et al. [26] gave a sufficient repulsivity hypothesis for asymptotic
stability of the kinks. The repulsivity hypothesis in Kowalczyk et al. [26]
implies the absence of internal modes. The purpose of this paper is to
give a somewhat related repulsivity hypothesis in Assumption 1.6, which
allows the existence of internal modes. Unfortunately, at this time we are
unable to treat moving kinks, which were the main focus of Kowalczyk
et al. [26].

e The restriction to odd solutions can simplify considerably dispersion
problems, as for example is shown in Kowalczyk et al. [24]. In Germain
et al. [13,14], restricting to a smaller class of odd solutions of (1.2) and
assuming the absence of internal modes, but avoiding any explicit repul-
sivity hypothesis, there is a different kind of proof of asymptotic stability,
involving rates of decay of remainder terms. Such rates of decay cannot
hold with data like in (1.8), where the estimates and the asymptotic be-
havior on the solutions need to be invariant by time translation, like in
(1.10)—(1.11). Notice, also, that the literature which uses dispersive esti-
mates such as also [12,28] as many others, has been able so far to treat
only rather simple configurations of internal modes, usually at most a
single one, usually nicely positioned.

e Just before completion of this work we learned about Kowalczyk and
Martel [22], which in the case of a favorably placed internal mode, en-
compassing the ¢* model, simplifies and generalizes the proof in [23].
Our paper is independent from Kowalczyk and Martel [22]. Kowalczyk
and Martel [22] make a more efficient use of dispersivity, adapting this
notion to the context of odd solutions of our problem.

By and large, it should be possible to combine [22] with our framework
in the context of more general eigenvalues. Somewhat delicate, at least
in our context, should be the case when Lp has a resonance at w?, as for
example when Lp = —0% + w?, for instance in the case of the ¢* prob-
lem. In that case, our proof of Lemma 5.9 does not work, and perhaps the
statement is wrong. On the other hand, this lemma for us is important
when we bound the auxiliary variable g in Sect. 8, needed in our proof
of the Fermi Golden Rule.

Our proof of the Fermi Golden Rule is different from Kowalczyk and
Martel [22]. From a combinatorial view point, we are dealing with a more
complicated problem. In our framework, we need an expansion on the
transformed variable v, see (8.3), rather than the original variable u, to
take advantage of the cutoff factor x gz in front of the nonlinear terms
in the equation of g. The cutoff offsets the long range nature of the non-
linearity. Unfortunately, the commutator of cutoff and linear part of the
equation, generates an extra term, for example in (8.6), which is delicate.
Kowalczyk and Martel [22] study the Fermi Golden Rule in the initial
variable u, so they do not have this commutator. We are neither able
to generalize their FGR argument nor, exactly because of the long range



nonlinearity, to perform smoothing estimates directly in the original vari-
able u.

e Early work on kinks by Komech and Kopylova [20,21], treated special
cases with short range nonlinearities and within the framework of Buslaev
and Perelman [5]. We utilize Komech and Kopylova [19,20] when we
consider some smoothing estimates in Sects. 5 and 8.

e For a treatment of the sine-Gordon model with the Nonlinear Steepest
Descent method and techniques of Integrable Systems, see [6] and therein.

This paper is very similar to our previous [8], which in turn used the
dispersion theory of Kowalczyk et al. [25,26] (see also [27] for a very recent
paper related to [25]) combined with our theory on the Fermi Golden Rule
(FGR). In [8] and in a number of other papers, like [9], we have produced
a framework very effective in sorting out effortlessly the complexities of the
transient patterns of the internal discrete modes that can occur in stability
problems, and exploiting dissipation induced on the discrete modes, due to
their hemorrhaging energy which, by nonlinear interaction, leaks in the radia-
tion component where it escapes to infinity. Since Bambusi and Cuccagna [4],
which can be considered the first paper in our series, we avoided the decay
rates analysis of the early PDE papers on this subject, the earliest involving
internal modes being Buslaev and Perelman [5]. Notice that the rarely cited
paper [10] extends considerably the result in [4]. As mentioned above, decay
rates cannot exist in the Energy space. Kowalczyk et al. [23,25,26] as well
as KdV papers by Martel and Merle such as [37-39] work in energy space,
presumably to achieve a maximum of generality. In fact, in the presence of
discrete modes, the Energy Space framework tends to be conductive to rather
simple sorting out of the discrete modes. Early in the literature, for example
in [5,43] or Komech and Kopylova [20,21], as well as in many others such as,
for example [3], there was use of dispersive estimates. This is also related to
the fact that the earliest papers predate Keel and Tao [18], whose endpoint
Strichartz estimate has played an important role in the theory, even though
it can be replaced by smoothing estimates. Ultimately, the literature using
dispersive estimates, so far has not dealt with discrete mode configurations
which are not simple.

In the presence of short range nonlinearities, where it is possible to prove
dispersion using Strichartz estimates, papers such as [9] provide proofs of as-
ymptotic stability and scattering in the presence of very general discrete modes
configurations. In the case of possibly long range nonlinearities, like here and
[8], we use the Virial Inequalities framework originating in Merle’s school, in
the particular elaboration of Kowalczyk et al. We need that the linearization
L1 be, not directly dispersive, but, rather, dispersive after a sufficient number
of Darboux transformations, and not just a single one like in Kowalczyk et
al. [23] or Martel [36]. Darboux transformations are beautifully discussed by
Deift and Trubowitz [11], although their theory would be not sufficient in the
context of more general kinks than the ones discussed here.



Kowalczyk et al. [23] have been able to prove an asymptotic stability
result in the absence of dissipative operators, see also [44]. Furthermore, as we
remarked above, Kowalczyk and Martel [22] gave a new more general proof.
We refer also to [1,2,44].

In the context of the dispersion theory of papers such as [29-34,45],
and the framework in [12-14,28,35], if it works in the absence of dissipative
potentials, can obviously prove very useful. A natural problem would be to
prove some form of scattering for the remainders for solutions in Energy space,
with some Dollard like correction, at least in the border-like cases, see also [42].

1.1. Internal modes, Darboux transform and repulsivity assumption
We consider the Schrédinger operator

Ly =92+ W"(H). (1.12)
By differentiating H"” = W’'(H), we obtain H' € kerL;. Since H' > 0, we have
kerL; = span{H’'}. By Proposition 1.1, W”(H) — w? decays exponentially.
Thus, Ly will have at most finitely many eigenvalues, which, since we are in 1D,

are all simple. We label the eigenvalues corresponding to the odd eigenfunctions
as follows:

[} O'd(Llle ):{)\2 |jil N} with 0 < A\p <+ < Ay < w.
We set ¢; € LQdd to be the corresponding (odd, normahzed and R-valued)
eigenfunctions, i.e. Li¢; = Aj¢; and ||¢;]7. = 2x,) "

Remark 1.5. The repulsivity condition in [26] implies o, (L1) = {0} and,
therefore, N = 0.

In the following, we assume N > 1. The case N = 0 is contained in [26].
By the Sturm-Liouville theory L1 will have a number N equal to 2V or
2N +1, of eigenvalues. We consider )\ > 0 so that we have o4(L1) = {)\2

In this case we have )\1 =0and \; = )\QJ.
We set

0 0 1 i
Lea (B0 (00 wa e ().

This operator L; is relevant here because it is obtained linearizing (1.2) at H.
Indeed, substituting u = H 4 r into (1.2), we have

Oir = Lir + O(r?).

From now on, we will consider only odd functions. In particular L; will act
only on odd in z functions.
By direct computation, we see that

Llcpj = *i/\jéj and ngj = IAJE (114)
We consider
(t.8) = [ ‘t)g)ds, (1.15)
R
(f,g) = Re(f,8) (1.16)



and the symplectic form
(Jf,g). (1.17)
Notice that <J<I>j,ﬁj> =1.
It is easy to check
oa(Ly) ={£i)\; | j=1,---, N} and 0ess(L1) = i ((—00, —w] U [w,oo)(). |
1.18

Notice also that L; leaves the following decomposition invariant,
Lidd(Ra (CQ) = L(21iscr D Lflisp where Lfliscr = @)\EUP(Ll) ker (L1 - A) ’ (119)

where Lﬁisp is the (J-,-)-orthogonal of L2, . .

Thus, the linearized operator L has neutral eigenvalues, which will create
oscillating and non-decaying solutions in the linear level. Such oscillations will
last for long time in the full nonlinear problem, they will loose energy and os-
cillations will eventually decay. The Fermi Golden Rule (FGR) non-degeneracy
condition, which will be introduce in the next subsection, guarantees such phe-
nomenon, but it has to be combined with dispersion of the continuous modes.
To prove dispersion we use virial estimates of Kowalczyk et al. [26]. For this
we need to assume that the potential W”(H) is “repulsive” after a series of
Darboux transforms which eliminate the eigenvalues, as we explain now. The
discussion is similar to [8], which was based on [11].

1.1.1. Darboux transformations. We inductively define the Schrédinger oper-
ator L (j =1,---,N + 1) and a differential operator 4; (j = 1,---,N) as
follows.
1. L1 = -0+ W"(H) and A; = (H')~'9, (H'-). In this case, we have
Li = A A, (1.20)
and we define Ly by
L2 = ATAl
2. Inductively, given L with v the ground state of Ly, we set A :=
Yy '0; (1r+). Then
Li = ApAL — N} (1.21)
and we define
Lk+1 = AZA/c — }\%
3. In the last step, L, = ALAg — )\13\7. We set
Lp=Lg,, = —0% + Vp where, here, Vp — w? € S(R,R). (1.22)
For the above we refer to Section 3 of [11] and Proposition 1.9 of [8]. We
set

A=A Ay (1.23)
Then, by simple computation we obtain.
A*Ly = LpA*. (1.24)



We assume that Vp is repulsive, in the following sense:
Assumption 1.6. zV/,(z) <0 for all z € R and Vp is not identically zero.

Remark 1.7. In Kowalczyk and Martel [22] the above assumption is eased
into the following: there exists a v > 0 such that the operator —(1 — )92 —
2-1/ 22V} (x) has at most one negative eigenvalue. In order to prove their result,
Kowalczyk and Martel [22] modify the first virial inequality of [25]. This could
be arranged here as well, but our proof, in some important special case, might
face some problems, discussed in Remark 5.10 below.

1.2. Refined profile and Fermi Golden Rule assumption

As in the asymptotic stability of solitons for nonlinear Schrédinger equations
[8], we introduce the notion of refined profile.

We introduce some notation. For m = (m;,m_) € N3V, where Ny :=
N U {0}, we write m = (m_,m;) and |m| = Z;.V:l(mﬂ- +m_;). We set
el = (6]'1,"' ,(SjN,O,”' ,0) We set

A= ()‘17"'a)‘N7_)\1a"'7_)\N); (125)
and
N
)\~m::Z)\j(m+j —m_j). (1.26)
=1

We assume the following.

Assumption 1.8. For M be the largest number in N such that (M — 1)\ < w,
then for a multi-index m € N2V

|m| < M = (m-X)* # . (1.27)
We also assume that for m = (m,, m_) € N2V then

|mf| <2M andm-A=0=m; =m_. (1.28)

As in [8], we set

R:={mecN" | A -m| > w},

Runi={meR| AneRs.t.n<m},

I:={mecN2" |3n€ Ryjn, n <m}
NR = N3\ (TU Ry
Aj={meNR | X m=)\,}
Ap :={m € NR\{0} | A- m = 0},
where the partial order < is defined by

n<m & Vjnyi+n_; <my;+m_; and [n| < |m].

Lemma 1.9. The following facts hold.
1. If |{m| > M, with M the constant in Assumption 1.8, then m € 1.



2. Ruin and NR. are finite sets.
3. Ifm € NR, then |A-m| < w and if m € Ry, thenmy =0 orm_ = 0.
4. If m € A; then there is an € Ay with m = e’ +n.

Proof. If |m| > M, we can write m = e+ 3 with |a| = M. If o = (a1, x_)
and if we set n = (ny,n_) with ny = ay +a_ and n_ =0, then n- A >
MM\ > w. This implies that n € R and that there exists a € Ry,;, with a < n.
From |B| > 1 it follows that a < m and so m € I.

Obviously, from the 1st claim it follows that if m € Ry U NR then
lm| < M. Next we observe that m € NR implies j[m| < M and |[A - m| < w
and, by Assumption 1.8, |A - m| < w. If m € Ry, with, say, m - X > w,
then obviously from (1.26) we have my - A > w and it is elementary that
m = (my,0). Finally, from the first claim we know that if m € A, then
|m|| < M. From m - X — A; = 0 it follows from (1.28) that we have the last

claim. 0
For z € CV and m € N2, we write z™ = H;\’:l Z;ﬁﬂz—jm_j'
For f € C1(CV,X) (differentiability is taken in the real sense), we set

D, f(z)w = L f(z + ew).

Definition 1.10. We set |||z := ||||Ha1 i= [|e®(®)|| g where a; = 1\/w? — N}
and denote by 3° the corresponding spaces.

For b € R we write || - |2 := |2 || 12

We write ¥ := X! and denote by X* its dual.

For any s,0 € R, recalling the space H*® defined in (1.7), we will use also

other weighted spaces, defined by the norm || - || 2.0 := || (z)7 - || 2 and spaces
defined by the norm || - |3z := || ()7 - [|l2¢-
We pick a € (0,a;) and consider the following norm,
ax
10 = (=02 +sea® (30)) £ ) ~ WA 13 + 1713, . (1.29)

10

denoting by Y the corresponding space. For f = (f1, f2), we will consider the
norm

1£llss = I Alls + 120122, - (1.30)

10

We observe that H (), ¢; € X° for arbitraryn > 1,s € Rand j = 1,--- V.
The refined profile is an approximate solution of (1.2) which encodes the
kink with its internal modes.

Proposition 1.11. There exist ag > 0, functions {¢,, : m € NR} C I,
Zr € C®(Ben (0,00),CN) and {Anjtnenoufoy € R for j = 1,--- N with
do=H, ¢, =P, oz = b, and Aoj = Aj s.t. setting

o= () =en ol —at X a0, 131

meNR,|m|>1

b = P (1.32)



Zj = —1 E )\ijan +sz, Z = (51, s ,EN) and zZr = (lea s 7gNR)a

neAoU{0}
(1.33)
Zrl S > 2™, (1.34)
meRnin
Am = Am € R?Y (1.35)
where Am = (Am1, .-y AmN, —Ami;- -, —Amn ), and, for the remainder func-

tion R|z] defined by

1 [(—Ocp1[z] + W (p1[2]) 217
R[Z] =J ( ¢2[Z] ) Dzd)[ ] ) (136)

we have the expansion

Rz = Y z"Rm+Rilz, (1.37)
meERLin
with Ry = R € £°° and for any | € N
IR 2l i l2l Y (2™ (1.38)
meR yin
Furthermore,
(IR|[z], D,[2]¢) = 0 for any ¢ € CV. (1.39)

Proof. We insert (1.31) in (1.36), using (1.33). We expand

) - My (1)
W(H + dila]) = W) + W ()l + 30 D

(=2

where @[z] = (1[z], d2[z]). Then, for j = *(0,1),

9i[z] +O(|lz] "),

M
W(HE)(H) pUATR m m M+1
il = > 2"8m+ Y 27gm +O([2lMT)
(=2 meNR meRUI
|m|<M
where, for ¢, = (01m, Pom),
M
W(l+l) H —
=2 ’ m' - m‘eENR
m!+.4+m’=m
Using
(D,z™) (iAz) = im - A 2™, where Az := (A\121,...,ANn2N), (1.41)
we obtain
D,¢|z]z]z]) = —i Z m- Az, —1i Z m- A\,z"z2"¢,, — D,p[z]izg.
meNR meNR, nceAg
Let us set
~ —02¢1 (2] + W (p1]z o~
Riz]:=J ( 21 ]@[Z] (1] ])> — D,¢[z|(z — ZR). (1.42)



We expand now to get

Rz = ) 2R + > 2R + O(||z]| M), (1.43)
meNR 1"1;‘16‘1;{.%

where

~

Rm = (L1 +iX-m) ¢, — Em where
Em = Bm — Y idamgy,.

m'+n’=m
m’eNR, n’€Ag

We seck Ry = 0 for m € NR. For lm| = 1 the equation reduces to
(Ly +iX-m) ¢, = 0, so that we can set ¢, = ®; and ¢5; = ®,. Let us
consider now |m| > 2 with m ¢ Uévzl (A; UA;). In this case let us assume by
induction that ¢,,, and Apy have been defined for |m’| < |m| and that they
satisfy (1.32)—(1.35). Then, from (1.40) we obtain gm = gy, and Em = Em- We
can solve Ry = 0 writing ¢, = (L1 +iA-m) " Em. By A-m = -\ - m, we
conclude ¢ = @,

Let us now consider m € A;. We assume by induction ¢,,, have been
defined for |m’| < |m| and so too Ay for |n’|| < ||m||—1. Then, for m = n+e’
where n € Ay, ﬁm = 0 becomes

(Ll + 1)\J) (bm = 71)\,1 . ej'l‘j - ICm with
Km = gm — > Ay -m' . (1.44)

m’+n':m
m’'eNR,|m’|>2, n'€Ay

This equation can be solved if we impose (JEm,Ej) = 0, that is, for Ay, =
An - €,

—iAn; (J<I> D ) —iAnj(—i) = =An; = (JICm,Ej),
which is true for Anj =
— (JKm, ®;). Then we can solve for ¢, = — (Iy +i)\j)_1 Km in the com-
plement, in (1.19), of ker(L; —i\;).
We want to show that A,; € R. For the corresponding m € Xj7 we have

(Ly —i)\}) ¢ = —idAn - & ®; — Ky with
Ko := grr — Z Ay - T oy (1.45)

m’+n'=m
m’eENRgy, n'€Ag

Notice that by induction Kpy = Kp,. Since A, -& = —Anj, taking the complex
conjugate of (1.44) we obtain

(Ly —i)\') 1)\nJ<I’ — K and
(Ly )¢m A ®; — Km-
Applying (J-, ®,) on both the last two equations, we obtain
iMnj (J®;,®,) = (IKm, ®;) and iXn; (JB;,®;) = (JKm, ®)) .

(1.46)

10



Hence A\p; = an and we have proved that A\,; € R.
Since the equations in (1.46) are the same, we conclude ¢ur = @y,

~

We consider now R[z] = R[z] — D,¢[z]zr where we seek zp so that (1.39) is
true. This will follow from

<J’ﬁ’,[z]7 Dz¢[z]c> — (JD,¢|z|zr, D,¢[z]¢) = 0 for the standard basis

¢ =ey,ieq,...,enN,len.

Since the restriction of (J-,-) in L2, is a non-degenerate symplectic form

and from ¢,; = ®; and ¢g; = ®;, the Implicit Function Theorem guarantees
the existence of zp € C®(Ben (0, aq), CY) with zz(0) = 0 for a sufficiently
small og > 0. Furthermore, from the last formula and from the fact that in
the expansion (1.43) we have Rm = 0 for all m € NR, we obtain the bound
(1.34). This in turn implies expansion (1.37) and bound (1.38). O

Let us consider now the expansion (1.37). An important assumption,
related to the Fermi Golden Rule (FGR), is the following.

Assumption 1.12. We assume that for all m € Ry,

> [V m = R, (o /K m) = )

o==+1
+(Ran)a(o VA m)? —?)]| > 0,

where (Rm); are the two components of Ry, for j = 1,2 and we are taking
the distorted Fourier transform associated to operator Li, for which we refer
to Weder [46].

2. Modulation and transformed equations
For small a € (0,1) we set

My ={¢[z] | z € Ben (0,a)}, where Ben (0,0) := {w € CV | |w| < a}
We first observe the following.

Lemma 2.1. There is an ag € (0,1) such that for o € (0, o) the map z — @[z]
in an embedding Ben (0, ) — Eg.

Proof. 1t is clear that the map is smooth. Next we observe that for a > 0
sufficiently small, the above map Bcn(0,«) — Eg is an embedding. This
follows from the fact that the partial derivatives computed at z = 0 span
L2,..., which is symplectic with respect to the form (J-, ). O

We set
He[z] .= {uc H+ %" | V¢ € CV, (Ju, D,¢[z]¢) = 0}. (2.1)

11



Lemma 2.2. (Modulation) There exists 6 > 0 s.t. there exists z(-) € C™
(Bg, (0,6),CN) s.t.

n(u) :=u— ¢[z(u)] € H.[z(u)] (2.2)
and, leaving implicit the dependence of z and m on u,

2]+ [nller ~ flu = Hllp. (2.3)

Proof. For zjr = Re(z;) and z;; = Im(z;), consider a function F'(u,z) with
components

(J(u—olz]),0.,,plz]) for j=1,.. . NandJ=R,1I. (2.4)

Then F € C* (EH X (CN,]RZN), trivially we have F'(H,0) = 0 and the Jaco-
bian matrix 8F ~(H, 0) a non-degenerate N x N matrix, exactly because, for the
space in decr n (1.19), the form (J-,-) is symplectic. Then, by Implicit Func-
tion Theorem, there exists the desired function z(u) such that F'(u,z(u)) =0,
i.e. which satisfies (2.2), with z(H) = 0. The fact that |z|+||n]|3 < [[lu—H|4p
follows from the Lipschitz regularity of u — (z(u),n(u)) at H, while we have

lu—Hllp = [[@[z] —H+ 1l < [|@[z] — Hllpr + [[nllser < 2]+ [0l

O
Substituting u = ¢[z] + 1, we obtain
om + Dolz)(z —z) = Lin + (L[z] — Ly)n + JF[z,n] + R[z], (2.5)
where
Liz] = JH[z], H[z] ( O + t WD 1) (2.6)
pia. = (1 ’“) where Fi[z,m] i= W'(¢ulz] + ) — W' (61]2])
—W"(p1l2])n (2.7)

We denote by P. the projection onto thsp associated to the splitting
(1.19) and let Py =1— P..

Remark 2.3. Notice that L; = diag(L1, L1) commutes with Ly and with the
resolvent Ry, (s) := (L; — <)~ for ¢ in the resolvent set of Ly. It then follows
that L; commutes with the projections P; and P..

Lemma 2.4. (Inverse of P.) There exists an oy > 0 and R[z] € C* (Ben (0, ap),
L(L?)) s.t. Rlz]P. otz PeRlEl p siy- = 1lp sy for all 1 € No
and

[1R[z] = sty S |2l (2.8)
Proof. Let us write, summing on repeated indexes,
Rlz] =1+ (J-,Cjalz]) 0., ,¢[0], with j=1,...,N, A= R, I,z := Rez;

and z;7 = Im z;.
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Then R[z]0 € H.[z] for all 8 € L? (R, C?) is equivalent to
<J0 +3(36,C;al2)) 0., $[0], 0., ,A,¢[z]> —0forallj =1,...,NJA =R, I
or, equivalently, for all 8 € L2 ,(R,C?)
((30,C;l2)) 30, ,0[0), 8- , , $l2] ) = (36, (30.,,$[0], 0., , $l2]) Cjala]) =
~(16.0.,,,90),
that is, still summing on the repeated indexes j =1,...,N, A= R, I,

(30.,.,800],0.,,, ¢[z] ) Csl2]
—0;,, ,, @[z for all j=1,...,NJA =
By the invertibility of the matrix {<J82JA¢[ l,0.. o ¢[z]>}, this equation has

a solution for |z| small, which is unique. So z — C} 4[z] is smooth near 0 with
values in X! for all [ € Ny. We conclude R|z] € £ ((21)*,Hc[z]). Now

P.R[z] = P.+ (J-,Cj4lz]) P.0., ,¢[0] = P,

so it equals 1|p 5. when restricted in P.(2Y*, and in particular for [ = 1.
Next, notice that for 8 € H.[z], we have R[z]P.0 € H.[z] with P.0 =

P.R[z]P.0. Since, for |z| small, P, is an isomorphism from H.[z] to L3;,,,, we
have R[Z]PC|HC[Z] = ].‘Hc[z]. D
We set § = P.n (and thus n = R[z]n). Then, i satisfies
om=Iin+ » z"P.Rm+Ryg, (2.9)
meRmin
where
R; = P,R1[z] + P.JF + P,(L[z] — L)y — P.D|z](% — Z) + P.Ly(R[z] — 1)7.
(2.10)
We set
T = (ied,) "N A" and (2.11)
v :=Txg27. (2.12)
Then, also multiplying by the imaginary unit i, we obtain
i0,v =iLpv+ > z™iRm + iRy, (2.13)
meERmin
where
0 1
e () o
Run := Txp2P-Rum and (2.15)
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0
~T(2Xpa0s + X )it + (i202) ™ [V, (i202)™ | 00
(2.16)

Before stating our main estimates, we state the following orbital stability re-
sult, which follows from the Modulation Lemma 2.2 and the Orbital Stability
Theorem in [26], in fact also the classical [15].

Rv = TXBQPcRﬁ + <

Proposition 2.5. (Orbital stability) There exist C > 0 and dy > 0 such that,
for § := ||u(0) — H||3pr < do the claim in line (1.9) is true for allt € R and
we have

2]l Lo &) + 1Moo &, 1) < Cod. (2.17)
]

Notice that the above result and (1.10), which will be proved below, along
with Lemma 1.9 guarantee by elementary arguments the limit (1.11). So here
the main point is (1.10) for I = R,.

3. Main estimates and proof of Theorem 1.3

The proof of (1.10) in Theorem 1.3 is by means of a continuation argument.
In particular, we will show the following.

Proposition 3.1. Assumptions 1.6, 1.8 and 1.12 are given. Then for any small
€ > 0 there exists a dg = do(€) s.t. if (1.10) holds for I = [0,T] for some
T > 0 and for § € (0,d0) then in fact for I = [0,T] inequality (1.10) holds for
e replaced by €/2.

Theorem 1.3 is a corollary of Proposition 3.1.

Proof. By completely routine arguments, which we skip, it is possible to show
that Proposition 3.1 implies (1.10) with I = [0,00). The time reversibility of
the system, yields immediately (1.10) for I = R. Finally, (1.11) follows from the
integrabililty of |z;|"™ where m; is the smallest integer satisfying w < m;\;,
which follows from the FGR estimate given in Proposition 3.7 below and the
boundedness of z which can be easily obtained from the modulation equation
and orbital stability. O

We set x € Cen(R) to satisfy 15<1 < x < 1jz<2 and x/(z) < 0 for

even

x> 0. For C' > 0,

]

Golo) =ew (<5 1= x@)) o) = [ Gwan G

We will consider constants A, B,e > 0 satisfying

log(6™") > log(e ') > A>B*>>B>exp(c ') > 1 (3.2)
We will denote by o.(1) constants depending on & such that
e—0"
0:(1) —— 0. (3.3)

14



We set
w=(an, &:=xp2(BV. (3.4)
We will prove the following continuation argument.

Proposition 3.2. Assumptions 1.6, 1.8 and 1.12 are given. Then for any small
€ > 0 there exists a 69 = 0p(€) s.t. if in I = [0,T] we have

Iz = Zllrey + D 2™z + 1€l a5 + I1Wlegs <€ (3.5)

meERmin
then for 0 € (0,0¢) inequality (3.5) holds for e replaced by o.(1)e where oc(1)
="

Notice that Proposition 3.2 implies Proposition 3.1. In the following, we
always assume the assumptions of the claim of Proposition 3.2, which are true
for T' > 0 small enough.

The following is proved is Proposition 9.1 of [8].

Proposition 3.3. (Coercivity) We have
_B
S léills + e =0 w2 (3.6)

O

lwillz2

a_
10

In analogy to [8], we now consider essentially two virial estimates, one for
w and the other for &. The first is based directly on the equation for 1, (2.9).

Proposition 3.4. [1st virial estimate] We have

lwillz2r,z2) + lwall 2,2 , ) S 0e(1)e
10

Fllwillegee o+ D, Z™leew) + 611z — 2l 2y (3.7)
1 meERmin

The second virial estimate, involves the transformed problem (2.13).
Proposition 3.5. (2nd virial) We have

€23 S 0-Wet 30 N2 e + 0:(Dlla — Zl o +0e (DW= 5

mERmin
(3.8)
We will also need a control of modulation parameters.
Proposition 3.6. We have
12 = zl[2(1) = 0 (DIl 21,22, )- (3.9)

10

The last ingredient is the FGR estimate.
Proposition 3.7. (FGR estimate) We have

> 2™ ey = o-(1)e. (3.10)

meERmin
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3.1. Proof of Proposition 3.2 assuming Propositions 3.4-3.7
By (3.9)-(3.10) and by the relation between A, B, e, ¢ and § in (3.2), we have
2 =22+ Y 2™ 2 < 0-(De. (3.11)
mcRnin

Entering this in (3.8) we get

1€l 121 5 < 0=(1)e (3.12)

which, fed in (3.6), yields
leHL2(1,L3%) <o (1)e.
Using this in (3.7), we obtain
|willL2(r,02) + ||w2||L2(1,L31%) < oc(1)e.

This and the previous one together, yield

Wil p2r 5 < 0(1)e. (3.13)
Taken together, (3.11)—(3.13) yield the improvement o.(1)e of the statement
of Proposition 3.2, concluding the proof. O

We now turn to the proofs of Propositions 3.4-3.7. The structure of the
proofs is very similar to the analogous ones in [8]. In particular, Proposi-
tions 3.4-3.5 are very close to Kowalczyk et al. [25]. The proof of Proposi-
tion 3.7 requires the introduction of an additional variable g, which, like in
[8], is bounded using smoothing estimates: in particular here we borrow from
Komech—Kapytula [19,20].

4. First virial estimate, for w
Recall (f,g) = Re(f,g), see (1.16). For A > 1 to be determined, we set

I IR 10
Il (77) = 5 <Jnv SA77> y 1—2(") = 5 <J777 Cg0377> ) with 03 = (O _1) )
where A=t = A-1 + & and

1
Sy = igafél + ©A0,.

Remark 4.1. By the definition of A and (3.1), we have (i = Cla.

Lemma 4.2. For any c € (0,1), we have

d - 1 _ m .~
T (@) + s lwilZe Sllwilfz , +elwelllz , +e7 Y 2 + 6z -2,
dt 2 S S meRyin
(4.1)
d - 1 m .~
— o 22(m) + §||w2||§12_l Slwillfe , +llwillze+ Y 2™ +6z—2, (4.2)

10 meR iy

where the implicit constants are independent of c.
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Proof of Proposition 3.4. From the orbital stability bound Proposition 2.5, we
have |7, (17)| < Ad? and |Zo(n7)| < §2. Thus, integrating (4.1) and (4.2), we have

1
§||w/1||2L?(I,L2)

< <A52 + ||w1||2L2(I,L2_i) + cllwallZ2 1,021y
10

et Y IIZmII%2(1)+52||ZEllizu)), (4.3)

mERmin

1
§||w2||2L2(1,L2)

<y (52 + ||w1||i2(1,L2 s 5||w,1||%2(I,L2(1))

+ Z ||Zm%2(1)+52|2—5%2(1)>~ (4.4)

meERmin

Taking ¢ sufficiently small so that 4¢C;Cy < 1 and substituting (4.4) into (4.3),
we can bound ||w'1||%2(1 r2) S (rhus. of (3.7))%. Finally, using (4.4) again, we
have the conclusion. O

The remainder of this section is devoted to the proof of Lemma 4.2. First,
since both (J-; S4-) and <J~, C%03-> are symmetric, we have

%11(77) = <J (Lﬁ + Z z"Gm + Rij) 7SA7~7> ; (4.5)

meRyin
d_ . _ 0
azg(n) = <J (Lm + m;R: | z°Gm + R;,) ,ggagn> : (4.6)

We will investigate each terms in the r.h.s. of (4.5) and (4.6).

Lemma 4.3. We have

L S = It +0 ()

10
Proof. First, we have
(JLim, Sam) = — (Lany, Sany) — (2, Sane) = — (L171, Sam) - (4.7)

From [8] Lemma 4.2, we have

(x”m + 2x'i) fun ? da,

. (4.8)

~ ~ 1 PA 2 1
Lai, Sam) = w2z — = | 24V \w | do + —
< 171, A771> ||w1||L2 2 & CQ |w1| €L 24

where V. = W"(H). Since |paC32V'| + A~ x"z| + 2|x'| < e T61%l, we have
the conclusion. 0
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Lemma 4.4. For arbitrary c¢ € (0,1), we have

<J< 5 zmpcnmmﬁ),s,m>561/3|w’1||m+c||w||iz_ n,

meERmin 1
tet D 2P+ oz -2 (4.9)
meERmin
Here, the implicit constant is independent of c.

Proof. Recall Ry is given in (2.10). First,
[ (JP.R[z], Sam) | < ”CZlSAJPCR[Z]”L%”W”L{%

We have ||CZlSAJPc||2HL2a < 1. Therefore, by Propositions 1.11 and 2.5,
10

(PR, Sam) | S Y 2wl , Set Y 27 +elwlfia

mERmin o meERmin 10
(4.10)

Next, since |P.D¢lz]||s < § by Proposition 2.5, we have
| (JP.Dolz)(2 — 7), Sam) | S S|z — 2| wllz> , S olz—2 +6|wl32 -
1

0

(4.11)

a

Using Lemma 2.4 as well as || * 2, —r2

o ISaPLillsmre, 5 IC5 L2, —x
10 10~ A4 10 10

<1, we have

[(JP.Li(R[2] — 1), Sam) | S 6l|wll7= - (4.12)

10

For ) = (2 8) and Ao (z) == W(¢n[2]) — W (H), we consider

(Pe(L[z] — L1)n, San) = (JP.Aw» (z)Exn, San)
= (JE1Awn (2)n, Sam) — (JPaAwr (2) E1m, Sam)

— <JE1AWN (Z)(R[Z] - ].)’?], SA’?]> + <JPdAWH (Z)El (R[Z] - 1)’?], SA’I”D )
(4.13

The most significant term in the right is the first. Since JE; = <(1) 8), it

follows that JE1.S 4 is skew-symmetric, so that

[(JE\Awn (2)77, San)| = [27([Sa, Awr (@), i) | S llwnll72 , < OllwliZ -

10 10
The other terms in (4.13) satisfy the same estimate. For example, if we consider
the 2nd term in the r.h.s. of (4.13), we have
| (ISaPalwr (2) B, 0) | < [SaPallresllAwr (2)7] 2 |72+ < Ol wlZa -
10
The other terms in the r.h.s. of (4.13) can bounded similarly, so that we can
conclude
(IP.Awn(z)Ern, Sam) S ollw|7z (4.14)

10
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For F; and F defined in (2.7), consider

(JPJIF, San) = —(F,Sam) — (JPJF, Sam) — (JPJIF, Sa(R[z] — 1)? : )
4.15

Using the pointwise bound |F1| < |n1]?, the fact that Py : ¥* — ¥ and (2.8),
we can bound the 2nd and the 3rd term by

[(F, PuSam) | S | Fills-|PaSalls-—slmls S Imlle=llmllE- < ollwill?e
10
(4.16)
(F, P.Sa(Rlz] = 1)0)| S | Fills- | JP:Sa(R[z] — D)||s-—sllftlls- S 0% wll7= |
10
(4.17)

Finally, for the 1st term of the r.h.s. of (4.15), we have
(F,Sam) = (F1, Sam) =27 (Fimp1,(3)

= (W(enlz] +m) = W(grlz]) = W' (gr[z])m — 27" W (enlz])n, C2)

— (W (drlz] +m) — W' (dr[z]) = W (¢n2])m — 27" W (¢1[2])i, 1 [2]0a) -
So

(B, Sam) | £ [’ da

and, by Lemma 2.7 of [7], we have
(F,Sam) | S 83 |lwi 7. (4.18)

By (1.37) and (2.10) we have bounded all terms in the Lh.s. of (4.9). Com-
bining, (4.10), (4.11), (4.12), (4.14), (4.16), (4.17) and (4.18) we have the

conclusion. O

Combining Lemmas 4.3 and 4.4 we obtain (4.1).
We next prove (4.2). As (4.1), we start from examine the contribution of
the 1st term in the r.h.s. of (4.6).

Lemma 4.5. We have
<JL17~I’C,24035> = HC%“@”@ +

with r satisfying

7] S llwa % (4.19)
Proof. We have

(ILum, Gios) = | Crows||72 — (Lain, CAT) = [ICrowa[Z2 + 1.

The remainder term r can be expanded as
—r = (i, GG ) = l(Growr Y132 + / ((Cog¢a))* + W (H)) |G wn * da.
Thus, we have (4.19). O

The contribution of the remaining terms in the r.h.s. of (4.6) can be
bounded as follows.
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Lemma 4.6. For arbitrary ¢ € (0,1) we have

<J ( > 2™Rm +Rﬁ> ,<§03ﬁ>
meRnin

LD S i I A (4.20)

meERmin

Selwlis |
10

where the implicit constant is independent of c.
Proof. The proof is similar to the proof of Lemma 4.4. Thus, we omit it. [

Combining Lemmas 4.5 and 4.6 and the fact ||wa|[z2 , < [[Crows][L2, we
2 a a

have (4.2). This completes the proof of Lemma 4.2.

5. Technical estimates

The following lemmas are proved in [8], to which we refer for proofs.

Lemma 5.1. Let U > 0 be a non-zero potential U € L*(R,R). Then there exists
a constant Cyy > 0 such that for any function 0 < W such that () W € L*(R)
then

(WF,f) < Cull @) Wllne) (=02 + U)f, f) - (5.1)

In particular, for a > 0 the constant in the norm | - ||s; in (1.29), there exists
a constant C(a) > 0 such that

(W11 < C@ll (@) Wil /1% (5:2)

U

Lemma 5.2. Consider a Schwartz function V € S(R,C). Then, for any L €
NU{0} there exists a constant Cy, s.t. we have for all e € (0,1] and for L**(R)
is defined in Definition 1.10,

| Giedy) ™™ [v, <ieaz>N} L2t ()20 () < CLe. (5.3)
where L**(R) is defined in Definition 1.10. O

Lemma 5.3. There exist constants Cy and Cy such that for € > small enough
we have

1T 22 < Coe™ and | T||gn 50 < Cx- (5.4)

Furthermore, let K.(x,y) € D'(R x R) be the Schwartz kernel of T. Then, we
have

z—y|

| K (x,y)| < Coe_‘ 5= forall x,ywith |z —y| > 1. (5.5)
O
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Lemma 5.4. We have

[willz2(oi<2m2) S B2[lwi s for any w, (5.6)
6112 S (=02 = 272X BeaV)er, &) S &l for any €, (5.7)
o1l 2@y S eV B |lwlls (5.8)
loillz@ S e Vwls (5.9)
@)™ vl e S l€lls +e7N (B) ™ Jwn |l for M € N, M > 4. (5.10)
O
Lemma 5.5. We have the formula

XB271) 1_[1’%1 ) PeA (120, > (5.11)

]

We next consider a number of results on linear theory.

Lemma 5.6. w? is neither an eigenvalue nor a resonance for the operator Lp,
that is, if Lpf = w?f for f € L>(R), then f = 0.

Proof(sketch) If the statement is false, there exists a nonzero and bounded
solution of Lpf = w?f. We can assume f is real valued. Now, let [a,b] be an
interval where —zVp|(, ,; > 0 and let ¢ € C2°((a,b),[0,+00)) be a nonzero
function such that —z (V, — a)’) > 0 in [a,b] for all a € [0,1]. Then it can
be shown that for small @ > 0 the operator Lp — a1) has exactly one negative
eigenvalue. But it is elementary to see that this is incompatible with the fact
that Vp — Ay is repulsive. O

Notice that we can apply Komech—Kopylova [20, Proposition 3.3] and
conclude the following.

Lemma 5.7. Let A be a finite subset of (0,00) and let S > 5/2. Then there
exists a fized c(S,A) s.t. for everyt >0 and A\ € A

||eLDtR1+LD( g1 —s @y < (S, A)<t>_%||f||H1,s(R) for all £ € HM(R).
(5.12)

O

We have the following resolvent identity, see Komech-Kopylova [19, for-
mula (3.6)],

SRL,(¢% —w?) iR, (¢* — wz)) ' (5.13)

RiL, (<) = (_i (1+ 2R, (% — w?)) <Rp, (2 — w?)

For the following see Komech-Kopylova [19, Sect. 3].
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Lemma 5.8. For any preassigned r > 0 and for S > 1/2 we have

Riv, (s £ i) Ll AN RiiLD (s) in L= ((foo, —r—w|U[r+w,00), L ('HI’S, H1‘73)>

(5.14)
U
Combining Lemma 5.8 with Lemma 8.5 [8] we have the following.
Lemma 5.9. For S > 5/2 and 7 > 1/2 we have
sup || R, () g5 < 0. (5.15)
cER

Proof. An uniform upper bound in [¢| > 1 + w holds by (5.14). So now we
focus on |¢] < 1+ w. By (5.13) it is enough to bound

sup || (@) Ry, (2 —w?) (1) |Lemy—r2r) < 00 and (5.16)
[s|<14w

sup || (2) "% [0, RE,_2(* =) (1) " le@—rom < oco.  (5.17)
[¢]<14w

In turn, they are a consequence of the following bound, for j = 0,1, for the
integral kernel,

swp [ (o) OIRE, (o6 - W) ) dady <00, (5.9
[s]<14w JR2

where (5.16) follows from case 7 = 0 and (5.17) follows from case j = 1.

For j = 0, in the + case (case — is similar), (5.18) is proved in Lemma 8.5
[8]. We sketch now case j = 1. Recall that, say for < y, with an analogous
formula for z > y,

T(Vs? —w?) (/a2 (s
1w (@Y —w?) = ;T\/ﬁg)el FEEm (2,2 — w)m (y, Ve - w?),

(5.19)
where the Jost functions fy (z, k) = e***my (z, k) solve (—A + Vp — w?) u =
k?u with

lim my(xz,k)=1= lim m_(z,k).

T o0 P
These functions satisfy, see Lemma 1 p. 130 [11],
|m(z, k) — 1] < Cp(max{0, Fa}) (k)" , (5.20)
|8pma (2, k)| < Cy (k) (5.21)
while T'(k) = ak(1 + o(1)) near k = 0 for some o € R and T'(k) =1+ O(1/k)

for k — oo and T € C°(R), see Theorem 1 [11].
Now

7

aszDﬂﬂ (z,y, —— (,,_)2) =iv¢2 — w2RLD_w2 (z,y, I w2)

T( 4 ¢ — wg) ei\/<2—w2(x—y)m/

+ z,
2iv¢? — w? (

2 — w?)
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x my(y, V6% — w?).

The first term on the right, by |¢] < 1+ w is essentially like the kernel (5.19),
so the corresponding contribution to (5.18) is like the case j = 0. It is easy to
see, following the discussion in Lemma 8.5 [8], that the bound of the last line
is simpler, basically because (5.21) is better than (5.20). O

Remark 5.10. Lemma 5.9 is essential for us to get the key inequality (8.10).
Notice that Lemma 5.9 is true under the repulsivity hypothesis of Kowalczyk
and Martel [22], which we have recalled in Remark 1.7, if we further assume
that w? is not a resonance for Lp. But if it has a resonance, then the status of
the Lemma 5.9 is unclear. For Lp = —82 +w?, by R_p2 (,y,5) = ﬁei\mfﬂﬂ
and by a cancelation due to the odd functions, we are reduced to the following

opposite of (5.18)
2
=28 |+ [ iSla—y| _ —2r —
sup/ x e 1 ‘ Y dxdy = +o0.
sup | ()7 | 22 ( )| W

Notice that this follows from the fact that the above is larger than

1

1/, ’
7 (elﬁlm_y‘ - 1)’ ()% dxdy

—29
sup

(x
<S1/|I<<y|<<1/\/<|

~ sup / ()72 (y)* " dady ~ sup [¢] T =
lsl<tJjzl<lyl<1/+/Is] ls]<1
+ oo for 7 € (1/2,3/2)
and is infinite also for 7 = 3/2. So, even though a resonance of Lp involves even
functions, this still seems to affect the estimates for the resolvent acting only
on odd functions. See also the resolvent expansions in Lemma 2.2 in Murata
[41] or Lemma 2.2 in Jensen and Kato [16], which require increasing weights.

The following formulas can be proved following Mizumachi [40, Lemma
4.5], to which we refer for the proof.
Lemma 5.11. Let for g € S(R x R, C?)

1
V27

where ]-"t_l is the inverse Fourier transform in t. Then

U(t,z) =

Ae—iAt (Rip,, (\) + BT (\) Fr g (A, )dA,

t
2 [ = Ulta) — [ el RiL ()it
0

+ / eU=ToiL, L (¢ dt (5.22)
Ry

The last two lemmas give us the following smoothing estimate.
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Lemma 5.12. For S > 5/2 and 7 > 1/2 there exists a constant C(S,T) such
that we have

t
| [ eemoattrar
0

Proof. We repeat verbatim the proof of [8, Lemma 8.7], which in turn is taken
from Mizumachi [40], that is, can use formula (5.22) and bound U, with the
bound on the last two terms in the right hand side of (5.22) similar. So we
have, taking Fourier transform in ¢ and by Plancherel,

<C(S,7)lgllL2 217y (5.23)
L2(R,/HY—5)

~

||UHL2'H1 -s < QSUP HRILD()\)g(A7 ')||L§711,*S

< 2SUPSUPHRlLD( )”’Hlf—»’Hlv*S”/g\()‘ax)HLi’Hlvf N ”gHL%'Hl’T’

6. Second virial estimate, for &

We set
Ji(v) = %<JV SBV> Ja(v) = %<JV (xB2C3) 03V> (6.1)
where B~' = B~! + 1% (6.2)
and
Sp = %’3 +¥p0s, Y5 = X508 (6.3)
The main result of the section is the following.
Lemma 6.1.
LT+ 3 ald S e+ oleli LY ol =l el
et (6.4)
- GRO) Hglals  Slalk+ Y P+ ol -3 4 elwld.
et (6.5)

Proof of Proposition 8.5 assuming Lemma 6.1. We have
(1)) = | (v2: 501 )| < a2 |Sirvn|
< B (20:) ™ neral (00) ™ Nl |1l 2 [l S B2V a2,
Similarly, we have | J2(v)| < e~2N g2, Integrating (6.4) and (6.5) we have
611225 SBe278 + e+ D€alags

+et Y 2™ 40l — 2T + vl g,
meERmin
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€)7o, SENEPHGl2g+ D) 12™N7: + 012 — 2|72 +ellwl?.g
mERmin

10
Thus, as for the proof of Proposition 3.4, we have the conclusion. 0
As in (4.5) and (4.6), we have

%jl(v) = <J (LDV + Y Z"Rm+ Rv> ,§Bv> , (6.6)

mERmin

EJQ(V) = <J (LDV + Z 2" Rom + Rv> ,X232§%0'3V> . (6.7)

meERmin

Lemma 6.2. We have

~ 1 1
(3w Sav) > 5 (<2 - peavp ) 60 ) + 520G + )

2
(6.8)
Proof. Since Sp is skew-adjoint, we have the following
— <JLDV, §BV> = <LDU1, §Bv1> , (6.9)
where by [8, Lemma 6.1] the very last term has the lower bound in the right
hand side of (6.8). O
Lemma 6.3. We have
(223Rum, Spv)| < 127 (€]l + ¢ 22wl ) - (6.10)
Proof. We have
<sz’lA€im7 §Bv> = <zm7§m2, §Bv1> + <zm§B7€m1,v2> . (6.11)

The following inequality is the content of Lemma 6.3 in [8],
(2™ Ranz, 01 )| < 2] (Il + e 22l )
We turn to the second term in the right in (6.11). Using 1 = (1 — xp2) + x B2
we split in two and bound separately the two terms. Using & = xp2(pvs the
contribution from yp2 is
(2met5 (5 S Romy, e 01716y )| < 2™ 2l , (1S5 Rom 12

2 a

a -1
10 B

We show now that the last factor is < 1. The term we need to bound is
el%lw‘@;l(?(?w ¢B) <i€ar>7N A" XB2Rm1

+ 261&0';8‘(51)(232(;013 <i€8z>_N aa:A*XBQle-
We bound only the second term, since the first can be bounded similarly

and in fact is smaller. Let us set f := 0, A*xp2Gm1. We have

o &yl ia—y)(r1+ir2)

(is@;C)_ﬁf(x) = /f(y)e%‘ylldy , where ::/ 72 dm
(14 &272 — €272 + 2ie21i72)
(6.12)
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is a generalized integral in 7, well defined, using integration by parts, also for
N =1, when it is not absolutely convergent. I is constant in |r5| < ¢~1. Then,
for 75 = 27127 1sign(x — y) we have

cilz—y)m

|z

[=e 8=ty , where IT ::/

]AVJ/2 dTl.
(1/2 + 272 + V2iersign(z — y))

For N > 1 we have |[II| < 1. Standard arguments show [II| < e 'log

|z—y]|

(24¢/|z —y|) for N = 1. Since e~ §lWle="%" < ¢=517l we conclude
(i20,) N fla)| S e ¥ / e Ky <x - y) £ (y)]e?Vdy with

ENET
Ky (z) =e o log”v (2+ /|z]),

where o5 = 0 for N >1 and oy =1 for N =1. Then
. -N
e (00 flls,
S e ope™ 8 o | Kl €5 710, A X g2 Ruma [ 2, S 1.
10
To finish the proof we consider the following, which completes the proof,
sze%cgl(l - XB?)gBﬁml, €7%|y‘(A©2>‘

S 2™ lwel[z2 , 11— xB2)SERmillre, |
10 10 t4

< e Pl Jwelpe , -
10

O

Lemma 6.4. We have

|(IRy, S5v)| < 0.(1) [IIEII%HIW%Hi—EI” > |zm|2]. (6.13)

meERmin

Proof. As the proof of Lemma 4.4 we estimate each term. First,

0 ~
<J (-7(2X35,Zax )i+ (i20,) N [Vp, (i)Y ]m) ’SB">
= (=T (2ps + X )Tt + (202) N [Vp, (1£0:) Von, Spor ) (6.14)
The last term is bounded in (6.19) and (6.20) of [8], and in particular we have
6:14)] S (e +e VB (el + fun)2) (6.15)
We next, we have

<JTXB2PC’R1 z], §Bv>’ + ’<JTX32PCDZ¢[Z](i —7), §Bv>‘

= (i—z|+ > zm|> (el +e#2lwlls,)

meERmin
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because the first term in the left can be treated like (6.10), except that it is
smaller because of the bound (1.38) on R4 [z], and a similar argument holds for
the second term on the left, where additionally we use || P.D,¢[z]||cv 5 < |2
Next, proceeding as above
|(ITx PLu(Rlz) — )7, S5 )| S 185 T xp2 PoLa(Rl — Dl 2,
10

-1

% (lels +e B2 Iwls) . (6.16)
By
HTszPC§B[z]||ZmﬁL21% s (6.17)
IR[z] — g _ywi S0 (6.18)
7l S lwllzz , , 6.19)

10

we conclude

—1 a '

10

185 T xpe PLa (Rl ~ Vil a, -, < 0= w2
Next, following the notation in Lemma 4.1, we consider
<J’TXBzPC(L[z] — Ll)n,ng> = <TX32AW~ (z)ﬁ1,§301>
~ (3T PalLlz) ~ L), Spv )
— (ITxpe(Llz] — Ln)(Rlz) — )77, Spv)
+ <JTx32Pd(L[z] ~L.)(R[z] - )7, §Bv> . (6.20)

Like in Lemma 4.4, the most significant term in the right is the first, which for
brevity is the only one we bound explicitly, since the other ones are simpler.
We have

(w2 Bwr (@), Spon )| < & xp2 Ao ()i |12 oo 12
S e Vet Ao (@)~ oz, (¥ Bllwlls + Bl
1

S e Bowillrz , (lwills +1&lls) .

10

where we used,
ISpvill2 S eV Bllwillg + Bl (6.21)

The proof of (6.21) is in [25] and for completeness we write the proof in [8].
By (5.9) and ||¢g| L~ < B

I1Spvillze S [UBoillee + [¢svillee S [Wpoillee +& N Bllwils.
Next, we have

[Wa| = [2x52XB29B + X52CB S B 'xB2 + X52(B- (6.22)
Then
B w2 £ Be NV B|lwi| 5
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by (5.8). By Lemma 5.1 we have
I llze = IxesCaéilles S VT xariolorlills ~ Blélls
and, finally the following by (5.9), which completes the proof of (6.21),
IXB2ppvilice S Bllvillze S Be™N[lwills.
Next, following again the notation in Lemma 4.4, we consider
<JTXB2PCJF7§BV> - <TX32F,§BV> _ <JTXBdeJF,§BV>. (6.23)
The main term in the right is the first, which by (6.21) can be treated as
[(TxsFr Spon ) | < ITxgFill 2 |IS oo
e Ntz (€7 Bllwills + Blléls)
e Bl (xiinllze + | (Rlz] = Vil z2) (ol + 115
& 2V BS (Jwr e <am) + Slwrls) (ol + e ls)
N B 5wl (ol + lalls)

where we used (5.6), Lemma 2.4.
Turning to the second term in the right of (6.23), it is bounded from above by

ST x 52 PiJF |5 v|

AR AR ZANR YA

5 S IFillee Il
1

S lmlla Imlls-lwll L2

- Solwlza -
10

a_
10

Lemma 6.5. For the B defined in (6.2), we have
<J (LDV) 5 X2B2C%0-3V> = /C%TO|§2|2 dq; - <(LD + wz)’[]17X232C%1}1> 5 (624)
with
(Lo + o, xmeGu ) | S lalls (Ials + e PV Julls.)  (6.25)
Proof. Formula (6.24) follows from direct computation. We prove (6.25). First,

<(LD + wz)vl,XB2C%’01> = <*”U/1'7XB2CBC%0§1> + <(VD +w?)é, C%€1> ~
(6.26)

The 2nd term in r.h.s. of (6.26) can be bounded by
(o + e chen) | S el (6.27)
For the 1st term of r.h.s. of (6.26) we write
<_U/117XB2CB<%70§1> =- <01, (XBZCBC%TO€1)//>

= = {01, (xp2CaCh) "6 + 2xm2CaCh) € + xpeCaChel )
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= — (01, XheCaCho &) = (01, 2 (CaC0) 1) = (o1 x82(CaCh) 1)

(6.28)
— (01 2:CaCh €1 ) — (01 2xm (CaCh) € ) — (w1 xpCachelv)
(6.29)

For the 1st term of line (6.28), we have
- <U1:X;§2<B<217051> =- <CBU1:X§§2<BC217051>
=- <51,X3§2CBC%70£1>—<(1 - XB2)CBTXBzCZIw17X%zCBCio&> .
(6.30)
For the 1st term of line (6.30),

(1 XpenChtn ) | S B - (6.31)

10

For the 2nd term of line (6.30),

| <(1 - XBQ)CBTXBQCEIUJMX;/32CBC10£1> | S e BeNB w2, [z
a 10

10

(6.32)
Combining (6.31) and (6.32) we have

(o1 XeCaCh&n) | S BTHIGS: , +e e B e, lale -

10 10 10

(6.33)
Next, for the 2nd term of line (6.28) we have
— (v, 2 (CaCan) 1) = — (Covn, 2G5 (CC0) 6 )
= — (&1, 2Xp (5 (CoCa0) 61 )

— (1= Xp2)CBTxpaCE w1, 200G (CaCan) 60 ). (6.34)
The 1st term of line (6.34) can be bounded as

= (620G (a6 | £ BN
and the 2nd term of line (6.34) can be bounded as

(1= xB2)CpTxmeCr w1, 20 (CpCan V6 )|

Se P B wllpe , (6], -
10 10

Thus, we have

|<v1,2X'32 (CBC%)I§1> | S B ?ll&lZ: o

+e Pe VB2 w2, 6l ,
10 10

(6.35)

a_
10
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For the 3rd term of line (6.28), we have
(o108 (CaCha) &) | = 1 (61,5 (Cach) @) | S IallZ . (6:36)

0

For the 1st term of line (6.29) we have
— (o1, 2 CaChel) = - (61,2 CaChel)

— (1= xp2)BT X3 w1, 2aCaCh ) (6.37)
For the 1st term of the r.h.s. of (6.37),
(& 2xpataCht) | S B?nle I lLe - (6:8)

and for the 2nd term of the r.h.s. of (6.37),

{0 = xp) T i hun, 2 o€l ) | S e BB e N2 Jelllze -
@ 10

10

(6.39)
Combining (6.38) and (6.39), we have

(o 2 tnh )1 5 (B2060 i, + B P iz, ) il
(6.40)

10 10

For the 2nd term of line (6.29), we have
[(on2xm (ot )€ ) | =20 (6165 (Coch ) &) | S lallee , s (6.41)
For the last term of line (6.29), we have
| <U17XBQCBC%TO 1’> = <€17C%To £/> | <] <€17C%TO§£> |

!/
e (@) g)Isal G
Collecting (6.33), (6.35), (6.36), (6.40), (6.41) and (6.42) we have (6.25). O
Lemma 6.6. We have

| <J ( S G m) 7X232C?§03V> |
meRmin

Set Z 2™ + 6|z — 2 + ||&1 113
meR i

+(cto)léllis , +ellwilf +ellweZ (6.43)

a_ a_
10 10

Proof. First, recalling (1.37), we have

|(ITxs: PRIZ), X CBoav) [ S D 2™ €]z, - (6.44)
meERmin 10
Next,
(YT X2 P D)2~ 2). xaChosv) | S 02— €]z, (6.45)
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(3T PoLla) (Rlz) = 1) G CBosv ) | S Slwilze €l , - (6.46)
We have, using the notation of Lemma 4.4,
(AT X Pl () Bm, e Choav ) | S 0 Iwlee, €], (6.47)
(AT X2 PR e B ) | S e N aeinPloe , €Lz,
S de N||W||L2 . €2, - (6.48)

Finally,
0

J N N X 52

|< <—T(2X/BQaI+X/]/32)T]1+<158;E> N[VD,(w@I)N} U1> XB2<BU3V>|
. / VRN . -N : N 2 2
= | {~T(2Xp0s + X )1 + (i202) " [V, (1£00) ¥ 01, 33201 )|
Se Ve P lunllglils +ell @) unlze e
Se Ve P lunllglels +e (s + eV B fwnlls ) Iz,

Se (lullslélls + ) - (6.49)
Combining (6.44)—(6.49), we obtain (6.43). O

Proof of Lemma 6.1. The inequalities (6.4) and (6.5) follows from Lemmas
6.2, 6.4, 6.5 and 6.6. O

7. Proof of Proposition 3.6

Proof of Proposition 3.6. Recalling equation (2.5), which we rewrite in an equiv-
alent form

Oin + Dy ¢[2)(2 — z) = Lzn + JF[z,1] + R[z],

and taking the inner product between of this equation with and JD,¢|z]¢, for
any fixed ¢ € CV, we have

(0im, I D, ¢[z]C) + (Do lz](z — 2), I D, ¢[z]C)) = (L[z]n, JD,¢[z]C)
+ (F, D,9[z]¢) , (7.1)

where we exploited the orthogonality (1.39), (JR[z], D,¢[z]¢) = 0. By Leib-
nitz and the orthogonality condition (n,JD,¢[z]¢) = 0 we have

(0m, ID,[2]C) = — (0, ID;¢[2](2,¢)) -
Next, differentiating (1.36) w.r.t. z, we have

L[z D,¢[z]¢ = ~D;¢l2](Z,¢) + D, ¢lz](D,2[z]¢) — D, RIZ]C.
By the fact that JL[z] is self-adjoint and that n € H.[z], we have
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(L[z]n, JD,¢[z]C) = (n, JL[z] D,¢[z]¢) =
—(n,ID;¢[2)(%,¢)) — (n,ID,R[z]C). (7.2)
Inserting the information in (7.1), we obtain
(D, ¢lz)(z — z),ID,¢[2)C) + (In. D;lz](z — 2,¢)) =
- <J/'77DZR[Z]C> + <F[Z’ n}aDZ¢[Z]C> :

Now,

(Dopl2z)(2 — 2), I D, ¢z]¢) = (D-¢[0](z — 2), ID,¢[0]C) + O(|z[|z — z|),
and

(D,9[0](z — z),JD$[0]e’) = 4 (Re®;(z — z), JRe®@;) = —2Im(z — Z),

(D,¢[0](z — z),JDP[0]ie’ ) = —4 (Re®;(z — z), JIm®P;) = —2Re(z — Z).

Thus, by the following, for ¢ = e7,ie’, we have the conclusion,

[ (In. DRIC) | S dlwlpa

| (F(2,n], DP[2]C) | < lInill 22 S Oflwillpe , -

H-a-1 ™ 10
]

Our next task, is to examine the terms z™ and show z 1o, 0, that is

the discrete modes are damped by nonlinear interaction with the radiation. In
order to do so, we expand the variable v, defined in (2.13), in a part resonating
with the discrete modes z, which will yield the damping, and a remainder which
we denote by g. Notice that this additional variable g, is standard in the field,
starting from [5,43].

8. Smoothing estimate for g

Looking at the equation for v, (2.13), we introduce the functions

Pm = Ry (A m)iRpy, (8.1)
which solve
(iLp — A-m)p,, = iRm (8.2)
and we set
g =v+ Z(z) where Z(z) := — Z 2P (8.3)
meERumin

An elementary computation yields

io,g =iLpg — Z (10 (z™) =X -mz™) p, +iR,

meRmin

or, equivalently,
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g(t) =e™Pv(0)+i Y 2™(0)e™RY, (A m)Rm (8.4)

meERmin
t
- > i / et=LD (9, (2™) +iX - mz™) p,dt’ (8.5)
mecRin 0
t
— i/ LD T (23008, + X2 ) T jdt! (8.6)
0
t — ~
_ i/ e(t*t’)LD (<i€az>7N [VD, <163I>N}”U1j + TXBzR;;) . (8.7)
0

We will prove the following, where we use the weighted spaces defined in
Definition 1.10.

Proposition 8.1. For S > 4 we have
&Il 2,705 ®)) < 0e(L)e. (8.8)
To prove Proposition 8.1 we will need to bound one by one the terms in
(8.4)—(8.7).
Lemma 8.2. For any S > 5/2 there exists a fized c(S) s.t.
[P aaan -5y < e(S)[Ellre forall f € H'(R). (8.9)
By Lemma 8.2 we have
s, of (8:4)]| (et - gy S 10(0) s + [2(0)]
Proof of Lemma 8.2. Recall that, as a consequence of (5.15), we have

sup sup | Rirp, (¢ £ i€)]|p1.5 Lpg1.-5 < 00.
0<e<1ceR

This easily implies that

as := sup sup <(x)_s (RiL,, (s +i€) — R, (s — ie)) ((z)~%)*f, f> L
0<e<1 ¢,f H

where ((z)~)* is the adjoint of the multiplicative operator ()~ in H'. Then
by Lemma 3.6 and Lemma 5.5 [17] we have (8.9) with C(S) = v/2mas. O

By Lemma 5.7 we have
t

_3 my . m ~
18.15) | 2115wy S D /<t*t'> 210, (2™) +iX - mz™|dt' | Rum| 315

meRmin

S D 10 (@™) +iIx - mE™| 2 [ Ruml g

meRmin

g Z ||(‘3t (Zm)-i-iA-mZmHL’z([)

meRmin

S Z ([[Dzz™ (2 — Z)|| L2(1) + || D22™ (Z + iA2) || £2(1))

meRmin
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Szl 1z = 2l 21y + |2l 2o 1) Z 2™ (| 2 (1)
meERmin

§52||WHL3£+5 Z 2™ || 2 (1)-

10
mERmin

By Lemma 5.12 we have

18.16) | 22015 S 1T (250 + X2 il 2r,02m) S B He = 0.(1)e
(8.10)

where the last inequality is proved in [8, Sect. 8], in particular [8, formulas
(8.23)—(8.25)].
We next look at (8.7). Again by Lemma 5.12 we have

t — —
I et i)™ Vo, 0 Verilzzr e
0

S iede) ™ Vi, (i8,) Mo |21 20my S €,

where the last inequality is proved in formula (8.26) [8]. Finally, we consider

¢
||/O TP Tx g Rl 21 4005y S 1T xRl 21,307
The right hand side is less than I 4+ IT where
I= ||X8BQTXBZR17”L2(I,’H1'*)
IT = ||(1 - XSB2)TXB2RF1HL2(1,71M)
We have
I's BZTHTXBQR?]HL2(I,H1)
with
1TXB2Rill 21,4y < (11 + I2 + Is) where
Iy = [|[Txp2Fe (Rilz] — D@lz|(z — z) + Li(R[z] — 1)7) | L2131,
Iy = || T xp2P.(L[z] — Ll)n”L2(I,’Hl)a
I3 = ||TXBZPcJF||L2(1,H1)~
We have
I < 1Rl g sveny + 18— 2y + [ (Rlz) = Dl g o)

Szl ] Z 12|21y + 12 — Zll 2y + Ml L2 (1,5%)]
mER min

SOl Y N2 + 12 = 2l + 1Wleere )

10
meRmin

We have
Iy < ||Txpz(Llz] = Li)nll 21,00y + 17 x B2 Pa(Llz] — Li)n|l 27,201
< e V(L] - Lo)ll )
< e NI(Llz] — L)l 22y + e V(L2 — L) (Rlz] — Dfllpz 00
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SNV (@nfal) = W H)) 2l 21,22) + 01wl a2

< (W (Gale]) = W (H))CR el e 1) +6) [Wilaoqrze
< ||W||L2(I L2 ao)-
We have
I S E-N||XB2F1HL2<I,L2> S e Nixmendllvai
e ||771||L°c(1 H) (||w1||L2 I,L2(|z|<2B2)) T+ ||R[ ] - 1)771||L2(I,L2))
eV (B2 wnl ogr 5 + Izlliellwil o)) S e N B wnll a5

We conclude that

S
<

1TxB2Rillr2(1w1) S and
I < B¥125% = o.(1)e. (8.11)
Turning to the analysis of I1, we have
ITSI(1 = xsp2) ()" T (2)" " Xop2[wr 0 IXB2Rl L2 (111 )
S IxsRill 2 00m) S B720% = 0-(1)e (8.12)
where we used
1(1 = xsp2) (2)" T ()" x2p2llpr w2 S 1.
Notice this will be a consequence of
11 = xsp2) (@) T (2)"" xopzll—mr S 1 (8.13)
11 = xs52) (@) T (@) " Xame oz S L. (8.14)

Inequality (8.14) is proved in §8 [8]. We turn to (8.13). It is enough to bound
the operator norm of

02(1 = xsp2) ()" T (x)"" x2p2 = [0, (1 — xsp2) ()"]T ()" x2p2

+ (1= xsp2) ()" [0z, 7] ()" x2m2 (8.15)
+ (1 = xsp2) (x)" T[0, (x)"" Xap2]
+ (1= xsp2) (2)" T (x)"" x2p20s- (8.16)

All terms except the one in line (8.16) are similar to the operator in (8.13).
The most interesting is the one in line (8.15). This operator equals

(1= xsp2) (2)7 (1£0:) ™ (02, A"] (2) 7 Yap2
=D _(1=xsp2) (@) (ic0h) ( i—[i ) (log¢h;)" (HAJ ) (@) Xap2

with the convention Hé:o B; = By o...o By and where 7, is a ground state of
L;, see §1.1. The operators in the last line summation are similar to the one in
(8.13) and satisfy the same estimate. Obviously for the operator in line (8.16)
we have
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(1 = xsp2) ()" T ()" X220, || g1 — 12
< (1 = xsp2) ()" T (x)" " xap2llz2—r> S 1.

9. Proof of Proposition 3.7: the Fermi Golden Rule

We can aptly name E(¢|[z]) localized energy, since n(t) is expected to disperse
to infinity as ¢ — 400 and what remains locally of the solution is ¢[z(¢)]. In
our analysis of the FGR, E(¢[z]) is like a Lyapunov function. So we compute,
recall (f, g) := Re ['f gdz,
d .
5 E(@l2]) = (VE(¢lz)), D.p[2]z)
—(J(Rlz] + D,¢[2]z) , D,¢[z]z)
= <JD Plz] (2 —2) , D, Plz]z)
= (J (Llz]n + JF [z, 0] + Riz] — 9yn) , D, ¢[2]Z) , (9.1)

where we have used (1.36) in the 2nd equality, the cancelation (1.39) and
(Jf, f) =0 in the 3rd equality and (2.5) in the 4th inequality and, finally, we
used (1.39) for the above cancellation of the R[z] term. From n € H.[z], we
have

— (JOm, D, ¢lz]z) = (In, D ¢[z] (2,2)) . (9.2)
Substituting (7.2) and (9.2) into (9.1), we have
& B(le]) = — (30, DuRIal7) + (In, Dils) (2~ 72) — (Fla. ], Dulof7)
9.3)
Claim 9.1. For allt €1
/0 (In, DyRZZ) dt'| = o.(1)e2. (9.4)

Proof. Tndeed we have E(¢[z])];, = O(52) from Proposition 2.5. we have
[(In, D;olz] (2~ 2,2)) | < Ollwllzz , |2 —zl,
and
| (Flz,n], D,¢lz]z) | < dllwi7>

10

and integrating in time, we obtain the desired bound (9.4). O

Let us focus now on the term in the left hand side of (9.4). By the
expansion (1.37) of R|z], we have

(In,D,Rlzz) = > (In, Dz™(—iAz)Run) (9.5)
meR,in
+ Y (In, Dz™(@+iAz2)Rm) — (In, D,R1[2]Z), (9.6)
meRmin
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where Az := (A121, -+, Anzn). The 2nd line can be bounded as

Y (0. D™ @+ ixe)Ru) | + | (In, DyRul2)2) | S Slwlpe , D |27,
meRmin " meRmin
Notice that the time integral of the last formula is of the form o (1)e?.

Now we focus on the term in the right in line (9.5). Using the identity D,z™ (iAz)

=im - A z™, this term equals the sum

> A m(IP.m, iz Run) (9.7)
meRmin

> X-m(IPy(R[z] — 1), iz Run) , (9.8)
meR in

where, by Lemma 2.4,

9.8) Sdlwllg > 2™,
meR yin

so that its time integral is of the form o.(1)e?.

So now let us focus on the term in line (9.7). It equals the sum

> Am(IP.xpen, iz Rm) (9.9)
meR in
> A mIP(1 - xp2)n,iz™ Rum) » (9.10)
meR yin

where the terms in line (9.10) can be bounded as follows,
Y A mIP(1 - xp)n 2" Ra) | S B Wl Y 2™,
mERmin 1 meERmin

and so again the time integral is of the form o.(1)e?.
Now let us focus on (9.9). By Lemma 5.5, we have

Z A-m(JP.xg2n,iz™ Rm)
mERMmin

Z A m<J1_[RL1 VP.A( 158) v,1z" Rom >

meR yin

We substitute v.= g—Z(z) using (8.1) and (8.3). Then the above term becomes

> A mfz™ 2<JHRL1 P, A (ied,) 4R£D()\-m)i7ﬂém,iRm>

meER yin

(9.11)

+ ) )\~m< “JHRLl ) PoA (i€d,) RfLD(A.n)iﬁn,iszm>
m,nif(min

(9.12)
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+ Z A m<Jl—[RL1 ) P.A (ied,,) g,iszm>. (9.13)

meERmin

The main term is the one in line (9.11) which we leave aside for a moment.
We have

0-13) S > 12™llgllze |l {ieds) N AP, HRLl )JRaml|z2.s

meERyin Jj=1

Sllglees > 127,

meERmin

so that, using Proposition 8.1 and the continuation hypothesis (3.5), we have

1013))2; S lgllrzres Y 2™z < 0c(1)e. (9.14)

meERmin

The generic bracket in line (9.12) is of the form

(z"z™, A) = ﬁ (=iX- (n —m)z"z™, —i4)
1 - 1
:)\-(n—m E<ZZ 7_1A>_)\-(n—m)

where, for B* =B, A is defined as

A= (Rf,_(XA-n)Rn)" (iedy) A*JHRLl(X§)PCRm
j=1

So we have

t
/ (z"z™, A) dt’
0

We have [|A[[z1 < 1 uniformly in ¢ € (0,1]. So the first term on the right is
0O(62). We bound the second term

n_m : t n_m . .
< |2, —iA)]5 | + IDa(2"2™) (5 + 72) |2 0.0 | All s

1D(2°2™) (2 +iAz) |11 < [|Da(2"2™) (2 = 2) |11 + | Do (2"2™) (Z + iXz) | 1

< 1Da(2"2™) |22 12 — 2 2 + |zl 2= |27 |2 2™ [ 2 = 0c(1)€?,

t
/ (9.12)dt’
0

Now we focus on line (9.11), which represents the main term of formula (9.11)—
(9.13). Using Ry = 7 xp2 P.Rm, the bracket in line (9.11) can be rewritten

and so we conclude

=0.(1)e%. (9.15)
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N
<J 1 B, O3 PLARE (A m) A" X2 Rm, Rm> (am)

=1

N N —
+ <J [T Be. O PeAGe0n)™ (R, (A - m), (20:) A X 52 Rom, Rm>
j=1

(9.16)

where we will show now that the quantity in (am) is the form o(e). This will
imply that

> A-m|z™*(am) = o(e)é?. (9.17)

meRmin

L1(0,t)
For E; the matrix in (4.13), the quantity in (am) can be bounded by the
product 2 - B, where

| (ie0,) A* H Rp,(\ P Ruml|r2¢ and

B =R (A-m)E [VD, <isax>—N} Ry (A m)A* g2 Rom 12—,
for ¢ > 2. We have
B <[ R, A m) e oo i202) ™ [V, (12020 llpgn -

|| (i£02) N llggr—t oy | A* X B2 Run [l 41 S &,

where the £ comes from the commutator term in the first line, by a simple
adaptation of Lemma 5.2, while the other terms are uniformly bounded, with
| (ied,) ™™ l3¢1.—¢—g¢1.—¢ S 1 uniformly in e € (0, 1], by the proof of the bound

n (10.23) in [8]. Uniformly in ¢ € (0, 1], we have

2 <) (1200) ™ (i02) > lpgre—pgne (0227 A T Rio 2 PeRumllpgne S 1.

j=1
We have thus proved what was needed to obtain (9.17).
We consider (9.17), the main term. Using
Rip,,(A-m)A” = AR (A-m),

which follows from (1.24) and (5.13), using the formula

N
AA =T = X3,
j=1

which is an elementary consequence of the discussion in §1.1.1 and is proved
in [8], and finally using the fact that L; commutes with P., see Remark 2.3,
we conclude that line (9.17) equals
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(JP.RG, (A m)xp2Rm, Rm) = (JP.RY, (A m)Rm, Rin) (9.18)
— (JP.RE, (A m)(1 — xp2)Rm, Rm) -

(9.19)
Is is elementary to show that the last line is O(B~1), so that
> Am|z™? (JPRY, (A-m)(1 - xp52)Rm, Rum) = o(B™Y)e2.
meRLin L1(0,t)
(9.20)

Using an obvious analogue of (5.13), the term in the right hand side in line
(9.18) can be rewritten as

— (lAmPV.(L1 = Tm) ' P:Rn, P-Rim) (9.21)
+ 7 (Amd(L1 — "m)P:Rm, P-Rm) (9.22)
2 .
where Ay, = ( "m 1Tm> . ™m =V (A -m)?—w
—irm 1

By antisymmetry, line (9.21) is equal to 0. We have
1 ir
—1 . 2 m
B, AnB. = diag (O, 1+ rm) where By, = (irm 1 ) .

Noticing that B, = (1 +72,)Bg}!, line (9.22) equals
T (B AmBmd(L1 — 7m)By PR, B PeRm )
=7 <(5(L1 —rm), | — "m(P:Rm)1 + (PcRm)2|2>

S |[—irm PR + (P ()|

\/m

where (PCRm)j are the two components of PRy, for j = 1,2 and we are
taking the distorted Fourier transform associated to operator Ly, for which we
refer to Weder [46] and Deift and Trubowitz [11]. By Assumption 1.12 there
is a fixed I" > 0 such that

A\ - 2
7;\/% Z ’ [ irm PcRm 1+ (PcRm)2:| (i\/ﬂ)‘ > ' >0 for all m € Ry

(9.23)
Hence we conclude
> A mz P (JPRL, (A m)xpeRm, Rm) =T > A-ml|z™ .

mERmin mERmin

(9.24)

So we have expanded the integral in the left hand side of (9.4) as a sum of
terms which are o.(1)e? plus the integral in (0, ¢) of the left hand side of (9.24).
We conclude

Z ||Zm||2L2(1) = 05(1)62,

meERmin
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completing the proof of Proposition 3.7.

10. Repulsivity of the ¢® model near the ¢* model

In this section, we study that the following nonlinear potential,

i(l +€)? (u® — 1)2 (eu® — 1)2, e€10,1),
which appears in the ¢® theory. Notice that when € = 0, W is the nonlinear
potential of the ¢* theory. It was shown by [26] that for 2 — /3 <e< 1, Lo,
has repulsive potential, in the sense of the definition in [26]. Here, Lq . is given
by —02 + W/ (H.) with H, the odd kink satisfying H” = W’'(H,) and L;,
given by Darboux transformations in Sect. 1.1.1.

Recall that the potential V5. of the 1st transformed operator Ly, =

—92 + Vo is given by —W/(H,) + % So, to check the repulsivity of
W/ (2))*

Va.e, one only needs to study the function —W/ (z) + (W )~ in the domain
x € [—1,1] because H, is monotone. This was the very nice observation of [26].

On the other hand, when € = 0, L; ¢ has two eigenvalues (0 and %), SO
Lo o is not repulsive and the 2nd transformed operator Lz ¢ = —6% + 2 has a
flat potential, which lies in the boundary of repulsive potential and is not a
repulsive potential in our definition, Assumption 1.6).

Since it seems that as e increases, the number of eigenvalues decreases,
it is natural to expect that V3 is repulsive for € € (0,¢,) for the first €, > 0
when L; ., stops to have two eigenvalues. We will confirm this observation by

We(u) :=

computing the 1st order expansion of V3 . =2+ 6‘73 +O(€?) and by numerical
computation. First, V3 can be computed explicitly.

Proposition 10.1. We have

i 6 2 X 3 4 < X )
V3 = —sech” | — | + —sech™ | —= ] . 10.1
*75 <\/§> 5 V2 (10.3)
In particular, we have xffg’(x) <0 for x #0.

Next, the result of numerically computation of V5, is given by the fol-
lowing graph.

Proof of Proposition 10.1. First, by multiplying H. to H! = W!(H,) and in-
tegrating it, we have

H! = \/2W.(H,),

which gives a implicit representation of the kink H. by

:/He _dh
o 2W.(h)
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FIGURE 1. Graph of V3. — 2 + 4€* — 2¢* generated by nu-
merically computing H. and ¢.. The case € = 0 is not visible
because it is flat

The above formula holds for any nonlinear potential W. In our case, we can
compute the integral in the right hand side and obtain

V2(1 — )z =log(1 + H) —log(1 — H) + /elog(1 — v/eH) — /elog(1 + /eH)

(10.2)
When e = 0, we can solve (10.2) w.r.t. Hy and obtain the ¢*-kink:
Hy = tanh (”7) (10.3)
0 7 .

Differentiating, (10.2) w.r.t. €, we have

(1—H?) (1—eH?)
H.= y < log(1 — v/eH.) — log(1 H
OcH. 2(1—¢) < 2\/("%( VeH,) —log(1 + VeH.))
H,
+ — Q\fex)
and by limj,_, % = H, %’h 0 log(1+ h) = H,, we have
66|€:0 H. = HO(l - Hg) (10.4)
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We set ¥, := 1y + G'lZe, with {/;E L g, to be the eigenfunction of
L.:= -0 +W/(H,),

associated to the eigenvalue \. = % + GXG, where

9\ 1 sinh(-%)
cos (ﬁ)
is the normalized eigenvector of Ly satisfying Loy = %wo. U
Remark 10.2. By the stability of eigenvalues, L. has a unique eigenvalue near
3
5

We set Ay = (H!)"'0, (H!-) and . = Aj .. Since the 2nd trans-
formed potential V3 . is given by

1 !
Vae=Vae(He) -2 (¢> ; (10.6)
Pe
with 17276 is given by Vo ¢ = 172,€(H6), which can be explicitly written as
Va,e(w) = =We(z)(log We(z))”
= (1+3e+32+€3) + (1 — 2 — 662 — 263 + €*)a?

—e(1+ ezt +262(1 + €)%2°,

it suffices to compute 0| _, pe = A}‘,OJ—F (Oel—o A () o
Expanding LY. = A\ct)e, we have

(Lo — 3) Pe = _WIH) = Wo (HO)¢0 + Aetho

€

o (L) W)

€

e + Xezﬁ) .
Thus, taking € — 0, we have

(20— 3) = = (W (010) 4|y H 4 01y W2 () + R (101

Here, Xo is determined from the orthogonality condition:
Xo = (W (Ho) Oc|,—o He + el W/ (Ho)) tho, tho) -
From (10.4), we have

W{"(Ho) Oc|_og He + Oc| ._o W/ (Ho) = —3 + 24H§ — 21Hj;. (10.8)
Therefore, from (10.3) and (10.5),
~ 3 sinh? z sinh? z\ sinh® z 12
A :—3+/(24 —21 > der = —. 10.9
0 2 cosh? z cosh? z ) cosh? z 5 ( )
From (10.9) and (10.8), (10.7) can be written as
3\ ~ 27
<L0 - 2> Yo = <5 — 24H3 + 21H§> o. (10.10)
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Let Ay = ¢ '0, (¢e-). Applying Aj, to (10.10), from Aj (Lo — 3/2) =
Az 0A3 g AT gwe have

* P * 27
Az A5 0 AT oo = A (5 — 24H + 21H§> Yo. (10.11)

Solving this, we have

~ 9\ 4 1 6 T 27 1 1
Ao = — = 2—— (21 h-—— ) - =L .

o%o (s) fcosh(%) (5 o8 (COS \/Q) 10 cosh?(- )+3cosh4(\%)
(10.12)
This provides all the ingredients for the computation of Vs by differenti-

ating (10.6). After elementary but somewhat long computation, we obtain
(10.1). O

Sh
™)

—_

Remark 10.3. In [22], the asymptotic stability in the odd setting for the odd
kink of ¢® model near the ¢* model is shown. They show this result by prov-
ing ¢* model is asymptotically stable and all models near ¢* model are also
asymptotically stable.
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