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Abstract

The Balanced Minimum Evolution (BME) is a powerful distance based phylogenetic estimation
model introduced by Desper and Gascuel and nowadays implemented in popular tools for phylo-
genetic analyses. It was proven to be computationally less demanding than more sophisticated
estimation methods, e.g. maximum likelihood or Bayesian inference while preserving the statistical
consistency and the ability to run with almost any kind of data for which a dissimilarity measure
is available. BME can be stated in terms of a nonlinear non-convex combinatorial optimisation
problem, usually referred to as the Balanced Minimum Evolution Problem (BMEP). Currently, the
state-of-the-art among approximate methods for the BMEP is represented by FastME (version 2.0),
a software which implements several deterministic phylogenetic construction heuristics combined
with a local search on specific neighbourhoods derived by classical topological tree rearrangements.
These combinations, however, may not guarantee convergence to close-to-optimal solutions to the
problem due to the lack of solution space exploration, a phenomenon which is exacerbated when
tackling molecular datasets characterised by a large number of taxa.
To overcome such convergence issues, in this work we propose a novel metaheuristic, named Phy-
loES, which exploits the combination of an exploration phase based on Evolution Strategies, a special
type of evolutionary algorithm, with a refinement phase based on two local search algorithms. Ex-
tensive computational experiments show that PhyloES consistently outperforms FastME, especially
when tackling larger datasets, providing solutions characterised by a shorter tree length but also
significantly different from the topological perspective.



Abstract

Il Balanced Minimum Evolution (BME) è un potente modello di stima filogenetica basato sulle
distanze biologiche fra i genomi, introdotto da Desper e Gascuel e attualmente implementato in
efficienti software per le analisi filogenetiche. Il BME è computazionalmente meno impegnativo
rispetto a metodi di stima più sofisticati, ad esempio Maximum Likelyhood o inferenza bayesiana,
pur conservando la coerenza statistica e la capacità di funzionare con quasi qualsiasi tipo di dati
che rappresentano una misura di dissimilarità fra genomi. Il BME può essere formulato in termini
di un problema di ottimizzazione combinatoria non lineare e non convessa, denominato Balanced
Minimum Evolution Problem (BMEP). Attualmente, lo stato dell’arte tra i metodi approssimati
per il BMEP è rappresentato da FastME (versione 2.0), un software che implementa diverse eu-
ristiche deterministiche di costruzione filogenetica, combinate con algoritmi di ricerca locale basati
sulla manipolazione di alberi filogenetici. Tuttavia, questo approccio, sebbene molto efficiente, non
garantisce la convergenza a soluzioni prossime all’ottimo, a causa della mancanza di esplorazione
dello spazio delle soluzioni, un fenomeno che si aggrava quando si affrontano insiemi di dati moleco-
lari caratterizzati da un grande numero di taxa.
Per ovviare a tali problemi di convergenza, in questo lavoro, proponiamo una nuova metaeuristica,
denominata PhyloES, che sfrutta la combinazione di una fase esplorativa, basata su una partico-
lare tipologia di algoritmo evolutivo, denominata Evolution Strategies, con una fase di raffinamento
incentrata su due algoritmi di ricerca locale. I nostri esperimenti computazionali mostrano che Phy-
loES è in grado di superare le prestazioni di FastME, specialmente al crescere delle dimensioni delle
istanze, fornendo soluzioni migliori nel senso della funzione obiettivo e significativamente diverse dal
punto di vista topologico, fattore di particolare rilevanza dal punto di vista biologico.



Chapter 1

Introduction

Phylogenetics, the study of evolutionary relationships among organisms, stands as an indispensable
cornerstone of modern biology. It aims to study life’s interconnectedness by investigating the an-
cestral connections and evolutionary trajectories that have shaped the diversity of living organisms
on Earth. Rooted in the Greek words phylon (meaning tribe or ancestry) and genesis (representing
origin or birth), phylogenetics tries to unearth the ancestral ties binding species.

Charles Darwin from his observations on the phenotypic variation of finches in the Galapagos
to the publication of his seminal work On the Origin of Species [Darwin, 1859], laid the theoretical
groundwork for the concept of a tree of life, (see Figure 1.1): the idea for which all organisms evolved
from one common ancestor lived approximatively 3.7 billion years ago, (Pearce et al. [2018], Rosing
[1999], Ohtomo et al. [2013]). Darwin’s curiosity about the genealogical relationships among species
pushed the study of phylogenetics to the scientific forefront.

To explore the evolution and connections between genes and living beings, various types of data
can be employed. Traditionally, species relationships have been determined by comparing their
morphological characters, (Linnaei [1758]). However, with the growing availability of molecular
data like nucleotide and amino acid sequences, as well as restriction fragment length polymorphisms
(RFLPs), scientists can now deduce phylogenetic relationships using molecular approaches. The
use of molecular data to construct phylogenetic trees has gained significant traction across various
biological disciplines, often complementing morphological data for a more comprehensive analysis of
relationships, as they emerged as game-changing tools that allowed scientists to explore previously
inaccessible aspects of the history of life on earth, as emphasised by Nei and Kumar [2000].

In fact, when dealing with extinct species, obtaining molecular data is challenging or impossible,
making the reliance on morphological characteristics from mummies or fossils the primary means
of estimating their relationships. On the other hand, organisms like viruses do not leave behind
fossil records, necessitating the study of their past through the phylogenetic relationships of existing
viruses.

By offering fundamental insights into the intricate evolutionary patterns found in various detailed
molecular datasets, phylogenies offer crucial support across a wide spectrum of research domains, and
their significance extends far beyond the academic community. Their application areas span from
systematics, which is the study of the diversification of living forms, both past and present, and the
relationships among living things through time, to medical research, encompassing drug discovery,
epidemiology, ecology, biodiversity assessment, the analysis of population dynamics, conservation
biology, and agriculture. In the realm of medicine, phylogenetics plays a pivotal role in tracing the
spread of infectious diseases and uncovering the origins of drug resistance.
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Figure 1.1: Charles Darwin’s 1837 sketch, his first diagram of an evolutionary tree from his First
Notebook on Transmutation of Species (1837) on view at the Museum of Natural History in Man-
hattan.
Side text: Case must be that one generation then should be as many living as now. To do this & to
have many species in same genus (as is) requires extinction.
Bottom text: Thus between A & B immense gap of relation. C & B the finest gradation, B & D
rather greater distinction. Thus genera would be formed. — bearing relation

As an illustration of their versatile applications in the medical field, phylogenies have been
employed in various ways. These include predicting the evolution of human influenza A (Bush et al.
[1999]), comprehending the relationships between the virulence and evolution of HIV (ECastro-
Nallar et al. [2012]), detecting emerging viruses like SARS Amiroch et al. [2017], exploring ancestral
proteins (Chang and Donoghue [2000]), the evolution of several common human diseases (Pennington
et al. [2007]), and in particular carcinomas (Myers et al. [2019]).

Alongside its well-known application to human evolution, phylogenetics helped to uncover par-
allels in the evolution of multiple languages (Jäger [2018]).
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Conservation biology relies on phylogenetics to guide strategies for preserving biodiversity by
identifying evolutionarily distinct and vulnerable species (Isaac et al. [2007]). In agriculture, phylo-
genetics aids in crop improvement and the development of disease-resistant varieties (Piquerez et al.
[2014]).

Furthermore, the impact of phylogenetics reverberates across disciplines concerned with climate
change and ecosystem dynamics. By reconstructing the evolutionary histories of species within
ecosystems, scientists can better predict their responses to changing environmental conditions and
human-induced perturbations (Webb et al. [2002]).

This introductory foray into phylogenetics only scratches the surface of this expansive and mul-
tidisciplinary field, but we hope to have given a flavor of its importance in modern science.

1.1 Phylogenetic inference

As mentioned earlier, phylogenetics aims at reconstructing the evolutionary relationship between
different organisms, usually named in this context taxa (sing. taxon), and whether possible the
history of the underlying process. The natural representation of such a phenomenon among genes
and organisms is achieved through the construction of phylogenetic trees, or phylogenies, as they
visually convey the proximity of genes or organisms. Notably, the terminologies employed in these
diagrams, such as root, branch, node, and leaf, evoke similarities to the components of trees and
they are largely used in this context.

The external nodes, often referred to as leaves, represent taxa. This generic term encompasses a
wide array of comparable entities, including families of organisms, individual specimens, or different
strains of viruses within a species. Internal nodes represent instead the conjectured ancestors.
The arrangement of nodes within the tree and its branching pattern is named topology.

When a group of taxa shares a common branch, indicating a common ancestral origin, they form
a cluster, which from the taxonomy point of view might suggest the existence of a biological group,
such as species, genus, family, order, class, phylum, kingdom or domain (Cain [2023]).

In most applications and in accordance with classical evolutionary theory, internal nodes are also
interpreted as bifurcation points of the tree, meaning the point in time in which due to both random
mutations and a selective pressure from a common ancestor a new form of organism has born,
(Darwin [1859]). Even though there are phenomena in nature, such as the explosive evolutionary
radiation of HIV or HCV, that might be best represented by a multifurcating tree (Klug et al. [2003]),
based on the fact that any m-ary tree can be transformed into a bifurcating tree by just adding
“dummy edges”, (Catanzaro et al. [2022]), and since they represent exceptions to the standard way
of representing evolutionary among organisms (Lemey et al. [2009]), for the purpose of this work we
will assume to always work with bifurcating trees.

Now that we have introduced all the required elements we can give a broad definition of phylo-
genetic inference: given a set of taxa determine the tree’s topology, its evolutionary hierarchy and
estimate the branches’ lengths which represent the evolutionary distance within individuals.

If enough information about the taxa is provided it is sometimes possible to achieve all three
tasks, as in the case of ape’s evolution depicted in Figure 1.2. Here, the integration of molecular data
with morphological and biomechanical information about extinct taxa allowed the estimation of the
tree shape and the taxa arrangements as well as the bifurcating events dating, defining in this way
the hierarchical structure between ancestors, and providing a time measurement of the evolutionary
distances, which determine the tree branches’ length.

It is important to note that in this case, the diversity of the data sources plays an essential role
in inferring the hierarchical structure between taxa: the tree is in fact rooted (red node), meaning
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Figure 1.2: Evolution of apes, reconstruction from the study of Almécija et al. [2021]

that we are able to establish which was the first speciation event from the oldest ancestor, common
to all taxa; consequently, we are also able to deduce the direction of evolution in the tree.

However, such an accurate and complete analysis is not always straightforward nor possible when
only molecular data are available. In fact, when taxa are simply represented with their molecular
sequence, i.g. nucleotides (DNA or RNA) or amino acid (proteins) sequences, although several
techniques to identify the most ancient common ancestor have been developed (Lemey et al. [2009]),
the chronological reconstruction of the evolution process is extremely difficult. In these cases, the
phylogeny is usually encoded as an unrooted binary tree (see Figure 1.3), in which all taxa are
potential roots, and the reconstruction of its topology, which will be the focus of this work, represents
the only (but still hard) achievable task. When molecular data is the unique source of information,
the concept of evolutionary distance cannot be directly interpreted in a chronological sense, as the
only possible measurement available is the differences between the taxa sequences; so the branch
lengths in this case measure the genetic differences within individuals (Lemey et al. [2009]).

In this respect, the use of the so-called substitution models stands as a pivotal cornerstone.
These models provide a quantitative framework for understanding the processes of genetic sequence
evolution, delineating how nucleotides or amino acids undergo mutation and replacement over evo-
lutionary time.

A genetic sequence is encoded as a vector of characters, in which each entry represents a distinct
nucleotide or amino acid, providing the essential framework for the genetic information that governs
an organism’s structure, function, and evolution.

The notion of substitution models has its roots in the fundamental concept that genetic sequences
accumulate changes over time, driven by a combination of mutation, selection, and random genetic
drift. These models are essential to translate raw genetic data into meaningful insights about the
evolutionary history of species (Holland [2015]). By capturing and quantifying the patterns of
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Figure 1.3: Example of the reconstruction of a phylogeny of four taxa: AGTC, TGTC, AGAT,
AGCT. The characters A, G, T, and C represent the nucleotides that compose their DNA sequence,
and they stand for adenine, guanine, thymine, and cytosine respectively. For the sake of clarity,
here we assume to describe the differences between taxa simply by counting the number of character
changes needed to obtain one from another. Under this framework, we can say that AGTC and
TGTC are “close” since they share 3 out of the 4 characters of their code, and the same consideration
holds for AGAT and AGCT. The pairs AGTC-AGAT, AGTC-AGCT, TGTC-AGAT, and TGTC-
AGCT instead, share only 2 characters so we could say that they look slightly more different, or
“distant”. If we further assume that the phylogeny we are looking for is the one characterised by the
minimum number of character changes required along its branches to explain the observed states at
the terminal nodes (see Lex pharsimonie, Section 1.2), we have that trees 1, 2, 3, and 4 represent
a plausible reconstruction of the evolutionary process. However, without any additional evidence
for preferring one over the others, it is not possible to determine which taxon is the most ancient
common ancestor. For this reason, in such cases, the evolutionary process is generally represented
with an unrooted tree, which still preserves the relative evolutionary structure between taxa, without
suggesting any preference for a particular taxon as the common ancestor of all the others. We can
note in fact, that by “unrooting” trees 1, 2, 3, and 4 we obtain the same tree unrooted tree, shown
in the right side of the figure.

molecular change, substitution models empower researchers to make informed inferences about the
relatedness of species, the rates of molecular evolution, and the mechanisms governing sequence
variation (Tavaré [1986]).

They can range from simple, time-homogeneous models like the one proposed by (Jukes and
Cantor [1969]), to more complex time-structured models like the GTR (General Time Reversible)
model, (Tavaré [1986]). Each of these models carries its own assumptions and mathematical repre-
sentations to describe the rates and patterns of nucleotide or amino acid substitution and its choice
should be carefully made based on the biological characteristic of the dataset under study (Tamura
and Nei [1993]).
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The field of substitution models has witnessed continuous evolution and refinement, reflecting
both advances in computational capabilities and our growing knowledge of molecular evolution. The
development of more realistic and flexible models, coupled with sophisticated statistical techniques,
has enabled the extraction of deeper insights from genetic data.

A comprehensive understanding of substitution models is out of the scope of this work as it would
require a deep analysis of the various types and complexities of these models. Still, it is important
to notice that they play a crucial role in phylogenetic inference, representing the bridge between the
raw data to the numerical quantities that are at the core of the main phylogenetic reconstruction
methods.

1.2 Main phylogenetic inference methods

The estimation of a phylogeny given a set of molecular data is a problem that has been tackled via
a wide spectrum of methods, from clustering to optimisation. In this subsection, we provide a brief
overview of the main and most common ones.

The first method we describe is the Maximum Parsimony (MP). MP is a character-based method,
meaning that it operates directly with the sequences. It draws inspiration from the Lex parsimoniae,
also known as Occam’s razor principle in the scientific literature, which is a form of abduction widely
acknowledged in modern scientific methodology (Popper [2005]). This principle is firmly rooted in
the concept of falsifiability and posits that when faced with multiple competing theories to explain a
particular observed phenomenon, one should favour theories that necessitate the fewest assumptions.

Drawing inspiration from the underlying philosophy of this principle, Farris [1970] and Fitch
[1971] laid the theoretical foundation for the parsimony criterion in the realm of phylogenetic esti-
mation (Albert [2005]). The MP goal is to determine the most likely tree structure for a given set
of aligned sequences while minimizing the number of character changes. When considering a partic-
ular tree structure, the MP algorithm deduces the minimum number of character changes necessary
for each position within the sequences to account for the observed states at the terminal nodes.
The cumulative count of these changes across all positions is termed the “parsimony length” of the
tree. This parsimony length is computed for various tree structures, and after assessing a sufficient
number of options, the tree requiring the fewest changes is chosen as the Maximum Parsimony tree.

Substitution models can be deployed to estimate evolution probabilities, a fact which is exploited
by the two following methods.

Maximum likelihood (ML), (Felsenstein [2004]), shares similarities with the Maximum Parsimony
method in its approach to examining various tree topologies and assessing their score according to the
given criterion. More precisely, ML algorithms are designed to search for the tree that maximizes the
likelihood of observing the data (i.e. the sequences), given a substitution model. When dealing with
a particular tree, the likelihood computation involves summing over all possible nucleotide (or amino
acid) states in the ancestral (internal) nodes. To achieve this, numerical optimization techniques are
applied to identify the combination of branch lengths and evolutionary parameters that yield the
highest likelihood. Since the set of possible trees is generally extremely large, depending on the search
algorithm employed, the likelihood is computed for a range of tree topologies using this criterion,
and the tree that provides the greatest likelihood is selected as the optimal tree. Unfortunately, the
process of determining the likelihood of a given tree can be computationally intensive.

Bayesian Inference methods (BI), (Huelsenbeck et al. [2001], Huelsenbeck et al. [2002]), while
sharing the notion of character-state analysis and an optimality criterion with MP and ML, exhibit
a distinct conceptual difference. Unlike MP and ML, which aim to identify a single best tree,
Bayesian methods diverge in their approach. They delve into the realm of probability distributions,
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searching for a multitude of plausible trees (or hypotheses) that may explain the observed data. This
collection of potential trees, known as the posterior distribution of trees, inherently yields a measure
of confidence in evolutionary relationships. To employ Bayesian methods, a prior belief must be
specified. Such belief is a distribution encompassing model parameters such as substitution model
parameters, branch lengths, and tree topology. This prior belief serves as an a priori understanding
of the system and data play the role of guiding the update of the prior belief. The determination
of posterior probabilities involves traversing the space of potential trees using a sampling technique
known as Markov chain Monte Carlo (MCMC). The output of Bayesian methods is usually presented
in the form of summary statistics derived from the samples. For continuous parameters, this may
involve the mean or median, while for trees, it often results in the presentation of a consensus tree or a
maximum a posteriori tree. Bayesian methods are useful in providing information about uncertainty,
making them particularly robust. On the other hand, they are generally computationally extremely
intensive.

The last family of phylogenetic methods we consider is the one so-called Distance-based methods,
which represents a well-consolidated theoretical and algorithmic framework to carry out practical
phylogenetic analyses. They are characterised by a measure of the dissimilarity, or distance, of
each pair of taxa to produce a pairwise distance matrix D, which represents the input data used
to infer the phylogenetic relationships of the taxa. Distance-matrix methods usually make use of a
substitution model to compute the dissimilarities between taxa. The main idea is that the distance
between two taxa grows the more their sequences are divergent, as it is likely that in the evolutionary
process that led from one to the other, multiple consecutive mutations have occurred.

These methods are typically based on hypotheses and assumptions that are considerably simpler
than those at the core of more sophisticated estimation methods such as ML or BI, a fact that might
make the ML and BI poor at modelling complex evolutionary processes (Schwartz [2019], Catanzaro
et al. [2022]). Another advantage of distance methods is the fact that they can run with almost
any kind of data for which a dissimilarity measure is available and prove to be computationally less
demanding than more sophisticated estimation methods based on ML and BI.

The Neighbor-Joining (NJ) method proposed by Saitou and Nei [1987], constructs a tree through
a sequential process that identifies pairs of neighboring taxa. Neighbours are characterized by being
linked by a single internal node. Given a particular branch length function, the NJ’s objective is to
minimize the length of all internal branches, thereby reducing the overall length of the entire tree.
The NJ algorithm initiates with the assumption of a star-like tree in which all taxa are linked to a
single internal node. At each step, the algorithm identifies the pair of leaves with the smallest genetic
distance. These two leaves are considered “neighbours” and are joined together as a new single (leaf)
node in the tree, which represents their common ancestor. The matrix D is then updated to include
the newly joined node and delete the selected leaves, which implies the recalculation of the genetic
distances from this node to all other leaves. The process is iteratively carried out until no further
leaves joining is possible.

Example 1 (Distance computation) Let us consider the problem described in Figure 1.4 in
which taxa t1, . . . , t5 (fictional for simplicity) are defined by their DNA sequence. One of the simplest
evolutionary distance is the so-called Alignment-Free Eucledian, which is computed by interpreting
each sequence as a text composed of words, where each word is defined by a tuple, in this example of
length two, of contiguous characters.

Considering the set of all words appearing in the sequences, one can then construct the vectors
t̄1, . . . , t̄5 which are counting the occurrences of each word in each sequence, as described in 1.5.

Finally, the Euclidean distance between each pair of taxa ti, tj can be computed with the usual
formula:
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Figure 1.4: LEFT. Five DNA sequences defining the respective taxa. RIGHT. Example of word-
segmentation of the t1 sequence.

Figure 1.5: Sequences’ word frequency vectors

||ti − tj ||2, (1.1)

providing the definition of the pairwise distance matrix:

D =


0.00000 6.16441 5.47723 4.69042 5.47723
6.16441 0.00000 6.32456 5.47723 6.48074
5.47723 6.32456 0.00000 4.00000 4.69042
4.69042 5.47723 4.00000 0.00000 4.47214
5.47723 6.48074 4.69042 4.47214 0.00000

 (1.2)

1.2.1 Minimum Evolution

Moved by the same motivation which inspired the MP, Kidd and Sgaramella-Zonta [1971] formulated
the following conjecture: given a set of taxa L, the set T of all possible phylogenies of T and
dissimilarity matrix D with entries dij, if the evolutionary distances are unbiased estimates of the
corresponding true evolutionary distances, then the true phylogeny of taxa has an expected length
shorter than any other possible phylogeny T ∈ T satisfying the following condition: for each pair of
taxa i and j, the sum of the edge length belonging to the path pij in T from i to j is greater than,
or equal to, their estimated evolutionary distance dij, (Catanzaro et al. [2022]).

The problem can be formally defined as:
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minLME =
∑

e∈E(T )

l(e), (1.3)

where E is the edge set of T and l(e) is defined by the linear system:∑
e∈pij

l(e) = dij ∀i, j ∈ L | i ̸= j, (1.4)

which is imposing that the edges’ length is such that the length of the whole path from i to j
(the sum of the length of the edges in the path) must be exactly equal to dij . In general 1.4 might
no have solution, so Cavalli-Sforza and Edwards [1967] proposed to compute an estimation l(e) of
l(e) via the mean-square method, id est by solving:

min
∑
i,j∈L
i ̸=j

(di,j − l(e))2. (1.5)

Such a methodology is known in the literature as Minimum Evolution under Ordinary Least Squares,
(MEOLS). The proposed approach has an important theoretical advantage. The dissimilarities dij
are generally computed based on the observed data (the molecular sequences), which are normally
incomplete. Therefore, regardless of the substitution model used, we have that the dij are only
estimates of the true value d∗ij . A desirable property of any phylogenetic inference method is the
ability to reconstruct the true tree T ∗ whenever the dij are sufficiently close to d∗ij . Such a property
is named statistical consistentency, (Denis and Gascuel [2003]). Here, it is crucial to remark that by
“true tree” we are not meaning the real tree, the one describing the actual evolutionary process that
occurred in nature, that is the result of stochastic events and which, if no other evidence is provided,
it remains unknown. By true tree, we simply mean the one determined by the chosen criterion
according to the complete data dij . Rzhetsky and Nei [1992] demonstrated that the MEOLS is
statistically consistent.

However, it has been empirically shown by Gascuel [2000] that MEOLS provides poor edge length
estimates when the variances of the dij are not constant and this leads to a rather low ability to
recover the true tree.

It has been in fact shown by several authors (Bulmer [1991], Nei and Jin [1989], Nei et al. [1985],
Susko [2003]) that the variance is much higher for long than for short distances and in particular
that it grows exponentially as a the function of the dij .

An estimation model that shares with MEOLS the statistical consistency property but that is
able to take into account the behaviour of the distances’ variance will be the subject of the next
subsection.

1.2.2 The Balanced Minimum Evolution Problem

We now present the distance method which represents the core of this work. The Balanced Minimum
Evolution (Gascuel [2005]) is a phylogenetic inference model which can be stated in terms of a
discrete nonlinear non-convex optimisation problem defined over unrooted binary trees (Catanzaro
et al. [2012], Catanzaro et al. [2020]), specifically:

Problem 1 (Balanced Minumum Evolution) Consider a set L = {1, 2, . . . , n} of n ≥ 3 taxa
and the n × n relative symmetric distance matrix D with entries dij representing a measure of
the dissimilarity between the pair of taxa i, j ∈ L. Then, the Balanced Minimum Evolution
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Problem (BMEP) consists in finding a phylogeny T of L (i.e., an unrooted binary tree T having
L as a leaf set) that minimises the following length function

L(T ) =
∑
i,j∈L
i ̸=j

dij
2τij

, (1.6)

where τij represents the path-length between taxa i and j in T (see Figure 1.6), i.e., the number of
edges belonging to the (unique) path in T connecting taxon i to taxon j (Pardi [2009], Catanzaro
et al. [2012]).

Based on an estimation model proposed by Pauplin [2000] to provide a fast analytical branch
estimation formula, the BMEP was introduced in the literature on molecular phylogenetics by Desper
and Gascuel [2002]. Subsequently, the problem was proven to be statistically consistent by Desper
and Gascuel [2004]. The authors have also shown that if the variance of the dissimilarities is described
by

V ar(dij) = k2τij , k > 0, (1.7)

(id est it is proportional to the exponential of the topological distance of i and j in T ) and assuming
null covariances, the BMEP length function (Equation 1.6) defines also the minimum variance tree
length estimator. This result is of particular importance if we note that the assumption defined by
Equation 1.7 is consistent with the variance exponential growth of the dij suggested in the literature
(see Subsection 1.2.1).

A great research effort regarding the BMEP has been put into the study of its combinatorics
(Semple and Steel [2004], Cueto and Matsen [2011], Haws et al. [2011], Catanzaro et al. [2012],
Forcey et al. [2016], Forcey et al. [2017], Catanzaro et al. [2020]), and an important result in this
respect is that the BMEP is polynomially solvable if the input distance matrix D is additive (Gascuel
[2005]), i.e., if its entries satisfy

dij + dkr ≤ max{dik + djr, dir + djk} ∀ i, j, k, r ∈ L. (1.8)

However, when this property does not hold for D, the BMEP is generally a hard problem to solve.
In fact, Fiorini and Joret [2012] proved, by reducing it to the 3-Colorability Problem (3CP) (Garey
and Johnson [1979]), that the BMEP is NP-hard and inapproximable within cn, for some positive
constant c > 1, unless P = NP. The authors also showed that if the input distance matrix D is
just metric, i.e., if its entries satisfy the triangle inequality, then the optimal solution to the BMEP
can be approximated within a factor of two.

In addition, Frohn [2021] showed that the problem remains APX-hard even when restricted to
a simpler case, known in the literature as the Fixed-Tree BMEP (FT-BMEP) (Aringhieri et al.
[2011a]), in which the topology of the phylogeny is fixed and one wants to assign the taxa to the
leaves in order to minimize the BME length function.

The hardness of the problem limited the effectiveness of the exact approaches proposed so far,
either via implicit enumeration algorithms (Pardi [2009], Aringhieri et al. [2011b], Catanzaro et al.
[2012]) or via integer programming Catanzaro et al. [2012], which were capable of solving instances
up to just 26 taxa.

For this reason, an important effort has been put into the development of efficient heuristics, for
example in the works proposed by Desper and Gascuel [2002], Pardi [2009] and Fiorini and Joret
[2012].
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Figure 1.6: Example of a path-distance matrix τ of a phylogenetic tree

The current state-of-the-art approximate solution algorithm for the BMEP is FastME 2.0 (Lefort
et al. [2015a]), whose algorithmic core is constituted by a local search that deterministically explores
(part of) the solution space of the problem by means of topological changes (called tree rearrange-
ments, Gascuel [2005]) carried out on an initial phylogeny. FastME often proves fast and accurate
in practical phylogenetic analyses as well as able to scale to very large molecular datasets.

Example 2 Let us consider the taxa of example 1 with the distance matrix D of Equation 1.2, and
the phylogenetic tree T described in Figure 1.6.

We first note that, since the diagonal of any distance matrix D is null, we obtain that Equation
1.6 can be rewritten as:

L(T ) =
∑
i,j∈L
i ̸=j

dij
2τij

=
∑
i,j∈L

dij
2τij

. (1.9)

Then, to compute the BMEP tree length of T one can simply consider the matrix τ̂ij = 1/2τij ,
perform the element-wise product D ∗ τ̂ , and sum the elements of the obtained matrix (operation
denoted with the symbol Σ̊), in fact:

L(T ) =
∑
ij

dij/2
τij =

∑
ij

dij τ̂ij =
∑̊

D ∗ τ̂ . (1.10)

In our case, we have:

τ =


0 4 4 3 3
4 0 2 1 3
4 2 0 1 3
3 1 1 0 2
3 3 3 2 0

 and τ̂ =


1.000 0.062 0.062 0.125 0.125
0.062 1.000 0.250 0.500 0.125
0.062 0.250 1.000 0.500 0.125
0.125 0.500 0.500 1.000 0.250
0.125 0.125 0.125 0.250 1.000

 , (1.11)

which leads to:

11



∑̊
D ∗ τ̂ =

∑̊

0.000 0.385 0.342 0.586 0.685
0.385 0.000 1.581 2.739 0.810
0.342 1.581 0.000 2.000 0.586
0.586 2.739 2.000 0.000 1.118
0.685 0.810 0.586 1.118 0.000

 = 21.665 . (1.12)

1.3 Motiavations and contributions

Although less accurate than ML and BI in terms of phylogenetic reconstruction, distance-based
algorithms are capable of running on large datasets, whereas likelihood-based methods struggle to
be applied because of their high computational cost. For this reason, distance-based approaches
are still currently widely used as they represent a good compromise between good reconstruction
accuracy (Kuhner and Felsenstein [1994]) and practicality, due to their simplicity and speed. Among
distance methods, one of the most widely accepted and studied is the Minimum Evolution criterion
because of its compliance with Occam’s principle of scientific inference and its statistical consistency,
which however does not accurately take into account the characteristics of the distances’ variance.
For this reason, the BMEP represents in phylogenetic inference an extremely valuable tool, as it
shares with the other distance methods a good tree reconstruction accuracy and a competitive
computational performance while guaranteeing statistical consistency and providing an appropriate
description of the distances’ variance. Moreover, as shown by Hordijk and Gascuel [2006], there is a
strong correlation between the BMEP tree length estimation and the likelihood, meaning that trees
with lower values of L (equation 1.6) tend to have higher likelihood value, a fact which makes the
BMEP not only a good phylogenetic reconstruction criterion but also a potential tool to develop
faster algorithms under the Maximum Likelihood framework. For these reasons, the necessity to
develop more and more advanced algorithms capable of finding the most accurate solutions possible
according to the BMEP principle, represents an important task in the phylogenetic research field.

Moved by these considerations, this work further adds to the above literature by presenting a
novel heuristic, called PhyloES, that defines the new reference in approximating the optimal solu-
tions to the BMEP. FastME is characterised by a deterministic exploration strategy of the solution
space, which, as we show in this work, turns out to be too restrictive in some circumstances, causing
premature convergence to solutions that can be arbitrarily far from the optimum. PhyloES pro-
poses a possible way around this problem that consists of making nondeterministic the search in
the solution space of the BMEP. This task is achieved by combining classical local search strate-
gies with the Evolution Strategy (ES) framework discussed in Bäck [1996]. Specifically, starting
from an initial set of phylogenies, PhyloES first generates a new set of solutions to the problem
by using local search strategies similar to those implemented in FastME. Subsequently, PhyloES
stochastically recombines the new phylogenies so obtained by means of the so-called ES operators
(see Chapter 4). The iteration of the local search phase followed by the recombination phase (until
a stop condition is met) allows to span the whole solution space to the BMEP by enabling the
potential convergence to the optimum on a sufficiently long period. PhyloES can be downloaded at
https://github.com/andygaspar/PHYLOES, is released to the scientific community under the form
of a user-friendly open-source Python library, and makes an extended usage of Pytorch (Paszke
et al. [2017]) (enabling a parallel CUDA GPU implementation of the algorithm discussed in the next
sections) to improve computational efficiency.
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1.4 Dissertation outline

This dissertation is organised as follows. Chapter 2 presents a detailed discussion of some of the
existing exact approaches for the BMEP. This will be our starting point, in which we will discuss
some important properties of the problem in question and we will set our first benchmark to test the
heuristics introduced in the following chapter. In Chapter 3 we will analyse in depth the FastME
algorithm, describe its components and assess its performance. In Chapter 4 we will first give a brief
introduction to Evolutionary Algorithms and Evolution Strategies, defining and discussing the main
concepts necessary to fully understand the PhyloES algorithm. Then, we will dive into the main
core of this work. Here, we will introduce, define and analyse in depth the PhyloES algorithm and
its components. In Chapter 5 we discuss the methodology adopted for the performance assessment
and we present the computational results as well as some robustness analysis. Finally, Chapter 6
presents conclusions and future research considerations.
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Chapter 2

Exact algorithms

In this Chapter, we aim to provide a detailed examination of a selection of established exact method-
ologies tailored for solving the BMEP, that will lay the groundwork for our subsequent analyses
developed in the next chapters. We will first dig into a complete enumeration approach that will
provide us with a first introduction to the topological properties of unrooted binary trees as well as
a glance at the hardness of the BMEP computational challenge. We will also establish a baseline of
comparison by means of an Integer Linear Programming that will be discussed in detail.

2.1 Complete enumeration

The first naive strategy one could think to adopt in order to solve the BMEP is via complete
enumeration, id est, given an n×n matrix D representing the pairwise estimated biological distance
between the element of a set L of n taxa, to compute the BMEP tree length of any phylogenetic tree
in T . However, this raises the problem of developing an algorithm capable of generating all elements
of T . A candidate for this task is represented by the so-called Step-wise addition algorithm, which
flow can be described as follows.

Let σ : L → {1, . . . , n} a one-to-one map which determines an ordering for L. In the initial step,
we consider the star tree composed of tσ−1(1), tσ−1(2), tσ−1(3) and a single internal node labelled as
i1. At each step k = 3, . . . , n taxon tσ−1(k) is inserted in the tree by choosing an edge (vα, vβ) within
the edge set of the partial tree, deleting (vα, vβ) and adding the new edges (tσ−1(k), ik), (vα, ik) and
(vβ , ik). We remark that vα and vβ might be both internal nodes or an internal nodes and a taxon.

Figure 2.1 shows an example of step-wise addition procedure in which σ is defined as σ(k) :=
k, ∀k ∈ {1, . . . , n}. From the initial star {(t1, i1), (t2, i1), (t3, i1)} (Figure 2.1a), (t3, i1) is selected,
deleted and edges (t4, i2), (i1, i2) and (t3, i2) are added to the tree, (2.1b).

Still with σ(k) := k, ∀k ∈ {1, . . . , n}, Figure 2.2 shows instead the insertion of tk in the two
cases: the one in which the nodes of the selected edge (vα, vβ) are both internal nodes and the one
where one of them is a taxon.

It is important to remark that at each step the new insertion does not alter the degree of any
of the existing nodes, the leaf added corresponds to a taxon, and the new internal edge is of degree
three. The generated connected graph is therefore by definition a phylogenetic tree. What is left to
prove is that any phylogenetic tree can be constructed with the above-described procedure.

This can be done simply by inverting the step-wise addition algorithm. Let T be a phylogenetic
tree in T and let define a taxa ordering σ. Let also iγ be the internal node adjacent to tσ−1(n)

and vα, vβ , that we will call the insertion nodes, be the other two nodes adjacent to iγ . If edges
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(a) Initial star (b) Insertion of the first taxa

Figure 2.1: First step of the Step-wise addition algorithm.

Figure 2.2: Insertion of tk in the two cases: (UPPER) (vα, vβ) are both internal nodes, so (vα, vβ) =
(iα, iβ): (BOTTOM): one of the nodes, for instance vα, is a taxon and the other an internal node,
so (vα, vβ) = (tα, iβ).

(tσ−1(n), iγ), (vα, iγ), (vβ ,γ ) are removed from the tree and a new edge connecting the two insertion
nodes (vα, vβ), named insertion edge, is added, we obtain a phylogenetic tree Tn−1 of the n− 1 taxa
tσ−1(1), . . . , tσ−1(n−1). We remark that if taxon tσ−1(n) was then reinserted into Tn−1 in a step-wise
addition fashion by choosing edge (vα, vβ), we would trivially re-obtain T . Therfore, if all taxa
from tσ−1(n) to tσ−1(4) are removed one after the other storing at each step k insertion edge ek,
we would obtain the sequence e1, . . . , en−3. The final step of the proof consists of noticing that its
reverse order, en−3, . . . , e1 defines the sequence of edges chosen at each step of the step-wise addition
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Figure 2.3: Reverse procedure to obtain the step-wise sequence from a given phylogeny.

algorithm to construct T starting from the initial star composed by the three taxa tσ−1(1), tσ−1(2) and
tσ−1(3). Figure 2.3 shows an example of the reverse procedure to obtain from a given phylogenetic
tree the sequence of edges which determines its construction via the step-wise addition algorithm.

Now that we have a procedure to generate all possible phylogenetic trees we can also compute
|T |. In fact, we can observe that when constructing a tree, in the initial step we have 3 choices for
the insertion of the first taxon, 5 for the second, 7 for the third and, since at each step two new
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n taxa |T |
n= 4 3
n= 5 15
n= 6 105
n= 7 945
n= 8 10.395
n= 9 135.135
n= 10 2.027.025
n= 11 34.459.425
n= 12 654.729.075
n= 13 13.749.310.575
n= 14 316.234.143.225
n= 15 7.905.853.580.625

Table 2.1: Factorial growth of |T | with the number of taxa

edges are added to the tree, at step k we have 2k − 3 choices for the insertion of the k-th taxon;
which means that:

|T | = 3 · 5 · 7 · · · 2(n− 1)− 3 = (2n− 5)!!. (2.1)

Unfortunately, this result shows that a complete enumeration approach becomes untractable in
practice quite quickly with the increasing number of taxa, as shown in Table 2.1.

Notable attempts to overcome this issue have been made by Pardi [2009], who exploited some
lower bounds to exclude non-optimal edge choices for the tree construction within a Branch and
Bound framework, and by Aringhieri et al. [2011a], who exploited the topological properties of the
phylogenetic trees to partially reduce the size of the search space. However, both approaches have
been shown to be applicable to problems up to 20 taxa.

Example 3 Referring to the problem defined in Example 1 we can apply the complete enumeration
method by generating all the (2 · 5 − 5)!! = 5 · 3 = 15 phylogenies and then computing for each tree
the BMEP length function. The resulting optimal phylogeny is the one represented as T2 in Figure
2.4, since, according to the BMEP principle, is the one with the smallest length.

2.2 An Integer Programming Formulation

In this Section, we present an Integer Programming (IP) formulation for the BMEP presented for
the first time in Catanzaro et al. [2012]. Toward this aim a brief introduction on the combinatorial
properties of the BMEP is needed.

Let us consider for a generic phylogenetic tree T , in which we denote with L and I the set of
leaves and internal nodes respectively, its length-path matrix τ , which element τij represents the
minimum path length between vertices i and j. We first notice that for any length-path matrix τ
we have:

τii = 0 ∀i ∈ L, (2.2)

τij = τji ∀i, j ∈ L, (2.3)

τij + τjk − τjk ≥ 2 ∀i, j, k ∈ L| i ̸= j ̸= k, (2.4)
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Figure 2.4: All possible phylogenies and their BMEP length of the five taxa case of Example 1.
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since: (2.2) self distances are always null, (2.3) path distances are symmetric and (2.4) path
distances satisfy the triangular inequality.

When τ describes an unrooted binary tree, Catanzaro et al. [2012] showed that it holds the
following nontrivial necessary property, derived from Parker [1996] and known as Kraft’s equality :∑

j∈L
j ̸=i

1

2τij
=

1

2
(2.5)

Moreover, the authors derived from Pauplin [2000] the so-called phylogenetic manifold charac-
terization, which is described by the following equality:∑

i,j∈N
i ̸=j

τij
2τij

= 2n− 3. (2.6)

Finally, in order to fully characterise a phylogenetic tree we must ensure the four-point Boune-
man’s condition, which states that for any quartet i, j, q, t ∈ N with i ̸= j ̸= q ̸= t it holds:

τij + τqt ≤ max{τiq + τjt, τit + τjq}. (2.7)

The Catanzaro et al. [2012] IP formulation consists of determining the length-path matrix τ which
defines the optimal phylogenetic tree according to the BMEP criterion, given the taxa dissimilarity
matrix D.

Denoting with D the set {1, 2, 3, . . . , (n− 1)} of possible topological distances between nodes, we
can define the problem’s binary decision variables which represent the entries of the matrix τ :

xk
ij =

{
1 if τij = k
0 otherwise

∀i, j ∈ N|i ̸= j,∀k ∈ D

In other words, the xij-s determine the topological distance between nodes. To ensure the four-
point conditions (Equation 2.7) we also need to define the set of binary decision variables:

yqtij =

{
1 if τit + τjq ≥ τiq + τjt
0 otherwise

∀i, j, q, t ∈ N|i ̸= j ̸= q ̸= t

The BMEP objective function 1.6 can be then written as:

min
∑
i,j∈L
j ̸=i

dij

 ∑
k∈D\{1}

xk
ij

2k

 (2.8)

which is subject to the following constraints.
The distance between nodes i and j is defined by a single value:∑

k∈D

xk
ij = 1 ∀i, j ∈ N|i ̸= j. (2.9)

The distance is symmetrical:

xk
ji = xk

ij ∀i, j ∈ N|i < j, k ∈ D. (2.10)

The Kraft equality (Equation 2.5) must be ensured:
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∑
i∈L,k∈D\{1}

2xk
ji

2k
=

1

2
∀i ∈ N . (2.11)

The solution must be consistent with the phylogenetic manifold characterisation (Equation 2.6):∑
k∈D
k ̸=1

k

2k

∑
i,j∈L
i ̸=j

xk
ij = (2n− 3). (2.12)

The four-point condition must be ensured:

∑
k∈D

k
(
xk
ij + xk

qt

)
≤

∑
k∈D

k
(
xk
iq + xk

jt

)
+ (2n− 2)yqtij ∀i, j, q, t ∈ N|i ̸= j ̸= q ̸= t, (2.13)∑

k∈D

k
(
xk
ij + xk

qt

)
≤

∑
k∈D

k
(
xk
it + xk

jq

)
+ (2n− 2)

(
1− yqtij

)
∀i, j, q, t ∈ N|i ̸= j ̸= q ̸= t. (2.14)

Each leaf is adjacent to only one internal node:

x1
ij = 0 ∀i, j ∈ L|i ̸= j (2.15)∑

j∈I
x1
ij = 1 ∀i ∈ L. (2.16)

Each internal node is adjacent to exactly three nodes:∑
j∈N
j ̸=i

x1
ij = 3 ∀i ∈ I (2.17)

No triangles between internal nodes are allowed (Constraints 2.15 and 2.16 already ensure this
condition for leaves):

x1
ij + x1

ir + x1
rj ≤ 2 ∀i, j, r ∈ I|i ̸= j ̸= r. (2.18)

If leaf j is adjacent to the internal node r, the distance between any other leaf i and j is greater
than the distance between i and r (Figure 2.5):

xk
ij + 1 ≥ x

(k−1)
ir + x1

rj ∀i, j ∈ L|i ̸= j, r ∈ I, k ∈ D\{1, n− 1}. (2.19)

If node j is adjacent to node q and the distance between node r and i is equal to k− 1, then the
distance between i and r must be equal to k or k − 2 (Figure 2.6):

xk
ij + x

(k−2)
ij + 1 ≥ x

(k−1)
ir + x1

rj ∀i, j, r ∈ N|i ̸= j ̸= r, k ∈ D\{1, n− 1}. (2.20)

Variables are binary:

xk
i,j ∈ {0, 1} ∀i, j ∈ N , k ∈ D (2.21)

yq,ti,j ∈ {0, 1} ∀i, j, q, t ∈ N (2.22)
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Figure 2.5: Graphical representation of Constraint 2.19.

Figure 2.6: Graphical representation of Constraint 2.20.

The solution times of such formulation prove to be particularly slow, mainly due to the large
number of y variables (

(
n
4

)
). The authors proposed the use of a branch-and-bound (B&B) approach

based on the step-wise algorithm presented in Section 2.1 in which the lower bound for a generic
node of the B&B tree is obtained by computing the linear relaxation but considering only constraints
(2.9)-(2.12).

The resulting algorithm represents the current state-of-the-art among the exact approaches for
the BMEP [Catanzaro et al., 2022]. However, its capabilities remain quite limited so far, as the
optimal solution can be provided in a reasonable amount of time (≈ 1 hour) for problems with up to
26 taxa. Still, we have to notice that, as we will see in 3.3.1, the computation time highly varies from
instance to instance. Further research might be needed to fully understand the dependency of the
computation time on the structure of D. Since many of the real-world instances include hundreds,
or even thousands, of taxa the need for a heuristic approach seems to be therefore necessary.
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Chapter 3

The FastME algorithm

FastME, which stands for Fast Minimum Evolution, is a powerful algorithm that represents, at
the current, the state-of-the-art for the BMEP. Developed as an efficient alternative to traditional
tree-building methods, FastME employs a heuristic approach to rapidly construct phylogenetic trees.

It leverages powerful local search operators defined by tree rearrangement moves to improve on
any initial solution provided by the user. FastME achieves its speed first by generating a feasible
solution to an instance of the BMEP by means of an initial heuristic and then iteratively improves
it by using tree rearrangements (local search phase) until the length of the best-so-far tree stops
improving.

This allows FastME to quickly generate phylogenetic trees, making it an attractive choice for
researchers working with large datasets or when time a is critical factor.

In this chapter, we will look in detail at the various components of the algorithm in order to
understand the reason for its efficiency as well as to identify its weaknesses.

3.1 Topological Tree Rearrangements

In the local search phase, FastME uses two tree rearrangements, called the Balanced Nearest Neigh-
bours Interchanges (BNNI) (Desper and Gascuel [2002]) and the Balanced Subtree Pruning and
Regrafting (BSPR) (Hordijk and Gascuel [2006]), which have been shown to provide important con-
sistency properties within the BMEP framework ( Bordewich et al. [2009]). The BNNI and BSPR
are based, respectively, on the Nearest Neighbours Interchanges (NNI) and Subtree Pruning and
Regrafting (SPR) tree rearrangements. FastME extensively uses these two techniques, along with
formulas that allow to speed up the evaluation of neighbourhood elements thus making FastME
extremely computationally efficient.

3.1.1 Nearest Neighbour Interchanges

The NNI operation consists of interchanging two subtrees that are adjacent to an internal edge e
(Semple and Steel [2003]), where by internal edge we refer to an edge connecting two internal nodes.
Figure 3.1 shows two subtrees that can be obtained by applying NNI to edge e: in the first case,
the subtree A is swapped with C, while in the second with D. The other possible combinations
of exchanges are not considered since they yield symmetric phylogenies, i.e., phylogenies topologi-
cally equivalent to the ones already taken into account. We will refer to A, B, C, D as the NNI
neghbours subtrees, or simply NNI neighbours.
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Figure 3.1: Representation of an NNI move. When edge e is selected, two new trees are created by
swapping subtrees A-D and A-C, respectively.

3.1.2 BNNI

The idea behind the BNNI can be summarised as follows.

• Generate an initial tree

• Until no further improvement is achievable:

1. test all possible NNI swaps of the initial tree

2. perform, if possible, the one that improves the most the tree length

The computation of the length of all possible trees resulting from the NNI swaps would be however
very expensive as it would imply recalculating the distance matrix τ of each tree (O(n2 log(n), Desper
and Gascuel [2002]). This can be avoided by exploiting an appropriate decomposition of the length
function. Let us define the distance between two non-intersecting subtrees A and B as:

lAB = lBA :=
∑

i,j∈A∪B

dij
2τij

, (3.1)

and the subtree A length as:

lA =
∑
i,j∈A

dij
2τij

(3.2)

Let us consider for example the tree T of figure 3.2 and suppose that we have already computed
the matrix MT of dimension (2n−3)×(2n−3) which element MT

AB represents the distance between
subtrees A and B. The length of T can be then decomposed in the following manner:

L(T ) = lA + lB + lC + lD + lAB + lAC + lAD + lBC + lBD + lCD. (3.3)
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Figure 3.2: NNi swap between subtrees B and C.

T ′ is generated via the swap between subtrees A and C performed. Hence the length contributions
lA, lB , lC , lD do not change as the structures of the corresponding subtree remain unaltered by
the swap. Similarly, the same consideration holds for lAD, lBC as the swap does not change the
corresponding subtrees’ distance, which is the case instead of the distance between A and C, and
between B and D. Denoting with l the value of modified subtrees’ distances, we have:

L(T ′) = lA + lB + lC + lD + lAB + lAC + lAD + lBC + lBD + lCD. (3.4)

Since in T ′ A and B are one edge further away than their distance in T , denoting τTij as the

distance between taxa i and j in T , and τT
′

ij as the distance between taxa i and j in T ′, we obtain:

τT
′

ij = τTij + 1 ∀i ∈ A, j ∈ B, (3.5)

which gives:

lAB =
∑

i,j∈A∪B

dij

2τ
T ′
ij

=
∑

i,j∈A∪B

dij

2τ
T
ij+1

=
1

2

( ∑
i,j∈A∪B

dij

2τ
T
ij

)
=

1

2
lAB . (3.6)

With the same reasoning, we get:

lCD =
1

2
lCD. (3.7)

Conversely, in T ′, A and C are an edge closer with respect to their distance in T , so:

τT
′

ij = τTij − 1 ∀i ∈ A, j ∈ C, (3.8)

which leads to:
lAC = 2lAC , (3.9)

and, similarly to
lBD = 2lBD. (3.10)

In conclusion, we obtain that the difference in tree length between T (3.3) and T ′(3.4) simply
reduces to:

∆T = L(T )− L(T ′) =
1

2
(lAB + lCD)− (lBD + lAC), (3.11)

which allows us to determine whether an NNI swap leads to a length improvement without the
need to calculate τ for the new tree T ′. Furthermore, if the swap is performed the matrix MT ′

can
be obtained from MT in O(n log(n)) (Desper and Gascuel [2002]) updating the elements affected

24



Algorithm 1 BNNI

Require: M , T
Tbest = T
∆ = −1
while ∆ < 0 do

∆, Tbest = BNNIstep(Tbest,M)
update M

end while
return Tbest

Algorithm 2 BNNIstep

Require: Tbest,M
Tbest = T
∆ = 0
for internal edge in T do

for swap in NNI swaps do
T ′ = swapped tree
∆′ = L(T )− L(T ′)
if ∆′ < ∆ then

Tbest = T ′

∆ = ∆′

end if
end for

end for
return ∆, Tbest

by the swap. Algorithms 1 describes the detail of the BNNI algorithm, in which the sub-routine
BNNIstep (Algorithm 2) is called until no further tre length improvement is achieved. In view of
the above considerations, Algorithm 1 requires O(n2 + pn log(n), where O(n2) is due to the initial
computations of M and pn log(n) is the cost of performing p times the while loop.

3.1.3 Subrtree pruning and regrafting

The SPR neighbours are instead obtained by pruning (i.e. removing), a subtree from the initial
phylogeny, and by regrafting (i.e. reattaching), the pruned subtree into one of the remaining branches
in the phylogeny (Semple and Steel [2003]). Figure 3.3 shows a simple example of an SPR move
where the red subtree is pruned and regrafted onto the target yellow edge.

More in general, as depicted in Figure 3.4, an SPR move can be defined as follows:

• pick an edge s.

• Pick a vertex x of s. Of the two subtrees rooted in s consider the one (S) opposite to x.

• Pick a target edge e within the two subtrees S1, S2, which are the ones rooted in z1 and z2
respectively and which are not intercepting S. Since e1 and e2 are connected to x they also
have to be excluded from S1 and S2 as the insertion of S into any of them would lead to the
initial tree.
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• Detach S as well as s and x from the tree

• Split e by generating the edges e1 and e2 in order to insert x in between them

• Merge e1z and e2z to form a single edge ez connecting z1 and z2.

We will refer to the SPR move just described with S 7→ e.

3.1.4 Balanced SPR

Now that we have defined an SPR move, we can describe the flow, similar to the BNNI ones, of the
BSPR:

• Generate an initial tree

• Until no further improvement is achievable:

1. test all possible SPR swaps of the initial tree

2. perform, if possible, the one that improves the most the tree length

Similar to the BNNI case, the length computation of all possible trees resulting from the SPR
swaps would be however very expensive. This time, since the number of choices for any SPR move
is O(n) for any possible subtree, the recalculation of the distance matrix τ of each tree would cost
(O(n4 log(n)). Fortunately, Hordijk and Gascuel [2006] provides a very efficient workaround for such
a hurdle.

In fact, we can first notice that any SPR move can be obtained via multiple applications of NNI
swaps. As shown in Figure 3.5, let us consider a general SPR move where subtree S has to be
inserted on edge e. Since any tree is a connected graph there is a path p1, . . . , pk between s and e.
Let us define the subtree Si as the one not including pi and pi+1 and with root the node between pi
and pi+1. If we now consider Step 1 of Figure 3.5 the swap between S and S1 is the NNI operation
of Figure 3.2 which moves S one edge closer on its path to e. The same consideration holds for any
i = 2, . . . , k, allowing at each step i to swap S with Si, ultimately resulting in the target SPR move.

Figure 3.3: Representation of an SPR move. The red subtree is detached (pruned) from the tree
and reattached (regrafted) into the target yellow edge by splitting it into two edges. In order to fix
the tree the blue subtree has to be instead reattached to its grandparent.
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If the subtree distance matrix M is known, the difference in terms of tree length can be then
obtained by recursively computing equation 3.11. We further notice that in this case after each NNI
swap it is not necessary to update the whole M but only the terms required by 3.11. Referring to
Figure 3.5, the subtree distance update at step i can be performed in constant time as follows.

Let us indicate with a bar the new NNI neighbours obtained after the swap. After the swapping
S and Si the new A, A, is composed of the old A and Si. B instead does not change, B = S = B.
The distance between A and B is therfore:

lAB =
1

2
lAB + lSSi

. (3.12)

Except for Si+1, all subtrees of D still belong to D, but they are an edge closer to S, so:

lBD = 2(lBD − lSSi+1). (3.13)

In order to reapply Equation 3.12 at the following step, the distance between S and Si+1 must
be updated:

lSSi+1
= 2lSSi+1

. (3.14)

lCD is known and its value is stored in M , as both C = S2 and D have not be altered so far.
Instead, lAC must be computed. Referring to step i of Figure 3.5, we notice that the new A includes

Figure 3.4: Representation of S 7→ e.
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Figure 3.5: Representation of an SPR move performed by multiple applications of NNI swaps.

the same subtrees of P except for S. lSi+1P is known, but we have to take into account that apart
from S0, all subtrees Sj , with j = 1, . . . , i are now one edge further away. We then obtain:

lAC =
1

2
(lSi+1P − lSSi+1) +

1

2
lS0Si+1 . (3.15)

Finally, denoting the tree obtained after the swap with Si as TSi
, we notice that:

L(T )− L(TSk
) =

(
L(T )− L(TS1

)
)
+

(
L(TS1

)− L(TS2
)
)
+ · · ·+

(
L(TSk−1)− L(TSk

)
)
, (3.16)

which provides the recursive formula to compute the final tree length difference.
We further remark that each swap i performed in the process corresponds to the SPR move

S 7→ pi+1. Therefore, this procedure provides the additional advantage of computing the length
difference for all the SPR moves of S included in the path between s and e.

As shown in Figure 3.6, all SPR moves of S can be recursively computed following the tree
structure from s to all leaves not included in S and keeping track of the best tree length improvement.

The whole procedure is described in Algorithm 3, in which equations 3.12, 3.13, 3.14 and 3.15
have been included in the function UpdateDistances.

Finally, we can now in Algorithms 5 provide the definition of the BSPR, which consists of
consecutive applications of the sub-routine BSPRstep (Algorithm 6) until no further tree length
improvement is achieved.
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Since there are O(n) possible moves per each of the O(n) subtrees, the complexity of BSPRstep
(Algorithm 6) is O(n2). The initial M computation as well as its update requires O(n2). Therefore
the whole BSPR requires O(pn2), where p is the number of iterations of the while loop.

3.2 FastME Algorithm

Heaving provided a heuristic that calculates an initial tree, which will be the focus of the next
sections, we can now give the complete definitions of the FastME algorithm (7).

Figure 3.6: Recursion tree for subtree S SPR moves computations.

Algorithm 3 SPR

Require: S, T
∆ = 0
∆best = 0
Tbest = T
∆,∆best, Tbest = Recursion(S,∆best)
return ∆best, Tbest
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Algorithm 4 Recursion

Require: S,∆,∆best, Tbest

if S = leaf then
Return

end if
if LChild ̸= leaf then

TSR
= tree obtained by swapping S and SR

UpdateDistances
∆ = ∆+ L(TS)− L(TSR

)
if ∆ < ∆best then

∆best = ∆
Tbest = TSR

end if
Recursion(SR,∆,∆best, Tbest)

end if
if RChild ̸= leaf then

TSL
= tree obtained by swapping S and SL

UpdateDistances
∆ = ∆+ L(TS)− L(TSL

)
if ∆ < ∆best then

∆best = ∆
Tbest = TSL

end if
Recursion(SL,∆,∆best, Tbest)

end if
return ∆best, Tbest

Algorithm 5 BSPR

Require: M , T
Tbest = T
∆ = −1
while ∆ < 0 do

∆, Tbest = BSPRstep(Tbest,M)
update M

end while
return Tbest

3.3 Standard Initialisation Algorithms

As mentioned in section 3.2, FastME requires an initial tree to start the BNNI and the BSPR
subroutines. The heuristics described in the literature for determining a tree given a taxa distance
matrix D can be classified into two main categories: constructive and agglomerative (Lemey et al.
[2009]). The constructive heuristics build a phylogeny for a given set L of n ≥ 3 in a step-wise fashion
(see Section 2.1) choosing the insertion edge according to any given criterion. The agglomerative
heuristics, instead, akin clustering techniques, construct a phylogeny for L by starting from a star
tree that connects all the n taxa in L and by iteratively aggregating pair of taxa according to a
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Algorithm 6 BSPRstep

Require: Tbest,M
Tbest = T
∆ = 0
for subtree S in T do

∆′, T ′ = SPR(S)
if ∆′ < ∆ then

Tbest = T ′

∆ = ∆′

end if
end for
return ∆, Tbest

Algorithm 7 FastME

Require: D, InitHeuristic
T = InitHeuristic(D)
Tnni = BNNI(T )
Tspr = BSPR(T )
T = argmin{l(T ), l(Tnni), l(Tspr)}
return T

specific selection criterion (Sokal [1958], Saitou and Nei [1987]).
FastME allows the use of several Standard Initialisation Algorithms (SIA) to generate the initial

phylogeny. Examples include constructive heuristics that use Greedy Balanced Minimum Evolution
algorithm (GBME) and Ordinary Least-Square for Minimum Evolution (OLSME) as an edge selec-
tion criterion ( Desper and Gascuel [2002], Rzhetsky and Nei [1992]) and agglomerative heuristics
based on the Neighbor-Joining (NJ) algorithm ( Saitou and Nei [1987]), the Unweighted Neighbor-
Joining (UNJ) algorithm ( Gascuel [2002]), and Gascuel’s BioNJ [Gascuel, 1997]. Despite their
detailed analysis is beyond the scope of this work, it is essential to discuss here some empirical
evidence arising from our preliminary tests.

3.3.1 Comparison with IP model and SIA tests

For the following tests, we considered the Ribosomal Database Project RDPII, one of the benchmark
datasets used in this work and consisting of aligned and annotated rRNA gene sequences for which
the distance between taxa has been computed using the F84 substitution model (Felsenstein and
Churchill [1996]).

The first performance assessment is naturally the comparison with an exact method. For this
task, we made use of the IP formulation presented in Section 2.2, as it represents the state-of-the-art
among the exact approaches. Due to its computational limitations, the instance sizes considered
were quite small: 15, 20, and 25 taxa. For each of them, we generated 10 problems by randomly
picking the corresponding number of taxa.

The C++ implementation has been provided by the authors and it makes use of the FICO-Xpress
Library. The time limit for the ILP model has been set to 6 hours and the max gap tolerance to
10−10. In order to speed up the computations, the solver was provided with the initial solution
computed with PhyloES (see Chapter 4). The experiments have been run on an Intel Core(TM)
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i7-10700 (2.90GHz) 16 cores machine. Table 3.1 illustrates the results of the experiments, showing
the comparison between FastME and the IP model in terms of objective values and computing time
(in seconds). FastME proved extreme efficiency, providing the optimal solution in all instances in
which the IP was able to terminate the computation within the time limit. In these cases, FastME
was on average 99, 5% times faster than the ILP (std 0, 01%). We also report that in only 2 instances
the IP solver outperformed FastME in terms of solution quality, but with a very limited gap.

run n FastME obj IP obj FastME time IP time gap %

1 15 1.458490 1.458490 0.012 0.248 0.000000
2 15 1.734989 1.734989 0.011 11.615 0.000000
3 15 1.818631 1.818631 0.014 6.543 0.000000
4 15 1.799283 1.799283 0.012 55.476 0.000000
5 15 1.542442 1.542442 0.012 2.103 0.000000
6 15 1.816193 1.816193 0.012 103.122 0.000000
7 15 1.659289 1.659289 0.012 0.573 0.000000
8 15 1.771357 1.771357 0.013 0.715 0.000000
9 15 1.785821 1.785821 0.012 3.135 0.000000

10 15 1.728345 1.728345 0.012 5.075 0.000000
11 20 2.247273 2.247273 0.015 964.173 0.000000
12 20 2.254319 2.254319 0.014 58.561 0.000000
13 20 2.304339 2.304339 0.014 154.638 0.000000
14 20 2.367511 2.367511 0.015 63.619 0.000000
15 20 2.322821 2.322821 0.014 366.301 0.000000
16 20 2.175853 2.175853 0.014 966.346 0.000000
17 20 2.252254 2.252254 0.014 337.923 0.000000
18 20 2.298822 2.298822 0.014 4043.536 0.000000
19 20 2.406584 2.406584 0.014 231.219 0.000000

20 20 1.855247 1.855247 0.014 10.893 0.000000
21 25 2.607170 2.607170 0.017 Time Limit 0.000000
22 25 2.859623 2.859411 0.018 Time Limit 0.000074
23 25 2.576427 2.576427 0.018 Time Limit 0.000000
24 25 2.705412 2.705412 0.017 737.774 0.000000
25 25 2.608054 2.608054 0.018 Time Limit 0.000000
26 25 2.705522 2.704784 0.017 Time Limit 0.000273
27 25 2.851618 2.851618 0.018 Time Limit 0.000000
28 25 2.631415 2.631415 0.018 18575.847 0.000000
29 25 2.461560 2.461560 0.018 Time Limit 0.000000
30 25 2.765643 2.765643 0.017 Time Limit 0.000000

Table 3.1: Comparison between FastME and the ILP model (time in seconds)

Another important remark arises from the analysis of the IP computation time. Its high standard
deviation (33, 9 and 1218, 6 respectively within the 15 and the 20 taxa instances) and the differences
between the maximum time and the minimum (102, 8 for the 15 taxa case and 4032, 6 for the 20
taxa case) indicate how the problem’s hardness highly variates from instance to instance, as also
shown in Figure 3.7.

The second performance assessment we discussed here, concerns the SIAs. In order to study
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Figure 3.7: Computation time of the IP in the 15 and 20 taxa case.

how the choice of the initialisation heuristic affects the FastME performance, we tested all the SIA
in 1000 instances of 150 randomly sampled taxa. As shown in Figure 3.8 the best performance is
obtained 36, 1% of the times with BioNJ which seems to be the most reliable choice. This is in
line with the developers’ recommendation (Lefort et al. [2015b]) to use BioNJ as the initialisation
algorithm. However, we have to remark that for the remaining 63, 9% of the instances, a better
result would have been obtained with a different choice. In view of these results, one might wonder
whether an optimal strategy for the SIA selection exists or whether it is possible to develop a stronger
initialisation heuristic capable of outperforming the SIAs.

3.4 Random initialisation

To answer the question that arose at the end of section 3.3, we can start trying the simplest possible
approach, which consists of initialising the BNNI and the BSPR with randomly generated trees. If
we perform the same experiment made for testing the SIA, initialising 100 random trees per instance
we obtain the interesting result shown in Figure 3.9. In the 95, 2% of the cases, we have that the
best result is obtained with the random initialisation.

This fact is of particular importance, because it indicates that with a different initialisation
approach the solution obtained by FastME can be improved.

Moreover, if we focus our attention on a single run, for example the last of the experiment, and
we analyse the results of the 100 random initialisations, we find out that several iterations provided
better solutions with respect to the best SIA (Figure 3.10).

However, a pure random initialisation approach (RI) might turn out quite weak, as if on the one
hand it favours the exploration of the search space on the other it does not allow the exploitation
of any information collected during the previous runs, since with the RI all the generated trees are
independent. The natural research question is therefore if it is possible to design a strategy that is
capable of finding a good trade-off between the exploration of the tree space and the exploitation of

33



Figure 3.8: Number of instances in which the corresponding SIA provided the best FastME perfor-
mance over 1000 runs on the RDPII F84 dataset considering for each run a random sample of 150
taxa.

Figure 3.9: Statistics of the best FastME performance over 1000 runs on the RDPII F84 dataset
considering for each run a random sample of 150 taxa.
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Figure 3.10: Statistics of the best FastME performance over 1000 runs on the RDPII F84 dataset
considering for each run a random sample of 150 taxa.

the information retrieved during such exploration.
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Chapter 4

The PhyloES algorithm

Evolutionary Algorithms (EA) are a class of metaheuristics that are inspired by natural processes
and often used to solve complex real-life optimisation problems [Katoch et al., 2021]. EAs represent a
powerful class of optimisation and search techniques inspired by the principles of biological evolution
by simulating the process of natural selection and the survival of the fittest. Over the past few
decades, EAs have gained widespread popularity and have been applied to a diverse range of domains
due to their ability to adapt, explore, and exploit solution spaces which make them valuable tools
for tackling real-world challenges. Their applications in fact cover a wide spectrum of fields, from
engineering and biology to finance and machine learning as well as several others.

The concept of evolutionary algorithms can be traced back to the early 1960s when researchers
like John Holland [Holland, 1975] and Ingo Rechenberg [Rechenberg, 1973] began exploring com-
putational models inspired by natural evolution. John Holland’s work on Genetic Algorithms (GAs)
and Ingo Rechenberg’s development of Evolution Strategies (ES) were pioneering efforts in this field.
These early efforts laid the foundation for the development of various evolutionary algorithms.

In their general framework, EA are characterised by a set of key components that collectively
drive the optimisation process:

• Population: EAs maintain a population of candidate solutions to the optimisation problem.
Each candidate solution is represented as a potential solution to the problem.

• Fitness Function: A fitness function evaluates how well each candidate solution performs in
solving the problem. It assigns a fitness score to each solution, which reflects its quality or
suitability.

• Selection: The selection process simulates the natural selection mechanism, favouring solutions
with higher fitness scores. Solutions with better fitness have a higher chance of being selected
to form the next generation.

• Recombination (Crossover): In this step, pairs of selected solutions are combined to create new
solutions, mimicking the genetic recombination observed in nature. This introduces diversity
into the population.

• Mutation: Mutation introduces small, random changes to selected solutions, further diversify-
ing the population and preventing premature convergence to suboptimal solutions.

• Stop Criteria: EAs continue evolving the population for a specific number of generations or
until predefined termination criteria are met, such as a target fitness level or a time limit.
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Evolutionary Algorithms encompass several sub-types, each tailored to specific problem domains
and requirements. Genetic Algorithms (GAs) use a binary string representation for solutions and
are well-suited for combinatorial optimisation problems. Genetic Programming (GP) extends the
concept of GAs to evolve computer programs or symbolic expressions, making it suitable for sym-
bolic regression and program synthesis. Differential Evolution (DE) instead, is a population-based
optimisation algorithm particularly effective in continuous parameter space problems.

4.1 (µ+ λ)EvolutionStrategies

The EA metaheuristics class is said to be population-based, i.e., it operates on a set (the popu-
lation) of candidate solutions (the individuals) which are evolved (i.e., modified) iteratively over
time. Their workflow is, as mentioned at the beginning, inspired by biological phenomena and can
be summarised as follows: starting from an initial population they define ways to generate new
individuals (offspring) through an evolutionary process at each iteration, called a generation, and a
criterion to define the next generation of individuals (selection). These operations are repeated at
each generation, by evaluating individuals according to a fitness function that represents the quality
of a candidate solution, until a stopping criterion is met [Luke, 2013]. In this work, we will focus on
Evolution Strategy (ES), which is a subclass of EAs that was first introduced in Rechenberg [1973]
and that is characterised by two parameters µ and λ. In a (µ+ λ)-ES, the population is initialised
by randomly sampling λ individuals; then, by means of a mutation operator (i.e. a procedure to
convert a single individual into a new one by random changes) λ/µ children are created for each of
the parents. Subsequently, the parents and the generated offspring undergo a so-called truncation
selection, where only the µ fittest individuals survive and form the next generation while the rest
are discarded. The process is then repeated with the previous generation’s best individuals as the
new parents. Algorithm 8 outlines the main steps carried out by the (µ+ λ)-ES [Luke, 2013].

Despite being very similar, ESs and GAs differ in the way in which they handle the selection

Algorithm 8 The (µ+ λ) Evolution Strategy

Require: µ, λ
P ← {}
for λ times do

pi ← random individual
P ← P ∪ {pi}

end for
Best ← None
while stop criterion is False do

Q← P
for each pi ∈ P do

for λ/µ times do
Q← Q ∪ {Mutate(Copy(pi))}

end for
end for
P ← the µ individuals in Q whose fitness function are smallest
Best ← BestIndividual(P )

end while
return Best
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phase: ESs first select the parents and then create the children: instead, the GAs step by step select
two parents and generate multiple children until enough children have been created (Luke [2013]).

The main advantage of such an approach is represented by the fact that in our case we have
at our disposal two fast local search heuristics, the BNNI and the BSPR, that can be exploited to
guide the population development toward the most promising regions of the search space. This can
be simply achieved by performing BNNI and BSPR on each new individual and adding the resulting
tree to the population. In this manner, while the offspring favours the exploration of the search
space, the local search algorithms ensure keeping a good quality of the population accelerating the
improvement of the current best solution.

We remark that while EAs have been extensively applied in the literature on phylogenetics,
including the works of Noutahi and El-Mabrouk [2018], Zwickl [2006], Kosakovsky Pond et al. [2006],
it is worth noting that most of these works refer to genetic algorithms that have been designed for
phylogeny estimations under the ML framework, (Felsenstein [2004], Lewis [1998], Matsuda [1996],
Poladian and Jermiin [2006], Brauer et al. [2002], Skourikhine [2000], Helaers and Milinkovitch
[2010], Zwickl [2006]). To the best of our knowledge, the algorithm that we present here is the
first application of ES in phylogeny estimation, and the first EAs approach for distance methods, in
particular for the BMEP.

4.2 PhyloES

As seen in section 3.4 an iterative RI for the FastME heuristic leads to better solutions with respect
to the SIA initialisation. If on one hand, this fact represents itself an improvement, on the other
a random initialisation approach makes it hard to establish the number of iterations required to
obtain a satisfactory solution. Indeed, it does not allow the exploitation of any information acquired
in the previous iterations, as all random tree samples are independently generated. In order to
provide a workaround to the random approach limitations and find a compromised approach between
exploration and exploitation, in this chapter we discuss in detail PhyloES, an ES-based algorithm
that is capable of consistently improving both the FastME and the RI performance.

Evolutionary algorithms often make use of an encoded representation of the individuals in order
to simplify the recombination and mutation operations. Since it is not trivial how to implement
such operations on trees, in the next section we will define a tree encoding that will provide a simple
rule to define the mutation and the recombination of trees.

4.3 Tree Encoding

The problem of encoding trees has been widely studied in the literature [Caminiti et al., 2007,
Catanzaro and Pesenti, 2019] and several tree codes have been proposed [Prüfer, 1918, Neville,
1953]. However, the encoding method proposed in Rohlf [1983] is specific for unrooted binary trees
and it offers two main advantages: it provides a straightforward method for the random generation of
phylogenies, and it allows to manipulate trees operating directly on the encodings, by ensuring that
when a component of the code of a phylogeny is altered, the result is still a phylogeny. Rohlf [1983]’s
encoding defines a map ϕ between the edge set E of a tree and the set of coding vectors H whose
elements are of the form (h1, . . . , hn−3), where n is the number of leaves and hk ∈ {1, 2, . . . , 2k− 3}.
Such a function ϕ is proven to be well-defined and bijective as long as a well-defined labelling of the
edges is given [Rohlf, 1983].

In order to develop efficiently our ES algorithm we made use of an ad hoc representation of the
phylogenetic trees inspired by the work of Rohlf [1983]. The encoding exploits the fact that any
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phylogeny can be constructed in a step-wise fashion, starting from an initial star tree composed of
only three taxa and a single internal node, and adding one by one all the remaining taxa by selecting
at each step an insertion edge (see figure 4.1). If an edge labeling is well defined it is possible to
represent a tree with the edge selected for its construction. Formally: we encode any tree of n taxa
with a vector (h1, . . . , hn−3) of n− 3 elements, where hi represents the label of the edge selected at
the i− th step for the insertion of the (i+ 3)-th taxon. In our case, for a tree T with taxa t1, . . . tn
and internal nodes in+1, . . . i2n−3 where ik is the internal node inserted at the k-th step of the tree
construction, the label of an edge is defined with its index in the edge list E, which is unique as we
order the elements of E first according to the lowest index of the two nodes defining each edge, and
in case of ambiguity according to the greatest.

The advantage of using such an encoding approach is that it provides a straightforward method
for the random generation of phylogenies, and it allows the tree manipulation operating directly on
the encodings, by ensuring that when a component of the code of a phylogeny is altered, the result
is still a phylogeny.

Figure 4.1: Two examples of tree encoding. (TOP) The ordered edge list at the initial step is
E = {(t1, i6), (t2, i6), (t3, i6)}. The edge selected for the insertion of t4 is (t3, i6), which is the 3-rd
in the list. At the next step E becomes {(t1, i6), (t2, i6), (t3, i7), (t4, i7), (i6, i7)}; t5 is then iserted
in the edge t5 is (i6, i7), 5-th in the list, so the resulting code is T1 = (3, 5). (BOTTOM) The
initial edge list is E = {(t1, i6), (t2, i6), (t3, i6)}. t4 is inserted in (t1, i6), 1-st in the list. At the next
step E becomes {(t1, i7), (t2, i6), (t3, i6), (t4, i7), (i6, i7)}; the edge selected is (t3, i6) , 3-rd in the list,
providing the resulting code is T2 = (1, 3).

4.3.1 Internal edges labels

For our encoding, we first assume to work with an ordered set X of n taxa, t1, t2, . . . , tn. We
define the label of an edge as its index in the edge list E of a phylogenetic tree, which is ordered
first according to the lowest index of the two nodes defining each edge, and in case of ambiguity
according to the greatest. To finally guarantee the uniqueness of the edge labels we have to ensure
that a well-defined labelling of the internal nodes is given. We achieve so by considering the step-wise
tree construction method that, starting from an initial star tree composed of the first three taxa
and a single internal node, adds one by one all the remaining taxa. All internal nodes are labelled
according to their insertion order, starting from the index k = n + 1 up to the index k = 2n − 2
(where n is the number of taxa).
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4.3.2 Decoding

ϕ−1, the decoding map described in algorithm 9, allows us to retrieve the edge set of a tree T of
n taxa given its code h. Since in our case h represents the instructions for the construction of T
we simply need to build E step-by-step according to h, starting from the initial star composed by
the first three taxa. At each step k we remove the selected edge hk, we add the two new edges and
we fix the order of E. Algorithm 9 shows the details of the decoding procedure, which we will now
analyse in depth. From now onwards we will indicate a taxa with the letter t and internal nodes
with the letter i.

Algorithm 9 ϕ−1, Decoding

Require: h, {t1, . . . , tn},
1: E := {(t1, in+1), (t2, in+1), (t3, in+1)} (the initial star tree)
2: for k = 1, k ≤ n− 3, k ++ do
3: (vα, iβ) = E[hk]
4: InsertTaxonEdge((tk+3, in+1+k))
5: Set (vα, iβ) = (vα, in+1+k)
6: FixPosition((vα, in+1+k))
7: Insert((iβ , in+1+k))
8: end for
9: return E

At the initial step E = {(t1, in+1), (t2, in+1), (t3, in+1)}; h, which elements are in {1, 2, 3}, indi-
cates the index in E of the edge selected for the insertion of t4 and the internal node in+2. Referring
to the example of Figure 4.2, in which h = (2, 5, 1), the edge selected is E[2] = (t2, i7). The function
InsertTaxonEdge (algorithm 10) adds the new edge in the list after the only edge connecting the
previous taxa t3, (t3, i7), obtaining E = {(t1, i7), (t2, i7), (t3, i7), (t4, i8)}. This insertion preserves
the correct ordering of E since the edges having taxa as the first component, (t∗, ∗), always come
before the others, which are of the form (iα, iβ). This is always true as we established that taxa are
indexed from 1 to n and internal nodes form n+ 1 to 2n− 2.

Algorithm 10 InsertTaxonEdge((tk+3, in+1+k))

(tk+2, ∗) = unique edge connecting leaf tk+2

Insert (tk+3, in+1+k) in E after (tk+2, ∗)

Then, the selected edge (t3, i7), has to be removed and its nodes will be connected with the new
internal node i8 forming two new edges. Therefore, (t3, i7) can be simply replaced by (t3, i8), (line
5 in algorithm 9). In this case, E is still ordered so no fixing is needed. However, in general, it
might be necessary to adjust the position of the new edge, a task which is handled by the function
FixPosition (algorithm 11). In fact, as shown in figure 4.3, if the selected edge (iα, iβ) is connecting
two internal nodes iα and iβ , and if iα is linked with some other internal node iγ with γ > β and
the node ∗ is either a leaf or an internal node with index greater than γ, we have that the order of
E = {. . . , (iα, in+1+k), (iα, iγ , ), . . . } after the replacement, must be fixed swapping (iα, in+1+k) and
(iα, iγ), since i+ 1 + k > γ. In the case in which ∗ is also an internal node with index greater than
γ, an additional swap between (iα, in+1+k) and (iα, ∗) has to be performed.

The last line of the loop of ϕ−1 is the insertion in E of the edge (iβ , in+1+k), handled by
the function Insert (algorithm 12). Here there are three cases: if k = 1, the edge (in+1, in+2)
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Figure 4.2: Example of the tree construction and encoding for a phylogeny with six taxa. Starting
from a star-tree with three taxa connected to a single inner node, the remaining taxa are added to
the tree iteratively and both the edge set E and the encoding H are updated at each addition.

Figure 4.3: In case of γ < β, the order of E must be adjusted.

Algorithm 11 FixPosition((vα, in+1+k))

(vα, ∗) = last occurrence in E of an edge with first component iβ
insert (vβ , in+1+k) in E after (vα, ∗)
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is simply added to the end of the list. If k > 1 and no edge in E has iβ as first component,
(iβ , in+1+k) must be inserted in E after (iγ , ∗), where iγ is the internal node with the greatest
index such that γ < β and ∗ is the internal node connected to iγ with the greatest index. This
is the case of (i8, i9) in the second step of the example of figure 4.2; before its insertion, E =
{(t1, i7), (t2, i8), (t3, i7), (t4, i8), (t5, i9), (i7, i9)}; since no edge E has i8 as first component and i7 is
the internal node with the greatest index lower than 8, (i8, i9) is inserted after (i7, i9). The last case
is the one in which there are in E some edges with iβ as the first component. If so, (iβ , in+1+k) has
to be inserted after the last of them, a task performed by function 11.

Algorithm 12 Insert((in+1+k, iβ))

1: if k=1 then
2: insert (in+1, in+2) at the end of E
3: else if any (iβ , ∗) not in E then
4: (iγ , ∗) = edge in E s.t. γ is the greatest index with γ < β
5: insert (iβ , in+1+k) after (iγ , ∗)
6: else
7: FixPosition((iβ , in+1+k))
8: end if

Decoding complexity

The decoding algorithm, ϕ−1 is composed of a for loop of n − 3 (O(n)) iterations. The function
InsertTaxonEdge (algorithm 10) requires constant time since the position of each node in the list
can be traced out and reached in O(1). FixPosition (algorithm 11) needs to iterate through E
starting from (vα, in+k+1) to find the last occurrence of an edge with first component equal to vα;
since any node is linked to at most three other nodes, the function is O(1). Concerning function
Insert (algorithm 12), apart from the one in line 4, all operations require O(1). Since in line 4 the
index γ is unknown, it must be searched in an ordered list, an operation that requires O(log(n))
operations. Due to the above reasoning the whole complexity of ϕ−1 is O(n log(n)).

4.3.3 Coding

The coding algorithm, ϕ, maps the edge set of a phylogenetic tree into its coding vector h. We
remark that in order to obtain the correct code of a tree two conditions must be ensured:

1. The internal node labels must be consistent with the one chosen for our encoding.

2. E must be ordered primarily according to the edges’ first component index and, when equal,
according to the second component index.

Concerning 1), we notice that our internal node labels are determined by the phylogeny step-wise
tree construction, that is the one followed in the decoding algorithm and for which the label of the
internal node inserted at the construction step k is n + k + 1. Consequently, the edge list E of a
phylogeny should always contain the edge (tn, i2n−2), which is the one added to the list in the last
step. If we have instead that tn is linked to iα with iα ̸= i2n−2 we can fix the inconsistency by
swapping the labels of the two internal nodes. If we then remove the edge (tn, i2n−2) from E we
should have that tn−1 is linked i2n−3: if this is not the case, we can again fix the inconsistency by
performing the index swap between i2n−3 and the internal node connected to tn−1. To complete
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the adjustment of the internal node labels, as described in algorithm 13 this procedure has to be
performed for all the remaining steps. We remark that at each step, when we remove the edge
(tk, in+k+1), the tree must be reconnected. This is done connecting the two nodes vα and iβ , with
α < β, previously linked to in+k+1 (figure 4.4).

Algorithm 13 FixInternalNodesLabels

Require: E
1: for k = n, k ≥ 4, k −− do
2: iγ = internal node connected to tk
3: vα, iβ = nodes connected to iγ different to tk
4: if γ = n+ k − 2 then
5: swap indexes between iγ and in+k−2

6: end if
7: Remove (tk, in+k−2) and (iβ , in+k−2) from E
8: Set (vα, in+k−2) = (vα, iβ)
9: end for

10: return E

Once ensured condition 1), condition 2) can be guaranteed by sorting E.
The idea behind the coding procedure (algorithm 14) is to invert the flow of the decoding algo-

rithm in a similar fashion to algorithm 13, and to retrieve h deconstructing the tree by removing
one-by-one all taxa from tn to t4. The main difference with algorithm 13 is that each time that an
edge is removed the order of E must be restored. This might happen when reconnecting nodes vα
and iβ , in the case in which vα is an internal node connected with some other internal node iγ such
that γ > β. In that case, the function 15 ensures the correct ordering by applying the appropriate
swaps. Since finally E is correctly ordered, the component hk is given by the index of (vα, iβ) in E
which is the edge between the nodes vα and iβ previously connected to in+k+1.

Algorithm 14 ϕ

Require: E
1: for k = n, k ≥ 4, k −− do
2: vα, iβ = nodes connected to in+k−2

3: Remove (tk, in+k−2) and (iβ , in+k−2) from E
4: Set (vα, in+k−2) = (vα, iβ)
5: FixPosition2((vα, iβ))
6: hk = index of (vα, iβ) in E
7: end for
8: return E

Coding complexity

The whole coding procedure is composed of three parts: the function FixInternalNodesLabels
(algorithm 13), the sorting of E and the function ϕ (algorithm 14). FixInternalNodesLabels
consists of a for loop composed of only O(1) operations, so it requires O(n) operations. Sorting E
instead requires O(n log(n)). In the for loop of ϕ all operations but the one of line 6 require O(1);
the index retrieval of line 6 requires instead O(log(n)) operations since it is a search in an ordered
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Algorithm 15 FixPosition2((vα, iβ))

vγ1, vγ2 = two nodes connected to vα different from iβ , with γ1 < γ2
if γ2 > β then

swap (vα, vγ2) and (vα, iβ) in E
if γ1 > β then

swap (vα, vγ1) and (vα, iβ) in E
end if

end if

Figure 4.4: Removal of taxon tk

list. The whole cost of ϕ is therefore O(n log(n)). In conclusion, all three steps of the coding require
in total O(n log(n)).

4.3.4 PhyloES encoding advantages

As mentioned here in section 4.3, the encoding we developed turns out particularly handy to generate
and manipulate trees. The decoding algorithm (14) provides in fact a constructive procedure to
generate a random tree of n taxa, by sampling a vector of n− 3 components such that:

h1 = {1, 2, 3}
h2 = {1, 2, 3, 4, 5}

. . .

hk = {1, . . . , 2k − 3}
. . .

hn−3 = {1, . . . , 2n− 6}

(4.1)

In addition, in the PhyloES offspring phase, a new individual is generated defining its coding vector
h, which components are obtained by sampling from the components of the whole population. Since
any vector of the form described in equation 4.1 is a valid tree we are ensured that such a new
individual is a valid tree. Figure 4.5 shows an example of the generation of individuals in the case
of a population composed of three trees of eight taxa.
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Figure 4.5: Example of generation of a new individual by sampling each component from the pop-
ulation.

4.4 Phylogenetic Inference with ES

To harness the exploration power of ES (Section 4.1) and the efficiency of the BNNI and BSPR
tree rearrangement algorithms (Section 3.1) in this section we describe a novel algorithm, PhyloES,
for the BMEP. PhyloES is an ES, with µ and λ both set equal to the population size, specifically
designed for the BMEP that introduces crucial modifications to Algorithm 8 allowing an efficient
exploration of the search space by using tree rearrangement operators to perform local search, with
the aim of steering the mutation process in order to obtain a better solution. Algorithm 16 illustrates
the proposed algorithm and the following paragraphs describe in detail each of its key components.

Population Initialisation As in Algorithm 8, the population is initialised by sampling µ random
phylogenies and applying both BNNI and BSPR to each tree. Furthermore, to foster the initial
exploration of the search space we employ a population size decreasing over time according to a
halving strategy (Hallam et al. [2010]).

Offspring In the usual ES algorithm blueprint described in Section 4.1, the mutation operator is
used to generate new offspring. Mutation yields individuals by introducing random modifications in
the encoding of a member of the previous generation’s population. Since PhyloES aims to exploit
the similarities between trees resulting from the BNNI and BSPR, the mutation operator is replaced
by a tree generation operator which takes into account not just a single member but all trees in the
population and uses their encoding to construct a new tree. More in detail: each element j of a new
individual’s encoding is determined by sampling from the set composed by the j-th element of all
the trees of the previous generation. In mathematical terms, let T g = {T g

1 , . . . , T
g
k } be the set of k

trees with n taxa which represent the population at generation g, and let e(T g
i ) = (hg

i1, . . . , hg
in−3)

be the encoding of T g
i , with hij its j-th component. Then, a mutated individual T g+1

i is obtained
from T g by sampling each of its components as

hg+1
ij = random sample from {hg

1j , . . . , hg
kj} (4.2)

After offspring have been generated, local search is employed to improve the new phylogenies.

Fitness function The fitness is simply defined as the BMEP tree length in Equation (1.6).

Selection and Stop Criteria In PhyloES truncation selection is performed as described in Sec-
tion 4.1: the µ individuals with the lowest fitness value (BMEP length function value) among the
previous population and the newly created offspring become the next generation. Regarding the stop
criteria, we consider three possibilities: 1) convergence, the algorithm runs until all the individuals
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Algorithm 16 PhyloES

Require: µ, maxiter, tol
P ← {}
for λ times do

pi ← random phylogeny
pi ← RearrangeTree(pi)
P ← P ∪ {pi}

end for
Best ← BestIndividual(P)
Worst ← WorstIndividual(P)
g ← 0
while |P | > 1 and g < maxiter and l(Worst)− l(Best) > tol do

Q← P
for each pi ∈ P do

qi ← GenerateTree(P )
qi ← RearrangeTree(qi)
Q← Q ∪ {qi}

end for
P ← the µ individuals in Q whose fitness function are smallest
P ← IndividualReplacement(P )
Best ← BestIndividual(P)
Worst ← WorstIndividual(P)
g ← g + 1

end while
return Best

in the population are identical; 2) maximum iterations, a fixed number of iterations (maxiter) is per-
formed, which is the most common approach in evolutionary computation; 3) tolerance, execution
stops when the difference, in terms of tree length, between the current best and worse individuals
in the population is lower than a given threshold tol.

4.5 Individuals replacement

In the procedure described above, the simple truncation selection of the best µ individuals within
P to define the new generation sometimes leads the algorithm to suffer from “stagnation”, i.e., the
situation in which the new generation remains identical to the previous one, consequently slowing
down convergence. Furthermore, this phenomenon tends to occur when the population P has mul-
tiple instances of its worst individual, which increases the probability of replicating it and decreases
the chances of producing better individuals. To overcome this issue, we introduced a simple ad-
justment on top of the usual truncation selection criterion, similar to the one introduced by Bartoli
et al. [2019]. The authors propose to reduce the number of duplicate individuals in the population
by modifying the reproduction phase: whenever they generate a new individual, they check if it is
unique in the merged set of parents and already generated offspring; if not, they drop it and reapply
the genetic operator. Instead, at each generation of PhyloES, we check in the set P for multiple
occurrences of the worst individual in terms of tree length and, if any, we replace one of them with
a copy of the second worst element. This modification helps avoid stagnation as, if no improvement
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in the population is gained after one generation cycle, it favours a gradual shift to the replication of
the best individual and drives the algorithm towards reaching the convergence stop criteria.

Here we provide the pseudo-code of the individual replacement algorithm used in PhyloES.

Algorithm 17 IndividualReplacement

Require: P , the current tree population
sort P by BMEP length value
w = worst individual in P
if w has multiple occurrences in P then

rep = second worst individual in P s.t. w ̸= rep
replace the first occurrence of w with rep

end if
return P

To better understand the flow of algorithm 17, let us suppose to have the following population
of trees P = a, b, c, d, e, f, f , where elements are ordered by tree length. The worst individual f
has two occurrences, so its first occurrence in P is replaced e, which is the second worst individual,
obtaining P = a, b, c, d, e, e, f . In this manner, any new individual is less likely to be similar to f
decreasing the chances of generating full or partial replicas of f , a fact which would slow down the
convergence of the algorithm. The benefit of this adjustment has been empirically proven in our
experiments, but a detailed analysis of the advantages of such a technique is beyond the scope of
this article.

4.6 Implementation details

The PhyloES Python interface provides not only a simple tool to set up and run phylogenetic analyses
but also allows efficient exploitation of computational resources. In particular, the algorithm can be
conceptually divided into two main tasks: the ES handling and the local search computations. The
first consists of the tree coding and decoding and the offspring operations. All these sub-tasks are
characterised by the fact that they can be easily vectorised and performed in batches, i.e. multiple
instances can be processed at the same time, allowing the exploitation of GPU resources, particularly
suitable for the parallelisation of batch vector operations. For this reason, we implemented the
entire ES workflow with Pytorch. The second task instead consists of the BNNI and the BSPR
computations. As long as both algorithms make use of tree data structures and perform the tree
rearrangement operations via recursive functions, we developed a C++ extension of BNNI and
BSPR, that optimises their parallelisation. The extension is called by the python interface via the
python-c binding library ctypes. Such a hybrid Phython-C++ approach allowed us to customise for
our purposes the open-source BNNI and BSPR implementations provided by the FastME software
and to adapt the two algorithms in order to enable the process of several trees in parallel while
keeping a user-friendly interface.
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Chapter 5

Results

In this chapter, we report on the results obtained by running a number of computational experiments
on a set of benchmark instances of the BMEP. These experiments were designed to answer the
following research questions:

RQ1 How far is PhyloES from the optimal solution?

RQ2 Can PhyloES improve on the solutions found by FastME in terms of tree length also for larger
datasets?

RQ3 Is the proposed ES approach effective in exploring the search space?

RQ4 How do PhyloES tree solutions differ topologically from those of FastME?

RQ5 Are the observed results reliable from the numerical precision perspective?

In order to evaluate the performances of PhyloES we used as a reference the length of the solutions
provided by FastME. Moreover, in order to assess the effectiveness of our evolutionary strategy we
compared it versus a pure random initialisation approach (RI), consisting of initialising the BNNI
and BSPR with random trees.

5.1 Experimental Setting

For RQ1 the tests have been made with the same methodology and data as described in Section
3.3.1. In particular, we remind that in order to speed up the computation of the IP model, as in
Section 3.3.1, the solver has been provided with the solution obtained with PhyloES. Instead, the
benchmark that we used to address RQ2, RQ3, RQ4, and RQ5 consists of two datasets used in
Stamatakis [2005] and in Guindon et al. [2010], and available at https://github.com/stamatak/test-
Datasets. More in detail, we extrapolated three datasets, named 100 RDPII (selecting the first 100
taxa from RDPII), 200 RDPII (selecting the first 200 taxa from RDPII) and 300 ZILLA (selecting
the first 300 taxa from ZILLA). For each dataset, we generated four distance matrices computed via
the FastME software and using respectively the JC69 [Jukes and Cantor, 1969], K2P [Kimura, 1980],
F81 [Hasegawa et al., 1981] and F84 [Felsenstein and Churchill, 1996] substitution models, always
performing pairwise gap removal. All experiments have been run on an Intel Core(TM) i7-10700
(2.90GHz) 16 cores machine with a GeForce RTX 2070 SUPER GPU. Concerning the PhyloES
hyperparameters, maxiter and tol have been respectively set to 1000 and 10−12. In addition, to
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favour a wider initial exploration of the search space the population size has been set to 64 for the
first 5 iterations, 32 from the 5-th to the 25-th iteration and 16 from the 25-th iteration onward.

In order to ensure a fair comparison, for each instance we tested all the SIA of FastME and the
best solution obtained out of the five initialisation algorithms was the one taken into account for
our analysis. We remark that this procedure was performed only once per instance as regardless
of the chosen SIA, FastME is a deterministic algorithm and it does not benefit from multiple runs.
Instead, the RI algorithm and PhyloES have been run 10 times for each of the 12 problems and
the collected data have been used to produce the analysis and the statistics shown in this chapter.
Furthermore, when comparing PhyloES to the RI, we first run our algorithm and count the amount
of generated trees, and then we perform the same number of RI iterations.

5.2 RQ1, Comparison with the IP model

Looking at Table 5.1 we observe that PhyloES finds the optimal solution in all instances in which
the IP was able to terminate the computation within the time limit. In these cases, PhyloES was on
average 97, 3% times faster than the IP (std 0.06%). In addition, we also notice that in the remaining
8 instances, the IP solver reached the time limit without being able to provide any improvement
with respect to the initial solution provided by PhyloES. We also report that even though by a very
limited gap, in 2 instances PhyloES outperformed FastME (runs 22 and 26).

5.3 RQ2, Tree length analysis

In Table 5.2 we report, for each of the considered datasets, the performance of FastME, PhyloES,
and the RI. For FastME, we indicate the BMEP length function value of the best solution found and
the SIA that led to the solution. Instead, for PhyloES and the RI, we outline the average BMEP
length value of the best solution, its standard deviation, the number of unique and distinct best
phylogenies across the different runs and the average improvement with respect to FastME (where
a negative value indicates a lower BMEP length value than FastME). The results in Table 5.2 show
that PhyloES, on average, either matches or outperforms FastME in terms of tree length. In the 100
taxa problems, PhyloES achieves a better solution with the F81 and JC69 datasets while in the other
cases performs on par with FastME. As the number of taxa increases, the difference between the
two methods becomes more significant with an average improvement of 0.04% over FastME. Again,
with the F81 and JC69 datasets, there is a larger gap, yet the same can be stated for the RI which
probably indicates that these instances are easier to solve by exploring the solution space utilizing
the considered local strategies. However, if we consider the single substitution models, there is a
clear trend in the improvement which confirms the effectiveness of exploration strategies for large
search spaces. This observation is confirmed also by the RI behaviour which, in terms of tree length
improvement with respect to the FastME solutions, follows a similar trend.

5.4 RQ3, Search space exploration

Comparing PhyloES with the RI we can see that, except for the 100 taxa datasets in which they
attain the same performance, the evolutionary approach we propose leads to a clear improvement
over the simple RI strategy. Additionally, our method shows more consistency in the final length
value with respect to the RI. In fact, from Table 5.2 it is noticeable that on half the problems PhyloES
produces the same final solution throughout the 10 runs whereas, on the other problems, a limited
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number of different solutions is found. On the contrary, the RI yields more distinct phylogenies in
the 100 taxa problems while in the 200 and 300 taxa datasets show no consistency at all, providing
at each run a different solution. Furthermore, we can also inspect this phenomenon by turning our
attention to the standard deviation of the best length value attained by each method. In those cases
where PhyloES leads to multiple solutions, their tree length lies in a very small interval, hence a
standard deviation in the order of 10−5. Conversely, the RI standard deviation tends to be an order
of magnitude greater, which indicates a larger variability in the quality of the results.

To conclude, we also report that, except for a single run on the 200 RDPII F81 dataset in which
the algorithm stopped due to the minimum tolerance criteria, in all the remaining runs PhyloES
stopped due to convergence.

To analyse the scalability of our approach, we study the dependency of the computational effort
required by PhyloES, with respect to the instance size, and its variability, as well as how it compares
with the RI. It is worth mentioning that since PhyloES consists of multiple runs of BNNI and BSPR it
cannot outperform FastME in terms of computational time. In Table 5.3 we detail, for each problem
instance, the number of trees evaluated by both algorithms and for each one we also indicate the
average and standard deviation of the execution time (in seconds), the average total number of
NNI and SPR calls per run as well as the average number of generations carried out by PhyloES.
Instead, in Figure 5.1 we display the trend of the PhyloES’s number of NNI and SPR calls along
the generations. From Table 5.3 we see how PhyloES significantly outperforms RI also in terms of
computational time, showing a lower average time to solution and a smaller standard deviation. A
straightforward explanation for such a difference can be found in the number of NNI and SPR calls
reported in the table. On average, given the same amount of initial trees, PhyloES performs fewer
iterations of the local search operators with respect to RI resulting in a much smaller computation
time even though there is overhead due to the ES approach, id est the coding, decoding and tree
recombination phase. The reason for this phenomenon lies in the fact that at each generation,
the initial population is composed of individuals that are the recombination of previous BNNI and
BSPR neighbours hence they are much more likely to be already quite balanced (having lower tree
length) compared to a set of randomly generated trees, as in the case of the RI initial trees. This
fact is even more evident from the curves in Figure 5.1, in which we can notice how, for all datasets,
the number of BNNI and BSPR iterations drops immediately after the first generation and then
gradually decreases at each generation. These results show the effectiveness of the ES we adopt,
by employing an evolutionary approach PhyloES is able to efficiently explore the solution space by
requiring fewer NNI and SPR iterations.

5.5 RQ4, Topological structure analysis

To further investigate the difference of the solutions provided by PhyloES and FastME we now focus
our attention on the quality of the obtained solution trees, meaning that we aim to analyse how
much the phylogenetic trees obtained differ with the two algorithms. This is of particular importance
as long as our target is not the tree length per se but the underlying phylogeny. In particular, in
those cases in which several taxa present a similar distance within each other, different phylogenetic
reconstructions might be characterised by a very close tree length while heaving a quite different
tree structure.

Toward this aim, we make use of the Robinson-Fould (RF) Distance [Robinson and Foulds,
1981], which defines the distance between two phylogenetic trees as the minimum number of edit
operations, edge contractions or/and edge extensions, needed to convert one into the other. An
example of the RF computation is given in figure 5.2
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Figure 5.1: Number of BNNI (red line) and BSPR (blue line) iterations per generation in PhyloES.
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Figure 5.2: Transformation of a tree T into a tree T ′ via edit operations on the edges. Here the
distance between T and T ′ is 2 as to obtain T ′ from T were required one contraction and one
extension.
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In Table 5.4 we indicate the RF distance between the best solution found by FastME and PhyloES
as well as the number of different solutions found by PhyloES. The reported values clearly remark
how the RF distance tends to increase with the number of taxa. In particular, for the 200 and 300
taxa cases, its high-value range (64-74) indicates a significant difference in terms of tree topology.
This analysis confirms the added value of the evolutionary approach we developed suggesting that the
observed relatively small changes in tree length (in this case around the order of 10−4) imply notable
differences in terms of the resulting tree structure. Hence the impact of the strategy employed in
PhyloES leads to a significant difference in terms of the phylogenetic inference problem we aim to
solve.

5.6 RQ5, Numerical precision analysis

In principle, the BMEP might suffer from numerical precision issues, a problem which should be
carefully taken into account. In fact, with a number of taxa approximately greater than 50, some
of the terms of equation (1.6) might take values below the machine epsilon precision. This obstacle,
on the one hand clearly represents a theoretical limitation of the BMEP, as it does not allow to
guarantee a correct comparison between trees in terms of tree length, but on the other, it turns out
to have quite a small impact in real applications. In fact, if we consider a phylogeny T of n taxa,
n ≥ 50, and with a given topology τ , we can split its length (equation 1.6) in two terms:

l(T ) =
∑
i,j∈X

21−τijdij =
∑
i,j∈A

21−τijdij +
∑
i,j∈B

21−τijdij

= lA(T ) + lB(T )

(5.1)

where A := {τij ∈ τ |τij < 50} and B := {τij ∈ τ |τij ≥ 50}. For the right-hand side lB(T ) of
equation 5.1, which represents the summation of the terms affected by numerical precision issues,
we can easily derive the following inequality:

lB(T ) =
∑
i,j∈B

21−τijdij ≤
∑
i,j∈B

21−τij max
i,j∈X

dij

≤ |B|221−50 max
i,j∈X

dij < n22−49 max
i,j∈X

dij = ω,
(5.2)

in which if the elements dij are not all identical, as in most of the real applications, the first inequality
can be clearly turned into a strong inequality. The last strong inequality instead, holds due to the
fact that |B| < n, as trivially an unrooted binary tree must have at least two cherries, where cherry
indicates a pair of leaves with a mutual topological distance equal to 2. The value ω of equation
5.2 represents a bound for the contribution of the terms of B in l(T ) and it can be used as an
error tolerance for the trees’ length comparison. In other words, once defined l̃ as the numerical
computation of l and given two phylogenies T1 and T2, equation 5.2 allows to state that:

l̃(T1) + ω < l̃(T2) =⇒ l(T1) < l(T2). (5.3)

In Table 5.5, we show the ω values computed for the different datasets used in the experimental
phase. As long as the improvements provided by PhyloES with respect to the FastME solution
(Table 5.2) are within 10−5 and 10−6 we can certify that inequality 5.3 is satisfied and therefore
safely confirm the robustness of our results.
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We further remark that if on one hand inequality 5.2 tends to grow quadratically with the number
of taxa, on the other it actually represents a quite pessimistic overestimation for the value of lB(T ).
In fact, the bound basically assumes that when the mutual distance of a set of taxa is greater than
49 its value is exactly 50. Furthermore, in our experiments, all the solution trees provided by each
of the tested algorithms were characterised by a maximum topological distance between taxa lower
than 50.
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Obj Time Gap %

run n FME IP PES FME IP PES FME PES

1 15 1.458490 1.458490 1.458490 0.012 0.248 0.066 0.000000 0.000000
2 15 1.734989 1.734989 1.734989 0.011 11.615 0.051 0.000000 0.000000
3 15 1.818631 1.818631 1.818631 0.014 6.543 0.144 0.000000 0.000000
4 15 1.799283 1.799283 1.799283 0.012 55.476 0.049 0.000000 0.000000
5 15 1.542442 1.542442 1.542442 0.012 2.103 0.054 0.000000 0.000000
6 15 1.816193 1.816193 1.816193 0.012 103.122 0.059 0.000000 0.000000
7 15 1.659289 1.659289 1.659289 0.012 0.573 0.083 0.000000 0.000000
8 15 1.771357 1.771357 1.771357 0.013 0.715 0.062 0.000000 0.000000
9 15 1.785821 1.785821 1.785821 0.012 3.135 0.060 0.000000 0.000000
10 15 1.728345 1.728345 1.728345 0.012 5.075 0.058 0.000000 0.000000

11 20 2.247273 2.247273 2.247273 0.015 964.173 0.083 0.000000 0.000000
12 20 2.254319 2.254319 2.254319 0.014 58.561 0.069 0.000000 0.000000
13 20 2.304339 2.304339 2.304339 0.014 154.638 0.111 0.000000 0.000000
14 20 2.367511 2.367511 2.367511 0.015 63.619 0.069 0.000000 0.000000
15 20 2.322821 2.322821 2.322821 0.014 366.301 0.185 0.000000 0.000000
16 20 2.175853 2.175853 2.175853 0.014 966.346 0.145 0.000000 0.000000
17 20 2.252254 2.252254 2.252254 0.014 337.923 0.065 0.000000 0.000000
18 20 2.298822 2.298822 2.298822 0.014 4043.536 0.073 0.000000 0.000000
19 20 2.406584 2.406584 2.406584 0.014 231.219 0.074 0.000000 0.000000
20 20 1.855247 1.855247 1.855247 0.014 10.893 0.072 0.000000 0.000000

21 25 2.607170 2.607170 2.607170 0.017 Time Limit 0.100 0.000000 0.000000
22 25 2.859623 2.859411 2.859411 0.018 Time Limit 0.186 0.000074 0.000000
23 25 2.576427 2.576427 2.576427 0.018 Time Limit4 0.090 0.000000 0.000000
24 25 2.705412 2.705412 2.705412 0.017 737.774 0.090 0.000000 0.000000
25 25 2.608054 2.608054 2.608054 0.018 Time Limit 0.138 0.000000 0.000000
26 25 2.705522 2.704784 2.704784 0.017 Time Limit 0.138 0.000273 0.000000
27 25 2.851618 2.851618 2.851618 0.018 Time Limit 0.093 0.000000 0.000000
28 25 2.631415 2.631415 2.631415 0.018 18575.847 0.137 0.000000 0.000000
29 25 2.461560 2.461560 2.461560 0.018 Time Limit 0.187 0.000000 0.000000
30 25 2.765643 2.765643 2.765643 0.017 Time Limit 0.132 0.000000 0.000000

Table 5.1: Comparison between PhyloES, FastME, and the ILP model (time in seconds)
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Table 5.4: Topological RF distances between FastME and PhyloES solutions

Dataset avg RF std RF n solutions

100 rdpii F81 0.00 0.00 1
100 rdpii F84 6.00 0.00 1
100 rdpii JC69 0.00 0.00 1
100 rdpii K2P 6.00 0.00 1
200 rdpii F81 44.40 2.06 2
200 rdpii F84 67.80 2.89 2
200 rdpii JC69 45.60 1.26 2
200 rdpii K2P 66.60 1.89 2
300 zilla F81 82.80 12.83 3
300 zilla F84 62.80 5.43 2
300 zilla JC69 74.80 1.03 1
300 zilla K2P 60.80 1.03 1

Table 5.5: Values of the error tolerance for the considered datasets

taxa dataset F81 F84 JC69 K2P

100 rdpii 9.64E-12 9.77E-12 9.60E-12 9.74E-12
200 rdpii 4.03E-11 4.07E-11 4.01E-11 4.06E-11
300 zilla 2.52E-11 2.56E-11 2.52E-11 2.55E-11
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Chapter 6

Conclusions and future works

In this dissertation, we analysed the Balanced Minimum Evolution Problem, a pivotal and challeng-
ing conundrum that lies at the intersection of computational biology, phylogenetics and mathematical
optimisation. In comparison with other phylogenetic methodologies, the BMEP offers distinctive
advantages. Unlike some more computationally intensive methods, the BMEP provides an excellent
trade-off between accuracy and computational efficiency, making it a suitable choice to tackle a wide
array of phylogenetic inference problems. Since the BMEP is defined by an optimisation problem, in
which the optimal solution defines the true phylogenetic tree describing the evolutionary relationship
between a set of taxa, it is essential to have at disposal algorithmic tools to solve it. However, its
strong combinatorial nature makes it yet impossible to solve via exact algorithms, except in the case
of very small instances. Hence the need to develop heuristics capable of tackling problems with a
large number of taxa. Considering that within the BMEP framework the closer a tree length is to
the optimal value the closer its structure to the true tree, it becomes clear from the phylogenetic
inference perspective the necessity of providing the best solution possible.

With this in mind, in this extensive discussion, we introduced a novel Evolutionary Strategy (ES)
approach designed specifically for the Balanced Minimum Evolution Problem (BMEP). Notably, our
ES approach has demonstrated remarkable performance, consistently surpassing the capabilities of
FastME, which represents the current state-of-the-art algorithm for the BMEP. The key takeaway
from our computational experiments is that, while our method does entail some additional compu-
tational time, it leverages the power of local search operators such as Balanced Nearest Neighbor
Interchange (BNNI) and Balanced Subtree Pruning and Regrafting (BSPR), executed multiple times
within a well-crafted exploration framework. The results consistently yield solutions that outper-
form those produced by FastME, proving the effectiveness of our approach in enhancing phylogenetic
analysis via the BMEP.

One of the notable findings of our study pertains to the profound impact of small reductions
in the tree length, which can lead to significant differences in the resulting topologies. From the
perspective of phylogenetic inference, these variations hold considerable importance. By analysing
the behaviour of our algorithm across multiple runs, we have observed a high degree of stability, even
in the face of its stochastic nature. Remarkably, for all the BMEP instances under consideration, a
singular solution or a limited set of unique solutions consistently emerged across multiple runs on
the same problem instance. This stability is a significant asset, offering a degree of reliability and
consistency in the solutions provided by PhyloES.

Our approach is proven to be robust also from the numerical point of view. We have in fact
addressed the numerical precision challenges inherent in the BMEP, and our analysis has yielded a

59



valuable inequality. This inequality serves as a numerical tolerance criterion for the exact comparison
of the lengths of two phylogenetic trees. The application of this criterion empowers us to confidently
assert the robustness of the solutions generated by PhyloES, enhancing the trustworthiness of the
results in the face of numerical challenges.

While our current implementation of PhyloES has proven highly effective, it is important to ac-
knowledge its limitations in terms of scalability. The computational demands imposed by the BNNI
and BSPR algorithms constrain the application of PhyloES to larger problem instances, necessitat-
ing high-performance computing resources. However, we identified a promising line of development
for future research. The increase in biological data availability and the substantial advancements
in Machine Learning techniques, as demonstrated by Azouri et al. [2021], suggest that it may be
possible to replace the BNNI and BSPR algorithms with learned approximations. These learned
approximations have the potential to not only match the performance of the original algorithms but
also dramatically reduce the computational effort required. This opens the exciting possibility of
employing PhyloES on larger and more complex instances, thereby expanding its applicability in
the field of phylogenetic analysis. Furthermore, the possibility of extending PhyloES to greater-size
instances would allow its exploitation also for phylogenetic inference under the Maximum Likelihood
framework. The ML approach requires a computational effort far more costly than the one required
by the BMEP, and this makes its deployment for large problems extremely challenging and com-
putationally intense. As introduced in chapter 1, the correlation between enhancements in BMEP
tree length and improvements in likelihood has been demonstrated by Hordijk and Gascuel [2006].
Consequently, it would be quite natural to consider integrating these two approaches. More specifi-
cally: the core of the complexity with the ML is the tree likelihood evaluation; since the evaluation
of the BMEP lenght function is much cheaper, one might think of using PhyloES as a proxy for the
likelihood computation, to have a faster tool to explore the search space, limiting the number of
likelihood evaluations while using the BMEP tree length function as a local search criterion. Another
important hurdle of the BMEP is represented by the numerical stability. Although the inequality
for the numerical precision reliability proposed in section 5.6 allowed us to prove the robustness of
our results, it still represents a quite loose bound, providing a large overestimation of the numerical
error of the tree length computation. A first focus of interest for future research might then be the
investigation on the possibility of tightening the inequality, increasing the tolerance range around the
numerical tree length value needed to confidently compare two trees and by so ultimately improving
the accuracy of the algorithm. As opposed to the ILP approach, a further limitation of PhyloES (and
FastME) is the inability to provide optimality gaps, precluding the possibility of proving optimality
nor measuring the quality of the solution obtained. If on the one hand the tree length optimal gap
remains an important missing indicator from the optimisation point of view, on the other, from the
phylogenetic perspective, it would be of great importance to have at disposal information regarding
the topological differences between the solution obtained by PhyloES and the optimal one, for in-
stance, their RF distance or the knowledge of common substructures. Unfortunately, such research
questions have not been successfully addressed yet and they will therefore certainly represent the
focus of future developments.

In conclusion, despite the stochastic nature of our proposed algorithm, our extensive research
and experiments have undoubtedly proven its quality and stability, consistently delivering a single or
a limited number of solutions across multiple runs on the same problem instance. With its enhanced
performance over existing methods and the potential for future scalability improvements through
the integration of Machine Learning techniques, PhyloES emerges as an excellent tool in the realm
of phylogenetic analysis, offering robust and reliable solutions to complex evolutionary questions in
the field of biology and beyond.
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