
Citation: Benatti, F.; Nichele, G. Open

Quantum Dynamics: Memory Effects

and Superactivation of Backflow of

Information. Mathematics 2024, 12, 37.

https://doi.org/10.3390/

math12010037

Academic Editor: Carsten Schneider

Received: 29 November 2023

Revised: 18 December 2023

Accepted: 19 December 2023

Published: 22 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Open Quantum Dynamics: Memory Effects and Superactivation
of Backflow of Information
Fabio Benatti 1,2,* and Giovanni Nichele 1,2

1 Department of Physics, University of Trieste, Strada Costiera 11, I-34151 Trieste, Italy
2 Istituto Nazionale di Fisica Nucleare (INFN), I-34151 Trieste, Italy
* Correspondence: benatti@ts.infn.it

Abstract: We investigate the divisibility properties of the tensor products Λ(1)
t ⊗Λ(2)

t of open quantum

dynamics Λ(1,2)
t with time-dependent generators. These dynamical maps emerge from a compound

open system S1 + S2 that interacts with its own environment in such a way that memory effects
remain when the environment is traced away. This study is motivated by the following intriguing
effect: one can have Backflow of Information (BFI) from the environment to S1 + S2 without the same
phenomenon occurring for either S1 and S2. We shall refer to this effect as the Superactivation of
BFI (SBFI).
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1. Introduction

An open quantum system S is a system interacting with its environment in such a way
that its time-evolution can be approximated by a so-called reduced dynamics. The latter
is described using completely positive dynamical maps Λt, t ≥ 0, on the space of states
S(S) that can be obtained by eliminating the environment and operating suitable approx-
imations in order to effectively take into account its presence. The Markovian character,
that is, the lack of memory effects, of the reduced dynamics was initially identified with
Λt being generated by time-independent generators L, Λt = exp(tL), thus giving rise to
one-parameter semigroups. In the case of bounded L, their general structure was fully
characterized by Gorini, Kossakowski, Sudarshan [1] and Lindblad [2] (GKSL generators).
Completely positive semigroups can be rigorously obtained from a microscopic model by
means of approximation techniques known as weak coupling limit [3], singular coupling
limit [4] and low-density limit [5]. In such a scenario, the dominant feature is decoherence
associated with the fact that information can only flow from the open system to its environ-
ment with no possibility of being retrieved. Decoherence is a major source of difficulties in
many concrete applications such as quantum computation, quantum communication and
in general quantum technologies. Instead, memory effects have been thought to counteract
decoherence by allowing information to flow back from the environment to the system
immersed in it and may thus be beneficial in many applications [6], such as quantum
information processing [7], quantum metrology [8] and teleportation [9].

In recent years, indeed, much effort has been devoted to extending the very concept
of Markovianity beyond the semigroup scenario (see [10] for a recent comprehensive
review). The need for such an extension was pointed to in [11], where non-Markovianity
was identified with Backflow of Information (BFI) from the environment to the open
system and associated with revival in the time of the distinguishability between two
time-evolving states.

In [12], a case was presented where a dynamics Λt not exposing BFI relatively to a
single open quantum system did instead show BFI when accompanied by an independently
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evolving copy of itself. In other words, it was shown that, even if Λt does not show BFI,
Λt ⊗ Λt might show it. This phenomenon can be dubbed the Superactivation of Backflow
of Information (SBFI).

As observed above, its physical importance lies in that, by doubling a time-evolving
quantum system, the decoherence effects can be diminished in the statistically coupled
parties with respect to the single ones. The microscopic origins of SBFI, similar to the
superactivation of capacity, are not yet fully explained. Indeed, they are as hard to retrieve
from a microscopic system–environment interaction as BFI itself. What can be certainly
ascertained, as will be explained in a forthcoming paper, is that the phenomenon is not a
classical one as it is connected with the presence of non-classical correlations in the open
system, not necessarily, however, unlike for the superactivation of capacity [13,14], with
entanglement. Moreover, a collision model derivation connects it to correlations distributed
between the system and its environment [15].

In the following, we shall consider various scenarios in which SBFI occurs for local,
factorized dynamics Λ(1)

t ⊗ Λ(2)
t , expanding on the results of [12].

The structure of the paper is as follows. In Section 2, after a survey of the two major
approaches to quantum non-Markovianity, namely, the one based on the divisibility of the
dynamics and the one based on BFI, we shall review the results of [12] and extend them to
the tensor products of two different dynamical maps. Finally, in Section 3, the emergence of
SBFI in mixtures of pure dephasing qubit dynamics will be considered, with the particular
aim of investigating the stability of such a memory effect against local perturbations of one
of the two dissipative evolutions.

2. Non-Markovianity: Divisibility and BFI

In what follows, we shall be concerned with one-parameter families of physically
legitimate dynamical maps {Λt}t≥0, that is, with completely positive maps on the state
space of a d-dimensional system generated by time-local master equations of the form

d
dt

Λt = Lt ◦ Λt , (1)

where Lt is the time-local generator, given by Lt =
d
dt

(
Λt

)
◦ Λ−1

t whenever Λ−1
t exists.

When the generator is time-independent, Lt = L, the dynamics is a one-parameter
semigroup, Λt = etL, obeying the composition law

Λt ◦ Λs = Λs ◦ Λt = Λs+t , ∀s, t ≥ 0 .

Moreover [16], L has the Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) form

L[ρ] = −i[H , ρ] +
d2−1

∑
i,j=1

Kij

(
Fi ρ F†

j − 1
2
{F†

j Fi, ρ}
)

(2)

where K = [Kij] is a Hermitian positive semidefinite matrix, known as a Kossakowski
matrix, and the operators Fj, j ̸= 0, form a Hilbert–Schmidt orthonormal basis of traceless
operators, Tr(F†

i Fj) = δij, with the addition of the identity F0 = 1d/
√

d.
If the generator is time-dependent, then the generated dynamics emerges from a

time-ordered exponential and becomes a two-parameter semigroup of maps Λt,s, 0 ≤ s ≤ t;
namely, Λt,s = Λt,s1 ◦ Λs1,s, 0 ≤ s1 ≤ s ≤ t, where

Λt,s = T e
∫ t

s duLu = id +
+∞

∑
k=1

∫ t

s
dt1

∫ t1

s
dt2 · · ·

∫ tk−1

s
dtk Lt1 ◦ Lt2 ◦ · · · ◦ Ltk .

However, the mere time dependence of the generator is no longer considered strong
enough to characterize bona fide non-Markovianity, that is, true memory effects.
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2.1. Non-Markovianity: Lack of CP-Divisibility

One approach to non-Markovianity is based on the notion of divisibility [10,17].

Definition 1. The dynamics {Λt}t≥0 is called divisible if for all t ≥ s ≥ 0 there exists an
intertwining two-parameter family of maps {Λt,s}t≥s≥0 such that Λt = Λt,s ◦ Λs. If, for all
0 ≤ s ≤ t, Λt,s is positive, the dynamics is called P-divisible, while, if Λt,s is completely positive,
the dynamics is called CP-divisible.

In [18], Markovianity is identified with CP-divisibility.

Definition 2 (RHP criterion). {Λt}t≥0 is Markovian if and only if it is CP-divisible.

The time-local generator of a one-parameter family of trace-preserving maps can
always be written as in (2) with Hamiltonian H(t) and Kossakowski matrix K(t) = [Kij(t)]
both depending on time, the latter being only Hermitian. The GKSL characterization of
completely positive semigroups fails for time-dependent generators; indeed, there can be
completely positive dynamics with generators characterized by non-positive semidefinite
Kossakowski matrices (see Example 1 below). Nevertheless, the GKSL characterization
has the following extension to the time-dependent case which regards not the complete
positivity of the generated maps, but rather their CP-divisibility [17], its indirect proof
being given in Remark 3 below as a corollary of Proposition 4.

Proposition 1. Λt is CP-divisible if and only if K(t) ≥ 0 ∀ t ≥ 0.

Unlike for completely positive maps that are identified using their Kraus–Stinespring
structure Λ[ρ] = ∑α Lα ρ L†

α, the lack of a general form of only positive ones hampers in
general the characterization of P-divisible maps that are not CP-divisible. The most general
assertion concerning them is contained in the following lemma [10,19].

Lemma 1. The intertwining maps Λt,s = T e
∫ t

s duLu , t ≥ s ≥ 0, are positive if and only if

Gt(ϕ, ψ) := ⟨ϕ|Lt[|ψ⟩⟨ψ|]|ϕ⟩ ≥ 0 , (3)

for all t ≥ 0 and |ϕ⟩, |ψ⟩ such that ⟨ϕ|ψ⟩ = 0.

Example 1. The above lemma permits us to control the P-divisibility of qubit dynamics consisting
of the so-called Pauli maps which are generated by master equations of the form

∂tρS(t) = Lt[ρS(t)] =
λ

2

3

∑
α=1

γα(t)
(

σα ρS(t) σα − ρS(t)
)

. (4)

with λ > 0 and σα, α = 1, 2, 3 the Pauli matrices. The generator is of the form (2) with no
Hamiltonian contribution, d = 2, Fα = σα/

√
2 and a diagonal, time-dependent Kossakowski

matrix given by the so-called rates γα(t). Because of Proposition 1, then, γα(t) ≥ 0, α = 1, 2, 3,
is equivalent to the CP-divisibility of the Pauli maps. Moreover, γα(t) ≥ 0 is sufficient but not
necessary in order to have a legitimate completely positive Pauli dynamics.

The P-divisibility of the latter maps can be fully characterized by using (4) in (3), yielding

Gt(ϕ, ψ) = λ
3

∑
α=1

γα(t) |⟨ϕ|σα|ψ⟩|2 ≥ 0 , (5)

for all orthogonal |ϕ⟩, |ψ⟩ ∈ C2. Choosing them to be the eigenstates of σα, α = 1, 2, 3, one obtains

γβ(t) + γδ(t) ≥ 0 , β ̸= δ , β, δ ̸= α . (6)
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These three necessary conditions are also sufficient for P-divisibility [20,21]; indeed, the
generators Lt in (4) at different times commute so that, from

Lt[σα] = −λ(γβ(t) + γδ(t)) σα , β ̸= δ , β, δ ̸= α ,

one obtains the dynamical maps

Λt[σα] = exp
(
−λ

∫ t

0
dτ (γβ(τ) + γδ(τ))

)
[σα] (7)

and thus the intertwiners

Λt,s[σα] = exp
(
−λ

∫ t

s
dτ (γβ(τ) + γδ(τ))

)
[σα] . (8)

Therefore, the conditions (6) enforce the exponential decay of the Pauli matrices and thus the
positivity of Λt,s[ρS] for all qubit density matrices ρS, namely, the P-divisibility of the dynamical
maps Λt, t ≥ 0.

As a simple concrete instance, let us choose γ1(t) = γ2(t) = 1 and γ3(t) = sin(ω t). Then,
given an initial density matrix in the Bloch representation,

ρS =
1
2
(1 + r1 σ1 + r2 σ2 + r3 σ3) ,

where (r1, r2, r3) ∈ R3 with norm not larger than 1, one finds

Λt[ρS(t)] =
1
2

(
1 + µ(t) (r1 σ1 + r2 σ2) + e−2λ t r3 σ3

)
,

µ(t) = exp
(
−λ t − λ

1 − cos(ω t)
ω

)
.

Since sin(ω t) can be negative, Λt cannot be CP-divisible; however, 1 + sin(ω t) ≥ 0 makes
it P-divisible. To see whether Λt represents a physically legitimate, that is, completely positive,
evolution, one checks the positivity of the associated Choi matrix,

Xt := Λt ⊗ id2[P+
2 ] =

1
4

(
14 + µ(t)(σ1 ⊗ σ1 − σ2 ⊗ σ2) + e−2λ tσ3 ⊗ σ3

)
(9)

=
1
4


1 + e−2λt 0 0 2µ(t)

0 1 − e−2λt 0 0
0 0 1 − e−2λt 0

2µ(t) 0 0 1 + e−2λt

 , (10)

where P+
2 = |ψ+⟩⟨ψ+| projects onto the entangled state |ψ+⟩ = 1√

2

(
|00⟩+ |11⟩

)
, where |0⟩ and

|1⟩ are eigenstates of σ3 with eigenvalues ±1. Then, Λt is CP iff Xt ≥ 0 [22]. From (10), the
positivity of the Choi matrix corresponds to

1 + e−2λ t ≥ 2µ(t) ⇔ eλ t + e−λ t ≥ 2 e−λ/ω exp
( λ

ω
cos(ωt)

)
. (11)

If ω ≥ 0, then the right-hand side of the second inequality above is always less than or equal
to 2 and CP is guaranteed. Instead, for ω < 0, the expansion of both sides for t → 0 shows that
(11) is violated when λ < |ω|. However, at fixed |ω|, for λ sufficiently large, complete positivity is
restored, as can be seen by studying the behavior of both sides of inequality (11).

In [12], the following result was proved: it regards the case of two parties of the same
type S, both dynamically evolving independently under the same dynamics {Λt}t≥0.
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Proposition 2. {Λt ⊗ Λt}t≥0 on S(S + S) is P-divisible if and only if {Λt}t≥0 on S(S) is
CP-divisible.

This result, which can be obtained as a corollary of Proposition 4 below (see Remark 3),
extends to explicitly time-dependent generators Lt found in the case of semigroups; namely,
that the tensor products Λt ⊗ Λt, t ≥ 0, where Λt = etL, on the states of S + S are positive
if and only if Λt is completely positive [23], a result also obtainable as a corollary of
Proposition 4 below, following the argument in Remark 3.

The physical consequences of Proposition 2 are best appreciated within the context
where non-Markovianity is identified using the notion of Backflow of Information (BFI).

2.2. Non-Markovianity: Backflow of Information

Differently from the RHP criterion, the BLP criterion proposed in [11] relates Marko-
vianity to the behavior under Λt of the distinguishability of any two states ρ and σ of the
open quantum system S, measured via

D(Λt[ρ], Λt[σ]) =
1
2
∥Λt[ρ − σ]∥1, (12)

with ∥ · ∥1 being the trace norm. A revival in the time of the distinguishability of two
states has been interpreted in [11] as BFI from the environment at the roots of dissipative
dynamics into the open quantum system and used to identify a lack of Markovian behavior.

If the two initial states are chosen with biased weights µ, 1 − µ, µ ∈ [0, 1], the
proper quantifier of distinguishability becomes the trace norm of the Helstrom matrix
∆µ(ρ, σ) =: µρ − (1 − µ)σ, ρ, σ ∈ S(S). One can then state the following [24]:

Definition 3 (BLP criterion). The dynamics {Λt}t does not display BFI if

d
dt

∥∥Λt[∆µ(ρ, σ)]
∥∥

1 ≤ 0, ∀t ≥ 0, (13)

for all µ ∈ [0, 1] and all ρ, σ ∈ S(S), in which case it is called Markovian.

Moreover, the following result holds for invertible maps [24,25], which are always
divisible by Λt,s = Λt ◦ Λ−1

s .

Proposition 3. P-divisible maps {Λt}t≥0 do not display BFI. Vice versa, invertible maps {Λt}t≥0
that do not display BFI are P-divisible.

Remark 1. The BLP criterion for Markovianity is based on P-divisibility and is not equivalent to
the CP-divisibility criterion. Indeed, maps which are P-divisible but not CP-divisible do not display
Backflow of Information (a typical example being the “eternally” non-Markovian evolution first
proposed in [26]). On the contrary, CP-divisible maps cannot show Backflow of Information, for
they are P-divisible.

In [27], the concepts of CP-divisibility and Backflow of Information were reconciled by coupling
the system S to an inert ancilla A of the same dimension and studying the information flow under
the dynamics Λt ⊗ idd of the compound S + A evolution. It was shown that an invertible dynamics
{Λt}t≥0 is CP-divisible if and only if

d
dt

∥∥Λt ⊗ idd[∆µ(ρ, σ)]
∥∥

1 ≤ 0 ,

for all µ ∈ [0, 1] and all ρ, σ ∈ S(S + A).

For invertible maps, Proposition 2 implies that the absence of BFI for bipartite systems
of identically evolving parties enforces the CP-divisibility of Λt.
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Corollary 1. An invertible dynamics {Λt}t≥0 is CP-divisible if and only if no BFI occurs for
Λt ⊗ Λt, namely,

d
dt

∥∥Λt ⊗ Λt[∆µ(ρ, σ)]
∥∥

1 ≤ 0, (14)

for all µ ∈ [0, 1] and all ρ, σ ∈ S(S + S).

Proposition (3) and Corollary (1) moreover imply that

Λt P-divisible, not CP-divisible =⇒


d
dt

∥∥∥Λt[∆
(d)
µ ]

∥∥∥
1
≤ 0, ∀ t ≥ 0, ∀∆(d)

µ ,

∃ t > 0, ∆(d2)
µ s.t. d

dt

∥∥∥Λt ⊗ Λt[∆
(d2)
µ ]

∥∥∥
1
> 0.

(15)

where the notation ∆(d)
µ indicates a Helstrom matrix in Md(C).

We refer to (15) as the Superactivation of Backflow of Information (SBFI).

Remark 2. As already illustrated in the Introduction, such a phenomenon means that in order to
have BFI in a tensor product dynamics of a bipartite quantum system it is not necessary to have it in
one or the other of the two parties. As such, it reminds us of the Capacity Superactivation [13,14] in
that one can send information through the tensor product of two quantum communication channels
that by themselves cannot transmit any information. In the same vein, we shall show below instances
of the tensor products of two dynamics not exhibiting BFI that show it (as will be the case, for
example, in Section 3, for the mixtures of pure dephasing qubit dynamics and their tensor products).

2.3. General Tensor Families

Let us now consider the case of the general families of tensor product maps Λ(1)
t ⊗Λ(2)

t ;
namely, the two parties need not evolve in time according to the same reduced dynamics.

In the semigroup case, it turns out that the maps Λ(1)
t ⊗ Λ(2)

t can be positive without
both single-system maps being completely positive [28]. We shall see that, unlike for equal
dynamics, the P-divisibility of Λ(1)

t ⊗ Λ(2)
t does not require the CP-divisibility of Λ(1,2)

t .
The next result, based on [29], deals with necessary conditions for the P-divisibility of

Λ(1)
t ⊗ Λ(2)

t .

Proposition 4. Let us consider time-dependent generators, as in (2),

L(α)
t [ρ] = −i[H(α)(t), ρ] +

d2−1

∑
i,j=1

K(α)
ij (t)

(
FiρF†

j − 1
2
{F†

j Fi, ρ}
)

, (16)

of dynamical maps Λ(α)
t , α = 1, 2, respectively. If Λ(1)

t ⊗ Λ(2)
t is P-divisible, then for all invertible

V ∈ Md(C),
K(1)(t) + V†K(2)(t)V ≥ 0, ∀ t ≥ 0 (17)

where V = [Vij] ∈ Md2−1(C) is such that VF†
i V−1 = ∑d2−1

j=1 VijF†
j .

Remark 3. Notice that, by choosing K(2)(t) = 0, one reduces to maps of the form Λt ⊗ id;
then, the above result regards the CP-divisibility of Λt and makes Proposition 1 a corollary of
Proposition 4. Instead, taking V = 1 ∈ Md(C), V becomes the identity matrix in Md2−1(C), and

the P-divisibility of Λ(1)
t ⊗ Λ(2)

t implies

K(1)(t) + K(2)(t) ≥ 0. (18)
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It is then Proposition 2 regarding the tensor product Λt ⊗ Λt that becomes a corollary of the
previous proposition; indeed, (18) reduces to K(t) ≥ 0. This, as already remarked, is equivalent to
the CP-divisibility of the dynamics.

On the other hand, if Λt ⊗ Λt is not P-divisible, one could restore P-divisibility by suitably
changing the time-dependent Kossakowski matrix of the second-party dynamics, namely, by choosing
Kε(t) = K(t) + εΓ(t). Then, (18) reads K(t) + Kε(t) = 2K(t) + εΓ(t) ≥ 0. Therefore, if the
single-system dynamics Λ(1)

t is not CP-divisible, that is, if K(t) is not positive semidefinite, then,
in order to restore the P-divisibility of the tensor product dynamics, one has to seek a generator of
the second-party time-evolution which is sufficiently strong. In practice, this means that to avoid
SBFI due to Λt ⊗ Λt by changing the dynamics of the second party, one in general needs more than
just a small perturbation of the second-party generator.

Proof of Proposition 4 . By Lemma 1, the intermediate map Λ(1)
t,s ⊗ Λ(2)

t,s is positive for any
t ≥ s ≥ 0, if and only if

Gs(ϕ, ψ) := ⟨ϕ|L(1)
s ⊗ idd + idd ⊗L(2)

s [|ψ⟩⟨ψ|]|ϕ⟩ ≥ 0, (19)

for arbitrary orthogonal |ψ⟩, |ϕ⟩. Let Φ = [ϕαβ], Ψ = [ψαβ] be the matrices whose entries
are the vector’s components with respect to a fixed orthonormal basis {|α⟩ ⊗ |β⟩}αβ. These
matrices are Hilbert–Schmidt orthogonal, namely, ⟨ϕ|ψ⟩ = Tr

(
Φ†Ψ

)
= 0. Vice versa, given

two Hilbert–Schmidt orthogonal d × d matrices Ψ and Φ, their entries can be taken as
components of two orthogonal d-dimensional vectors |ψ⟩ and |ϕ⟩ in Cd2

with respect to the
chosen basis.

The orthogonality of the vectors |ψ⟩ and |ϕ⟩ reduces (19) to sums of products of
contributions of the form

⟨ϕ|Fi ⊗ 1|ψ⟩ =
d

∑
α,β,γ=1

Φ∗
αβΨγβ(Fi)αγ = Tr

(
FiΨΦ†

)
,

⟨ϕ|1⊗ Fi|ψ⟩ =
d

∑
α,β,γ=1

Φ∗
αβΨαγ(Fi)βγ = Tr

(
Fi(Φ†Ψ)T

)
and their conjugates, where ()T denotes matrix transposition.

Then, (19) can be rewritten as

0 ≤
d2−1

∑
i,j=1

(
K(1)

ij (s)Tr
(

F†
i ΦΨ†

)
Tr
(

F†
j ΦΨ†

)
+ K(2)

ij (s)Tr
(

F†
i (Ψ

†Φ)T
)

Tr
(

F†
j (Ψ

†Φ)T
))

. (20)

Let W be a generic traceless matrix in Md(C). Since every matrix is similar to its
transposed matrix, given any invertible V ∈ Md(C), there exists an invertible S such that
S(V−1WV)S−1 = (V−1WV)T . Choose Φ := VS−1, Ψ† := (SV−1W), so that ΦΨ† = W
and (Ψ†Φ)T = V−1WV. With these choices, (20) becomes

0 ≤
d2−1

∑
i,j=1

(
K(1)

ij (s)Tr
(

F†
i W

)
Tr
(

F†
j W

)
+ K(2)

ij (s)Tr
(

F†
i V−1WV

)
Tr
(

F†
j V−1WV

))
.

Since Tr(W) = 0, it holds that W = ∑d2−1
i=1 wiFi and Tr

(
F†

j V−1WV
)
=

d2−1

∑
k=1

Vjkwk =: vj.
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Finally, since W is a generic traceless d × d matrix, the vector |w⟩ = ∑d2−1
i=1 wi|i⟩

consisting of the components of W with respect to the chosen Hilbert–Schmidt orthonormal
basis {Fi}d2−1

i1
spans Cd2−1. Therefore, the previous inequality yields:

0 ≤
d2−1

∑
i,j=1

(
K(1)

ij (s)wiwj + K(2)
ij (s) vivj

)
= ⟨w|K(1)(s) + V†K(2)(s)V|w⟩ ,

from which K(1)(s) + V†K(2)(s)V ≥ 0 follows.

We now look for a sufficient condition for the P-divisibility of generic tensor product
dynamics Λ(1)

t ⊗ Λ(2)
t . From (16), without loss of generality [26], the generators of the local

maps can be recast in a diagonal form with respect to a time-dependent family of Hilbert–
Schmidt operators F(α)

k (t), α = 1, 2; furthermore, in the following Proposition, we will

restrict to the case of an Hermitian Hilbert–Schmidt orthonormal basis F(α)
k (t) =

(
F(α)

k (t)
)†

.

Remark 4. As already remarked in the course of the proof of the previous proposition, only the terms

∑d2−1
i,j=1 K(α)

ij (t) Fi ρ F†
j from the time-local generators (16) non-trivially contribute to Gs(ϕ, ψ), for

orthogonal |ϕ⟩, |ψ⟩, as one sees from (20) in the proof of Proposition 4. The commutator and
anti-commutator terms do not play any role. Therefore, focusing on only the dissipative part of the
generator as in the subsequent proposition is no restriction.

Proposition 5. Let the generators of Λ(α)
t , α = 1, 2, be

L(α)
t [ρ] =

d2−1

∑
k=1

γ
(α)
k (t)

(
F(α)

k (t) ρ F(α)
k (t)− 1

2

{(
F(α)

k (t)
)2

, ρ

})
, (21)

diagonal with respect to a Hilbert–Schmidt basis of traceless and Hermitian operators
(

F(1,2)
k (t)

)†
=

F(1,2)
k (t) ∈ Md(C). Suppose that the rates γ

(1,2)
k (t) are all positive semidefinite functions of time,

except for at most two γ
(1)
i (t) and γ

(2)
j (t), and that, for all t ≥ 0, γ

(1)
k (t) + γ

(1)
i (t) ≥ 0 for all

k ̸= i and γ
(2)
k (t) + γ

(2)
j (t) ≥ 0 for all k ̸= j. If

γ
(1)
k (t) + γ

(2)
j (t) ≥ 0 and γ

(1)
i (t) + γ

(2)
k (t) ≥ 0 , (22)

for all t ≥ 0 and all k = 1, . . . , d2 − 1, then Λ(1)
t ⊗ Λ(2)

t is P-divisible.

The proof is reported in Appendix A. The above assumptions in Proposition 5 are such
that, while one rate for one system and one for the other are allowed to become negative,
all sums of pairs of rates of either systems are instead forbidden to do so. In order to better
illustrate the assumed properties of the rates, let us consider the following example.

Example 2. Let Λ(1,2)
t be Pauli maps as in Example 1 defined by master equations with rates

γ
(1)
1 (t) = 1 , γ

(1)
1 (t) = 1 , γ

(1)
3 (t) = sin(t) , (23)

γ
(2)
1 (t) = 1 , γ

(2)
1 (t) = 1 , γ

(2)
3 (t) = − sin(t) , (24)

and a suitable λ to ensure CP of Λ(2)
t (see Example 1). Both dynamics are P-divisible; indeed,

γ
(α)
i (t) + γ

(α)
j (t) ≥ 0, ∀i ̸= j, α = 1, 2. However, they are not CP-divisible for γ

(1,2)
3 (t), which
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becomes negative. Nevertheless, γ
(1)
3 (t) + γ

(2)
3 (t) = 0. Then, the conditions in (22) are satisfied

and Λ(1)
t ⊗ Λ(2)

t is P-divisible.

Then, Propositions 4 and 5 yield the following necessary and sufficient conditions for
the P-divisibility of tensor products of qubit Pauli maps.

Proposition 6. Let Λ(α)
t , α = 1, 2, be CPTP Pauli maps with time-local generators given by

L(α)
t [ρ] =

1
2

3

∑
k=1

γ
(α)
k (t) (σk ρ σk − ρ) . (25)

Their tensor product, Λ(1)
t ⊗ Λ(2)

t , is P-divisible if and only if both Λ(1,2)
t are P-divisible and

γ
(1)
i (t) + γ

(2)
j (t) ≥ 0 , ∀ t ≥ 0 , ∀ i, j = 1, 2, 3 . (26)

The proof is reported in Appendix A. We summarize the divisibility properties of
Pauli dynamics and the corresponding conditions on its generator in Table 1.

Table 1. Divisibility properties of Pauli maps: necessary and sufficient conditions.

Λt CP-d γi(t) ≥ 0
Λt P-d γi(t) + γj(t) ≥ 0, i ̸= j

Λt ⊗ Λt P-d γi(t) ≥ 0
Λ(1)

t ⊗ Λ(2)
t P-d Λ(1,2)

t P-d, γ
(1)
i (t) + γ

(2)
j (t) ≥ 0

It is worth stressing the difference between the time-dependent case and the time-
independent regime; in the latter case, CP- and P-divisibility are equivalent to the complete
positivity, respectively, and the positivity of Pauli maps with rates γ

(α)
k (t) = γ

(α)
k constant

in time. In such a case, it cannot be that both maps are positive but not completely positive;
indeed, if it were so, there surely exist two negative rates, say, γ

(1)
i and γ

(2)
j . Then, their sum

is also negative, contradicting Equation (26). As seen in Example 2, in the time-dependent
case, both rates ± sin(t) can change sign without spoiling the P-divisibility of the tensor
product.

Remark 5. If Λt is P-divisible but not CP-divisible, one can imagine keeping one party’s evolution
fixed and varying the second party sufficiently to achieve a Λt ⊗ Λ̃t that is P-divisible, thereby
eliminating SBFI through this variation in one of the local environments (for Pauli dynamics, this
would mean varying the second-party rates until the conditions in (26) are matched). However, the
map Λt ⊗ Λ̃t cannot be CP-divisible (since Λt is not). Corollary 1 then implies that one can recover
SBFI by doubling the system to a four-party dynamics (Λt ⊗ Λ̃t)⊗ (Λt ⊗ Λ̃t) that would not then
be P-divisible.

3. Mixtures of Pure Dephasing Processes: Two-Qubit Divisibility Diagram

To further illustrate the results of the previous sections, we shall now study the
divisibility properties of a class of maps obtained via convex mixtures of CP-divisible
dynamics in relation to variations in their time-local generators. The main goal is the
characterization of a “divisibility diagram” of the tensor products of such mixtures. In
particular, we are interested in mixtures of pure qubit dephasing semigroups of completely
positive and trace-preserving (CPTP) maps Φ(k)

t = etLk arising from Pauli generators

Lk[ρ] = σk ρ σk − ρ, k = 1, 2, 3 . (27)
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The latter are Pauli maps as in Example 1:

Φ(i)
t [σµ] = λ

(i)
µ (t) σµ , λ

(i)
µ (t) = e−2t, i ̸= µ ∈ {1, 2, 3} , λ

(i)
i (t) = λ

(i)
0 (t) = 1 .

Given weights pk ≥ 0, ∑3
k=1 pk = 1, one then defines their mixtures

Φp
t := p1Φ(1)

t + p2Φ(2)
t + p3Φ(3)

t . (28)

These convex combinations are also CPTP maps and satisfy Φp
t [σµ] = λ

(p)
µ σµ, where

λ
p
0 (t) = 1 , λ

p
k (t) =pk + e−2t(1 − pk) , k = 1, 2, 3 , (29)

never vanish. The dynamics is thus invertible,
(
Φp

t
)−1

[σµ] =
1

λ
(p)
µ

σµ, and thus arises from

a time-local Pauli generator Lp
t = Φ̇p

t
(
Φp

t
)−1; namely,

Lp
t [ρ] =

1
2

3

∑
k=1

γ
p
k (t)(σk ρ σk − ρ) ,

where the time-dependent rates γ
p
k (t) are related to the weights p = (p1, p2, p3) in the

following way:

γ
p
1 (t) = µ

p
1 (t)− µ

p
2 (t)− µ

p
3 (t) , (30a)

γ
p
2 (t) = −µ

p
1 (t) + µ

p
2 (t)− µ

p
3 (t) , (30b)

γ
p
3 (t) = −µ

p
1 (t)− µ

p
2 (t) + µ

p
3 (t) , (30c)

with

µ
p
1 (t) = − p2 + p3

p2 + p3 + p1 e2t = − 1 − p1

1 + p1(e2t − 1)
, (31a)

µ
p
2 (t) = − p1 + p3

p1 + p3 + p2 e2t = − 1 − p2

1 + p2(e2t − 1)
, (31b)

µ
p
3 (t) = − p1 + p2

p1 + p2 + p3 e2t = − 1 − p3

1 + p3(e2t − 1)
. (31c)

3.1. One-Qubit Divisibility Diagram

Before considering the tensor products of pairs of the above maps (28), we briefly
review some relevant properties for the one-qubit case, which was studied in detail in [30].

(i) P-divisibility. As one can easily check from (30),

γ
p
1 (t) + γ

p
2 (t) = −2 µ

p
3 (t) ≥ 0 , (32)

as well as for cyclic permutations of the indices. Thus (see Example 1), Φp
t is P-divisible

for all p.
(ii) Eternal and quasi-eternal non-Markovianity. From (30), one has

γ
p
k (0) = 2 pk ≥ 0, k = 1, 2, 3 . (33)

If pk = 0, then
γ

p
k (t) < 0 ∀ t > 0 ; (34)

for instance, letting p3 = 0 =⇒ p1 + p2 = 1 and t > 0,

γ
p
3 (t) =

p2

p2 + e2t p1
+

p1

p1 + e2t p2
− 1 < p2 + p1 − 1 = 0 ,
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while γ
p
i (t) > 0, t > 0, i = 1, 2, as a consequence of Property (i). Such a dynamics

is clearly not CP-divisible and is usually labeled as eternally non-Markovian (ENM).
For instance, choosing p1 = p2 = 1/2, p3 = 0, we end up with the ENM evolution
first introduced in [26], with γ1(t) = γ2(t) = 1 and γ3(t) = − tanh(t). Similarly, if
p1 p2 p3 > 0 and

∃ t∗ > 0 : γ
p
k (t

∗) < 0 =⇒ γ
p
k (t) < 0 ∀ t > t∗ , (35)

This is checked explicitly in Appendix B. It also follows that, for a given p, at most
one rate γ

p
k (t) can become negative: indeed, if γ

p
k (t) < 0 for t > t∗k and γ

p
j (t) < 0 for

t > t∗j , γ
p
k (t) + γ

p
j (t) < 0 for t > max{t∗k , t∗j }, violating P-divisibility condition (32).

(iii) One-qubit divisibility diagram. The above properties allow one to characterize the
one-qubit “divisibility diagram” [31] of the mixtures Φp

t in terms of the parameters p.
Let us denote by P the set of weights {p : pk ≥ 0, ∑k pk = 1}. As remarked in point (i)
above, each p ∈ P corresponds to a P-divisible map Φp

t . Therefore, the set of divisible
maps is the union of the disjoint subsets

CP = {p : Φp
t is CP-divisible} and P \ CP , (36)

namely, of the subsets of weights corresponding to CP-divisible maps, respectively,
and to P-divisible but not CP-divisible maps Φp

t , respectively. The subset CP can be
identified by means of Property (ii); indeed, if Φp

t is not CP-divisible, there must exist
exactly one k ∈ {1, 2, 3} such that γ

p
k (t → ∞) < 0. On the other hand, Φp

t ∈ CP if
and only if it has positive rates, so that:

p ∈ CP ⇐⇒ γ
p
k (t → ∞) ≥ 0 k = 1, 2, 3 . (37)

Assuming p1 p2 p3 > 0, the asymptotic behavior of the rates for t → ∞ is as follows:

γ
p
1 (t) ≃

e−2t

p1 p2 p3
(−p2 p3 (p2 + p3) + p1 p3 (p1 + p3) + p1 p2 (p1 + p2)) , (38a)

γ
p
2 (t) ≃

e−2t

p1 p2 p3
(p2 p3(p2 + p3)− p1 p3 (p1 + p3) + p1 p2 (p1 + p2)) , (38b)

γ
p
3 (t) ≃

e−2t

p1 p2 p3
(p2 p3 (p2 + p3) + p1 p3 (p1 + p3)− p1 p2 (p1 + p2)) , (38c)

makes the region CP identified using the following inequalities

p1 p2 (p1 + p2) + p2
2 − p2

1 + p1 − p2 ≥ 0 , (39a)

p2 p1 (p1 + p2) + p2
1 − p2

2 + p2 − p1 ≥ 0 , (39b)

(1 + p1 p2) (p1 + p2)− p2
1 − p2

2 − 4p1 p2 ≥ 0 , (39c)

where p3 = 1 − p1 − p2 was used, making it possible to represent CP as a two-
dimensional, triangular-like region in the (p1, p2) plane, as in Figure 1. Conversely,
maps which are only P-divisible are identified with points p ∈ P \ CP that violate one
and only one of the inequalities (39). Such maps are all examples of so-called weakly
non-Markovian evolutions: in fact, as stated in Proposition 3, they do not display
BFI. The situation is remarkably different when taking the tensor product of two such
maps: in such a case, parameter regions with associated BFI appear.
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Figure 1. One-qubit divisibility diagram. For each point (p1, p2), p3 = 1 − p1 − p2. Region
CP includes CP-divisible maps (γ

p
k (t) ≥ 0, ∀ t ≥ 0), while P \ CP corresponds to P-divisible but

not CP-divisible maps (∃ k, t∗ ≥ 0 : γ
p
k (t

∗) < 0, ∀ t > t∗). The highlighted point (p∗, p∗),
p∗ = 1

2 (3 −
√

5) ≈ 0.38, marks the boundary between CP and P \ CP along the line p1 = p2.

3.2. Divisibility Diagram of Tensor Product Dynamics

We now investigate the structure of the divisibility diagram for tensor products
Φp

t ⊗ Φq
t . It will become evident that there exist regions CP2 of CP-divisible maps and N2

of non-P-divisible maps that exhibit SBFI. However, the two-qubit parameter space will
also be complemented by a non-trivial region (P \ CP)2 of only P-divisible maps that do
not show SBFI, as we shall prove in the following.

• CP-divisibility. Since the tensor product of CP-divisible maps is still CP-divisible,

p, q ∈ CP =⇒ (p, q) ∈ CP2 .

On the other hand, if (p, q) ∈ CP2, consider arbitrary rank-1 projectors Q, P, R ∈
M2(C)⊗ M2(C); since Φp

t,s ⊗ Φq
t,s is a CPTP map for all t ≥ s ≥ 0,

0 ≤ Tr
(
(11,3

4 ⊗ Q2,4)Φp
t,s ⊗ Φq

t,s ⊗ id4

[
R1,3 ⊗ P2,4

])
= Tr

(
Q
(

Φq
t,s ⊗ id2

)
[P]

)
,

(superscripts denote only to which qubits the 4 × 4 matrices refer) showing that Φq
t,s

has to be completely positive. The same holds for Φp
t,s, so that

p, q ∈ CP ⇐= (p, q) ∈ CP2 .

• Lack of P-divisibility. In view of Proposition 2,

p ∈ P \ CP =⇒ (p, p) ∈ N2 .

Also, as we have seen, all single-dynamical maps labeled by p are P-divisible; thus, if
Φp

t ⊗ Φp
t is not P-divisible, Φp

t cannot be CP-divisible, and then

p ∈ P \ CP ⇐= (p, p) ∈ N2 .

Furthermore, for a sufficiently small but not vanishing perturbation δp, ∥δp∥ ≪ 1,
one also has

p ∈ P \ CP =⇒ (p, p + δp) ∈ N2 . (40)
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Indeed, a small perturbation cannot in general restore the P-divisibility of the tensor
product (see Remark 3). Moreover, we can also assert that

p, q ∈ P \ CP =⇒ (p, q) ∈ N2 . (41)

Indeed, if both p and q are in P \ CP , then two rates, say, γ
p
i (t) and γ

q
j (t), would

become negative and stay negative asymptotically: γ
p
i (∞), γ

q
j (∞) < 0, by Property (ii).

In particular, so will their sum, γ
p
i (∞) + γ

q
j (∞) < 0. Thus, Φp

t ⊗ Φq
t cannot be P-

divisible, due to Proposition 6. As a consequence, all p, q ∈ P \ CP will give rise to a
tensor product map Φp

t ⊗ Φq
t displaying SBFI.

• P-divisibility without CP-divisibility. We now prove the existence of a non-trivial region
(P \ CP)2 of maps Φp

t ⊗ Φq
t which are P-divisible, without Φp

t , Φq
t being both CP-

divisible. From (41), such a region can only consist of points (p, q) with p ∈ P \ CP
and q ∈ CP or p ∈ CP and q ∈ P \ CP . In order to show that the region (P \ CP)2 is
not empty, we restrict to p of the form (p, p, 1 − 2 p), 0 ≤ p ≤ 1

2 . These are the points
lying along the line p1 = p2 in Figure 1. With this choice, the Pauli rates become

γ
p
1 (t) = γ

p
2 (t) =

2p
(1 − 2p)e2t + 2p

, (42a)

γ
p
3 (t) = 2

1 − p
1 + p(e2t − 1)

− γ
p
1 (t) . (42b)

Thus, only γ
p
3 (t) might become negative. If γ

p
3 (t) ≥ 0, then the inequality (39c) must

be satisfied. For p1 = p2 = p, it reads

2 p (p2 − 3p + 1) ≥ 0 .

Then, p = (p, p, 1 − 2p) ∈ CP if and only if 0 ≤ p ≤ p∗, with p∗ = 1
2

(
3 −

√
5
)
≈ 0.38.

Conversely, for p∗ < p ≤ 1
2 , γ

p
3 (t) is not a positive function of time and Φp

t is not
CP-divisible.
Setting p∗ < p ≤ 1

2 so that p = (p, p, 1 − 2p) ∈ P \ CP , we then look for parameters
q ∈ CP such that Φp

t ⊗ Φq
t is P-divisible. From Proposition 6, necessary and sufficient

conditions are
γ

p
3 (t) + γ

q
k (t) ≥ 0 , ∀ t ≥ 0 , k = 1, 2, 3 . (43)

First, let us look for a q on the line q1 = q2 ≡ q, with 0 ≤ q ≤ p∗. Then, a simpler
condition can be inferred, namely,

γ
p
3 (∞) + γ

q
k (∞) ≥ 0 k = 1, 2, 3 . (44)

Indeed, γ
q
3 (t) + γ

q
k (t) can have at most one zero for t ≥ 0 (see Appendix B). In turn,

the following holds:

∃ t∗ ≥ 0 : γ
p
3 (t

∗) + γ
q
k (t

∗) < 0 =⇒ γ
p
3 (t) + γ

q
k (t) < 0 ∀ t > t∗ , (45)

so that one can look only at the asymptotic behavior. Then, (44) enforces the following
conditions on the pair (p, q):

q(1 − 2q) + p(1 − 6q + 7q2)− p2(2 − 7q + 4q2) ≥ 0 , (46a)

1 − 2q − p(3 − 7q) + p2(1 − 4q) ≥ 0 . (46b)

Hence, if p = (p, p, 1 − 2p) ∈ P \ CP and q = (q, q, 1 − 2q) ∈ CP satisfy (46a) and
(46b), then (p, q) ∈ (P \ CP)2; otherwise, they belong to N2. Regions defined by (46a)
and (46b) are displayed in Figure 2: it shows that, for values of p increasingly greater
than p∗, the following are true:
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1. The largest value 0 ≤ q ≤ p∗ such that Φp
t ⊗ Φq

t is P-divisible is increas-
ingly smaller than p∗ (and p). Thus, what also increases is the minimal de-
parture δq = ∥q − p∥ of q from p in the second party such that Φp

t ⊗ Φp+δq
t is

P-divisible;
2. The subset of 0 ≤ q ≤ p∗ such that Φp

t ⊗ Φq
t is P-divisible progressively reduces,

up to p =
√

2 − 1 ≈ 0.414, for which only q = 1
3 can make Φp

t ⊗ Φq
t P-divisible

(that is, the only q making the map P-divisible is the centroid of CP).

Figure 2. Parameter set of maps Φp
t ⊗ Φq

t , with p = (p, p, 1 − 2p), q = (q, q, 1 − 2q) along the
bisector of Figure 1, with p ∈ (p∗, 1

2 ], q ∈ [0, p∗] and p∗ = 1
2 (3 −

√
5) ≈ 0.38. The region of (p, q)

defined by the inequalities in (46a) and (46b) is shown in purple. For points inside this region,
Φp

t ⊗ Φq
t is P-divisible, while outside it is not P-divisible and displays SBFI. Notice that for increasing

p > p∗, the minimal distance δq := p − q needed to make Φp
t ⊗ Φp

t enter the purple region by
varying it into Φp

t ⊗ Φq
t with p = (p, p, 1 − 2p) and q = (p + δq, p + δq, 1 − 2p − 2δq) increases. The

interval of “good” q that permits us to restore P-divisibility also reduces with increasing p, up until
p =

√
2 − 1 ≈ 0.414, which corresponds to p − p∗ ≈ 0.03, where it only consists of q = 1

3 . The
corresponding point q = ( 1

3 , 1
3 , 1

3 ) lies on the centroid of CP .

To have more insight about the structure of the region (P \ CP)2, let us now allow
q1 ̸= q2, while keeping p ∈ (P \ CP) fixed. Define then a region

(P \ CP)
p
2,t = {q ∈ CP : γ

p
3 (t) + γ

q
k (t) ≥ 0, k = 1, 2, 3} . (47)

At t = 0, γ
p
3 (0) + γ

q
k (0) = 2(p3 + qk) ≥ 0, so (P \ CP)

p
2,t=0 ≡ CP . In Figure 3a,

(P \ CP)
p
2,t is depicted for p̃ = (0.4, 0.4, 0.2); it shrinks for increasing t, but it survives

the limit t → ∞. Points q within the asymptotic region (P \ CP)
p̃
2,∞ ⊆ CP will

give rise to maps Φp̃
t ⊗ Φq

t , which are P-divisible. Numerical evidence indeed shows
that (44) is still necessary and sufficient for having the P-divisibility of the tensor
product, since the sum γ

p
3 (t) + γ

q
k (t) will have at most one zero if q ∈ CP (this can be

checked by studying the numerator of γ
p
3 (t) + γ

q
k (t), which will be a polynomial in

e2t, and studying the pattern of coefficients to apply the Descartes rule of signs. This is
carried out explicitly in Appendix B for the case of p, q taken along the lines p1 = p2
and q1 = q2).
In addition, for p along the line p1 = p2 and progressively further away from
(p∗, p∗, 1 − 2p∗), the size of (P \ CP)

p
2,∞ ⊆ CP will reduce, as already noted for the

q1 = q2 case. The regions (P \ CP)
p
2,∞ for p̃ = (0.4, 0.4, 0.2) and p = (0.41, 0.41, 0.18)

are compared in Figure 3b.
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Remark 6. Having fixed p ∈ (P \ CP), the P-divisibility of Φp
t ⊗ Φq

t cannot be restored by
making arbitrarily small perturbations to p, as discussed in Remark 3. This is evident also from
Figures 2 and 3b, since it is necessary to perform a large enough variation in the second party to
enter region (P \ CP)

p
2,∞, restore P-divisibility and, consequently, eliminate SBFI.

(a)

(b)

Figure 3. In (a), for fixed p̃ = (0.4, 0.4, 0.2) in (P \ CP), the region (P \ CP)
p̃
2,t = {q ∈ CP :

γ
p̃
3 (t) + γ

q
k (t) ≥ 0, k = 1, 2, 3} is displayed for t = 1.5 and for t → ∞. In (b), the same region

(P \ CP)
p̃
2,∞ is displayed in purple within CP ; it contains points q such that Φp̃

t ⊗ Φq
t is P-divisible.

Notice that it cannot be reached from p̃ with an arbitrarily small perturbation p̃ + δp: a large enough
variation is required to enter it, restore P-divisibility and eliminate SBFI. The same region is also
displayed in dark purple for p = (0.41, 0.41, 0.18), illustrating that as p = (p, p, 1 − 2p) moves along
the p1 = p2 line with p increasingly larger than p∗, the size of the region (P \ CP)

p
2,∞ decreases.

4. Conclusions

This paper deals with a peculiar quantum phenomenon arising within the scenario
of open multi-partite quantum systems whose joint dynamics is the tensor product of
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dynamical maps with time-dependent generators. It might indeed happen that memory
effects in single dynamics do not support BFI from environment to system, while the tensor
product dynamics do. Such a superactivation phenomenon is a purely quantum effect
resulting from non-classical correlations among the parties, as can be shown by means of a
suitable collisional model [15]. Its physical appeal relies upon the fact that memory effects
have often been proven resourceful in a variety of quantum technological tasks. In this
respect, further investigations are needed for potential applications of SBFI.

The absence or presence of BFI in connection to an open quantum dynamics Λt is
determined using its divisibility properties, namely, by whether or not the intertwining
maps Λt,s such that Λt = Λt,s ◦ Λs are positive or not. We investigated such properties
for the general tensor products of completely positive dynamical maps Λ(1)

t ⊗ Λ(2)
t , with

the aim of seeking conditions for P-divisibility, without the single-party maps Λ(1,2)
t being

CP-divisible, namely, without these maps having completely positive intertwiners.
For the case of two P-divisible Pauli maps acting on qubits, particularly simple neces-

sary and sufficient conditions for the P-divisibility of their tensor products have been given
in terms of the mutual sums of the master equation rates. Moreover, examples have been
provided in which the P-divisibility of the tensor product could be achieved without one or
even both maps being CP-divisible. The interest of these results relates to the fact that a lack
of P-divisibility (along with invertibility) implies the emergence of BFI through revivals of
the trace distance between time-evolving quantum states. If Λt is P- but not CP-divisible,
it is known that BFI does not occur for Λt, but it does occur for the second-order tensor
product Λt ⊗ Λt, describing two parties evolving in identical, dissipative environments.
Such an intriguing phenomenon has been called the Superactivation of BFI.

The results presented in the manuscript imply that SBFI can be switched off by per-
forming a suitable variation of one of the two dissipative evolutions. Concretely, by suitably
changing the parameters of the generator of one of the parties, for instance, by acting on
the microscopic origin of open quantum dynamics, one can stop information from be-
ing injected into the coupled open quantum system from the environment. Abundant
phenomenology relative to the SBFI effect has been provided by means of mixtures of
dephasing qubit maps, in particular by means of two-qubit “divisibility diagrams” that
show regions of CP-divisible maps, of non-P-divisible maps as well as of only P-divisible
maps. The emerging picture is such that, when dealing with P-divisible but not CP-divisible
dynamics Λt, obtaining a P-divisible tensor product Λt ⊗ Λ̃t is not achievable via simple
tensorization with a slight perturbation Λ̃t of Λt itself; instead, a sufficiently large variation
is required to eliminate SBFI.
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Appendix A. Proofs of Propositions 5 and 6

Proof of Proposition 5. Let ⟨ϕ|ψ⟩ = 0 and consider the quantity

Gt(ϕ, ψ) := ⟨ϕ|L(1)
t ⊗ idd + idd ⊗L(2)

t [|ψ⟩⟨ψ|]|ϕ⟩ .

Let Φ = [ϕab], Ψ = [ψab] be the matrices whose entries are the vectors’ components
with respect to a fixed orthonormal basis {|a⟩ ⊗ |b⟩}ab, Tr

(
ΦΨ†) = 0, so that:

Gt(ϕ, ψ) =
d2−1

∑
k=1

γ
(1)
k (t)

∣∣∣Tr
(

F(1)
k (t)ΦΨ†

)∣∣∣2 + d2−1

∑
k=1

γ
(2)
k (t)

∣∣∣Tr
(

F(2)
k (t) (Ψ†Φ)T

)∣∣∣2. (A1)



Mathematics 2024, 12, 37 17 of 20

Since F(α)
k (t) =

(
F(α)

k (t)
)†

, α = 1, 2, are assumed to be a Hilbert–Schmidt orthonormal

basis for the traceless d× d matrices W for all t ≥ 0, one writes W = ∑d2−1
j=1 Tr

(
WF(α)

j (t)
)

F(α)
j (t)

so that

d2−1

∑
k=1

(
Tr
(

F(1)
k (t)ΦΨ†

))2
= Tr

(
ΦΨ†ΦΨ†

)
= Tr

(
(Ψ†Φ)T(Ψ†Φ)T

)
=

d2−1

∑
k=1

(
Tr
(

F(2)
k (t) (Ψ†Φ)T

))2
,

from which, isolating one term and applying the triangle inequality, one obtains

∣∣∣Tr
(

F(2)
j (Ψ†Φ)T

)∣∣∣2 ≤
d2−1

∑
k=1

∣∣∣Tr
(

F(1)
k ΦΨ†

)∣∣∣2 + ∑
k ̸=j

∣∣∣Tr
(

F(2)
k (Ψ†Φ)T

)∣∣∣2.

Set J− := {t ≥ 0 : γ
(2)
j (t) < 0} ⊆ R+. For all t ∈ J−, we can thus bound (A1)

as follows:

Gt(ϕ, ψ) ≥
d2−1

∑
k=1

(
γ
(1)
k (t) + γ

(2)
j (t)

) ∣∣∣Tr
(

F(1)
k ΦΨ†

)∣∣∣2
+ ∑

k ̸=j

(
γ
(2)
k (t) + γ

(2)
j (t)

) ∣∣∣Tr
(

F(2)
k (Ψ†Φ)T

)∣∣∣2 ≥ 0 .

We can then define I− = {t ≥ 0 : γ
(1)
i (t) < 0} and repeat the estimation, this time

acting on the term proportional to γ
(1)
i (t). Thus, Gt(ϕ, ψ) ≥ 0 for all t ∈ I− ∪ J− for times t

such that γ
(1)
i (t) ≥ 0 and γ

(2)
j (t) ≥ 0, Gt(ϕ, ψ) ≥ 0 follows trivially from (A1). Hence, we

prove that Gt(ϕ, ψ) ≥ 0 for all t ≥ 0, which is sufficient to guarantee, by means of Lemma 1,
the P-divisibility of Λ(1)

t ⊗ Λ(2)
t .

Proof of Proposition 6. For the “if part”, the conditions in (26) together with the necessary
and sufficient conditions for the P-divisibility of the one-qubit Pauli maps (see Example 1),
namely,

γ
(α)
i (t) + γ

(α)
j (t) ≥ 0 , α = 1, 2 , ∀ t ≥ 0 , ∀i ̸= j , (A2)

fulfil all the requirements of Proposition 5; hence, they are sufficient for the P-divisibility of
Λ(1)

t ⊗ Λ(2)
t .

For the “only if” part, let us first show that the P-divisibility of Λ(1)
t ⊗ Λ(2)

t implies

the P-divisibility of Λ(1,2)
t . Suppose, then, that ∀ t ≥ s ≥ 0, Λ(1)

t,s ⊗ Λ(2)
t,s is a positive map,

and consider generic rank-1 projectors P, P′ and Q ∈ M2(C); since 12 ⊗ Q ≥ 0 and Λ(1,2)
t,s

preserve the trace,

0 ≤ Tr
(
(12 ⊗ Q)Λ(1)

t,s ⊗ Λ(2)
t,s

[
P′ ⊗ P

])
= Tr

(
Q Λ(2)

t,s [P]
)

, (A3)

so Λ(2)
t,s is a positive map for all t ≥ s ≥ 0 and Λ(2)

t is P-divisible. Analogously, Λ(1)
t also

has to be P-divisible. Therefore, only the necessity of the conditions in (26) remains to be
demonstrated. Consider the unitary operators

Vkl =
σk + σl√

2
=

(
Vkl

)†
=

(
Vkl

)−1
, k ̸= l ∈ {1, 2, 3} , (A4)
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such that Vkl σi Vkl = ∑3
j=1 Vkl

ij σj with Vkl a 3 × 3 Hermitian matrix. Due to Proposition 4,

Λ(1)
t ⊗Λ(2)

t is P-divisible =⇒ K(1)(t)+VklK(2)(t)Vkl ≥ 0. For example, V23 =

−1 0 0
0 0 1
0 1 0


yields

0 ≤ K(1)(t) + V23K(2)(t)V23

=

γ
(1)
1 (t)

γ
(1)
2 (t)

γ
(1)
3 (t)

+

γ
(2)
1 (t)

γ
(2)
3 (t)

γ
(2)
2 (t)

 ,

thus enforcing γ
(1)
1 (t) + γ

(2)
1 (t) ≥ 0, γ

(1)
2 (t) + γ

(2)
3 (t) ≥ 0, γ

(1)
3 (t) + γ

(2)
2 (t) ≥ 0. Varying

k, l, one obtains the complete set of conditions in (26).

Appendix B. Properties of the Quasi-ENM Dynamics Φ
p
t

(I) If p1 p2 p3 > 0 and γ
p
k (t

∗) < 0 for some t∗ > 0, k ∈ {1, 2, 3}, then γ
p
k (t) < 0 ∀ t > t∗.

Proof. Suppose that γ
p
3 (t) is the rate turning negative at some t∗ > 0. Then, by

means of Descartes’s sign rule [32], we show that γ
p
3 (t) can have at most one zero,

so if it turns negative, it stays negative for all subsequent times. Using (30) and (31),
we rewrite

γ
p
3 (t) =

Np
3 (t)

∏3
k=1(1 + pk(e2t − 1))

, (A5)

where

Np
3 (t) ≡ α3,0(p) + α3,1(p)e2t + α3,2(p)e4t, (A6)

with

α3,2(p) = −p2
1 p2 − p1 p2

2 + p2
1 p3 + p2

2 p3 + p1 p2
3 + p2 p2

3 , (A7a)

α3,1(p) = 2p3(1 − p2)(1 − p1) , (A7b)

α3,0(p) = (1 − p1)(1 − p2)(1 − p3) . (A7c)

Thus, α3,0(p) ≥ 0 and α3,1(p) ≥ 0 for all p, while α3,2(p) can turn negative. By
the Descartes rule of signs (recall that the rule states that for a polynomial with real
coefficients, the number of its positive roots P is given by P = S − 2m, where S is
the number of sign changes between its nonzero coefficients ordered in descending
order of the powers, and m ∈ N. In particular, if the number of sign changes is S = 1
or S = 0, there are, respectively, one or zero roots), γ

p
3 (t) will have only one zero

when α3,2(p) turns negative. Points p for which α3,2(p) turn negative are shown in
Figure A1a.
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(a) (b)

Figure A1. In (a), the subset of p that makes α3,2(p) negative corresponds to the subregion of P for
which γ

p
3 (t) ̸≥ 0. In (b), the sign patterns of β3,3, β3,3, β3,1, β3,0 are functions of (p, q), p ∈ (p∗, 1

2 ] and
q ∈ [0, p∗], p∗ = 1

2 (3 −
√

5). Since there is only one sign flip, γ
p
3 (t) + γ

q
3 (t) can then have up to one

zero.

(II) Let p = (p, p, 1 − 2p) and q = (q, q, 1 − 2q), with p∗ < p ≤ 1/2 and 0 ≤ q ≤ p∗, p∗ =
1
2 (3 −

√
5). If γ

p
3 (t) + γ

q
k (t) < 0 for some t > t∗, k ∈ {1, 2, 3}, then γ

p
3 (t) + γ

q
k (t) < 0

for all t > t∗.

Proof. The reasoning is the same as in (I). Let

γ
p
3 (t) + γ

q
k (t) =

Np,q
k (t)

Dp,q
k (t)

, (A8)

where Dp,q
k (t) ≥ 0 and

Np,q
k (t) =

nk

∑
n=0

βk,n(p, q) e2nt . (A9)

Focusing only on the numerator, for k = 3, one has n3 = 3, and coefficients β3,n(p, q)
read

β3,3(p, q) = 2 (q(1 − 2q) + p(1 − 6q + 7q2)− p2(2 − 7q + 4q2)) , (A10a)

β3,2(p, q) = 2 (2 − 6q + 5q2 − 2p(3 − 10q + 9q2) + p2(5 − 18q + 12q2)) , (A10b)

β3,1(p, q) = 6 (1 − q)(1 − p)(q + p(1 − 4q)) , (A10c)

β3,0(p, q) = 8 q (1 − q) p (1 − p) . (A10d)

Coefficients β3,0(p, q) and β3,1(p, q) are always positive, while β3,2(p, q) and β3,3(p, q)
may become negative. Nevertheless, there can be at most one change of sign in the
pattern of coefficients (considered in increasing order with the powers of e2t), as shown
in Figure A1b. Again, by the Descartes rule of signs, one concludes that γ

p
3 (t) + γ

q
3 (t)

can have at most one real zero. The same reasoning applies for γ
p
3 (t) + γ

q
1 (t) =

γ
p
3 (t) + γ

q
2 (t), for which n1 = n2 = 2 and

βi,2(p, q) = 2(1 − 2q − p(3 − 7q) + p2(1 − 4q)) , (A11a)

βi,1(p, q) = 2(1 − p)(3q + p(1 − 8q)) , (A11b)

βi,0(p, q) = 8 q p (1 − p) , (A11c)
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where i = 1, 2, so that γ
p
3 (t) + γ

q
2 (t) can have at most one zero for t ≥ 0, depending

on the sign of βi,2(p, q).
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