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Abstract. We give a sufficient condition, in the spirit of Kowalczyk–
Martel–Munoz–Van Den Bosch (Ann PDE 7(1):Paper No. 10, 98, 2021),
for the local asymptotic stability of kinks under odd perturbations. In
particular, we allow the existence of quite general configuration of inter-
nal modes. The extension of our result to moving kinks remains an open
problem.

1. Introduction

In this paper, we consider the problem of the asymptotic stability of kink
solutions of the (1 + 1) dimensional nonlinear scalar field model

�u1 + W ′(u1) = 0, (t, x) ∈ R
1+1 , where � = ∂2

t − ∂2
x. (1.1)

We can write the above problem as

∂t

(
u1

u2

)
= J

(
−∂2

xu1 + W ′(u1)
u2

)
, u1, u2 : R

1+1 → R, where J :=
(

0 1
−1 0

)
.

(1.2)

Our nonlinear potential W is an even C∞ function such that

∃ζ > 0 s.t. W (ζ) = W ′(ζ) = 0, ω2 := W ′′(ζ)> 0 and ∀h ∈ (−ζ, ζ), W (h)> 0.
(1.3)

Under assumption (1.3), it is well known that an odd kink solution exists, see
Lemma 1.1 of Kowalczyk et al. [26].

Proposition 1.1. There exists odd H ∈ C∞(R) satisfying H ′′ = W ′(H). Fur-
thermore, we have H ′(x) > 0, limx→∞ H(x) = ζ, |H(x) − ζ| � e−ω|x| and

∀k ≥ 1, |H(k)(x)| �k e−ω|x|.
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Remark 1.2. By A � B, we mean that there exists C > 0 s.t. A ≤ B. The
implicit constant C is independent of important parameters (e.g. in the claim
of Proposition 1.1, the implicit constants are independent of x but depends on
k).

The purpose of this paper is to study the case when the kink has internal
modes, but only in the context of odd solutions of (1.2). We set H = (H, 0).
We denote by Φ[z] the refined profile, introduced later in Sect. 1.2, where

z = (z1, . . . , zN ), (1.4)

encodes the discrete modes and where Φ[0] = H. In analogy to Kowalczyk et
al. [26] we set

Eodd = {u ∈ L1
loc(R, R2) : u′

1 ∈ L2
even(R),

u2 ∈ L2
odd(R),

√
W (u1) ∈ L2

even(R)} and (1.5)

EH = {u ∈ Eodd : u′
1 ∈ L2

even(R), u2 ∈ L2
odd(R), u1 − H ∈ L2

odd(R)}.
(1.6)

For any u, there is a natural identification, a natural trivialization in fact, of
the tangent space

TuEH = H1 where Hs := Hs
odd(R, R) × Hs−1

odd (R, R). (1.7)

There is a natural distance in EH, given by ‖u−v‖H1 . Our main result is the
following.

Theorem 1.3. Under Assumptions 1.6, 1.8 and 1.12 given below, for any ε > 0
and a > 0, there exists a δ0 > 0 s.t., for all odd functions

u(0) ∈ EH satisfying δ := ‖u(0) − H‖H1 < δ0 (1.8)

and for the corresponding solution u of (1.2), we have

u(t) = Φ[z(t)] + η(t) for appropriate z ∈ C(R, CN ) and η ∈ C(R,H1),
(1.9)

and , for I = R and 〈x〉 := (1 + x2)1/2,∫
I

‖e−a〈x〉η(t)‖2
H1(R) ≤ ε, (1.10)

and

lim
t→∞ z(t) = 0 . (1.11)

In Sect. 10 we show that the φ8 model, when near the φ4 model, satisfies
our repulsivity hypothesis.

Remark 1.4. • The local well-posedness of (1.2) in EH in a small neigh-
borhood of the kink is known, see section 3.1 of Kowalczyk et al. [26].
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• Under the assumption that u(0) is odd, then u(t) is odd for all t, by
uniqueness. For general perturbations and also for boosted kinks, Kowal-
czyk et al. [26] gave a sufficient repulsivity hypothesis for asymptotic
stability of the kinks. The repulsivity hypothesis in Kowalczyk et al. [26]
implies the absence of internal modes. The purpose of this paper is to
give a somewhat related repulsivity hypothesis in Assumption 1.6, which
allows the existence of internal modes. Unfortunately, at this time we are
unable to treat moving kinks, which were the main focus of Kowalczyk
et al. [26].

• The restriction to odd solutions can simplify considerably dispersion
problems, as for example is shown in Kowalczyk et al. [24]. In Germain
et al. [13,14], restricting to a smaller class of odd solutions of (1.2) and
assuming the absence of internal modes, but avoiding any explicit repul-
sivity hypothesis, there is a different kind of proof of asymptotic stability,
involving rates of decay of remainder terms. Such rates of decay cannot
hold with data like in (1.8), where the estimates and the asymptotic be-
havior on the solutions need to be invariant by time translation, like in
(1.10)–(1.11). Notice, also, that the literature which uses dispersive esti-
mates such as also [12,28] as many others, has been able so far to treat
only rather simple configurations of internal modes, usually at most a
single one, usually nicely positioned.

• Just before completion of this work we learned about Kowalczyk and
Martel [22], which in the case of a favorably placed internal mode, en-
compassing the φ4 model, simplifies and generalizes the proof in [23].
Our paper is independent from Kowalczyk and Martel [22]. Kowalczyk
and Martel [22] make a more efficient use of dispersivity, adapting this
notion to the context of odd solutions of our problem.
By and large, it should be possible to combine [22] with our framework
in the context of more general eigenvalues. Somewhat delicate, at least
in our context, should be the case when LD has a resonance at ω2, as for
example when LD = −∂2

x + ω2, for instance in the case of the φ4 prob-
lem. In that case, our proof of Lemma 5.9 does not work, and perhaps the
statement is wrong. On the other hand, this lemma for us is important
when we bound the auxiliary variable g in Sect. 8, needed in our proof
of the Fermi Golden Rule.
Our proof of the Fermi Golden Rule is different from Kowalczyk and
Martel [22]. From a combinatorial view point, we are dealing with a more
complicated problem. In our framework, we need an expansion on the
transformed variable v, see (8.3), rather than the original variable u, to
take advantage of the cutoff factor χB2 in front of the nonlinear terms
in the equation of g. The cutoff offsets the long range nature of the non-
linearity. Unfortunately, the commutator of cutoff and linear part of the
equation, generates an extra term, for example in (8.6), which is delicate.
Kowalczyk and Martel [22] study the Fermi Golden Rule in the initial
variable u, so they do not have this commutator. We are neither able
to generalize their FGR argument nor, exactly because of the long range
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nonlinearity, to perform smoothing estimates directly in the original vari-
able u.

• Early work on kinks by Komech and Kopylova [20,21], treated special
cases with short range nonlinearities and within the framework of Buslaev
and Perelman [5]. We utilize Komech and Kopylova [19,20] when we
consider some smoothing estimates in Sects. 5 and 8.

• For a treatment of the sine-Gordon model with the Nonlinear Steepest
Descent method and techniques of Integrable Systems, see [6] and therein.

This paper is very similar to our previous [8], which in turn used the
dispersion theory of Kowalczyk et al. [25,26] (see also [27] for a very recent
paper related to [25]) combined with our theory on the Fermi Golden Rule
(FGR). In [8] and in a number of other papers, like [9], we have produced
a framework very effective in sorting out effortlessly the complexities of the
transient patterns of the internal discrete modes that can occur in stability
problems, and exploiting dissipation induced on the discrete modes, due to
their hemorrhaging energy which, by nonlinear interaction, leaks in the radia-
tion component where it escapes to infinity. Since Bambusi and Cuccagna [4],
which can be considered the first paper in our series, we avoided the decay
rates analysis of the early PDE papers on this subject, the earliest involving
internal modes being Buslaev and Perelman [5]. Notice that the rarely cited
paper [10] extends considerably the result in [4]. As mentioned above, decay
rates cannot exist in the Energy space. Kowalczyk et al. [23,25,26] as well
as KdV papers by Martel and Merle such as [37–39] work in energy space,
presumably to achieve a maximum of generality. In fact, in the presence of
discrete modes, the Energy Space framework tends to be conductive to rather
simple sorting out of the discrete modes. Early in the literature, for example
in [5,43] or Komech and Kopylova [20,21], as well as in many others such as,
for example [3], there was use of dispersive estimates. This is also related to
the fact that the earliest papers predate Keel and Tao [18], whose endpoint
Strichartz estimate has played an important role in the theory, even though
it can be replaced by smoothing estimates. Ultimately, the literature using
dispersive estimates, so far has not dealt with discrete mode configurations
which are not simple.

In the presence of short range nonlinearities, where it is possible to prove
dispersion using Strichartz estimates, papers such as [9] provide proofs of as-
ymptotic stability and scattering in the presence of very general discrete modes
configurations. In the case of possibly long range nonlinearities, like here and
[8], we use the Virial Inequalities framework originating in Merle’s school, in
the particular elaboration of Kowalczyk et al. We need that the linearization
L1 be, not directly dispersive, but, rather, dispersive after a sufficient number
of Darboux transformations, and not just a single one like in Kowalczyk et
al. [23] or Martel [36]. Darboux transformations are beautifully discussed by
Deift and Trubowitz [11], although their theory would be not sufficient in the
context of more general kinks than the ones discussed here.
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Kowalczyk et al. [23] have been able to prove an asymptotic stability
result in the absence of dissipative operators, see also [44]. Furthermore, as we
remarked above, Kowalczyk and Martel [22] gave a new more general proof.
We refer also to [1,2,44].

In the context of the dispersion theory of papers such as [29–34,45],
and the framework in [12–14,28,35], if it works in the absence of dissipative
potentials, can obviously prove very useful. A natural problem would be to
prove some form of scattering for the remainders for solutions in Energy space,
with some Dollard like correction, at least in the border-like cases, see also [42].

1.1. Internal modes, Darboux transform and repulsivity assumption

We consider the Schrödinger operator

L1 = −∂2
x + W ′′(H). (1.12)

By differentiating H ′′ = W ′(H), we obtain H ′ ∈ kerL1. Since H ′ > 0, we have
kerL1 = span{H ′}. By Proposition 1.1, W ′′(H) − ω2 decays exponentially.
Thus, L1 will have at most finitely many eigenvalues, which, since we are in 1D,
are all simple. We label the eigenvalues corresponding to the odd eigenfunctions
as follows:

• σd(L1|L2
odd

) = {λ2
j | j = 1, · · · , N} with 0 < λ1 < · · · < λN < ω.

We set φj ∈ L2
odd to be the corresponding (odd, normalized and R-valued)

eigenfunctions, i.e. L1φj = λ2
jφj and ‖φj‖2

L2 = (2λj)
−1.

Remark 1.5. The repulsivity condition in [26] implies σp (L1) = {0} and,
therefore, N = 0.

In the following, we assume N ≥ 1. The case N = 0 is contained in [26].
By the Sturm-Liouville theory L1 will have a number Ñ , equal to 2N or

2N +1, of eigenvalues. We consider λ̃j > 0 so that we have σd(L1) = {λ̃2
j}Ñ

j=1.
In this case we have λ̃1 = 0 and λj = λ̃2j .

We set

L1 := J
(

L1 0
0 1

)
=
(

0 1
−L1 0

)
and Φj :=

(
φj

−iλjφj

)
. (1.13)

This operator L1 is relevant here because it is obtained linearizing (1.2) at H.
Indeed, substituting u = H + r into (1.2), we have

∂tr = L1r + O(r2).

From now on, we will consider only odd functions. In particular L1 will act
only on odd in x functions.
By direct computation, we see that

L1Φj = −iλjΦj and L1Φj = iλjΦj . (1.14)

We consider

(f ,g) =
∫

R

tf(x)g(x)dx, (1.15)

〈f ,g〉 = Re (f ,g) (1.16)
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and the symplectic form

〈Jf ,g〉 . (1.17)

Notice that
〈
JΦj , iΦj

〉
= 1.

It is easy to check

σd(L1) = {±iλj | j = 1, · · · , N} and σess(L1) = i ((−∞,−ω] ∪ [ω,∞)) .
(1.18)

Notice also that L1 leaves the following decomposition invariant,

L2
odd(R, C2) = L2

discr ⊕ L2
disp where L2

discr := ⊕λ∈σp(L1) ker (L1 − λ) , (1.19)

where L2
disp is the 〈J·, ·〉-orthogonal of L2

discr.
Thus, the linearized operator L1 has neutral eigenvalues, which will create

oscillating and non-decaying solutions in the linear level. Such oscillations will
last for long time in the full nonlinear problem, they will loose energy and os-
cillations will eventually decay. The Fermi Golden Rule (FGR) non-degeneracy
condition, which will be introduce in the next subsection, guarantees such phe-
nomenon, but it has to be combined with dispersion of the continuous modes.
To prove dispersion we use virial estimates of Kowalczyk et al. [26]. For this
we need to assume that the potential W ′′(H) is “repulsive” after a series of
Darboux transforms which eliminate the eigenvalues, as we explain now. The
discussion is similar to [8], which was based on [11].

1.1.1. Darboux transformations. We inductively define the Schrödinger oper-
ator Lj (j = 1, · · · , Ñ + 1) and a differential operator Aj (j = 1, · · · , Ñ) as
follows.

1. L1 = −∂2
x + W ′′(H) and A1 = (H ′)−1∂x (H ′·). In this case, we have

L1 = A1A
∗
1, (1.20)

and we define L2 by

L2 := A∗
1A1.

2. Inductively, given Lk with ψk the ground state of Lk, we set Ak :=
ψ−1

k ∂x (ψk·). Then

Lk = AkA∗
k − λ̃2

k (1.21)

and we define

Lk+1 := A∗
kAk − λ̃2

k

3. In the last step, L
Ñ+1

:= A∗
Ñ

A
Ñ

− λ̃2
Ñ

. We set

LD = L
Ñ+1

= −∂2
x + VD where, here, VD − ω2 ∈ S(R, R). (1.22)

For the above we refer to Section 3 of [11] and Proposition 1.9 of [8]. We
set

A := A1 · · · A
Ñ

. (1.23)

Then, by simple computation we obtain.

A∗L1 = LDA∗. (1.24)
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We assume that VD is repulsive, in the following sense:

Assumption 1.6. xV ′
D(x) ≤ 0 for all x ∈ R and VD is not identically zero.

Remark 1.7. In Kowalczyk and Martel [22] the above assumption is eased
into the following: there exists a γ > 0 such that the operator −(1 − γ)∂2

x −
2−1/2xV ′

D(x) has at most one negative eigenvalue. In order to prove their result,
Kowalczyk and Martel [22] modify the first virial inequality of [25]. This could
be arranged here as well, but our proof, in some important special case, might
face some problems, discussed in Remark 5.10 below.

1.2. Refined profile and Fermi Golden Rule assumption

As in the asymptotic stability of solitons for nonlinear Schrödinger equations
[8], we introduce the notion of refined profile.

We introduce some notation. For m = (m+,m−) ∈ N
2N
0 , where N0 :=

N ∪ {0}, we write m = (m−,m+) and |m| =
∑N

j=1(m+j + m−j). We set
ej = (δj1, · · · , δjN , 0, · · · , 0). We set

λ := (λ1, · · · , λN ,−λ1, · · · ,−λN ), (1.25)

and

λ · m :=
N∑

j=1

λj(m+j − m−j). (1.26)

We assume the following.

Assumption 1.8. For M be the largest number in N such that (M − 1)λ1 < ω,
then for a multi-index m ∈ N

2N
0

‖m‖ ≤ M =⇒ (m · λ)2 �= ω2. (1.27)

We also assume that for m = (m+,m−) ∈ N
2N
0 then

‖m‖ ≤ 2M and m · λ = 0 =⇒ m+ = m−. (1.28)

As in [8], we set

R := {m ∈ N
2N
0 | |λ · m| > ω},

Rmin := {m ∈ R | � ∃n ∈ R s.t. n ≺ m},

I := {m ∈ N
2N
0 | ∃n ∈ Rmin, n ≺ m}

NR := N
2N
0 \ (I ∪ Rmin),

Λj := {m ∈ NR | λ · m = λj}
Λ0 := {m ∈ NR\{0} | λ · m = 0},

where the partial order ≺ is defined by

n ≺ m ⇔ ∀j, n+j + n−j ≤ m+j + m−j and |n| < |m|.

Lemma 1.9. The following facts hold.
1. If |m| > M , with M the constant in Assumption 1.8, then m ∈ I.
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2. Rmin and NR are finite sets.
3. If m ∈ NR, then |λ ·m| < ω and if m ∈ Rmin, then m+ = 0 or m− = 0.
4. If m ∈ Λj then there is a n ∈ Λ0 with m = ej + n.

Proof. If |m| > M , we can write m = α + β with |α| = M . If α = (α+, α−)
and if we set n = (n+,n−) with n+ = α+ + α− and n− = 0, then n · λ ≥
Mλ1 > ω. This implies that n ∈ R and that there exists a ∈ Rmin with a � n.
From |β| ≥ 1 it follows that a ≺ m and so m ∈ I.

Obviously, from the 1st claim it follows that if m ∈ Rmin ∪ NR then
|m| ≤ M . Next we observe that m ∈ NR implies |m| ≤ M and |λ · m| ≤ ω
and, by Assumption 1.8, |λ · m| < ω. If m ∈ Rmin with, say, m · λ > ω,
then obviously from (1.26) we have m+ · λ > ω and it is elementary that
m = (m+, 0). Finally, from the first claim we know that if m ∈ Λj then
‖m‖ ≤ M . From m · λ − λj = 0 it follows from (1.28) that we have the last
claim. �

For z ∈ C
N and m ∈ N

2
0, we write zm =

∏N
j=1 z

m+j

j zj
m−j .

For f ∈ C1(CN ,X) (differentiability is taken in the real sense), we set
Dzf(z)w := d

dεf(z + εw).

Definition 1.10. We set ‖·‖Σs := ‖·‖Hs
a1

:= ‖ea1〈x〉·‖Hs where a1 = 1
2

√
ω2 − λ2

N

and denote by Σs the corresponding spaces.
For b ∈ R we write ‖ · ‖L2

b
:= ‖eb〈x〉 · ‖L2

We write Σ := Σ1 and denote by Σ∗ its dual.
For any s, σ ∈ R, recalling the space Hs defined in (1.7), we will use also

other weighted spaces, defined by the norm ‖ · ‖L2,σ := ‖ 〈x〉σ · ‖L2 and spaces
defined by the norm ‖ · ‖Hs,σ := ‖ 〈x〉σ · ‖Hs .

We pick a ∈ (0, a1) and consider the following norm,

‖f‖2
Σ̃

=
〈(

−∂2
x + sech2

(ax

10

))
f, f

〉
∼ ‖f‖2

Ḣ1 + ‖f‖2
L2

− a
10

, (1.29)

denoting by Σ̃ the corresponding space. For f = (f1, f2), we will consider the
norm

‖f‖Σ̃ = ‖f1‖Σ̃ + ‖f2‖L2
− a

10

. (1.30)

We observe that H(n), φj ∈ Σs for arbitrary n ≥ 1, s ∈ R and j = 1, · · · N .
The refined profile is an approximate solution of (1.2) which encodes the

kink with its internal modes.

Proposition 1.11. There exist α0 > 0, functions {φm : m ∈ NR} ⊂ Σ∞,
z̃R ∈ C∞(BCN (0, α0), CN ) and {λnj}n∈Λ0∪{0} ⊂ R for j = 1, · · · , N with
φ0 = H, φej = Φj, φm = φm and λ0j = λj s.t. setting

φ[z] :=
(

φ1[z]
φ2[z]

)
= φ0 + φ̃[z] := φ0 +

∑
m∈NR,|m|≥1

zmφm, (1.31)

φm = φm (1.32)
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z̃j := −i
∑

n∈Λ0∪{0}
λmjznzj + z̃jR, z̃ := (z̃1, · · · , z̃N ) and z̃R = (z̃1R, · · · , z̃NR),

(1.33)

|z̃R| �
∑

m∈Rmin

|zm|, (1.34)

λm = λm ∈ R
2N (1.35)

where λm := (λm1, . . . , λmN ,−λm1, . . . ,−λmN ), and, for the remainder func-
tion R[z] defined by

R[z] := J
(

−∂2
xφ1[z] + W ′(φ1[z])

φ2[z]

)
− Dzφ[z]z̃, (1.36)

we have the expansion

R[z] =
∑

m∈Rmin

zmRm + R1[z], (1.37)

with Rm = Rm ∈ Σ∞ and for any l ∈ N

‖R1[z]‖Σl �l |z|
∑

m∈Rmin

|zm|. (1.38)

Furthermore,

〈JR[z],Dzφ[z]ζ〉 = 0 for any ζ ∈ C
N . (1.39)

Proof. We insert (1.31) in (1.36), using (1.33). We expand

W ′(H + φ̃1[z]) = W ′(H) + W ′′(H)φ̃1[z] +
M∑

�=2

W (1+�)(H)
�!

φ̃�
1[z] + O(‖z‖M+1),

where φ̃[z] = (φ̃1[z], φ̃2[z]). Then, for
−→
j = t(0, 1),

M∑
�=2

W (1+�)(H)
�!

φ̃�
1[z]

−→
j =

∑
m∈NR

zmgm +
∑

m∈R∪I
|m|≤M

zmgm + O(‖z‖M+1)

where, for φm = (φ1m, φ2m),

gm =
M∑

�=2

W (1+�)(H)
�!

∑
m1,··· ,m�∈NR
m1+···+m�=m

φ1m1 · · · φ1m�

−→
j . (1.40)

Using

(Dzzm) (iλz) = im · λ zm, where λz := (λ1z1, . . . , λNzN ), (1.41)

we obtain

Dzφ[z]z̃[z] = −i
∑

m∈NR

m · λzmφm − i
∑

m∈NR, n∈Λ0

m · λnznzmφm − Dzφ[z]iz̃R.

Let us set

R̂[z] := J
(

−∂2
xφ1[z] + W ′(φ1[z])

φ2[z]

)
− Dzφ[z](z̃ − z̃R). (1.42)
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We expand now to get

R̂[z] =
∑

m∈NR

zmR̂m +
∑

m∈R∪I
|m|≤M

zmR̂m + O(‖z‖M+1), (1.43)

where

R̂m = (L1 + iλ · m)φm − Em where

Em = gm −
∑

m′+n′=m
m′∈NR, n′∈Λ0

iλn′ · m′φm′ .

We seek R̂m ≡ 0 for m ∈ NR. For |m| = 1 the equation reduces to
(L1 + iλ · m) φm = 0, so that we can set φej = Φj and φej = Φj . Let us
consider now |m| ≥ 2 with m �∈ ∪N

j=1

(
Λj ∪ Λj

)
. In this case let us assume by

induction that φm′ and λm′ have been defined for |m′| < |m| and that they
satisfy (1.32)–(1.35). Then, from (1.40) we obtain gm = gm and Em = Em. We
can solve R̂m = 0 writing φm = (L1 + iλ · m)−1 Em. By λ · m = −λ · m, we
conclude φm = φm.

Let us now consider m ∈ Λj . We assume by induction φm′ have been
defined for |m′| < |m| and so too λn′ for ‖n′‖ < ‖m‖−1. Then, for m = n+ej

where n ∈ Λ0, R̂m = 0 becomes

(L1 + iλj) φm = −iλn · ejΦj − Km with

Km := gm −
∑

m′+n′=m
m′∈NR,|m′|≥2, n′∈Λ0

iλn′ · m′φm′ . (1.44)

This equation can be solved if we impose
(
JEm,Φj

)
= 0, that is, for λnj :=

λn · ej ,

− iλnj

(
JΦj ,Φj

)
= −iλnj(−i) = −λnj =

(
JKm,Φj

)
,

which is true for λnj =
−
(
JKm,Φj

)
. Then we can solve for φm = − (L1 + iλj)

−1 Km in the com-
plement, in (1.19), of ker(L1 − iλj).
We want to show that λnj ∈ R. For the corresponding m ∈ Λj , we have

(L1 − iλj) φm = −iλn · ejΦj − Km with

Km := gm −
∑

m′+n′=m
m′∈NR2, n′∈Λ0

iλn′ · m′φm′ . (1.45)

Notice that by induction Km = Km. Since λn ·ej = −λnj , taking the complex
conjugate of (1.44) we obtain

(L1 − iλj) φm = iλnjΦj − Km and

(L1 − iλj) φm = iλnjΦj − Km.
(1.46)

Applying (J·,Φj) on both the last two equations, we obtain

iλnj

(
JΦj ,Φj

)
=
(
JKm,Φj

)
and iλnj

(
JΦj ,Φj

)
=
(
JKm,Φj

)
.

10



Hence λnj = λnj and we have proved that λnj ∈ R.
Since the equations in (1.46) are the same, we conclude φm = φm.
We consider now R[z] = R̂[z] − Dzφ[z]z̃R where we seek z̃R so that (1.39) is
true. This will follow from〈

JR̃[z],Dzφ[z]ζ
〉

− 〈JDzφ[z]z̃R,Dzφ[z]ζ〉 = 0 for the standard basis

ζ = e1, ie1, . . . , eN , ieN .

Since the restriction of 〈J·, ·〉 in L2
discr is a non-degenerate symplectic form

and from φej = Φj and φej = Φj , the Implicit Function Theorem guarantees
the existence of z̃R ∈ C∞(BCN (0, α0), CN ) with z̃R(0) = 0 for a sufficiently
small α0 > 0. Furthermore, from the last formula and from the fact that in
the expansion (1.43) we have R̂m = 0 for all m ∈ NR, we obtain the bound
(1.34). This in turn implies expansion (1.37) and bound (1.38). �

Let us consider now the expansion (1.37). An important assumption,
related to the Fermi Golden Rule (FGR), is the following.

Assumption 1.12. We assume that for all m ∈ Rmin,
∑

σ=±1

∣∣∣[−i
√

(λ · m)2 − ω2 (̂Rm)1(σ 4
√

(λ · m)2 − ω2)

+(̂Rm)2(σ 4
√

(λ · m)2 − ω2)
]∣∣∣ > 0,

where (Rm)j are the two components of Rm for j = 1, 2 and we are taking
the distorted Fourier transform associated to operator L1, for which we refer
to Weder [46].

2. Modulation and transformed equations

For small α ∈ (0, 1) we set

Mα = {φ[z] | z ∈ BCN (0, α)}, where BCN (0, α) := {w ∈ C
N | |w| < α}

We first observe the following.

Lemma 2.1. There is an α0 ∈ (0, 1) such that for α ∈ (0, α0) the map z → φ[z]
in an embedding BCN (0, α) ↪→ EH.

Proof. It is clear that the map is smooth. Next we observe that for α > 0
sufficiently small, the above map BCN (0, α) → EH is an embedding. This
follows from the fact that the partial derivatives computed at z = 0 span
L2

discr, which is symplectic with respect to the form 〈J·, ·〉. �

We set

Hc[z] := {u ∈ H + Σ∗ | ∀ζ ∈ C
N , 〈Ju,Dzφ[z]ζ〉 = 0}. (2.1)

11



Lemma 2.2. (Modulation) There exists δ > 0 s.t. there exists z(·) ∈ C∞

(BEH
(0, δ), CN ) s.t.

η(u) := u − φ[z(u)] ∈ Hc[z(u)] (2.2)

and, leaving implicit the dependence of z and η on u,

|z| + ‖η‖H1 ∼ ‖u − H‖H1 . (2.3)

Proof. For zjR = Re(zj) and zjI = Im(zj), consider a function F (u, z) with
components〈

J (u − φ[z]) , ∂zjJ
φ[z]

〉
for j = 1, . . . , Ñ and J = R, I. (2.4)

Then F ∈ C∞ (
EH × C

N , R2N
)
, trivially we have F (H, 0) = 0 and the Jaco-

bian matrix ∂F
∂z (H, 0) a non-degenerate N ×N matrix, exactly because, for the

space in L2
discr in (1.19), the form 〈J·, ·〉 is symplectic. Then, by Implicit Func-

tion Theorem, there exists the desired function z(u) such that F (u, z(u)) = 0,
i.e. which satisfies (2.2), with z(H) = 0. The fact that |z|+‖η‖H1 � ‖u−H‖H1

follows from the Lipschitz regularity of u → (z(u), η(u)) at H, while we have

‖u − H‖H1 = ‖φ[z] − H + η‖H1 ≤ ‖φ[z] − H‖H1 + ‖η‖H1 � |z| + ‖η‖H1 .

�

Substituting u = φ[z] + η, we obtain

∂tη + Dφ[z](ż − z̃) = L1η + (L[z] − L1)η + JF[z, η] + R[z], (2.5)

where

L[z] := JH[z], H[z] =
(

−∂2
x + W ′′(φ1[z]) 0

0 1

)
(2.6)

F[z,η] :=
(

F1[z, η1]
0

)
, where F1[z, η1] := W ′(φ1[z] + η1) − W ′(φ1[z])

− W ′′(φ1[z])η1. (2.7)

We denote by Pc the projection onto L2
disp associated to the splitting

(1.19) and let Pd = 1 − Pc.

Remark 2.3. Notice that L1 = diag(L1, L1) commutes with L1 and with the
resolvent RL1(ς) := (L1 − ς)−1 for ς in the resolvent set of L1. It then follows
that L1 commutes with the projections Pd and Pc.

Lemma 2.4. (Inverse of Pc) There exists an α0 > 0 and R[z] ∈ C∞ (BCN (0, α0),
L(L2)

)
s.t. R[z]Pc|Hc[z]

= 1|Hc[z]
, PcR[z]|Pc(Σl)∗ = 1|Pc(Σl)∗ for all l ∈ N0

and

‖R[z] − 1‖(Σl)∗→Σl �l |z|. (2.8)

Proof. Let us write, summing on repeated indexes,

R[z] = 1 + 〈J·, CjA[z]〉 ∂zjAφ[0], with j = 1, . . . , N,A = R, I, zjR := Re zj

and zjI := Im zj .
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Then R[z]θ ∈ Hc[z] for all θ ∈ L2
odd(R, C2) is equivalent to〈

Jθ + J 〈Jθ, CjA[z]〉 ∂zjAφ[0], ∂zj′A′ φ[z]
〉

= 0 for allj′ = 1, . . . , N ,A′ = R, I

or, equivalently, for all θ ∈ L2
odd(R, C2)〈

〈Jθ, CjA[z]〉J∂zjAφ[0], ∂zj′A′ φ[z]
〉

=
〈
Jθ,

〈
J∂zjAφ[0], ∂zj′A′ φ[z]

〉
CjA[z]

〉
=

−
〈
Jθ, ∂zj′A′ φ[z]

〉
,

that is, still summing on the repeated indexes j = 1, . . . , N , A = R, I,〈
J∂zjAφ[0], ∂zj′A′ φ[z]

〉
CjA[z]

= −∂zj′A′ φ[z] for all j′ = 1, . . . , N,A′ = R, I.

By the invertibility of the matrix
{〈

J∂zjAφ[0], ∂zj′A′ φ[z]
〉}

, this equation has
a solution for |z| small, which is unique. So z → CjA[z] is smooth near 0 with

values in Σl for all l ∈ N0. We conclude R[z] ∈ L
(
(Σl)∗,Hc[z]

)
. Now

PcR[z] = Pc + 〈J·, CjA[z]〉 Pc∂zjAφ[0] = Pc

so it equals 1|Pc(Σl)∗ when restricted in Pc(Σl)∗, and in particular for l = 1.
Next, notice that for θ ∈ Hc[z], we have R[z]Pcθ ∈ Hc[z] with Pcθ =

PcR[z]Pcθ. Since, for |z| small, Pc is an isomorphism from Hc[z] to L2
disp, we

have R[z]Pc|Hc[z]
= 1|Hc[z]

. �

We set η̃ = Pcη (and thus η = R[z]η̃). Then, η̃ satisfies

∂tη̃ = L1η̃ +
∑

m∈Rmin

zmPcRm + Rη̃ , (2.9)

where

Rη̃ = PcR1[z] + PcJF + Pc(L[z] − L1)η − PcDφ[z](ż − z̃) + PcL1(R[z] − 1)η̃.
(2.10)

We set

T := 〈iε∂x〉−Ñ A∗ and (2.11)

v := T χB2 η̃. (2.12)

Then, also multiplying by the imaginary unit i, we obtain

i∂tv = iLDv +
∑

m∈Rmin

zmiR̃m + iRv, (2.13)

where

LD :=
(

0 1
−LD 0

)
(2.14)

R̃m := T χB2PcRm and (2.15)
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Rv = T χB2PcRη̃ +

(
0

−T (2χ′
B2∂x + χ′′

B2)η̃1 + 〈iε∂x〉−Ñ
[
VD, 〈iε∂x〉Ñ

]
v1

)
.

(2.16)

Before stating our main estimates, we state the following orbital stability re-
sult, which follows from the Modulation Lemma 2.2 and the Orbital Stability
Theorem in [26], in fact also the classical [15].

Proposition 2.5. (Orbital stability) There exist C > 0 and δ0 > 0 such that,
for δ := ‖u(0) − H‖H1 < δ0 the claim in line (1.9) is true for all t ∈ R and
we have

‖z‖L∞(R) + ‖η‖L∞(R,H1) ≤ C0δ. (2.17)

�

Notice that the above result and (1.10), which will be proved below, along
with Lemma 1.9 guarantee by elementary arguments the limit (1.11). So here
the main point is (1.10) for I = R+.

3. Main estimates and proof of Theorem 1.3

The proof of (1.10) in Theorem 1.3 is by means of a continuation argument.
In particular, we will show the following.

Proposition 3.1. Assumptions 1.6, 1.8 and 1.12 are given. Then for any small
ε > 0 there exists a δ0 = δ0(ε) s.t. if (1.10) holds for I = [0, T ] for some
T > 0 and for δ ∈ (0, δ0) then in fact for I = [0, T ] inequality (1.10) holds for
ε replaced by ε/2.

Theorem 1.3 is a corollary of Proposition 3.1.

Proof. By completely routine arguments, which we skip, it is possible to show
that Proposition 3.1 implies (1.10) with I = [0,∞). The time reversibility of
the system, yields immediately (1.10) for I = R. Finally, (1.11) follows from the
integrabililty of |zj |2mj where mj is the smallest integer satisfying ω < mjλj ,
which follows from the FGR estimate given in Proposition 3.7 below and the
boundedness of ż which can be easily obtained from the modulation equation
and orbital stability. �

We set χ ∈ C∞
even(R) to satisfy 1|x|≤1 ≤ χ ≤ 1|x|≤2 and χ′(x) ≤ 0 for

x > 0. For C > 0,

ζC(x) := exp
(

−|x|
C

(1 − χ(x))
)

, ϕC(x) :=
∫ x

0

ζ2
C(y) dy. (3.1)

We will consider constants A,B, ε > 0 satisfying

log(δ−1) � log(ε−1) � A � B2 � B � exp
(
ε−1

)
� 1. (3.2)

We will denote by oε(1) constants depending on ε such that

oε(1) ε→0+

−−−−→ 0. (3.3)

14



We set

w = ζAη̃, ξ := χB2ζBv. (3.4)

We will prove the following continuation argument.

Proposition 3.2. Assumptions 1.6, 1.8 and 1.12 are given. Then for any small
ε > 0 there exists a δ0 = δ0(ε) s.t. if in I = [0, T ] we have

‖ż − z̃‖L2(I) +
∑

m∈Rmin

‖zm‖L2(I) + ‖ξ‖L2(I,Σ̃) + ‖w‖L2(I,Σ̃) ≤ ε (3.5)

then for δ ∈ (0, δ0) inequality (3.5) holds for ε replaced by oε(1)ε where oε(1)
ε→0+

−−−−→ 0.

Notice that Proposition 3.2 implies Proposition 3.1. In the following, we
always assume the assumptions of the claim of Proposition 3.2, which are true
for T > 0 small enough.

The following is proved is Proposition 9.1 of [8].

Proposition 3.3. (Coercivity) We have

‖w1‖L2
− a

10

� ‖ξ1‖Σ̃ + e− B
20 ‖w′

1‖L2 . (3.6)

�

In analogy to [8], we now consider essentially two virial estimates, one for
w and the other for ξ. The first is based directly on the equation for η̃, (2.9).

Proposition 3.4. [1st virial estimate] We have

‖w′
1‖L2(I,L2) + ‖w2‖L2(I,L2

− a
10

) � oε(1)ε

+ ‖w1‖L2(I,L2
− a

10
) +

∑
m∈Rmin

‖zm‖L2(I) + δ‖ż − z̃‖L2(I). (3.7)

The second virial estimate, involves the transformed problem (2.13).

Proposition 3.5. (2nd virial) We have

‖ξ‖L2(I,Σ̃) � oε(1)ε +
∑

m∈Rmin

‖zm‖L2(I) + oε(1)‖ż − z̃‖L(I)2 + oε(1)‖w‖L2,Σ̃)

(3.8)

We will also need a control of modulation parameters.

Proposition 3.6. We have

‖ż − z̃‖L2(I) = oε(1)‖w‖L2(I,L2
− a

10
). (3.9)

The last ingredient is the FGR estimate.

Proposition 3.7. (FGR estimate) We have∑
m∈Rmin

‖zm‖L2(I) = oε(1)ε. (3.10)
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3.1. Proof of Proposition 3.2 assuming Propositions 3.4–3.7

By (3.9)–(3.10) and by the relation between A,B, ε, ε and δ in (3.2), we have

‖ż − z̃‖L2(I) +
∑

m∈Rmin

‖zm‖L2(I) ≤ oε(1)ε. (3.11)

Entering this in (3.8) we get

‖ξ‖L2(I,Σ̃) ≤ oε(1)ε (3.12)

which, fed in (3.6), yields

‖w1‖L2(I,L2
− a

10
) ≤ oε(1)ε.

Using this in (3.7), we obtain

‖w′
1‖L2(I,L2) + ‖w2‖L2(I,L2

− a
10

) ≤ oε(1)ε.

This and the previous one together, yield

‖w‖L2(I,Σ̃) ≤ oε(1)ε. (3.13)

Taken together, (3.11)–(3.13) yield the improvement oε(1)ε of the statement
of Proposition 3.2, concluding the proof. �

We now turn to the proofs of Propositions 3.4–3.7. The structure of the
proofs is very similar to the analogous ones in [8]. In particular, Proposi-
tions 3.4–3.5 are very close to Kowalczyk et al. [25]. The proof of Proposi-
tion 3.7 requires the introduction of an additional variable g, which, like in
[8], is bounded using smoothing estimates: in particular here we borrow from
Komech–Kapytula [19,20].

4. First virial estimate, for w

Recall 〈f, g〉 = Re(f, g), see (1.16). For A � 1 to be determined, we set

I1(η̃) :=
1
2

〈Jη̃, SAη̃〉 , I2(η̃) :=
1
2

〈
Jη̃, ζ2

Ã
σ3η̃

〉
, with σ3 =

(
1 0
0 −1

)
,

where Ã−1 = A−1 + a
10 and

SA :=
1
2
ϕ′

A + ϕA∂x.

Remark 4.1. By the definition of Ã and (3.1), we have ζÃ = ζ 10
a

ζA.

Lemma 4.2. For any c ∈ (0, 1), we have
d

dt
I1(η̃ ) +

1

2
‖w′

1‖2
L2 � ‖w1‖2

L2
− a

10

+ c‖w2‖2
L2

− a
10

+ c−1
∑

m∈Rmin

|zm|2 + δ|ż − z̃|2,

(4.1)

− d

dt
I2(η̃ ) +

1

2
‖w2‖2

L2
− a

10

� ‖w1‖2
L2

− a
10

+ ‖w′
1‖2

L2 +
∑

m∈Rmin

|zm|2 + δ|ż − z̃|2, (4.2)

where the implicit constants are independent of c.
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Proof of Proposition 3.4. From the orbital stability bound Proposition 2.5, we
have |I1(η̃)| � Aδ2 and |I2(η̃)| � δ2. Thus, integrating (4.1) and (4.2), we have

1
2
‖w′

1‖2
L2(I,L2)

≤ C1

(
Aδ2 + ‖w1‖2

L2(I,L2
− a

10
) + c‖w2‖2

L2(I,L2(I))

+ c−1
∑

m∈Rmin

‖zm‖2
L2(I) + δ2‖ż − z̃‖2

L2(I)

)
, (4.3)

1
2
‖w2‖2

L2(I,L2)

≤ C2

(
δ2 + ‖w1‖2

L2(I,L2
− a

10
) + δ‖w′

1‖2
L2(I,L2(I))

+
∑

m∈Rmin

‖zm‖2
L2(I) + δ2‖ż − z̃‖2

L2(I)

)
. (4.4)

Taking c sufficiently small so that 4cC1C2 ≤ 1 and substituting (4.4) into (4.3),
we can bound ‖w′

1‖2
L2(I,L2) � (r.h.s. of (3.7))2. Finally, using (4.4) again, we

have the conclusion. �

The remainder of this section is devoted to the proof of Lemma 4.2. First,
since both 〈J·, SA·〉 and

〈
J·, ζ2

Aσ3·
〉

are symmetric, we have

d

dt
I1(η̃) =

〈
J

(
L1η̃ +

∑
m∈Rmin

zmGm + Rη̃

)
, SAη̃

〉
, (4.5)

d

dt
I2(η̃) =

〈
J

(
L1η̃ +

∑
m∈Rmin

zmGm + Rη̃

)
, ζ2

Ã
σ3η̃

〉
. (4.6)

We will investigate each terms in the r.h.s. of (4.5) and (4.6).

Lemma 4.3. We have

〈JL1η̃, SAη̃〉 = −‖w′
1‖2

L2 + O

(
‖w1‖2

L2
− a

10

)
.

Proof. First, we have

〈JL1η̃, SAη̃〉 = −〈L1η̃1, SAη̃1〉 − 〈η̃2, SAη̃2〉 = −〈L1η̃1, SAη̃1〉 . (4.7)

From [8] Lemma 4.2, we have

〈L1η̃1, SAη̃1〉 = ‖w′
1‖2

L2 − 1

2

∫
R

ϕA

ζ2
A

V ′|w1|2 dx +
1

2A

∫ (
χ′′|x| + 2χ′ x

|x|
)

|w1|2 dx,

(4.8)

where V = W ′′(H). Since |ϕAζ−2
A V ′| + A−1|χ′′x| + 2|χ′| � e− 2a

10 |x|, we have
the conclusion. �

17



Lemma 4.4. For arbitrary c ∈ (0, 1), we have〈
J

( ∑
m∈Rmin

zmPcRm + Rη̃

)
, SAη̃

〉
� δ1/3‖w′

1‖L2 + c‖w‖2
L2

− a
10

+ c−1
∑

m∈Rmin

|zm|2 + δ|ż − z̃|2. (4.9)

Here, the implicit constant is independent of c.

Proof. Recall Rη̃ is given in (2.10). First,

| 〈JPcR[z], SAη〉 | ≤ ‖ζ−1
A SAJPcR[z]‖L2

a
10

‖w‖L2
− a

10

We have ‖ζ−1
A SAJPc‖Σ→L2

a
10

� 1. Therefore, by Propositions 1.11 and 2.5,

| 〈JPcR[z], SAη̃〉 | �
∑

m∈Rmin

|zm|‖w‖L2
− a

10

� c−1
∑

m∈Rmin

|zm|2 + c‖w‖2
L2

− a
10

.

(4.10)

Next, since ‖PcDφ[z]‖Σ � δ by Proposition 2.5, we have

| 〈JPcDφ[z](ż − z̃), SAη̃〉 | � δ|ż − z̃|‖w‖L2
− a

10

� δ|ż − z̃|2 + δ‖w‖2
L2

− a
10

.

(4.11)

Using Lemma 2.4 as well as ‖ζ−1
A ‖L2

a
10

→L2
a
10 − 1

A

, ‖SAPcL1‖Σ→L2
a
10

, ‖ζ−1
A ‖L2

− a
10

→Σ∗

� 1, we have

| 〈JPcL1(R[z] − 1)η̃, SAη̃〉 | � δ‖w‖2
L2

− a
10

. (4.12)

For E1 :=
(

0 0
1 0

)
and ΔW ′′(z) := W ′′(φ1[z]) − W ′′(H), we consider

〈Pc(L[z] − L1)η, SAη̃〉 = 〈JPcΔW ′′(z)E1η, SAη̃〉
= 〈JE1ΔW ′′(z)η̃, SAη̃〉 − 〈JPdΔW ′′(z)E1η̃, SAη̃〉

− 〈JE1ΔW ′′(z)(R[z] − 1)η̃, SAη̃〉 + 〈JPdΔW ′′(z)E1(R[z] − 1)η̃, SAη̃〉 .
(4.13)

The most significant term in the right is the first. Since JE1 =
(

1 0
0 0

)
, it

follows that JE1SA is skew-symmetric, so that

|〈JE1ΔW ′′(z)η̃, SAη̃〉| = |2−1〈[SA,ΔW ′′(z)]η̃1, η̃1〉 | � δ‖w1‖2
L2

− a
10

≤ δ‖w‖2
L2

− a
10

.

The other terms in (4.13) satisfy the same estimate. For example, if we consider
the 2nd term in the r.h.s. of (4.13), we have

| 〈JSAPdΔW ′′(z)E1η̃, η̃〉 | ≤ ‖SAPd‖L2→Σ‖ΔW ′′(z)η̃‖L2‖η̃‖Σ∗ � δ‖w‖2
L2

− a
10

.

The other terms in the r.h.s. of (4.13) can bounded similarly, so that we can
conclude

〈JPcΔW ′′(z)E1η, SAη̃〉 � δ‖w‖2
L2

− a
10

. (4.14)
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For F1 and F defined in (2.7), consider

〈JPcJF, SAη̃〉 = −〈F, SAη〉 − 〈JPdJF, SAη〉 − 〈JPcJF, SA(R[z] − 1)η̃〉 .
(4.15)

Using the pointwise bound |F1| � |η1|2, the fact that Pd : Σ∗ → Σ and (2.8),
we can bound the 2nd and the 3rd term by

| 〈F, PdSAη〉 | � ‖F1‖Σ∗‖PdSA‖Σ∗→Σ‖η1‖Σ∗ � ‖η1‖L∞‖η1‖2
Σ∗ � δ‖w1‖2

L2
− a

10

,

(4.16)

|〈F, PcSA(R[z] − 1)η̃〉| � ‖F1‖Σ∗‖JPcSA(R[z] − 1)‖Σ∗→Σ‖η̃‖Σ∗ � δ2‖w‖2
L2

− a
10

.

(4.17)

Finally, for the 1st term of the r.h.s. of (4.15), we have

〈F, SAη〉 = 〈F1, SAη1〉 = 2−1
〈
F1η1, ζ

2
A

〉
−
〈
W (φ1[z] + η1) − W (φ1[z]) − W ′(φ1[z])η1 − 2−1W ′′(φ1[z])η2

1 , ζ2
A

〉
−
〈
W ′(φ1[z] + η1) − W ′(φ1[z]) − W ′′(φ1[z])η1 − 2−1W ′′′(φ1[z])η2

1 , φ′
1[z]ϕA

〉
.

So

| 〈F, SAη〉 | �
∫

|η1|3ζ2
A dx

and, by Lemma 2.7 of [7], we have

| 〈F, SAη〉 | � δ1/3‖w′
1‖2

L2 . (4.18)

By (1.37) and (2.10) we have bounded all terms in the l.h.s. of (4.9). Com-
bining, (4.10), (4.11), (4.12), (4.14), (4.16), (4.17) and (4.18) we have the
conclusion. �

Combining Lemmas 4.3 and 4.4 we obtain (4.1).
We next prove (4.2). As (4.1), we start from examine the contribution of

the 1st term in the r.h.s. of (4.6).

Lemma 4.5. We have 〈
JL1η̃, ζ2

Aσ3η̃
〉

= ‖ζ 10
a

w2‖2
L2 + r,

with r satisfying

|r| � ‖w1‖2
Σ̃
. (4.19)

Proof. We have〈
JL1η̃, ζ2

Aσ3η̃
〉

= ‖ζ 10
a

w2‖2
L2 −

〈
L1η̃1, ζ

2
Aη̃1

〉
= ‖ζ 10

a
w2‖2

L2 + r.

The remainder term r can be expanded as

−r =
〈
L1η̃1, ζ

2
Ã
η̃1

〉
= ‖(ζ 10

a
w1)′‖2

L2 +
∫ ((

(log ζÃ)′)2 + W ′′(H)
)

|ζ 10
a

w1|2 dx.

Thus, we have (4.19). �

The contribution of the remaining terms in the r.h.s. of (4.6) can be
bounded as follows.
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Lemma 4.6. For arbitrary c ∈ (0, 1) we have∣∣∣∣∣
〈

J

( ∑
m∈Rmin

zmRm + Rη̃

)
, ζ2

Ã
σ3η̃

〉∣∣∣∣∣ � c‖w‖2
L2

− a
10

+ c−1
∑

m∈Rmin

|zm|2 + δ|ż − z̃|2, (4.20)

where the implicit constant is independent of c.

Proof. The proof is similar to the proof of Lemma 4.4. Thus, we omit it. �

Combining Lemmas 4.5 and 4.6 and the fact ‖w2‖L2
− a

10

≤ ‖ζ 10
a

w2‖L2 , we

have (4.2). This completes the proof of Lemma 4.2.

5. Technical estimates

The following lemmas are proved in [8], to which we refer for proofs.

Lemma 5.1. Let U ≥ 0 be a non-zero potential U ∈ L1(R, R). Then there exists
a constant CU > 0 such that for any function 0 ≤ W such that 〈x〉W ∈ L1(R)
then

〈Wf, f〉 ≤ CU‖ 〈x〉W‖L1(R)

〈
(−∂2

x + U)f, f
〉
. (5.1)

In particular, for a > 0 the constant in the norm ‖ · ‖Σ̃ in (1.29), there exists
a constant C(a) > 0 such that

〈Wf, f〉 ≤ C(a)‖ 〈x〉W‖L1(R)‖f‖2
Σ̃
. (5.2)

�

Lemma 5.2. Consider a Schwartz function V ∈ S(R, C). Then, for any L ∈
N∪{0} there exists a constant CL s.t. we have for all ε ∈ (0, 1] and for L2,s(R)
is defined in Definition 1.10,

‖ 〈iε∂x〉−Ñ
[
V, 〈iε∂x〉Ñ

]
‖L2,−L(R)→L2,L(R) ≤ CLε. (5.3)

where L2,s(R) is defined in Definition 1.10. �

Lemma 5.3. There exist constants C0 and C
Ñ

such that for ε > small enough
we have

‖T ‖L2→L2 ≤ C0ε
−Ñ and ‖T ‖

ΣÑ →Σ0 ≤ C
Ñ

. (5.4)

Furthermore, let Kε(x, y) ∈ D′(R × R) be the Schwartz kernel of T . Then, we
have

|Kε(x, y)| ≤ C0e
− |x−y|

3ε for all x, y with |x − y| ≥ 1. (5.5)

�
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Lemma 5.4. We have

‖w1‖L2(|x|≤2B2) � B2‖w1‖Σ̃ for any w, (5.6)

‖ξ1‖2
Σ̃

�
〈
(−∂2

x − 2−2χ2
B2xV ′

D)ξ1, ξ1

〉
� ‖ξ1‖2

Σ̃
for any ξ, (5.7)

‖v1‖L2(R) � ε−ÑB2‖w1‖Σ̃ , (5.8)

‖v′
1‖L2(R) � ε−Ñ‖w1‖Σ̃ , (5.9)

‖ 〈x〉−M
v1‖H1(R) � ‖ξ1‖Σ̃ + ε−Ñ 〈B〉−M+3 ‖w1‖Σ̃ for M ∈ N,M ≥ 4. (5.10)

�

Lemma 5.5. We have the formula

Pc (χB2 η̃1) =
Ñ∏

j=1

RL1(λ̃
2
j )PcA〈iε∂x〉Ñ

v1. (5.11)

�

We next consider a number of results on linear theory.

Lemma 5.6. ω2 is neither an eigenvalue nor a resonance for the operator LD,
that is, if LDf = ω2f for f ∈ L∞(R), then f = 0.

Proof(sketch) If the statement is false, there exists a nonzero and bounded
solution of LDf = ω2f . We can assume f is real valued. Now, let [a, b] be an
interval where −xV ′

D|[a,b] > 0 and let ψ ∈ C∞
c ((a, b), [0,+∞)) be a nonzero

function such that −x (V ′
D − αψ′) > 0 in [a, b] for all α ∈ [0, 1]. Then it can

be shown that for small α > 0 the operator LD − αψ has exactly one negative
eigenvalue. But it is elementary to see that this is incompatible with the fact
that VD − λψ is repulsive. �

Notice that we can apply Komech–Kopylova [20, Proposition 3.3] and
conclude the following.

Lemma 5.7. Let Λ be a finite subset of (0,∞) and let S > 5/2. Then there
exists a fixed c(S, Λ) s.t. for every t ≥ 0 and λ ∈ Λ

‖eLDtR+
iLD

(λ)f‖H1,−S(R) ≤ c(S,Λ)〈t〉− 3
2 ‖f‖H1,S(R) for all f ∈ H1,S(R).

(5.12)

�

We have the following resolvent identity, see Komech–Kopylova [19, for-
mula (3.6)],

RiLD
(ς) =

(
ςRLD

(ς2 − ω2) iRLD
(ς2 − ω2)

−i
(
1 + ς2RLD

(ς2 − ω2)
)

ςRLD
(ς2 − ω2)

)
. (5.13)

For the following see Komech–Kopylova [19, Sect. 3].
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Lemma 5.8. For any preassigned r > 0 and for S > 1/2 we have

RiLTr(ς ± iε)
ε→0+−−−−→ R±

iLD
(ς) in L∞

(
(−∞, −r − ω] ∪ [r + ω, ∞), L

(
H1,S ,H1,−S

))
(5.14)

�

Combining Lemma 5.8 with Lemma 8.5 [8] we have the following.

Lemma 5.9. For S > 5/2 and τ > 1/2 we have

sup
ς∈R

‖R±
iLD

(ς)‖H1,τ →H1,−S < ∞. (5.15)

Proof. An uniform upper bound in |ς| ≥ 1 + ω holds by (5.14). So now we
focus on |ς| ≤ 1 + ω. By (5.13) it is enough to bound

sup
|ς|≤1+ω

‖ 〈x〉−S
R±

LD−ω2(ς2 − ω2) 〈y〉−τ ‖L2(R)→L2(R) < ∞ and (5.16)

sup
|ς|≤1+ω

‖ 〈x〉−S [∂x, R±
LD−ω2(ς2 − ω2)] 〈y〉−τ ‖L2(R)→L2(R) < ∞. (5.17)

In turn, they are a consequence of the following bound, for j = 0, 1, for the
integral kernel,

sup
|ς|≤1+ω

∫
R2

〈x〉−2S |∂j
xR±

LD−ω2(x, y, ς2 − ω2)|2 〈y〉−2τ
dxdy < ∞, (5.18)

where (5.16) follows from case j = 0 and (5.17) follows from case j = 1.
For j = 0, in the + case (case − is similar), (5.18) is proved in Lemma 8.5
[8]. We sketch now case j = 1. Recall that, say for x < y, with an analogous
formula for x > y,

R+
LD−ω2 (x, y, ς2 − ω2) =

T (
√

ς2 − ω2)

2i
√

ς2 − ω2
ei

√
ς2−ω2(x−y)m−(x,

√
ς2 − ω2)m+(y,

√
ς2 − ω2),

(5.19)

where the Jost functions f±(x, k) = e±ikxm±(x, k) solve
(
−Δ + VD − ω2

)
u =

k2u with

lim
x→+∞ m+(x, k) = 1 = lim

x→−∞ m−(x, k).

These functions satisfy, see Lemma 1 p. 130 [11],

|m±(x, k) − 1| ≤ C1〈max{0,∓x}〉〈k〉−1 , (5.20)

|∂xm±(x, k)| ≤ C1 〈k〉−1
, (5.21)

while T (k) = αk(1 + o(1)) near k = 0 for some α ∈ R and T (k) = 1 + O(1/k)
for k → ∞ and T ∈ C0(R), see Theorem 1 [11].
Now,

∂xR+
LD−ω2

(x, y, ς2 − ω2) = i
√

ς2 − ω2RLD−ω2(x, y, ς2 − ω2)

+
T (

√
ς2 − ω2)

2i
√

ς2 − ω2
ei

√
ς2−ω2(x−y)m′

−(x,
√

ς2 − ω2)

22



× m+(y,
√

ς2 − ω2).

The first term on the right, by |ς| ≤ 1 + ω is essentially like the kernel (5.19),
so the corresponding contribution to (5.18) is like the case j = 0. It is easy to
see, following the discussion in Lemma 8.5 [8], that the bound of the last line
is simpler, basically because (5.21) is better than (5.20). �

Remark 5.10. Lemma 5.9 is essential for us to get the key inequality (8.10).
Notice that Lemma 5.9 is true under the repulsivity hypothesis of Kowalczyk
and Martel [22], which we have recalled in Remark 1.7, if we further assume
that ω2 is not a resonance for LD. But if it has a resonance, then the status of
the Lemma 5.9 is unclear. For LD = −∂2

x +ω2, by R−∂2
x
(x, y, ς) = i√

ς ei
√

ς|x−y|

and by a cancelation due to the odd functions, we are reduced to the following
opposite of (5.18)

sup
|ς|≤1

∫
R2

〈x〉−2S

∣∣∣∣ 1√
ς

(
ei

√
ς|x−y| − 1

)∣∣∣∣
2

〈y〉−2τ
dxdy = +∞.

Notice that this follows from the fact that the above is larger than

sup
|ς|≤1

∫
|x||y|1/

√
|ς|

〈x〉−2S

∣∣∣∣ 1√
ς

(
ei

√
ς|x−y| − 1

)∣∣∣∣
2

〈y〉−2τ
dxdy

∼ sup
|ς|≤1

∫
|x||y|1/

√
|ς|

〈x〉−2S 〈y〉2−2τ
dxdy ∼ sup

|ς|≤1

|ς| 2τ−3
2 =

+ ∞ for τ ∈ (1/2, 3/2)

and is infinite also for τ = 3/2. So, even though a resonance of LD involves even
functions, this still seems to affect the estimates for the resolvent acting only
on odd functions. See also the resolvent expansions in Lemma 2.2 in Murata
[41] or Lemma 2.2 in Jensen and Kato [16], which require increasing weights.

The following formulas can be proved following Mizumachi [40, Lemma
4.5], to which we refer for the proof.

Lemma 5.11. Let for g ∈ S(R × R, C2)

U(t, x) =
1√
2πi

∫
R

e−iλt
(
R−

iLD
(λ) + R+

iLD
(λ)
)
F−1

t g(λ, ·)dλ,

where F−1
t is the inverse Fourier transform in t. Then

2
∫ t

0

e(t−t′)LD iLD(t′)dt′ = U(t, x) −
∫

R−
e(t−t′)LD iLD(t′)dt′

+
∫

R+

e(t−t′)LD iLD(t′)dt′. (5.22)

�

The last two lemmas give us the following smoothing estimate.
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Lemma 5.12. For S > 5/2 and τ > 1/2 there exists a constant C(S, τ) such
that we have∥∥∥∥

∫ t

0

e(t−t′)LDg(t′)dt′
∥∥∥∥

L2(R,H1,−S)

≤ C(S, τ)‖g‖L2(R,H1,τ ). (5.23)

Proof. We repeat verbatim the proof of [8, Lemma 8.7], which in turn is taken
from Mizumachi [40], that is, can use formula (5.22) and bound U, with the
bound on the last two terms in the right hand side of (5.22) similar. So we
have, taking Fourier transform in t and by Plancherel,

‖U‖L2
tH1,−S ≤ 2 sup

±
‖R±

iLD
(λ)ĝ(λ, ·)‖L2

λH1,−S

≤ 2 sup
±

sup
λ∈R

‖R±
iLD

(λ)‖H1,τ →H1,−S‖ĝ(λ, x)‖L2
λH1,τ � ‖g‖L2

tH1,τ .

�

6. Second virial estimate, for ξ

We set

J1(v) :=
1
2

〈
Jv, S̃Bv

〉
, J2(v) :=

1
2

〈
Jv,

(
χB2ζB̃

)2
σ3v

〉
(6.1)

where B̃−1 = B−1 +
a

10
(6.2)

and

S̃B :=
ψ′

B

2
+ ψB∂x, ψB := χ2

B2ϕB . (6.3)

The main result of the section is the following.

Lemma 6.1.
d

dt
J1(v) +

1
2
‖ξ1‖2

Σ̃
� (c + ε)‖ξ2‖2

L2
− a

10

+ c−1
∑

m∈Rmin

|zm|2 + δ|ż − z̃|2 + ε‖w‖2
Σ̃

,

(6.4)

− d

dt
J2(v) +

1
2
‖ξ2‖2

L2
− a

10

� ‖ξ1‖2
Σ̃

+
∑

m∈Rmin

|zm|2 + δ|ż − z̃|2 + ε‖w‖2
Σ̃

.

(6.5)

Proof of Proposition 3.5 assuming Lemma 6.1. We have

|J1(v)| = |
〈
v2, S̃Bv1

〉
| ≤ ‖v2‖L2 |S̃Bv1|

� B‖ 〈iε∂x〉−Ñ ‖L2→L2‖ 〈iε∂x〉−Ñ ‖H1→H1‖η̃2‖L2‖η̃1‖H1 � Bε−2Ñδ2.

Similarly, we have |J2(v)| � ε−2Ñδ2. Integrating (6.4) and (6.5) we have

‖ξ1‖2
L2Σ̃

�Bε−2Ñδ2 + (c + ε)‖ξ2‖2
L2L2

− a
10

+ c−1
∑

m∈Rmin

‖zm‖2
L2 + δ‖ż − z̃‖2

L2 + ε‖w‖2
L2Σ̃

,
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‖ξ2‖2
L2L2

− a
10

�ε−2Ñδ2 + ‖ξ1‖2
L2Σ̃

+
∑

m∈Rmin

‖zm‖2
L2 + δ‖ż − z̃‖2

L2 + ε‖w‖2
L2Σ̃

.

Thus, as for the proof of Proposition 3.4, we have the conclusion. �
As in (4.5) and (4.6), we have

d

dt
J1(v) =

〈
J

(
LDv +

∑
m∈Rmin

zmR̃m + Rv

)
, S̃Bv

〉
, (6.6)

d

dt
J2(v) =

〈
J

(
LDv +

∑
m∈Rmin

zmR̃m + Rv

)
, χ2

B2ζ2
B̃

σ3v

〉
. (6.7)

Lemma 6.2. We have

−
〈
JLDv, S̃Bv

〉
≥ 1

2

〈(
−∂2

x − 1
2
χ2

B2xV ′
D

)
ξ1, ξ1

〉
+ B−1/2O(‖ξ1‖2

Σ̃
+ ‖w1‖2

Σ̃
).

(6.8)

Proof. Since S̃B is skew-adjoint, we have the following

−
〈
JLDv, S̃Bv

〉
=
〈
LDv1, S̃Bv1

〉
, (6.9)

where by [8, Lemma 6.1] the very last term has the lower bound in the right
hand side of (6.8). �
Lemma 6.3. We have∣∣∣〈zmJR̃m, S̃Bv

〉∣∣∣ � |zm|
(
‖ξ‖Σ̃ + e−B/2‖w‖Σ̃

)
. (6.10)

Proof. We have〈
zmJR̃m, S̃Bv

〉
=
〈
zmR̃m2, S̃Bv1

〉
+
〈
zmS̃BR̃m1, v2

〉
. (6.11)

The following inequality is the content of Lemma 6.3 in [8],∣∣∣〈zmR̃m2, S̃Bv1

〉∣∣∣ ≤ |zm|
(
‖ξ1‖Σ̃ + e−B/2‖w1‖Σ̃

)
.

We turn to the second term in the right in (6.11). Using 1 = (1 − χB2) + χB2

we split in two and bound separately the two terms. Using ξ2 = χB2ζBv2 the
contribution from χB2 is∣∣∣〈zme

a
10 |x|ζ−1

B S̃BR̃m1, e
− a

10 |x|ξ2

〉∣∣∣ ≤ |zm|‖ξ2‖L2
− a

10

‖S̃BR̃m1‖L2
a
10+B−1

.

We show now that the last factor is � 1. The term we need to bound is

e
a
10 |x|ζ−1

B (χ2
B2ϕB)′ 〈iε∂x〉−Ñ A∗χB2Rm1

+ 2e
a
10 |x|ζ−1

B χ2
B2ϕB 〈iε∂x〉−Ñ

∂xA∗χB2Rm1.

We bound only the second term, since the first can be bounded similarly
and in fact is smaller. Let us set f := ∂xA∗χB2Gm1. We have

〈iε∂x〉−Ñ f(x) =

∫
f(y)e

a
5 |y|Idy , where I :=

∫
e− a

5 |y|ei(x−y)(τ1+iτ2)

(1 + ε2τ2
1 − ε2τ2

2 + 2iε2τ1τ2)
Ñ/2

dτ1

(6.12)

25



is a generalized integral in τ1, well defined, using integration by parts, also for
Ñ = 1, when it is not absolutely convergent. I is constant in |τ2| < ε−1. Then,
for τ2 = 2−1/2ε−1sign(x − y) we have

I = e− a
5 |y|e− |x−y|

2ε II , where II :=
∫

ei(x−y)τ1

(
1/2 + ε2τ2

1 +
√

2iετ1sign(x − y)
)Ñ/2

dτ1.

For Ñ > 1 we have |II| � ε−1. Standard arguments show |II| � ε−1 log
(2 + ε/|x − y|) for Ñ = 1. Since e− a

5 |y|e− |x−y|
4ε ≤ e− a

5 |x|, we conclude∣∣∣〈iε∂x〉−Ñ
f(x)

∣∣∣ � e− a
5 |x|

∫
ε−1K

Ñ

(
x − y

ε

)
|f(y)|e a

5 |y|dy with

K
Ñ

(x) = e− |x|
4 logσ

Ñ (2 + /|x|) ,

where σ
Ñ

= 0 for Ñ > 1 and σ
Ñ

= 1 for Ñ = 1. Then

‖χ2
B2ϕB 〈iε∂x〉−Ñ

f‖L2
a
10+B−1

� ‖e
a
10 |x|ζ−1

B ϕBe− a
5 |x|‖L∞‖K

Ñ
‖L1‖e

a
5 |x|∂xA∗χB2Rm1‖L2

a
10

� 1.

To finish the proof we consider the following, which completes the proof,∣∣∣〈zme
a
10 ζ−1

A (1 − χB2)S̃BR̃m1, e
− a

10 |y|ζAv2

〉∣∣∣
� |zm| ‖w2‖L2

− a
10

‖(1 − χB2)S̃BR̃m1‖L2
a
10+A−1

≤ e−B |zm| ‖w2‖L2
− a

10

.

�

Lemma 6.4. We have∣∣∣〈JRv, S̃Bv
〉∣∣∣ ≤ oε(1)

[
‖ξ‖2

Σ̃
+ ‖w‖2

Σ̃
+ |ż − z̃|2 +

∑
m∈Rmin

|zm|2
]

. (6.13)

Proof. As the proof of Lemma 4.4 we estimate each term. First,〈
J

(
0

−T (2χ′
B2∂x + χ′′

B2)η̃1 + 〈iε∂x〉−Ñ [VD, 〈iε∂x〉Ñ ]v1

)
, S̃Bv

〉

=
〈
−T (2χ′

B2∂x + χ′′
B2)η̃1 + 〈iε∂x〉−Ñ [VD, 〈iε∂x〉Ñ ]v1, S̃Bv1

〉
(6.14)

The last term is bounded in (6.19) and (6.20) of [8], and in particular we have

|(6.14)| � (ε + ε−ÑB−1)
(
‖ξ1‖2

Σ̃
+ ‖w1‖2

Σ̃

)
. (6.15)

We next, we have∣∣∣〈JT χB2PcR1[z], S̃Bv
〉∣∣∣+

∣∣∣〈JT χB2PcDzφ[z](ż − z̃), S̃Bv
〉∣∣∣

� δ

(
|ż − z̃| +

∑
m∈Rmin

|zm|
)(

‖ξ‖Σ̃ + e−B/2‖w‖Σ̃

)
,
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because the first term in the left can be treated like (6.10), except that it is
smaller because of the bound (1.38) on R1[z], and a similar argument holds for
the second term on the left, where additionally we use ‖PcDzφ[z]‖CN →Σ � |z|.
Next, proceeding as above∣∣∣〈JT χB2PcL1(R[z] − 1)η̃, S̃Bv

〉∣∣∣ � ‖S̃BT χB2PcL1(R[z] − 1)η̃‖L2
a
10+B−1

×
(
‖ξ‖Σ̃ + e−B/2‖w‖Σ̃

)
. (6.16)

By

‖T χB2PcS̃B [z]‖
ΣÑ+1→L2

a
10+B−1

� ε−Ñ , (6.17)

‖R[z] − 1‖
Σ∗→ΣÑ+1 � δ, (6.18)

‖η̃‖Σ∗ � ‖w‖L2
− a

10

, (6.19)

we conclude

‖S̃BT χB2PcL1(R[z] − 1)η̃‖L2
a
10+B−1

� δε−Ñ‖w‖L2
− a

10

.

Next, following the notation in Lemma 4.4, we consider〈
JT χB2Pc(L[z] − L1)η, S̃Bv

〉
=
〈
T χB2ΔW ′′(z)η̃1, S̃Bv1

〉

−
〈
JT χB2Pd(L[z] − L1)η̃, S̃Bv

〉

−
〈
JT χB2(L[z] − L1)(R[z] − 1)η̃, S̃Bv

〉

+
〈
JT χB2Pd(L[z] − L1)(R[z] − 1)η̃, S̃Bv

〉
. (6.20)

Like in Lemma 4.4, the most significant term in the right is the first, which for
brevity is the only one we bound explicitly, since the other ones are simpler.
We have

|
〈
T χB2ΔW ′′(z)η̃1, S̃Bv1

〉
| ≤ ε−Ñ‖χB2ΔW ′′(z)η̃1‖L1‖S̃Bv1‖L2

� ε−Ñ‖e
a
10 |x|ΔW ′′(z)‖L∞‖w1‖L2

− a
10

(
ε−ÑB‖w1‖Σ̃ + B‖ξ1‖Σ̃

)

� ε−2ÑBδ‖w1‖L2
− a

10

(
‖w1‖Σ̃ + |ξ1‖Σ̃

)
,

where we used,

‖S̃Bv1‖L2 � ε−NB‖w1‖Σ̃ + B‖ξ1‖Σ̃. (6.21)

The proof of (6.21) is in [25] and for completeness we write the proof in [8].
By (5.9) and ‖ψB‖L∞ � B

‖S̃Bv1‖L2 � ‖ψ′
Bv1‖L2 + ‖ψBv′

1‖L2 � ‖ψ′
Bv1‖L2 + ε−NB‖w1‖Σ̃.

Next, we have

|ψ′
B | = |2χ′

B2χB2ϕB + χ2
B2ζ2

B | � B−1χB2 + χ2
B2ζ2

B . (6.22)

Then

B−1‖v1‖L2 � Bε−NB‖w1‖Σ̃
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by (5.8). By Lemma 5.1 we have

‖χ2
B2ζ2

Bv1‖L2 = ‖χB2ζBξ1‖L2 �
√

‖ 〈x〉χB2ζB‖L1‖ξ‖Σ̃ ∼ B‖ξ1‖Σ̃

and, finally the following by (5.9), which completes the proof of (6.21),

‖χ2
B2ϕBv′

1‖L2 � B‖v′
1‖L2 � Bε−N‖w1‖Σ̃.

Next, following again the notation in Lemma 4.4, we consider〈
JT χB2PcJF, S̃Bv

〉
=
〈
T χB2F, S̃Bv

〉
−
〈
JT χB2PdJF, S̃Bv

〉
. (6.23)

The main term in the right is the first, which by (6.21) can be treated as

|
〈
T χB2F1, S̃Bv1

〉
| ≤ ‖T χB2F1‖L2‖S̃Bv1‖L2

� ε−Ñ‖χB2η2
1‖L2

(
ε−NB‖w1‖Σ̃ + B‖ξ1‖Σ̃

)
� ε−2ÑB‖η1‖H1 (‖χB2 η̃1‖L2 + ‖(R[z] − 1)η̃1‖L2)

(
‖w1‖Σ̃ + ‖ξ1‖Σ̃

)
� ε−2ÑBδ

(
‖w1‖L2(|x|≤2B2) + δ‖w1‖Σ̃

) (
‖w1‖Σ̃ + ‖ξ1‖Σ̃

)
� ε−2ÑB3δ‖w1‖Σ̃

(
‖w1‖Σ̃ + ‖ξ1‖Σ̃

)
,

where we used (5.6), Lemma 2.4.
Turning to the second term in the right of (6.23), it is bounded from above by

‖S̃BT χB2PdJF‖Σ‖v‖Σ∗ � ‖F1‖Σ∗‖w‖L2
− a

10

� ‖η1‖H1‖η1‖Σ∗‖w‖L2
− a

10

� δ‖w‖2
L2

− a
10

.

�

Lemma 6.5. For the B̃ defined in (6.2), we have〈
J (LDv) , χ2

B2ζ2
B̃

σ3v
〉

=
∫

ζ2
10
a

|ξ2|2 dx −
〈
(LD + ω2)v1, χ

2
B2ζ2

B̃
v1

〉
, (6.24)

with

|
〈
(LD + ω2)v1, χB2ζ2

B̃
v1

〉
| � ‖ξ1‖Σ̃

(
‖ξ1‖Σ̃ + e−BεÑ‖w1‖Σ̃.

)
(6.25)

Proof. Formula (6.24) follows from direct computation. We prove (6.25). First,〈
(LD + ω2)v1, χB2ζ2

B̃
v1

〉
=
〈
−v′′

1 , χB2ζBζ2
10
a

ξ1

〉
+
〈
(VD + ω2)ξ1, ζ

2
10
a

ξ1

〉
.

(6.26)

The 2nd term in r.h.s. of (6.26) can be bounded by

|
〈
(VD + ω2)ξ1, ζ

2
10
a

ξ1

〉
| � ‖ξ1‖2

L2
− a

10

. (6.27)

For the 1st term of r.h.s. of (6.26) we write〈
−v′′

1 , χB2ζBζ2
10
a

ξ1

〉
= −

〈
v1, (χB2ζBζ2

10
a

ξ1)′′
〉

= −
〈
v1, (χB2ζBζ2

10
a

)′′ξ1 + 2(χB2ζBζ2
10
a

)′ξ′
1 + χB2ζBζ2

10
a

ξ′′
1

〉
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= −
〈
v1, χ

′′
B2ζBζ2

10
a

ξ1

〉
−
〈
v1, 2χ′

B2(ζBζ 10
a

)′ξ1

〉
−
〈
v1, χB2(ζBζ2

10
a

)′′ξ1

〉
(6.28)

−
〈
v1, 2χ′

B2ζBζ2
10
a

ξ′
1

〉
−
〈
v1, 2χB2(ζBζ2

10
a

)′ξ′
1

〉
−
〈
v1, χB2ζBζ2

10
a

ξ′′
1 v
〉

.

(6.29)

For the 1st term of line (6.28), we have

−
〈

v1, χ′′
B2ζBζ210

a
ξ1

〉
= −

〈
ζBv1, χ′′

B2ζBζ210
a

ξ1

〉

= −
〈

ξ1, χ′′
B2ζBζ210

a
ξ1

〉
−
〈

(1 − χB2 )ζBT χB2ζ−1
A w1, χ′′

B2ζBζ210
a

ξ1

〉
.

(6.30)

For the 1st term of line (6.30),

|
〈
ξ1, χ

′′
B2ζBζ2

10
a

ξ1

〉
| � B−4‖ξ1‖2

L2
− a

10

. (6.31)

For the 2nd term of line (6.30),

|
〈
(1 − χB2)ζBT χB2ζ−1

A w1, χ
′′
B2ζBζ2

10
a

ξ1

〉
| � e−BεÑB−4‖w1‖L2

− a
10

‖ξ1‖L2
− a

10

(6.32)

Combining (6.31) and (6.32) we have

|
〈
v1, χ

′′
B2ζBζ2

10
a

ξ1

〉
| � B−4‖ξ1‖2

L2
− a

10

+ e−BεÑB−4‖w1‖L2
− a

10

‖ξ1‖L2
− a

10

.

(6.33)

Next, for the 2nd term of line (6.28) we have

−
〈
v1, 2χ′

B2(ζBζ 10
a

)′ξ1

〉
= −

〈
ζBv1, 2χ′

B2ζ−1
B (ζBζ 10

a
)′ξ1

〉

= −
〈
ξ1, 2χ′

B2ζ−1
B (ζBζ 10

a
)′ξ1

〉

−
〈
(1 − χB2)ζBT χB2ζ−1

A w1, 2χ′
B2ζ−1

B (ζBζ 10
a

)′ξ1

〉
. (6.34)

The 1st term of line (6.34) can be bounded as

| −
〈
ξ1, 2χ′

B2ζ−1
B (ζBζ 10

a
)′ξ1

〉
| � B−2‖ξ1‖2

L2
− a

10

and the 2nd term of line (6.34) can be bounded as

|
〈
(1 − χB2)ζBT χB2ζ−1

A w1, 2χ′
B2ζ−1

B (ζBζ 10
a

)′ξ1

〉
|

� e−Bε−ÑB−2‖w1‖L2
− a

10

‖ξ1‖L2
− a

10

.

Thus, we have

|
〈
v1, 2χ′

B2(ζBζ 10
a

)′ξ1

〉
| � B−2‖ξ1‖2

L2
− a

10

+ e−Bε−ÑB−2‖w1‖L2
− a

10

‖ξ1‖L2
− a

10

.

(6.35)
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For the 3rd term of line (6.28), we have

|
〈
v1, χB2(ζBζ2

10
a

)′′ξ1

〉
| = |

〈
ξ1, ζ

−1
B (ζBζ2

10
a

)′′ξ1

〉
| � ‖ξ1‖2

L2
− a

10

(6.36)

For the 1st term of line (6.29) we have

−
〈
v1, 2χ′

B2ζBζ2
10
a

ξ′
1

〉
= −

〈
ξ1, 2χ′

B2ζBζ2
10
a

ξ′
1

〉

−
〈
(1 − χB2)ζBT χB2ζ−1

A w1, 2χ′
B2ζBζ2

10
a

ξ′
1

〉
(6.37)

For the 1st term of the r.h.s. of (6.37),

|
〈
ξ1, 2χ′

B2ζBζ2
10
a

ξ′
1

〉
| � B−2‖ξ1‖L2

− a
10

‖ξ′
1‖L2

− a
10

, (6.38)

and for the 2nd term of the r.h.s. of (6.37),

|
〈
(1 − χB2)ζBT χB2ζ−1

A w1, 2χ′
B2ζBζ2

10
a

ξ′
1

〉
| � e−BB−1ε−Ñ‖w1‖L2

− a
10

‖ξ′
1‖L2

− a
10

.

(6.39)

Combining (6.38) and (6.39), we have

|
〈
v1, 2χ′

B2ζBζ2
10
a

ξ′
1

〉
| �

(
B−2‖ξ1‖L2

− a
10

+ B−1e−BεÑ‖w1‖L2
− a

10

)
‖ξ′

1‖Σ̃.

(6.40)

For the 2nd term of line (6.29), we have

|
〈
v1, 2χB2(ζBζ2

10
a

)′ξ′
1

〉
| = 2|

〈
ξ1, ζ

−1
B (ζBζ2

10
a

)′ξ′
1

〉
| � ‖ξ1‖L2

− a
10

‖ξ1‖Σ̃. (6.41)

For the last term of line (6.29), we have

|
〈
v1, χB2ζBζ2

10
a

ξ′′
1

〉
| = |

〈
ξ1, ζ

2
10
a

ξ′′
1

〉
| ≤ |

〈
ξ′
1, ζ

2
10
a

ξ′
1

〉
|

+ |
〈

ξ1,
(
ζ2

10
a

)′
ξ′
1

〉
| � ‖ξ1‖2

Σ̃
. (6.42)

Collecting (6.33), (6.35), (6.36), (6.40), (6.41) and (6.42) we have (6.25). �

Lemma 6.6. We have

|
〈

J

( ∑
m∈Rmin

zmG̃m + Rv

)
, χ2

B2ζ2
B̃

σ3v

〉
|

� c−1
∑

m∈Rmin

|zm|2 + δ|ż − z̃|2 + ‖ξ1‖2
Σ̃

+ (c + ε)‖ξ2‖2
L2

− a
10

+ ε‖w1‖2
Σ̃

+ ε‖w2‖2
L2

− a
10

(6.43)

Proof. First, recalling (1.37), we have

|
〈
JT χB2PcR[z], χ2

B2ζ2
B̃

σ3v
〉

| �
∑

m∈Rmin

|zm|‖ξ‖L2
− a

10

. (6.44)

Next,

|
〈
JT χB2PcDφ[z](ż − z̃), χ2

B2ζ2
B̃

σ3v
〉

| � δ|ż − z̃|‖ξ‖L2
− a

10

, (6.45)
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|
〈
JT χB2PcL[z] (R[z] − 1) η̃, χ2

B2ζ2
B̃

σ3v
〉

| � δ‖w‖L2
− a

10

‖ξ‖L2
− a

10

. (6.46)

We have, using the notation of Lemma 4.4,

|
〈
JT χB2PcΔW ′′(z)E1η, χ2

B2ζ2
B̃

σ3v
〉

| � δε−Ñ‖w‖L2
− a

10

‖ξ‖L2
− a

10

(6.47)

|
〈
JT χB2PcJF, χ2

B2ζ2
B̃

σ3v
〉

| � ε−Ñ‖χB2 |η|2‖L2
− a

10

‖ξ‖L2
− a

10

� δε−Ñ‖w‖L2
− a

10

‖ξ‖L2
− a

10

. (6.48)

Finally,

|
〈

J

(
0

−T (2χ′
B2∂x + χ′′

B2)η̃1 + 〈iε∂x〉−Ñ
[
VD, 〈iε∂x〉Ñ

]
v1

)
, χ2

B2ζ2
B̃

σ3v

〉
|

= |
〈
−T (2χ′

B2∂x + χ′′
B2)η̃1 + 〈iε∂x〉−Ñ

[
VD, 〈iε∂x〉Ñ

]
v1, χ

2
B2ζ2

B̃
v1

〉
|

� ε−Ñe−B‖w1‖Σ̃‖ξ1‖Σ̃ + ε‖ 〈x〉−10
v1‖L2‖ξ1‖L2

− a
10

� ε−Ñe−B‖w1‖Σ̃‖ξ1‖Σ̃ + ε
(
‖ξ1‖Σ̃ + ε−ÑB−1‖w1‖Σ̃

)
‖ξ1‖L2

− a
10

� ε
(
‖w1‖Σ̃‖ξ1‖Σ̃ + ‖ξ1‖2

Σ̃

)
. (6.49)

Combining (6.44)–(6.49), we obtain (6.43). �

Proof of Lemma 6.1. The inequalities (6.4) and (6.5) follows from Lemmas
6.2, 6.4, 6.5 and 6.6. �

7. Proof of Proposition 3.6

Proof of Proposition 3.6. Recalling equation (2.5), which we rewrite in an equiv-
alent form

∂tη + Dzφ[z](ż − z̃) = L[z]η + JF[z, η] + R[z],

and taking the inner product between of this equation with and JDzφ[z]ζ, for
any fixed ζ ∈ C

Ñ , we have

〈∂tη,JDzφ[z]ζ〉 + 〈Dzφ[z](ż − z̃),JDzφ[z]ζ)〉 = 〈L[z]η,JDzφ[z]ζ〉
+ 〈F,Dzφ[z]ζ〉 , (7.1)

where we exploited the orthogonality (1.39), 〈JR[z],Dzφ[z]ζ〉 = 0. By Leib-
nitz and the orthogonality condition 〈η,JDzφ[z]ζ〉 = 0, we have

〈∂tη,JDzφ[z]ζ〉 = −
〈
η,JD2

zφ[z](ż, ζ)
〉
.

Next, differentiating (1.36) w.r.t. z, we have

L[z]Dzφ[z]ζ = −D2
zφ[z](z̃, ζ) + Dzφ[z](Dzz̃[z]ζ) − DzR[z]ζ.

By the fact that JL[z] is self-adjoint and that η ∈ Hc[z], we have
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〈L[z]η,JDzφ[z]ζ〉 = 〈η,JL[z]Dzφ[z]ζ〉 =

−
〈
η,JD2

zφ[z](z̃, ζ)
〉

− 〈η,JDzR[z]ζ〉 . (7.2)

Inserting the information in (7.1), we obtain

〈Dzφ[z](ż − z̃),JDzφ[z]ζ〉 +
〈
Jη,D2

zφ[z](ż − z̃, ζ)
〉

=

− 〈Jη,DzR[z]ζ〉 + 〈F[z,η],Dzφ[z]ζ〉 .

Now,

〈Dzφ[z](ż − z̃),JDzφ[z]ζ〉 = 〈Dzφ[0](ż − z̃),JDzφ[0]ζ〉 + O(|z||ż − z̃|),

and 〈
Dzφ[0](ż − z̃),JDφ[0]ej

〉
= 4 〈ReΦj(ż − z̃),JReΦj〉 = −2Im(ż − z̃),〈

Dzφ[0](ż − z̃),JDφ[0]iej
〉

= −4 〈ReΦj(ż − z̃),JImΦj〉 = −2Re(ż − z̃).

Thus, by the following, for ζ = ej , iej , we have the conclusion,

| 〈Jη,DzR[z]ζ〉 | � δ‖w‖L2
− a

10

,

| 〈F[z,η],Dφ[z]ζ〉 | � ‖η2
1‖L2

− a
10 −A−1

� δ‖w1‖L2
− a

10

.

�

Our next task, is to examine the terms zm and show z t→+∞−−−−→ 0, that is
the discrete modes are damped by nonlinear interaction with the radiation. In
order to do so, we expand the variable v, defined in (2.13), in a part resonating
with the discrete modes z, which will yield the damping, and a remainder which
we denote by g. Notice that this additional variable g, is standard in the field,
starting from [5,43].

8. Smoothing estimate for g

Looking at the equation for v, (2.13), we introduce the functions

ρm := R+
iLD

(λ · m)iR̃m, (8.1)

which solve

(iLD − λ · m)ρm = iR̃m (8.2)

and we set

g = v + Z(z) where Z(z) := −
∑

m∈Rmin

zmρm. (8.3)

An elementary computation yields

i∂tg = iLDg −
∑

m∈Rmin

(i∂t (zm) − λ · mzm) ρm + iRv

or, equivalently,
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g(t) = etLDv(0) + i
∑

m∈Rmin

zm(0)etLDR+
iLD

(λ · m)R̃m (8.4)

−
∑

m∈Rmin

i
∫ t

0

e(t−t′)LD (∂t (zm) + iλ · mzm) ρmdt′ (8.5)

− i
∫ t

0

e(t−t′)LDT (2χ′
B2∂x + χ′′

B2) η̃1jdt′ (8.6)

− i
∫ t

0

e(t−t′)LD

(
〈iε∂x〉−Ñ [VD, 〈iε∂x〉Ñ ]v1j + T χB2Rη̃

)
. (8.7)

We will prove the following, where we use the weighted spaces defined in
Definition 1.10.

Proposition 8.1. For S > 4 we have

‖g‖L2(I,H1,−S(R)) ≤ oε(1)ε. (8.8)

To prove Proposition 8.1 we will need to bound one by one the terms in
(8.4)–(8.7).

Lemma 8.2. For any S > 5/2 there exists a fixed c(S) s.t.

‖etLD f‖L2(R,H1,−S) ≤ c(S)‖f‖H1 for all f ∈ H1(R). (8.9)

By Lemma 8.2 we have

‖r.h.s. of (8.4)‖L2(I,H1,−S(R)) � ‖v(0)‖H1 + ‖z(0)‖2

Proof of Lemma 8.2. Recall that, as a consequence of (5.15), we have

sup
0<ε≤1

sup
ς∈R

‖RiLD
(ς ± iε)‖H1,S→H1,−S < ∞.

This easily implies that

a3 := sup
0<ε≤1

sup
ς,f

〈
〈x〉−S (RiLD

(ς + iε) − RiLD
(ς − iε)) (〈x〉−S)∗f , f

〉
H1

,

where (〈x〉−S)∗ is the adjoint of the multiplicative operator 〈x〉−S in H1. Then
by Lemma 3.6 and Lemma 5.5 [17] we have (8.9) with C(S) =

√
2πa3. �

By Lemma 5.7 we have

‖(8.15)‖L2(I,H1,−S(R)) �
∑

m∈Rmin

∫ t

0

〈t − t′〉− 3
2 |∂t (zm) + iλ · mzm|dt′‖R̃m‖H1,S

�
∑

m∈Rmin

‖∂t (zm) + iλ · mzm‖L2(I)‖Rm‖
ΣÑ+1

�
∑

m∈Rmin

‖∂t (zm) + iλ · mzm‖L2(I)

�
∑

m∈Rmin

(
‖Dzzm(ż − z̃)‖L2(I) + ‖Dzzm(z̃ + iλz)‖L2(I)

)
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� ‖z‖L∞(I)‖ż − z̃‖L2(I) + ‖z‖L∞(I)

∑
m∈Rmin

‖zm‖L2(I)

� δ2‖w‖L2
− a

10

+ δ
∑

m∈Rmin

‖zm‖L2(I).

By Lemma 5.12 we have

‖(8.16)‖L2(I,H1,−S) � ‖T (2χ′
B2∂x + χ′′

B2) η̃1‖L2(I,L2,τ ) � B− 1
2 ε = oε(1)ε

(8.10)

where the last inequality is proved in [8, Sect. 8], in particular [8, formulas
(8.23)–(8.25)].

We next look at (8.7). Again by Lemma 5.12 we have

‖
∫ t

0

e(t−t′)LD 〈iε∂x〉−Ñ [VD, 〈iε∂x〉Ñ ]v1j‖L2(I,H1,−S)

� ‖ 〈iε∂x〉−Ñ [VD, 〈iε∂x〉Ñ ]v1‖L2(I,L1,τ ) � εε,

where the last inequality is proved in formula (8.26) [8]. Finally, we consider

‖
∫ t

0

e(t−t′)LDT χB2Rη̃‖L2(I,H1,−S) � ‖T χB2Rη̃‖L2(I,H1,τ ).

The right hand side is less than I + II where

I = ‖χ8B2T χB2Rη̃‖L2(I,H1,τ )

II = ‖(1 − χ8B2)T χB2Rη̃‖L2(I,H1,τ )

We have

I � B2τ‖T χB2Rη̃‖L2(I,H1)

with

‖T χB2Rη̃‖L2(I,H1) ≤ (I1 + I2 + I3) where

I1 = ‖T χB2Pc (R1[z] − Dφ[z](ż − z̃) + L1(R[z] − 1)η̃) ‖L2(I,H1),

I2 = ‖T χB2Pc(L[z] − L1)η‖L2(I,H1),

I3 = ‖T χB2PcJF‖L2(I,H1).

We have

I1 ≤ ‖R1[z]‖
L2(I,ΣÑ+1)

+ ‖ż − z̃‖L2(I) + ‖(R[z] − 1)η̃‖
L2(I,ΣÑ+1)

� ‖z‖L∞(I)[
∑

m∈Rmin

‖zm‖L2(I) + ‖ż − z̃‖L2(I) + ‖η‖L2(I,Σ∗)]

� δ[
∑

m∈Rmin

‖zm‖L2(I) + ‖ż − z̃‖L2(I) + ‖w‖L2(I,L2
− a

10
)].

We have

I2 ≤ ‖T χB2(L[z] − L1)η‖L2(I,H1) + ‖T χB2Pd(L[z] − L1)η‖L2(I,H1)

� ε−Ñ‖(L[z] − L1)η‖L2(I,H1)

� ε−Ñ‖(L[z] − L1)η̃‖L2(I,H1) + ε−Ñ‖(L[z] − L1)(R[z] − 1)η̃‖L2(I,H1)
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� ‖(W ′′(φ1[z]) − W ′′(H))η̃2‖L2(I,L2) + δ‖w‖L2(I,L2
− a

10
)

≤
(
‖(W ′′(φ1[z]) − W ′′(H))ζ−1

A e|x| a
10 ‖L∞(I,L∞) + δ

)
‖w‖L2(I,L2

− a
10

)

� δ‖w‖L2(I,L2
− a

10
).

We have

I3 � ε−Ñ‖χB2F1‖L2(I,L2) � ε−Ñ‖χB2η2
1‖L2(I,L2)

� ε−Ñ‖η1‖L∞(I,H1)

(
‖w1‖L2(I,L2(|x|≤2B2)) + ‖R[z] − 1)η1‖L2(I,L2)

)
� ε−Ñδ

(
B2‖w1‖L2(I,Σ̃) + ‖z‖L∞(I)‖w1‖L2(I,Σ̃)

)
� ε−ÑδB2‖w1‖L2(I,Σ̃).

We conclude that

‖T χB2Rη̃‖L2(I,H1) � and

I � B2τ+2δ2ε = oε(1)ε. (8.11)

Turning to the analysis of II, we have

II � ‖(1 − χ8B2) 〈x〉τ T 〈x〉−τ
χ2B2‖H1→H1‖χB2Rη̃‖L2(I,H1,τ )

� ‖χB2Rη̃‖L2(I,H1,τ ) � B2τ+2δ2ε = oε(1)ε (8.12)

where we used

‖(1 − χ8B2) 〈x〉τ T 〈x〉−τ
χ2B2‖H1→H1 � 1.

Notice this will be a consequence of

‖(1 − χ8B2) 〈x〉τ T 〈x〉−τ
χ2B2‖H1→H1 � 1 (8.13)

‖(1 − χ8B2) 〈x〉τ T 〈x〉−τ
χ2B2‖L2→L2 � 1. (8.14)

Inequality (8.14) is proved in §8 [8]. We turn to (8.13). It is enough to bound
the operator norm of

∂x(1 − χ8B2) 〈x〉τ T 〈x〉−τ
χ2B2 = [∂x, (1 − χ8B2) 〈x〉τ ]T 〈x〉−τ

χ2B2

+ (1 − χ8B2) 〈x〉τ [∂x, T ] 〈x〉−τ
χ2B2 (8.15)

+ (1 − χ8B2) 〈x〉τ T [∂x, 〈x〉−τ
χ2B2 ]

+ (1 − χ8B2) 〈x〉τ T 〈x〉−τ
χ2B2∂x. (8.16)

All terms except the one in line (8.16) are similar to the operator in (8.13).
The most interesting is the one in line (8.15). This operator equals

(1 − χ8B2) 〈x〉τ 〈iε∂x〉−Ñ [∂x, A∗] 〈x〉−τ χ2B2

=

Ñ∑
j=1

(1 − χ8B2) 〈x〉τ 〈iε∂x〉−Ñ

⎛
⎝Ñ−1−j∏

i=0

A∗
Ñ−i

⎞
⎠ (log ψj)

′′
(

j−1∏
i=1

A∗
j−i

)
〈x〉−τ χ2B2

with the convention
∏l

i=0 Bi = B0 ◦ ... ◦ Bl and where ψj is a ground state of
Lj , see §1.1. The operators in the last line summation are similar to the one in
(8.13) and satisfy the same estimate. Obviously for the operator in line (8.16)
we have
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‖(1 − χ8B2) 〈x〉τ T 〈x〉−τ
χ2B2∂x‖H1→L2

≤ ‖(1 − χ8B2) 〈x〉τ T 〈x〉−τ
χ2B2‖L2→L2 � 1.

9. Proof of Proposition 3.7: the Fermi Golden Rule

We can aptly name E(φ[z]) localized energy, since η(t) is expected to disperse
to infinity as t → +∞ and what remains locally of the solution is φ[z(t)]. In
our analysis of the FGR, E(φ[z]) is like a Lyapunov function. So we compute,
recall 〈f ,g〉 := Re

∫
tf gdx,

d

dt
E(φ[z]) = 〈∇E(φ[z]),Dzφ[z]ż〉

= −〈J (R[z] + Dzφ[z]z̃) ,Dzφ[z]ż〉
= 〈JDzφ[z] (ż − z̃) ,Dzφ[z]z̃〉
=
〈
J
(
L[z]η + JF[z,η] +���R[z] − ∂tη

)
,Dzφ[z]z̃

〉
, (9.1)

where we have used (1.36) in the 2nd equality, the cancelation (1.39) and
〈Jf, f〉 = 0 in the 3rd equality and (2.5) in the 4th inequality and, finally, we
used (1.39) for the above cancellation of the R[z] term. From η ∈ Hc[z], we
have

−〈J∂tη,Dzφ[z]z̃〉 =
〈
Jη,D2

zφ[z] (ż, z̃)
〉
. (9.2)

Substituting (7.2) and (9.2) into (9.1), we have
d

dt
E(φ[z]) = −〈Jη,DzR[z]z̃〉 +

〈
Jη,D2

zφ[z] (ż − z̃, z̃)
〉

− 〈F[z, η],Dzφ[z]z̃〉
(9.3)

Claim 9.1. For all t ∈ I∣∣∣∣
∫ t

0

〈Jη,DzR[z]z̃〉 dt′
∣∣∣∣ = oε(1)ε2. (9.4)

Proof. Indeed we have E(φ[z])]t0 = O(δ2) from Proposition 2.5. we have

|
〈
Jη,D2

zφ[z] (ż − z̃, z̃)
〉
| � δ‖w‖L2

− a
10

|ż − z̃|,

and

| 〈F[z,η],Dzφ[z]z̃〉 | � δ‖w1‖2
L2

− a
10

,

and integrating in time, we obtain the desired bound (9.4). �

Let us focus now on the term in the left hand side of (9.4). By the
expansion (1.37) of R[z], we have

〈Jη,DzR[z]z̃〉 =
∑

m∈Rmin

〈Jη,Dzzm(−iλz)Rm〉 (9.5)

+
∑

m∈Rmin

〈Jη,Dzm(z̃ + iλz)Rm〉 − 〈Jη,DzR1[z]z̃〉 , (9.6)
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where λz := (λ1z1, · · · , λNzN ). The 2nd line can be bounded as∑
m∈Rmin

| 〈Jη,Dzm(z̃ + iλz)Rm〉 | + | 〈Jη,DzR1[z]z̃〉 | � δ‖w‖L2
− a

10

∑
m∈Rmin

|zm|.

Notice that the time integral of the last formula is of the form oε(1)ε2.
Now we focus on the term in the right in line (9.5). Using the identity Dzzm(iλz)
= im · λ zm, this term equals the sum

−
∑

m∈Rmin

λ · m 〈JPcη, izmRm〉 (9.7)

−
∑

m∈Rmin

λ · m 〈JPd(R[z] − 1)Pcη, izmRm〉 , (9.8)

where, by Lemma 2.4,

|(9.8)| � δ‖w‖Σ̃

∑
m∈Rmin

|zm|,

so that its time integral is of the form oε(1)ε2.
So now let us focus on the term in line (9.7). It equals the sum

−
∑

m∈Rmin

λ · m 〈JPcχB2η, izmRm〉 (9.9)

−
∑

m∈Rmin

λ · m 〈JPc(1 − χB2)η, izmRm〉 , (9.10)

where the terms in line (9.10) can be bounded as follows,∑
m∈Rmin

|λ · m 〈JPc(1 − χB2)η, izmRm〉 | � B−1‖w‖L2
− a

10

∑
m∈Rmin

|zm|,

and so again the time integral is of the form oε(1)ε2.
Now let us focus on (9.9). By Lemma 5.5, we have∑

m∈Rmin

λ · m 〈JPcχB2η, izmRm〉

=
∑

m∈Rmin

λ · m
〈

J
Ñ∏

j=1

RL1(λ̃
2
j )PcA〈iε∂x〉Ñ v, izmRm

〉

We substitute v = g−Z(z) using (8.1) and (8.3). Then the above term becomes

∑
m∈Rmin

λ · m|zm|2
〈

J
Ñ∏

j=1

RL1(λ̃
2
j )PcA〈iε∂x〉Ñ

R+
iLD

(λ · m)iR̃m, iRm

〉

(9.11)

+
∑

m,n∈Rmin
m �=n

λ · m
〈

znJ
Ñ∏

j=1

RL1(λ̃
2
j )PcA〈iε∂x〉Ñ

R+
iLD

(λ · n)iR̃n, izmRm

〉

(9.12)
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+
∑

m∈Rmin

λ · m
〈

J
Ñ∏

j=1

RL1(λ̃
2
j )PcA〈iε∂x〉Ñ g, izmRm

〉
. (9.13)

The main term is the one in line (9.11) which we leave aside for a moment.
We have

|(9.13)| �
∑

m∈Rmin

|zm|‖g‖L2,−S ‖ 〈iε∂x〉Ñ A∗Pc

Ñ∏
j=1

RL1(λ̃
2
j )Rm‖L2,S

� ‖g‖L2,−S

∑
m∈Rmin

|zm|,

so that, using Proposition 8.1 and the continuation hypothesis (3.5), we have

‖(9.13)‖L1
t

� ‖g‖L2L2,−S

∑
m∈Rmin

‖zm‖L2 ≤ oε(1)ε2. (9.14)

The generic bracket in line (9.12) is of the form

〈
znzm, A

〉
=

1
λ · (n − m)

〈
−iλ · (n − m)znzm,−iA

〉

=
1

λ · (n − m)
d

dt

〈
znzm,−iA

〉
− 1

λ · (n − m)
×
〈
Dz(znzm) (ż + iλz) ,−iA

〉
,

where, for B∗ = tB, A is defined as

A = (R+
iLD

(λ · n)R̃n)∗ 〈iε∂x〉Ñ A∗J
Ñ∏

j=1

RL1(λ̃
2
j )PcRm.

So we have∣∣∣∣
∫ t

0

〈
znzm, A

〉
dt′
∣∣∣∣ �

∣∣∣ 〈znzm,−iA
〉]t

0

∣∣∣+ ‖Dz(znzm) (ż + iλz) ‖L1(0,t)‖A‖L1
x
.

We have ‖A‖L1
x

� 1 uniformly in ε ∈ (0, 1]. So the first term on the right is
O(δ2). We bound the second term

‖Dz(znzm) (ż + iλz) ‖L1 ≤ ‖Dz(znzm) (ż − z̃) ‖L1 + ‖Dz(znzm) (z̃ + iλz) ‖L1

� ‖Dz(znzm)‖L2‖ż − z̃‖L2 + ‖z‖L∞‖zn‖L2‖zm‖L2 = oε(1)ε2,

and so we conclude ∣∣∣∣
∫ t

0

(9.12)dt′
∣∣∣∣ = oε(1)ε2. (9.15)

Now we focus on line (9.11), which represents the main term of formula (9.11)–
(9.13). Using R̃m = T χB2PcRm, the bracket in line (9.11) can be rewritten

38



〈
J

Ñ∏
j=1

RL1(λ̃
2
j )PcAR+

iLD
(λ · m)A∗χB2Rm,Rm

〉
(am)

+

〈
J

Ñ∏
j=1

RL1(λ̃
2
j )PcA〈iε∂x〉Ñ [R+

iLD
(λ · m), 〈iε∂x〉−Ñ ]A∗χB2Rm,Rm

〉

(9.16)

where we will show now that the quantity in (am) is the form o(ε). This will
imply that ∥∥∥∥∥

∑
m∈Rmin

λ · m|zm|2(am)

∥∥∥∥∥
L1(0,t)

= o(ε)ε2. (9.17)

For E1 the matrix in (4.13), the quantity in (am) can be bounded by the
product A · B, where

A = ‖ 〈iε∂x〉Ñ A∗
Ñ∏

j=1

RL1(λ̃
2
j )PcRm‖L2,� and

B = ‖R+
iLD

(λ · m)E1

[
VD, 〈iε∂x〉−Ñ

]
R+

iLD
(λ · m)A∗χB2Rm‖L2,−� ,

for � ≥ 2. We have

B ≤‖R+
iLD

(λ · m)‖2
H1,�→L2,−�‖ 〈iε∂x〉−Ñ

[
VD, 〈iε∂x〉Ñ

]
‖H1,−�→H1,�

× ‖ 〈iε∂x〉−Ñ ‖H1,−�→H1,−�‖A∗χB2Rm‖H1,� � ε,

where the ε comes from the commutator term in the first line, by a simple
adaptation of Lemma 5.2, while the other terms are uniformly bounded, with
‖ 〈iε∂x〉−Ñ ‖H1,−�→H1,−� � 1 uniformly in ε ∈ (0, 1], by the proof of the bound
on (10.23) in [8]. Uniformly in ε ∈ (0, 1], we have

A ≤‖ 〈iε∂x〉Ñ 〈i∂x〉−2Ñ ‖H1,�→H1,�‖ 〈i∂x〉2Ñ A∗
Ñ∏

j=1

RL1(λ̃
2
j )PcRm‖H1,� � 1.

We have thus proved what was needed to obtain (9.17).
We consider (9.17), the main term. Using

R+
iLD

(λ · m)A∗ = A∗R+
iL1

(λ · m),

which follows from (1.24) and (5.13), using the formula

AA∗ =
Ñ∏

j=1

(L1 − λ̃2
j ),

which is an elementary consequence of the discussion in §1.1.1 and is proved
in [8], and finally using the fact that L1 commutes with Pc, see Remark 2.3,
we conclude that line (9.17) equals
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〈
JPcR

+
iL1

(λ · m)χB2Rm,Rm

〉
=
〈
JPcR

+
iL1

(λ · m)Rm,Rm

〉
(9.18)

−
〈
JPcR

+
iL1

(λ · m)(1 − χB2)Rm,Rm

〉
.

(9.19)

Is is elementary to show that the last line is O(B−1), so that∥∥∥∥∥
∑

m∈Rmin

λ · m|zm|2
〈
JPcR

+
iL1

(λ · m)(1 − χB2)Rm,Rm

〉∥∥∥∥∥
L1(0,t)

= o(B−1)ε2.

(9.20)

Using an obvious analogue of (5.13), the term in the right hand side in line
(9.18) can be rewritten as

−
〈
iAmP.V.(L1 − rm)−1PcRm, PcRm

〉
(9.21)

+ π 〈Amδ(L1 − rm)PcRm, PcRm〉 , (9.22)

where Am =
(

r2
m irm

−irm 1

)
, rm =

√
(λ · m)2 − ω2.

By antisymmetry, line (9.21) is equal to 0. We have

B−1
m AmBm = diag

(
0, 1 + r2

m

)
where Bm =

(
1 irm

irm 1

)
.

Noticing that B∗
m = (1 + r2

m)B−1
m , line (9.22) equals

π
〈
B∗

mAmBmδ(L1 − rm)B−1
m PcRm,B−1

m PcRm

〉
= π

〈
δ(L1 − rm), | − irm(PcRm)1 + (PcRm)2|2

〉
=

π

2
√

rm

∑
±

∣∣∣[−irm(̂PcRm)1 + ̂(PcRm)2
]
(±√

rm)
∣∣∣2 ≥ 0.

where (PcRm)j are the two components of PcRm for j = 1, 2 and we are
taking the distorted Fourier transform associated to operator L1, for which we
refer to Weder [46] and Deift and Trubowitz [11]. By Assumption 1.12 there
is a fixed Γ > 0 such that
πλ · m
2
√

rm

∑
±

∣∣∣[−irm(̂PcRm)1 + ̂(PcRm)2
]
(±√

rm)
∣∣∣2 ≥ Γ > 0 for all m ∈ Rmin.

(9.23)

Hence we conclude∑
m∈Rmin

λ · m|zm|2
〈
JPcR

+
iL1

(λ · m)χB2Rm,Rm

〉
≥ Γ

∑
m∈Rmin

λ · m|zm|2.

(9.24)

So we have expanded the integral in the left hand side of (9.4) as a sum of
terms which are oε(1)ε2 plus the integral in (0, t) of the left hand side of (9.24).
We conclude ∑

m∈Rmin

‖zm‖2
L2(I) = oε(1)ε2,
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completing the proof of Proposition 3.7.

10. Repulsivity of the φ8 model near the φ4 model

In this section, we study that the following nonlinear potential,

Wε(u) :=
1
4
(1 + ε)2

(
u2 − 1

)2 (
εu2 − 1

)2
, ε ∈ [0, 1),

which appears in the φ8 theory. Notice that when ε = 0, W0 is the nonlinear
potential of the φ4 theory. It was shown by [26] that for 2 −

√
3 ≤ ε < 1, L2,ε

has repulsive potential, in the sense of the definition in [26]. Here, L1,ε is given
by −∂2

x + W ′′
ε (Hε) with Hε the odd kink satisfying H ′′

ε = W ′(Hε) and Lj,ε

given by Darboux transformations in Sect. 1.1.1.
Recall that the potential V2,ε of the 1st transformed operator L2,ε =

−∂2
x + V2,ε is given by −W ′′

ε (Hε) + (W ′
ε(Hε))

2

Wε(Hε)
. So, to check the repulsivity of

V2,ε, one only needs to study the function −W ′′
ε (x) + (W ′

ε(x))2

Wε(x) in the domain
x ∈ [−1, 1] because Hε is monotone. This was the very nice observation of [26].

On the other hand, when ε = 0, L1,0 has two eigenvalues (0 and 3
2 ), so

L2,0 is not repulsive and the 2nd transformed operator L3,0 = −∂2
x + 2 has a

flat potential, which lies in the boundary of repulsive potential and is not a
repulsive potential in our definition, Assumption 1.6).

Since it seems that as ε increases, the number of eigenvalues decreases,
it is natural to expect that V3,ε is repulsive for ε ∈ (0, ε∗) for the first ε∗ > 0
when L1,ε∗ stops to have two eigenvalues. We will confirm this observation by
computing the 1st order expansion of V3,ε = 2+ εṼ3 +O(ε2) and by numerical
computation. First, Ṽ3 can be computed explicitly.

Proposition 10.1. We have

Ṽ3 =
6
5
sech2

(
x√
2

)
+

3
5
sech4

(
x√
2

)
. (10.1)

In particular, we have xṼ ′
3(x) < 0 for x �= 0.

Next, the result of numerically computation of V3,ε is given by the fol-
lowing graph.

Proof of Proposition 10.1. First, by multiplying H ′
ε to H ′′

ε = W ′
ε(Hε) and in-

tegrating it, we have

H ′
ε =

√
2Wε(Hε),

which gives a implicit representation of the kink Hε by

x =
∫ Hε

0

dh√
2Wε(h)

.
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Figure 1. Graph of V3,ε − 2 + 4ε2 − 2ε4 generated by nu-
merically computing Hε and ϕε. The case ε = 0 is not visible
because it is flat

The above formula holds for any nonlinear potential W . In our case, we can
compute the integral in the right hand side and obtain
√

2(1 − ε2)x = log(1 + H) − log(1 − H) +
√

ε log(1 −
√

εH) −
√

ε log(1 +
√

εH)
(10.2)

When ε = 0, we can solve (10.2) w.r.t. H0 and obtain the φ4-kink:

H0 = tanh
(

x√
2

)
(10.3)

Differentiating, (10.2) w.r.t. ε, we have

∂εHε =

(
1 − H2

ε

) (
1 − εH2

ε

)
2(1 − ε)

(
− 1

2
√

ε

(
log(1 −

√
εHε) − log(1 +

√
εHε)

)

+
Hε

1 − εH2
ε

− 2
√

2εx

)
,

and by limh→0
log(1+hHε)

h = Hε
d

dh

∣∣
h=0

log(1 + h) = Hε, we have

∂ε|ε=0 Hε = H0(1 − H2
0 ). (10.4)
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We set ψε := ψ0 + εψ̃ε, with ψ̃ε ⊥ ψ0, to be the eigenfunction of

Lε := −∂2
x + W ′′

ε (Hε),

associated to the eigenvalue λε = 3
2 + ελ̃ε, where

ψ0(x) :=
(

9
8

) 1
4 sinh( x√

2
)

cosh2( x√
2
)

(10.5)

is the normalized eigenvector of L0 satisfying L0ψ0 = 3
2ψ0. �

Remark 10.2. By the stability of eigenvalues, Lε has a unique eigenvalue near
3
2 .

We set A1,ε = (H ′
ε)

−1∂x (H ′
ε·) and ϕε = A∗

1,εψε. Since the 2nd trans-
formed potential V3,ε is given by

V3,ε = Ṽ2,ε(Hε) − 2
(

ϕ′
ε

ϕε

)′
, (10.6)

with Ṽ2,ε is given by V2,ε = Ṽ2,ε(Hε), which can be explicitly written as

Ṽ2,ε(x) = −Wε(x)(log Wε(x))′′

= (1 + 3ε + 3ε2 + ε3) + (1 − 2ε − 6ε2 − 2ε3 + ε4)x2

− ε(1 + ε)3x4 + 2ε2(1 + ε)2x6,

it suffices to compute ∂ε|ε=0 ϕε = A∗
1,0ψ̃ +

(
∂ε|ε=0 A∗

1,ε

)
ψ0.

Expanding Lεψε = λεψε, we have(
L0 − 3

2

)
ψ̃ε = −W ′′

ε (Hε) − W ′′
0 (H0)

ε
ψ0 + λ̃εψ0

+ ε

(
−W ′′

ε (Hε) − W ′′
0 (H0)

ε
ψ̃ε + λ̃εψ̃ε

)
.

Thus, taking ε → 0, we have(
L0 − 3

2

)
ψ̃0 = − (W ′′′

0 (H0) ∂ε|ε=0 Hε + ∂ε|ε=0 W ′′
ε (H0)) ψ0 + λ̃0ψ0. (10.7)

Here, λ̃0 is determined from the orthogonality condition:

λ̃0 = 〈(W ′′′(H0) ∂ε|ε=0 Hε + ∂ε|ε=0 W ′′
ε (H0)) ψ0, ψ0〉 .

From (10.4), we have

W ′′′
0 (H0) ∂ε|ε=0 Hε + ∂ε|ε=0 W ′′

ε (H0) = −3 + 24H2
0 − 21H4

0 . (10.8)

Therefore, from (10.3) and (10.5),

λ̃0 = −3 +
3
2

∫ (
24

sinh2 x

cosh2 x
− 21

sinh4 x

cosh4 x

)
sinh2 x

cosh4 x
dx =

12
5

. (10.9)

From (10.9) and (10.8), (10.7) can be written as(
L0 − 3

2

)
ψ̃0 =

(
27
5

− 24H2
0 + 21H4

0

)
ψ0. (10.10)
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Let A2,ε = ϕ−1
ε ∂x (ϕε·). Applying A∗

1,0 to (10.10), from A∗
1,0(L0 − 3/2) =

A2,0A
∗
2,0A

∗
1,0we have

A2,0A
∗
2,0A

∗
1,0ψ̃0 = A∗

0

(
27
5

− 24H2
0 + 21H4

0

)
ψ0. (10.11)

Solving this, we have

A∗
0ψ̃0 = −

(
9

8

) 1
4 √

2
1

cosh( x√
2
)

(
6

5
log

(
cosh

x√
2

)
− 27

10

1

cosh2( x√
2
)

+ 3
1

cosh4( x√
2
)

)
.

(10.12)

This provides all the ingredients for the computation of Ṽ3 by differenti-
ating (10.6). After elementary but somewhat long computation, we obtain
(10.1). �

Remark 10.3. In [22], the asymptotic stability in the odd setting for the odd
kink of φ8 model near the φ4 model is shown. They show this result by prov-
ing φ4 model is asymptotically stable and all models near φ4 model are also
asymptotically stable.
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[23] Kowalczyk, M., Martel, Y., Muñoz, C.: Kink dynamics in the φ4 model: asymp-
totic stability for odd perturbations in the energy space. J. Am. Math. Soc. 30,
769–798 (2017)
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