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Abstract: Models of dynamical wave function collapse consistently describe the breakdown of the
quantum superposition with the growing mass of the system by introducing non-linear and stochas-
tic modifications to the standard Schrödinger dynamics. Among them, Continuous Spontaneous
Localization (CSL) was extensively investigated both theoretically and experimentally. Measurable
consequences of the collapse phenomenon depend on different combinations of the phenomeno-
logical parameters of the model—the strength λ and the correlation length rC—and have led, so
far, to the exclusion of regions of the admissible (λ− rC) parameters space. We developed a novel
approach to disentangle the λ and rC probability density functions, which discloses a more profound
statistical insight.

Keywords: collapse models; CSL; spontaneous radiation; germanium detectors

1. Introduction

The mechanism at the basis of the transition from Quantum to Classical behavior is not
explained in the original Quantum Theory (QT) and has puzzled the scientific community
since its inception. The superposition principle is a trademark of QT, accounting for many
phenomena which cannot find a counterpart in Classical Mechanics. It is a consequence
of the linearity of the Schrödinger equation, which has to break down at a certain scale to
avoid preposterous predictions concerning the macroscopic bodies’ dynamics.

For several decades, phenomenological dynamical models of wave function collapse
have been developed (see, e.g., [1–6]; for a review and references, see also [7]), which
explain the quantum-to-classical transition by a progressive reduction of the superposition,
proportional to the increase in mass of the system under consideration.

Technological developments have recently paved the way for bringing this issue into
experimental investigations. Several techniques are presently being employed, constraining
the phenomenological parameters introduced in the collapse dynamics (see, e.g., Ref. [8]
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for a review on the subject). Interferometric experiments deal with the measurement of
the interference pattern of the spatial superposition, which is created in an interferometer
(see, e.g., [9–13]). Indirect tests of the collapse mechanism can also be performed with
non-interferometric experiments, exploiting the unavoidable random motion related to
the system interaction with the collapsing field. These types of experiments involve cold
atoms [14], optomechanical systems [15–21], phonon excitations in crystals, [22,23], gravita-
tional wave detectors [24], X-ray and γ-ray measurements [25–28]. Non-interferometric
experiments can probe the effect of the collapse process on macroscopic objects, thus lead-
ing, thanks to the amplification mechanism, to extremely sensitive bounds. That is the case
of X and γ-rays measurements, which set the strongest constraints over broad ranges of the
typical collapse model parameters’ space.

Continuous Spontaneous Localization (CSL) is one of the better-investigated dynam-
ical reduction models. CSL consists of a non-linear and stochastic modification of the
Schrödinger equation; non-linearity is needed to suppress quantum superposition and
stochasticity to avoid faster-than-light signaling and recover the Born rule [7]. The dynam-
ics is characterized by the interaction with a continuous set of independent noises (one for
each point of the space) having, under the simplest assumption, a null average and white
correlation in time. The new stochastic terms require introducing two phenomenological
quantities: a collapse rate λ, which sets the strength of the collapse, and a noise correlation
length rC, which measures the spatial resolution of the collapse. Various theoretical con-
siderations lead to different choices for the parameters: Ghirardi, Rimini, and Weber [3]
proposed λ = 10−17 s−1 and rC = 10−7 m, while Adler [29] proposed λ = 10−8±2 s−1

when rC = 10−7 m and λ = 10−6±2 s−1 when rC = 10−6 m.
In addition to causing the collapse of the wave function in space, the interaction with

the stochastic noise induces a diffusion in space, resulting in a Brownian-like motion. For a
system of charged particles, this Brownian-like diffusion causes the particles to emit radia-
tion, known as spontaneous radiation. The standard QT does not include such a phenomenon.
The noise-induced radiation emission can then be used to test the collapse models.

The spontaneous radiation rate for the CSL model was calculated for an atomic system
in Ref. [27]:

dΓ
dE

∣∣∣∣
t
= Natoms · (N2

A + NA) ·
h̄ e2

4 π2 ε0 c3 m2
0
· λ

r2
C

1
E

, (1)

where Natoms is the number of atoms in the system with the atomic number NA, c is the
speed of light, ε0 is the vacuum permittivity, m0 is the nucleon mass, E represents the
energy, and t—the time. Equation (1) is exact in the high-energy γ-ray domain (where
relativistic electrons’ contribution has to be ignored, and the bracket is reduced to (N2

A)).
The generalization of this equation to the low-energy range is presently under theoretical
investigation. Cancellation effects are expected when the photons’ wavelengths become
comparable to the dimensions of the atomic orbits.

The experimental studies of the spontaneous radiation phenomenon focused so far
on the λ/r2

C ratio, which regulates the predicted yield. The strongest limits from γ-rays
(λ < 52 r2

C s−1 [27]) and X-rays (λ < 0.494± 0.015 r2
C s−1 [28]) allow to exclude regions of the

(λ− rC) parameter space. The combined information from theoretical considerations [30]
and other experiments [24] has led to the further exclusion of sectors of the (λ− rC) plane,
characterized by a different functional relation between λ and rC. Including this rich
prior information in the statistical analysis permits to disentangle the two parameters’
probability density functions (pd f s). The individual pd f s disclose a much deeper insight
into the state-of-the-art knowledge of the strength and correlation length of the model.

This work aims to provide an analytic method to extract the pdf s of the λ and rC
parameters utilizing a Bayesian comparison of the measured spectrum with the expected
spontaneous radiation contribution Equation (1) and the simulated background. Such a
procedure cannot be currently, consistently, applied to the data presented in Ref. [28], since
an absolute background yield for this measurement is not provided, the background contri-
bution being instead inferred from the data fit. To provide an example of the application
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of this novel technique, the data set recently measured in Ref. [27] will be re-analyzed in
the new framework, exploiting as prior, for the spontaneous radiation rate, the previous
result [25]. The analysis is performed in the energy range ∆E = (1− 3.8) MeV, where
cancellation corrections to Equation (1) are expected to be negligible.

2. The Experimental Setup

The experiment was operated in the Gran Sasso underground National Laboratory of
INFN, where the overburden of the Gran Sasso mountain, corresponding to a minimum
thickness of 3500 m w.e. (metres water equivalent), provides the ideal environment for the
search of the spontaneous radiation emission. The background, aside from the residual
cosmic rays, is mainly produced by long-lived γ-emitting primordial isotopes and their
decay products.

The measurement was performed with a coaxial p-type High Purity Germanium
detector (1.982 kg in mass), surrounded by a 62 kg sample of electropolished oxygen-free
high-conductivity copper in Marinelli geometry and enclosed in a shielding structure
made of an external pure lead layer (30 cm from the bottom and 25 cm from the sides)
and an inner 5 cm thick electrolytic copper layer. Shielding and cryostat are contained in
an air-tight steel housing, flushed with boil-off nitrogen to reduce radon contamination.
Additionally, 5 cm thick borated polyethylene plates are placed on the bottom and the sides,
which partially reduces the neutron flux going toward the detector. The experimental setup
is schematically shown in Figure 2 of Ref. [26]; more details on the shielding, the cryogenic,
and the vacuum systems are given in Refs. [31,32]. The data acquisition system is a
Lynx digital signal analyzer controlled via GENIE 2000 personal computer software, both
from Canberra-Mirion.

The measured emission spectrum corresponds to a data-taking period ∆t of about
62 days and is shown in black in Figure 1 of Ref. [27], in the analyzed range ∆E.

3. Joint Probability Distribution Function of λ and Rc

The total number of counts in ∆E (zc = 576) follows a Poissonian distribution:

p(zc|Λc) =
Λzc

c e−Λc

zc!
. (2)

The expected number of total counts (Λc) can be expressed in terms of the expected signal
(Λs) and background (Λb) contributions:

Λc = Λb + Λs

(
λ

r2
C

)
. (3)

The total number of spontaneously emitted photons, which would be detected during
the acquisition time ∆t, is obtained by weighting the theoretical rate with the efficiency
functions and summing over the setup constituents (i):

zs

(
λ

r2
C

)
= ∑

i

∫
∆E

dΓ
dE

∣∣∣∣i
t
∆t εi(E) dE = 2.0986

λ

r2
C
= a

λ

r2
C

, (4)

and Λs = zs + 1. The efficiency spectra for the apparatus components giving a detectable
contribution are shown in Figure 2 of Ref. [27], and the parameters of the corresponding
fit functions are summarized in Table 1 of the same paper. The experimental setup was
completely characterized through a validated Monte Carlo (MC) code [33] (based on the
GEANT4 software library, Ref. [34]), which was used to produce the efficiency spectra
and the background simulation. The measurements of the activities of the radionuclides
of each part of the setup served as input of the background MC, which considers the
emission probabilities, the decay schemes, the photons’ propagation and interactions,
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and the detection efficiencies. The simulated background spectrum is shown in Figure 1 of
Ref. [27] in magenta. The expected number of background counts in ∆E is found to be:

Λb = 507. (5)

Making explicit in the pdf of zc (Equation (2)) the dependence on the parameters λ
and rC, we have

p(zc|λ, rC) =

(
a λ

r2
c
+ Λb + 1

)zc
e
−
(

a λ

r2
c
+Λb+1

)

zc!
. (6)

Therefore, the joint pd f of λ and rC is obtained by applying the Bayes formula for multi-
dimensional continuous distributions:

p̃(λ, rC|zc) =
p(zc|λ, rC) · p̃0(λ, rC)∫

Dλ,rC
p(zc|λ, rC) drc dλ

⇒ p̃(λ, rC) =

(
a λ

r2
c
+ Λb + 1

)zc
e
−
(

a λ

r2
c
+Λb+1

)
· p̃0(λ, rC)∫

Dλ,rC

(
a λ

r2
c
+ Λb + 1

)zc
e
−
(

a λ

r2
c
+Λb+1

)
drc dλ

. (7)

The prior p̃0(λ, rC) is chosen to reduce the domain (Dλ,rC ) of the stochastic variables (λ, rC)
to the region of R2+, which is not excluded by theoretical arguments [30] or experimental
bounds [24,25]. With good approximation, Dλ,rC can be parameterized as follows:

λ ≥ 10−30.2

r2
C

=
a1

r2
C

; λ ≤ 10−22.4

r2
C

=
a2

r2
C

λ ≥ 10−9.6 r2
C = a3 r2

C; λ ≤ 102.8 r2
C = a4 r2

C. (8)

The domain Dλ,rC is shown in Figure 1, and, accordingly, the prior is expressed as product
of Heaviside functions:

p̃0(λ, rC) = ϑ(λ− a1

r2
C
) · ϑ( a2

r2
C
− λ) · ϑ(λ− a3r2

C) · ϑ(a4r2
C − λ). (9)

The joint pdf is represented in Figure 2.

10 8 10 7 10 6 10 5 10 4 10 3

rC [m]

10 19

10 17

10 15

10 13

10 11

10 9

 [s
1 ]

2

min

rC, min

2

rC, max

1

1

max

= a 3 ·
r2C

= a 4 ·
r2C

= a1 / r 2C

= a2 / r 2C

=
· r

2
C

Figure 1. In the figure, the joint pdf domain p̃(λ, rC) is shown as defined by the parameterization
described in Equation (8) of the text.
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Figure 2. The joint pdf p̃(λ, rC) is shown in the figure.

3.1. pdf of λ

The pdf of λ is obtained by marginalizing the joint pdf over rC. As shown in Figure 1,
given the domain Dλ,rC , the functional dependence rC = rC(λ) changes in different inter-
vals of the λ domain. For this reason, the pdf of λ is a piecewise-defined function given by
the following relations:

p̃(λ) =



p̃1(λ) =
1

N

∫ √
λ/a3

√
a1/λ

(
a λ

r2
c
+ Λb + 1

)zc
e
−
(

a λ

r2
c
+Λb+1

)
drc λmin ≥ λ > λ1

p̃2(λ) =
1

N

∫ √a2/λ

√
a1/λ

(
a λ

r2
c
+ Λb + 1

)zc
e
−
(

a λ

r2
c
+Λb+1

)
drc λ1 ≥ λ > λ2

p̃3(λ) =
1

N

∫ √a2/λ

√
λ/a4

(
a λ

r2
c
+ Λb + 1

)zc
e
−
(

a λ

r2
c
+Λb+1

)
drc λ2 ≥ λ > λmax

(10)

where λmin and λmax are defined by the conditions{
λ/a3 = a1/λ ⇒ λmin =

√
a1a3

λ/a4 = a2/λ ⇒ λmax =
√

a2a4
,

λ1 and λ2 by {
λ/a3 = a2/λ ⇒ λ1 =

√
a2a3

λ/a4 = a1/λ ⇒ λ2 =
√

a1a4
,

and N is a normalization constant. Let us consider the generic integral Mi(λ)

Mi(λ) =

∫ l2

l1

(
a

λ

r2
C
+ Λb + 1

)zc

e
−
(

a λ

r2
C
+Λb+1

)
drC . (11)

By applying the variable transformation

a λ

r2
C

= ξ ; dξ =
−2

(aλ)1/2 ξ3/2 drC , (12)
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Equation (11) can be rewritten as

Mi(λ) =

∫ aλ

l22

aλ

l21

(ξ + Λb + 1)zc e−(ξ+Λb+1)

(
− (aλ)1/2

2

)
ξ−

3
2 dξ . (13)

A binomial expansion of the term (ξ + Λb + 1)zc yields

Mi(λ) =
zc

∑
k=0

(
zc

k

)(
− (aλ)1/2

2

)
e−(Λb+1)(Λb + 1)zc−k

∫ aλ

l22

aλ

l21

ξk− 3
2 e−ξ dξ =

=
zc

∑
k=0

(
zc

k

)(
−(aλ)1/2

2

)
e−(Λb+1)(Λb + 1)zc−k ·

[
γ

(
k− 1

2
,

aλ

l2
2

)
− γ

(
k− 1

2
,

aλ

l2
1

)]
, (14)

where γ represents the lower incomplete gamma function. Finally, the normalization N is
given by

N =

∫ λ1

λmin

M1(λ) dλ +

∫ λ2

λ1

M2(λ) dλ +

∫ λmax

λ2

M3(λ) dλ. (15)

It is easy to check that p̃(λ) is a continuous function of λ, shown in Figure 3. The cusp
at λ ∼ 10−16 s−1 is a consequence of the marginalization in rC and corresponds to the
edge of the rC domain. Although the cusp coincides with the global maximum of p̃(λ),
the probability that λ is less than 10−13 is negligible. That can be checked by comparison
with the cumulative distribution P̃(λ), represented in Figure 4. It is worth noticing that
p̃(λ) does not represent a measurement of λ; the spontaneous radiation yield is proportional
to λ/r2

C, and no evidence of collapse signal can be inferred from the λ distribution alone.
Indeed, ongoing and future more sensitive radiation or gravitational wave measure-

ments will affect p̃(λ) by shifting the pd f downward in λ. However, P̃(λ) gathers rich
statistical information and allows setting consistent upper bounds on λ alone, exploiting
the available experimental and theoretical knowledge.

20−10 19−10 18−10 17−10 16−10 15−10 14−10 13−10 12−10 11−10 10−10
]

1−
 [sλ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
1210×)λ(p~

Figure 3. The pdf of λ in the logarithmic scale is shown in the figure.
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1−
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0.8

1

)λ(
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Figure 4. The cumulative pdf of λ in the logarithmic scale is shown in the figure.

3.2. pdf of rC

The pdf of rC is obtained by marginalizing the joint pdf over λ. Depending on the rC in-
tervals, shown in Figure 1, the functional dependence λ = λ(rC) changes, and consequently,
the pdf of rC is piecewise-defined as follows:

p̃(rC) =



p̃1(rC) =
1

N

∫ a4r2
C

a1
r2
C

(
a λ

r2
c
+ Λb + 1

)zc
e
−
(

a λ

r2
c
+Λb+1

)
dλ rC,min < rC < α1

p̃2(rC) =
1

N

∫ a2
r2
C

a1
r2
C

(
a λ

r2
c
+ Λb + 1

)zc
e
−
(

a λ

r2
c
+Λb+1

)
dλ α1 < rC < α2

p̃3(rC) =
1

N

∫ a2
r2
C

a3r2
C

(
a λ

r2
c
+ Λb + 1

)zc
e
−
(

a λ

r2
c
+Λb+1

)
dλ α2 < rC < rC,max

, (16)

with 
rC,min = (a1/a4)

1
4

α1 = (a2/a4)
1
4

α2 = (a1/a3)
1
4

rC,max = (a2/a3)
1
4 .

,

The integral to be solved in the generic rC range is

Ni(rC) =

∫ l2

l1

(
a

λ

r2
C
+ Λb + 1

)zc

e
−
(

a λ

r2
C
+Λb+1

)
dλ =

=

∫ a l2
r2
C
+Λb+1

a l1
r2
C
+Λb+1

ξzc e−ξ r2
C
a

dξ =

=
r2

C
a

[
γ

(
zc + 1,

a l2
r2

C
+ Λb + 1

)
− γ

(
zc + 1,

a l1
r2

C
+ Λb + 1

)]
. (17)
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From Equation (17), it can be verified that p̃(rC) is a continuous function. Hence, the nor-
malization is given by:

N =

∫ α1

rC,min

N1(rC) drC +

∫ α2

α1

N2(rC) drC +

∫ rC,max

α2

N3(rC) drC. (18)

p̃(rC) is shown in Figure 5. The marginal distribution contains relevant information. The pdf
is narrow around the mode at rC ∼ 10−6 m. Let us point out again that this has not to
be interpreted as a measurement of rC. Rather, p̃(rC) implies that, up to all the available
experimental and theoretical knowledge, rC values smaller than 2 · 10−7 m are unlikely.
That can be checked using the corresponding cumulative distribution P̃(rC), shown in
Figure 6.

Ongoing and forthcoming more sensitive measurements of spontaneous radiation
(see, e.g., [28,35]) will trigger sizably smaller a4 values, thus moving the mode of p̃(rC)
towards greater rC values. Indeed, the expected spontaneous radiation yield in Equation (1)
diminishes with the growing rC. On the other hand, a smaller a2 is foreseen in Ref. [24] as a
consequence of an improved force noise in the LISA Pathfinder experiment. Considering
that, in this case, the force noise spectral density is expected to increase with rC, this would
slightly decrease the mode of p̃(rC). Therefore, in view of the simultaneous a4 improvement,
this would not significantly impact the results of this analysis.

9−10 8−10 7−10 6−10 5−10 4−10
 [m]Cr

0

0.5

1

1.5

2

610×)
C

(rp~

Figure 5. The pdf of rC in the logarithmic scale is shown in the figure.

8−10 7−10 6−10 5−10 4−10
 [m]Cr

0

0.2

0.4

0.6

0.8

1

)
C

(r
P~

Figure 6. The cumulative pdf of rC in the logarithmic scale is shown in the figure.



Entropy 2023, 25, 295 9 of 12

4. Comparison with the Analysis in Terms of Exclusion Region

Previous spontaneous radiation measurements aimed to extract limits on the ratio
λ/r2

C, as mentioned in Section 1. That was accomplished, e.g., in Ref. [27], by extracting the
pd f of the stochastic variable λ/r2

C and equating the cumulative to a probability Π = 0.95.
Since individual prior information on λ or rC could not be implemented, a uniform prior
was adopted for λ/r2

C.
As a consistency check, let us use the joint pd f p̃(λ, rC) to find the value of the

parameter µ, which corresponds to the exclusion region λ < µ r2
C in the (λ, rC) plane,

consistent with the analysis in Ref. [27]. To this end, the priors are assumed uniform over
the domain: {

0 < λ < µr2
C

rC1 < rC < rC2

and zero outside. An arbitrarily big upper limit on rC must be set to make the pdf normaliz-
able. The lower limit rC1 is introduced to avoid the pole in rC = 0. We then have to solve
the integral equation for µ:∫ rC2

rC1
drC

∫
µr2

C

0

(
a λ

r2
C
+ Λb + 1

)zc

e
−
(

a λ

r2
C
+Λb+1

)
dλ

N ′ = Π, (19)

with the normalization

N ′ =

∫ rC2

rC1

drC

∫ ∞

0

(
a

λ

r2
C
+ Λb + 1

)zc

e
−
(

a λ

r2
C
+Λb+1

)
dλ . (20)

That yields the equation

γ(zc + 1, aµ + Λb + 1)− γ(zc + 1, Λb + 1)
Γ(zc + 1, Λb + 1)

= Π, (21)

whose solution is, as expected, µ = 52 for Π = 0.95. The result obtained in Ref. [27] is
recovered, demonstrating the correctness of the approach.

5. Discussion, Conclusions, and Perspectives

In this work, a new methodology is proposed for interpreting data from spontaneous
radiation search experiments in the context of the CSL model. So far, these studies have
aimed to extract the upper bounds on the ratio λ/r2

C of the two CSL parameters, which is
proportional to the expected spontaneous emission rate. When the whole prior information
is exploited from previous experimental and theoretical bounds, the joint pdf p̃(λ, rC) can
be calculated, and the marginalized posteriors p̃(λ) and p̃(rC) can be obtained. An example
of application of this methodology is given, by exploiting the data collected in Ref. [27],
which also provides the absolute background estimate input propaedeutical to the Bayesian
inference. p̃(λ) and p̃(rC) are found to contain valuable statistical information. In particular,
rC results in a greater than the originally proposed value of 10−7 m [3] with a probability
close to 1. As a crosscheck, the previous bound on λ/r2

C is recovered using the joint p̃(λ, rC)
when the priors are relaxed to mimic the previous one-parameter analyses.

It is worth noticing that the methodology outlined in this work is particularly interest-
ing for analyzing non-Markovian generalizations of the CSL [36–38] and other models of
dynamical wave function collapse. Non-Markovianity would imply a modification of the
priors definitions and require the introduction of new phenomenological parameters in the
models (e.g., a cutoff frequency), making this approach extremely appealing.
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A systematic study of data from ongoing [28,35] and forthcoming experiments, in anal-
ogy with what is presented in this article, would supplement our conclusions and push
further the limit on the correlation length.

Our group is implementing a new experimental setup based on cutting-edge Germa-
nium detectors and a refined numerical implementation of the presented methodology.
These are addressed directly to exploit the strong energy dependence features expected
for non-Markovian implementations of the current collapse models, which stand out as
consistent solutions to the quantum-to-classical transition conundrum and the related
measurement problem.
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