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Abstract

Gamma rays are produced by cosmic-ray (CR) protons interacting with the particles at the solar photosphere and
by CR electrons and positrons (CRes) via inverse Compton scattering of solar photons. The former comes from the
solar disk while the latter extends beyond the disk. Evaluation of these emissions requires the flux and spectrum of
CRs in the vicinity of the Sun, while most observations provide flux and spectra near the Earth, at around 1 au from
the Sun. Past estimates of the quiet Sun gamma-ray emission use phenomenological modulation procedures to
estimate spectra near the Sun. We show that CRe transport in the inner heliosphere requires a kinetic approach and
use a novel approximation to determine the variation of CRe flux and spectrum from 1 au to the Sun including the
effects of (1) the structure of the large-scale magnetic field, (2) small scale turbulence in the solar wind from
several in situ measurements, in particular, those by Parker Solar Probe that extend this information to 0.1 au, and
(3) most importantly, energy losses due to synchrotron and inverse Compton processes. We present results on the
flux and spectrum variation of CRes from 1 au to the Sun for several transport models. In forthcoming papers we
will use these results for a more accurate estimate of quiet Sun inverse Compton gamma-ray spectra, and, for the
first time, the spectra of extreme ultraviolet to hard X-ray photons produced by synchrotron emission. These can be
compared with the quiet Sun gamma-ray observation by the Fermi and X-ray upper limits set by RHESSI.

Unified Astronomy Thesaurus concepts: Cosmic rays (329); Solar wind (1534); Interplanetary turbulence (830)

1. Introduction

Spectra and many other characteristics of high-energy
cosmic rays (CRs) have been directly observed and investi-
gated for more than a century by various instruments. These
characteristics can also be deduced by the radiation they
produce by interacting with the diffuse interstellar particles,
photons, and magnetic fields; gamma rays from the decay of
pions produced by the interaction of CR ions (mostly protons;
CRps) and from inverse Compton (IC) scattering of low-energy
photons (mainly starlight) of CR electrons and positrons
(CRes), and radio radiation produced by CRes via synchrotron
mechanisms. Similar radiation can be produced by the
interactions of CRs with denser objects like stars, planets,
and satellites. EGRET on board the Compton Gamma-Ray
Observatory (CGRO) was the first to detect gamma rays from
the quiet phase of the Sun (QS). Over the past decade, the
Large Area Telescope (LAT) on board Fermi has provided a
rich body of data on >100MeV gamma rays during QS, which
consist of disk emission due to pion decay and somewhat
extended emission due to the IC scattering of solar optical
photons by CRes. These observations have been investigated
extensively, commonly using a phenomenological description
of solar modulation of the CRs (see, e.g., Fujii & McDo-
nald 2005; Moskalenko et al. 2006; Abdo et al. 2011; Orlando
& Strong 2007).

However, to the best of our knowledge, there has not been
much discussion, or any detailed analysis, of the synchrotron
emission by CRes. Evaluation of the synchrotron emission
during the active phase of the Sun with many active regions
and strong complex magnetic field structure is complicated.
But during QS periods the magnetic field in the heliosphere
from the photosphere to 1 au varies fairly smoothly
(approximately following the Parker spiral structure) from
B∼ 10 G to tens of microgauss (or a few nT). Thus, GeV to
TeV CRes can produce synchrotron radiation from a few GHz
to 1015 Hz at 1 au (B∼ 4 nT) and from ∼1015 Hz (∼1 eV) to
∼1021 Hz (∼MeV) near the photosphere (B∼ 10 G). Most of
this radiation will be undetectable or fall below the radiation
produced by other mechanisms. However, recent analysis of
the RHESSI observation of the Sun (Hannah et al. 2010) during
the QS phase shows some robust upper limits on the flux in the
hard X-ray (HXR) range.
Our main goal is to investigate the possibility of detecting

synchrotron radiation during the transport of CRes from 1 au to
the Sun and test whether the observed QS HXR upper limits
can constrain this model. This requires an accurate determina-
tion of the spectral variation of the CRes from 1 au, where they
are observed, to the Sun. As mentioned above, past works have
used the phenomenological modulation approach, the applica-
tion of which to the inner heliosphere is highly uncertain. As
we will show, this task requires a kinetic approach, which we
develop in this paper. The result from such a study can also
provide a more accurate determination of the expected IC
gamma-ray emission. The focus of the current paper is the
transport of CRes from 1 au to the Sun. In subsequent papers,
we will address the emission characteristics.
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In the next section, we describe several ingredients that are
needed for the calculation of the spectrum of the synchrotron
and IC emission from CRes during their transport through the
inner heliosphere from 1 au to the Sun. In Section 3, we
discuss the coefficients of the transport kinetic equation, and in
Section 4, we calculate the CRe spectral variation for three
models, and present an equation for the evaluation of radiation
spectra that can be observed at 1 au. A brief summary and
conclusions are presented in Section 5.

2. Synchrotron and IC Emissivity

The monoenergetic spectral emissions of relativistic elec-
trons (mass me, charge e) with Lorentz factor γ and pitch angle
α (or its cosine m a= cos ) at a distance r from the center of the
Sun can be described by the general function k(ν, γ, μ, r) (in
erg s−1 Hz−1), which varies with r because of the variation of
the magnetic field, B(r) (for synchrotron), and photon energy
density, uph(r) (for IC).

The emissivity (in s−1 Hz−1 cm−3) of a population of
electrons is obtained by integrating over the electron energy (or
Lorentz factor) and pitch-angle distribution, N(γ, μ, r) (in cm−3

γ−1, rad−1), as

ò òh n m g m n g m g=
g-

¥
r d N r k r d, , , , , , , 1

1

1
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( ) ( ) ( ) ( )

where g  1min is the lowest observed Lorentz factor.
The two main ingredients needed for evaluation of the

emissivity are the variations of the magnetic field, B(r), and
optical photon energy density, uph(r), and energy and pitch-
angle distribution of the CRes with distance from the Sun.

2.1. Structure of the Magnetic Field

Over the past decades, there have been several models
proposed for the variation of the magnetic field in the corona of
the Sun and in the inner heliosphere (r� 1 au). Also, there have
been several observations describing the B(r) relation. In
general, there are large dispersions in the observed values but a
power-law form, B(r)∝ r− δ, provides a satisfactory fit. It is
generally believed that the magnetic field in the heliosphere
follows a Parker spiral with δ; 2. However, recent observa-
tions by the Parker Solar Probe (PSP) found measurements at
distances 0.13< (r/au)< 1. or 27< (r/Re)< 214, showing
some variation from this form with large dispersion, but on
average they can be fit to a power law with δ∼ 1.75 and B
(r= 1 au)∼ 38 μG (Badman et al. 2021). Gopalswamy &
Yashiro (2011, hereafter GY11) using observations of the
coronal mass ejections derive the variation of the B field inside
this region, 5< (r/Re)< 25 with δ= 1.27± 0.03 and
B(r= 5Re)= 0.05 G. These two nearly overlapping observa-
tions, shown by the dotted lines in the left panel of Figure 1,
can be combined as

= + =-
 B r r R r r r R0.4 1 , with 13 , 2c c

1.2( ) ( ) ( ) ( )

shown by the solid-black curve, which once extrapolated to the
photosphere yields B0∼ 0.4 G. This is smaller than B0∼ 10 G
indicated by lower corona observations, indicating that the
profile must steepen rapidly below 5Re as indicated by other
observations and models. For example, Pätzold et al. (1987)
give

= + B r R r r R6 1 5 G, 33( ) ( ) [ ( )] ( )

shown by the dashed-black line, which agrees with PSP
observations and steepens to B0= 7.2 G at the photosphere.
Alissandrakis & Gary (2021) describe some radio observations
and present a summary of all past measurements. There is a
wide dispersion in these measurements as well. We will use a
combination of these results in our treatment of transport and
radiation of CRes.
In what follows (for the B field here and characteristics of

turbulence discussed below) we will treat the outer region
(0.1< r/au< 1) and the inner region (1= r/Re< 20) sepa-
rately. For the outer region, we use a fit to PSP observations,
and in the inner region, we use the two widely different models,
similar to the GY11 and Pätzold et al. (1987) observations.
These three fit forms, shown in magenta in Figure 1 (left
panel), are
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GY11 also provide two models of density variation, n(r), due to
Saito et al. (1977, SMP) and Leblanc et al. (1998, LDB) shown
in the left panel of Figure 1 by the dashed and solid red curves,
respectively. The density and magnetic field variation allow us
to calculate the variation of the Alfvén velocity,

p=v B m n4A p , shown by the blue curves, which is needed
for the treatment of the CRe transport described next. Here, we
will again use the following two approximate models:
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2.2. Photon Energy Density Variation

CRes will encounter photons radiated by the Sun that have a
blackbody frequency distribution with total flux

s p= =  F T L R4 , 6bb SB
4 2( ) ( )

where σSB is the Stefan–Boltzmann constant, T is the surface
temperature, and Le is the luminosity of the Sun. In the
optically thick (τ> 1) region just below the photosphere
(r� Re) the photon energy density =-

u R F c4 bbph ( ) and in
the optically thin region just above it, the energy density of
outflowing photons will be half of this, =+

u R F c2 bbph ( ) . At
larger distances where photons move radially the energy
density approaches

p= = >  u r L r c F c R r r R4 for . 7bbph
2 2( ) ( ) ( )( ) ( )

Orlando & Strong (2007) derive the following relation
describing the transition between the last two regions as

= = - - u r F c h r h r R r2 with 1 1 . 8bbph
2( ) ( ) ( ) ( ) ( ) ( )

The photon energy density can be converted to an equivalent
magnetic field, p=B r u r8ph ph( ) ( ) with =+

B R 10.5ph ( ) G.
The top (solid-green and dashed-black) curves in Figure 1
show variations of Bph(r) based on Equations (8) and (7),
respectively, which are significantly different at very small
distances, r< 2Re.
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2.3. CR Electron Spectrum at 1 au

The spectral intensity, J(E, r= 1 au), of the CRes at 1 au
during the solar minimum is observed by AMS02 (Aguilar
et al. 2014) and H.E.S.S. (H.E.S.S. Collaboration et al. 2017),
which appears to be highly isotropic. Thus, the total flux F
(E)= 4πJ, which is evident from the right panel of Figure 1,
obeys a power law with index p=−3.17, for the most relevant
energy range of a few GeV to TeV. For an analytic description,
we fit the spectrum to a broken power law with two breaks at
E1= 2.8 GeV with index p1= 0.40 below it, and at E2= 0.9
TeV with index p2=−4.05 above it:

= =
+

´ +

-

- -

F E r F
E E

E E

E E
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1

1 , 9

p

p p
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2
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where F0= 0.014 cm−2 s−1 GeV−1, and n= 4 for a sharper
break. The total energy flux Ftot∼ 0.1 GeV cm−2 s−1 is about
103 smaller than solar wind energy flux. The CRe spectral
density N(γ, r= au) (needed for calculation of the emissivity)
is obtained by dividing the flux by the speed of light (for
relativistic electrons) changing E to γ and E1, E2 to
γ1= 1957E1= 5.6× 103, γ2= 1957E2= 1.8× 106. This gives
N0= F0/(1957c)= 2.7× 10−16 cm−3 γ−1, and the total
number density of Ntot∼ 3× 10−12 cm−3, again much smaller
than the solar wind density.

CRes with greater than GeV energy traveling from 1 au
toward the Sun will spiral around the magnetic field lines,
initially with the above spectrum, and an isotopic pitch-angle

distribution. During this transport, they lose energy via the
synchrotron and IC processes and are scattered by turbulence in
the solar wind. Their pitch angle will also change due to these
scatterings and the variation of the magnetic field. These
interactions will change their spectrum as described next.

3. Transport Effects and Spectral Variations

3.1. Transport Equation

We first note that throughout the inner heliosphere (r< 1 au)
the electron gyroradius,

g pn g m= = ´ -^r v B2 1.7 10 1 ,g B
3 2( ) cm is smaller

than the size of the source, or more precisely the B -field scale
height, d= =-H d B ds rln 1.2B

1(∣ ∣) . Here, m= -v̂ v 1 2

is the perpendicular component of the electron velocity and
νB= eB/(2πmec)= 2.8× 106B is the gyrofrequency, and for
particles following Parker spirals we use for the distance along
the field lines s∼ 1.2r. For the isotropic distribution of pitch
angles, m pá - ñ =1 42 , and for = d-

B r B r R ,0( ) ( ) we
have

z gdº = ´ ´d- -
r H r R B1.6 10 G . 10g g B

8 1
0( ) ( ) ( )

In the most relevant inner region, for the Pätzold model with
B0∼ 8.4 G, δ∼ 2.6, this ratio is ζg= 0.6(γ/106) and
=0.002(γ/106) at r= 20Re and 1, respectively. For
the GY11 model, these ratios are ζg= 0.4(γ/106) and
ζg= 0.008(γ/106), indicating that throughout most of the inner
region CRes are tied to the magnetic field lines and spiral down
to the Sun along the Parker spiral guide fields. Thus, inside this

Figure 1. Left panel: some analytic fits to the observed structure of the magnetic field (black lines), density (red lines), and Alfvén velocity (blue lines). The black
points are measurements from PSP (Badman et al. 2021) The two dotted black lines show B(r) fit to PSP points and to the results from GY11. The solid line is a fit to a
combination of the two given in Equation (2). The dashed-black curve represents data from Pätzold et al. (1987). The upper solid green and dashed-black curves show
the variation of equivalent field, p=B u8op op , for two models of optical photons energy density uop given in Equations (8) and (7), respectively. The red curves
show two models of the density from Saito et al. (1977) and Leblanc et al. (1998, LDB). The blue curves present three models of the Alfvén velocity obtained using (i)
the combined+LDP (dotted), (ii) Pätzold+SMP (dashed), and (iii) an average of the two (solid). The points are Alfvén velocity values given by GY11. The three
magenta lines show the three power-law forms of Equation (4) we use in our analysis. Right panel: observed spectrum of CR electrons by AMS02 (filled points;
Aguilar et al. 2014) and H.E.S.S. (H.E.S.S. Collaboration et al. 2017) (open circles) at 1 au from the Sun. The red curve shows an analytic fit to the data consisting of a
smoothly broken power law with two breaks at energies E1 = 2.8 GeV (with the index −0.4 below it) and E2 = 900 GeV (with the index −4.05 above it), described
by Equation (9).
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radius, the modulation approach is not appropriate and we need
a kinetic approach. On the other hand, in the outer region with
B0= 1 G and δ∼ 2, ζg= 4(γ/106) and ζg= 0.5(γ/106) at 1 au
and r= 20Re, respectively, so that the kinetic approach
provides an approximate description of the transport. However,
since most of the energy loss and emission occur mainly near
the Sun this approximation would be adequate.7 This also
implies that in the region with ζg< 1 we can use the gyro-phase
averaged particle density distribution f (t, s, μ, E) as a function
of time, distance, s, pitch-angle cosine, μ, and energy, E (and
velocity v).

This distribution can be described by the following version
of the Fokker–Planck transport equation:

m
m

m
m m

m
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where E is the absolute value of the energy loss rate, Dμμ is the
pitch-angle diffusion rate,8 and Q describes the energy
spectrum and pitch-angle distribution of the injected particles
at 1 au, s= 0. In what follows, instead of s, we use the distance
from the Sun, r= 1 au− s/(1.2) or ds∼ 1.2dr, which implies
that we multiply mm D E, and Q by 1.2. Since all coefficients of

this equation ( mm  B D E Q, , , ) vary on timescales much longer
than the transport time of CRes from 1 au to the Sun, we can
assume a steady state, i.e., we can set ∂f/∂t= 0, and set the
injection rate at 1 au to = =Q E F E r au,( ) ( ), given by
Equation (9), with an isotropic pitch-angle distribution. Then
the spectral flux down to the Sun will be F(r, E)= v〈μ〉f (r,
E)= vf (r, E)/2.

It should also be noted that the above analysis is valid when
the diffusion of particles perpendicular to the magnetic field is
small compared to diffusion parallel to the field, described by
Dμμ. Approximately, this requires a particle gyroradius less
than its mean-free path described in Section 3.1.3. As shown in
Appendix C, this is satisfied for γ� 106 throughout most of the
inner heliosphere, especially in the inner regions near the Sun
where the losses are most important.

We note that the kinetic approach is very different than the
common use of modulation potential, which seems to work
well in the outer (r> 1 au) heliosphere, but its extrapolation to
the inner regions is highly uncertain. As will be shown below,
we obtain different spectral variations with the kinetic
approach.

We now give a detailed description of the transport
coefficients.

3.1.1. Energy Loss

Throughout most of the outer heliosphere the energy loss,
described by the first term on the right-hand side of
Equation (11), is negligible but it increases relatively rapidly
with energy, and as the CRes approach the Sun. Relativistic
electrons with isotropic pitch-angle distribution lose energy
mainly by IC and synchrotron processes9 with the rate (see,
e.g., Equations (7.16) and (7.17) of Rybicki & Lightman 1980)

s g p= - = +E c u u u B4 3 1 with 8 , 12T
2

eff eff ph
2( ) ( ) ( ) ( )

where σT= 6.6× 10−25 cm2. Replacing p= +
u B R 8ph ph

2 ( )
and defining = ++

B B R B ,eff
2

ph
2 2( ) we obtain the rate of

change of the Lorentz factor, γ= E/(mec
2),

g g= ´ -- -d dt B1.27 10 1 G s . 139 2
eff

2 1( )( ) ( )

In Section 4, we will need the variation of γ with distance dγ/
dr= 1.2dγ/ds= [1.2/(〈μ〉c)]dγ/dt. In what follows we use the
dimensionless distance x= r/Re so that for B(r)= B0x

− δ we
can write z= + d+ -

B B R h x xeff
2

ph
2 2[ ( )] [ ( ) ], where

z = =+
B B R B 10.5G0 ph

2
0

2[ ( )] ( ) . Thus, we obtain

g g z= ´ - + d- -d r dx h x x7.8 10 1 . 147 2 2( ) ( )( ( ) ) ( )

We note the following three important aspects of the above loss
rate. (1) For B0∼ 10, IC and synchrotron losses will be
comparable near the Sun, but since δ∼ 2, IC losses will
dominate at larger distances. However, since most of the
radiation is produced near the Sun the IC energy emission in
gamma rays and synchrotron in the UV–X-ray range will be
comparable. (2) For free streaming relativistic electrons near
the Sun (x∼ 1), Δγ/γ∼ 1 for TeV electrons, so that energy
losses cannot be ignored. In addition, as shown below the free
streaming assumption is not correct and particles take a longer
time to reach the Sun and hence lose more energy. (3) The IC
loss rate ignores the Klein–Nishina (KN) effect, which reduces
the rate at γ> γKN∼mec

2/òph∼ 5× 105. For photon energy
òph∼ 1 eV, approximately by a factor fKN∼ 1/(1+ t2) or
1/(1+ t)3/2) according to Hooper et al. (2017) and Moderski
et al. (2005), respectively, with t= γ/γKN, indicating that the
KN effect can be ignored for electron energies below a few
hundred GeV. Numerical calculations by Orlando (2008) show
that at fKN∼ 0.5 for TeV electrons. We will ignore KN effects
in this preliminary analysis of the transport.

3.1.2. Advection and Crossing Time

The second term in Equation (11) describes particle
advection and can be characterized by the crossing time across
a source of size L as τcross ∼ L/v. In our case, we set
L= s= 1.2r, and v= c to obtain

t = x2.8 s. 15cross ( )

3.1.3. Pitch-angle Variations

The final important aspect of transport involves pitch-angle
changes that are caused by the following three processes.7 Note that this will also be the case for protons with γ < 103 or energies less

than 1 TeV, as is the case for electrons.
8 We ignore energy diffusion rates, DEE, which for relativistic particles is

< -v c 10A
2 5( ) times smaller than Dμμ throughout the heliosphere. We also

ignore terms involving solar wind, Alfvén, and other drift velocities, which are
much smaller than the CRe speed, v = c.

9 Bremsstrahlung losses may become important below the photosphere,
which will not be of interest here. Bremsstrahlung may also be more important
than synchrotrons at distances �1 au and low energies where all losses are
negligible.
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1. Pitch angles change due to the energy loss processes of
relativistic electrons is negligible. For example, for the
synchrotron process

m s
p

m m g= - -
⎜ ⎟
⎛
⎝

⎞
⎠

d

dt

c

m c
B

4
1 cm , 16T

e
2

2 2 1( ) ( )

which is γ−3 times smaller than the energy loss rate, gd

dt
(see, e.g., Petrosian 1985) and can be ignored in
Equation (11).

2. The pitch angle will also change because of the
convergence of the B field by the large factor of >104

during transport from 1 au to the Sun. This effect is
described by the third term in Equation (11), with the
characteristic timescale, τB= 2HB/v, where the magnetic

field scale height is = ¶
¶

-
HB

B

s

ln 1( )∣ ∣ . For a power law B
(r) with index δ, ds= 1.2dr, and v= c this yields the
timescale

t d= x5.6 s. 17B ( )

In the presence of such strong convergence, only
electrons within a narrow pitch-angle range (those in
the loss cone) can reach the Sun, thus, requiring an
efficient scattering process to scatter the particles into the
loss cone that will allow transport to the Sun.

3. The third and most important cause of pitch-angle change
is scattering by turbulence.

As is well known, the solar wind, through which the
CRes propagate, contains a high level of turbulence,
which can be the scattering agent. This process is
governed by the pitch-angle diffusion coefficient with
the characteristic scattering time or mean-free path of (see
Petrosian 2012 and the discussion below)

òt
m

m g t=
-

=
mm- D

d v3 8
1

and . 18sc
1

1 2 2

mfp sc( ) ( ) ( )

As will be shown below, this time for the most part is
smaller than the above two transport timescales
(Equations (15) and (17)).

3.1.4. Escape Time

The combined effect of these processes determines the
resident or travel time of particles at any point, and the time for
the traverse from 1 au to the Sun, denoted by an escape time
Tesc (r), which is a function of the above-defined timescales.

The exact treatment of this problem requires a numerical
solution of the Fokker–Planck kinetic equation. This is beyond
the scope of the current paper. Here, we use some approximate
treatment based on some of the analytic results from Malyshkin
& Kulsrud (2001) and numerical simulations of Effenberger &
Petrosian (2018). As shown in these papers, in the strong
diffusion limit, i.e., when λmfp= r andHB, or equivalently
when τsc = (τcross and τB), the pitch-angle distribution will
remain isotropic. The first consequence of this is that the
important factor is not the large total convergence factor but the
local convergence factor η= r/HB∼ δ/1.2< 2, meaning the
presence of a relatively large loss cone. Second, in this case, we
are dealing with the well-known random walk relation and
Tesc ∼ τcross

2/τsc ? τcross . More generally, in this case, one
can use the pitch angle integrated (in the downward directions)
quantities in Equation (11). Defining total density as

ò m=
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N s E d,
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1
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where κss is the spatial diffusion coefficient related to the
scattering time (or mean-free path) as τsc = 3κss/v

2. We show
in Appendix D that if one ignores the energy loss term, which
is common practice, this equation can be solved approximately,
yielding spectral variation that is quantitatively different from
the one derived using the modulation approach.
There are no simple analytic solutions when the energy loss

term is included. However, a simple dimensional argument, or
spatially integrated version of this equation, known as the leaky
box model, implies that, in the strong diffusion limit,
τsc ? τcross , time spent in a region of size L, or the escape
time k t t~ ~T L ssesc

2
cross

2
sc( ) , as deduced from the

random walk problem. In the opposite weak diffusion limit
(τsc = τcross ∼ τB), the particles are reflected and can escape
toward the Sun only when scattered into the loss cone. Thus,
the escape time becomes proportional to the scattering time,
and as shown in the above papers the proportionality constant
is equal to the logarithm of the convergence factor η= δ/1.2.
The numerical simulations of Effenberger & Petrosian (2018),
based on the Fokker–Planck equation, show that the following
relation, similar to the Malyshkin & Kulsrud (2001) equation,
provides an excellent approximation for the isotropic pitch-
angle scattering rate and isotropic distribution of the injected
particles:

g t t t h
h t t h d

= = +
+ ~
R r T, 2

ln with 1.2. 20
esc cross cross sc

sc cross

( )
( ) ( )

The first and third terms on the right-hand side describe the
above two limiting cases that are connected by the middle term
with R nearly constant (independent of scattering time) and
close to the minimum value, h h= +R 2 lnmin ( ) (at
t t h= lnsc cross ), which varies from ∼3–6 for δ= 1.5–2.6.

This equation involves the three timescales defined above,
which vary with distance from the Sun, with the critical
variable being the mean-free path, or the scattering time, τsc ,
which depends also on particle energy. As described below, it
depends on the energy density and spectrum of the turbulence,
in addition to the magnetic field and gas density in the
solar wind.
This procedure allows separating the implicit dependence on

distance of N(s, E) (described in Appendix D) and energy
dependence described next. The upshot of this is that the
transport time, Tesc , of CRes is longer than the free crossing
time, τcross , which, as stated above, increases the energy losses
by the factor R(r, γ), and directly affects spatial dependence.

3.2. Energy Loss Enhancement Factor

The energy loss enhancement factor (ELEF) depends on the
three timescales defined in the previous section, τcross , τB, and
τsc. The first two are well defined given B(r). Evaluation of the
third is more complicated because there are no direct
measurements of λmfp or τsc , so we have to rely on theoretical
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models of turbulence-particle interaction rates, which, in
addition to B(r) and background particle density, n(r), requires
measurement of the characteristics of turbulence and its
variation with distance.

3.2.1. Characteristics of Turbulence

Over the past two decades there have been several in situ
measurements of the intensity and spectrum of turbulence,
 k( ), around 1 au by near-Earth instruments (see, e.g.,
Leamon et al. 1998, 1999; Bruno & Carbone 2013). More
recently, observations by PSP (Chen et al. 2020) have extended
this information from 1 to ∼0.1 au. In Appendix A, we
summarize these measurements, ending with a parameterized
form for the turbulence energy density and its variation with
distance from the Sun, = -r k r k, q

turb( ) ( ) , where q is the
spectral index in the inertial range, < <k k kmin max. Measure-
ments around 1 au indicate that q= 5/3 (Kolmogorov) but PSP
measurements indicate a gradual variation from q= 5/3 to the
Iroshnikov–Kraichnin (IK) index of q= 3/2 between 0.3 and
0.2 au. In our analysis, we will use both these models plus a
model with q= 2, which stands for the free transport case (i.e.,
unhindered by the B -field variation or turbulence). We fit the
observed spatial variation to a power law for the outer region
(r� 20Re). The result, shown by the solid blue line in
Figure 6, is

 



d=
= =

d-
r r R , with

3.1, 0.033 nT . 21
trturb 0

0
2

tr( ) ( )
( )

For the inner region, we use a combination of extrapolation of
the above expression and some theoretical results. In
Appendix A, we also present an expression for the ratio of
turbulence to magnetic energy densities, =f r B rturb turb

2( ) ( )
needed below.

3.2.2. Scattering Time

Theoretical models of wave-particle interaction rates deter-
mine the scattering time, which depends in a complicated way
on several variables and parameters related to B(r), n(r), and
 r k,( ). As shown in Appendix B, there are two main
parameters. The first is the ratio of plasma to gyrofrequencies,
a wº W µ n Bp , a measure of the degree of magnetization
or the Alfvén velocity in units of the speed of light,
βA= vA/c; for protons αp= 1/βA, for electrons
a b= m me e p A( ) . The second one is the characteristic
wave-particle timescale τp or the rate (see, e.g., Dung &
Petrosian 1994)

t p
b n

= W - F F

= W =

- -f q

ck f

2 1 with

, 22
p

q

A B

1
turb

1

min min

( ) ( )
( ) ( )

( )

with electrons gyrofrequency νB=Ωe/(2π)= 2.8× 106 Hz. At
low energies and high magnetization (αe< 1) electrons interact
with many plasma waves complicating the results (Pryadko &
Petrosian 1997, 1999; Petrosian & Liu 2004). However, for
relativistic electrons, with Lorentz factor γ>mp/me, and low
magnetization (i.e., αe? 1 or βA= 1, which is the case in the
solar wind), electrons interact only with low-frequency (or
small k) Alfvén waves, with the dispersion relation ω(k)= vAk∥,
for parallel propagating waves, and with fast mode waves,
ω(k)= vAk, for perpendicular propagating waves, both of which

are present in the solar wind. In this case, the energy
dependence of scattering time simplifies to τsc (r,
γ)= τsc ,0(r)γ

2− q, where, as shown in Equation (B4),
τsc ,0(r)/τp= 1.6, 2.6, and 3.9 for q= 3/2, 5/3, and 2,
respectively. Using the observed characteristics of the turbu-
lence in the outer region and its extrapolation to the Sun, and
the three models of the B field, we can calculate the ratio
τcross /τsc and the ELEF R(r, γ)= Tesc /τcross . As shown
below, for the most part, we are in the strong diffusion limit
so that R(r, γ)= τcross /τsc .
The radial variations of R(r, γ= 1)= τcross /τsc ,0 (modulo

the value of ξ defined in Appendix B) are shown in the left
panel of Figure 2. As is evident, the extrapolation of the outer
region curves to the Sun lies roughly halfway between the
widely different inner curves due to the difference in the B-field
models there. For example, this ratio is 50 and 600 for q= 5/3
and 3/2 at the Sun. These values and the radial variations are
not too dissimilar to the theoretical estimation of the mean-free
path by Vainio et al. (2003), shown by the dotted line. As is
evident, for the most part, this ratio is greater than 1 so we are
in the strong diffusion limit and the ELEF can be approximated
as

g t t g= = -
R r R r R, . 23q

cross sc 0
2( ) ( ) ( )( )/

From the description of the derivation of this ratio given in
Appendix B, it is easy to show that tµ -R r k Bq q

cross 0 min
1( ) ( )

so that (for τcross ∝ r and µk r1min )
 d d= - + -q2 1tr ( ), which gives ò= 0.25, 0.40 and 0.70
for q= 3/2, 5/3, and 2, respectively. With this extrapolation to
r= Re, and setting ξ= 0.04, we obtain R0= 3000, 200, and 1,
respectively. However, for q= 2 we will use ò= 0.0 as a proxy
for the free transport case ignoring scattering and field
convergence effects. We note that ELEF decreases with energy
and the assumption of a strong diffusion limit will not be valid
at energies g g> = -R x q

max 0
1 2( ) ( ). However, even at the

photosphere g ~ ´ ~ ´4 10 and 2 10max
6 6 for q= 3/2 and

5/3, respectively. For q= 2, the ELEF is independent of
energy but because of the field convergence effect, we may be
in the middle region of Equation (20), with = ~R R 30 min , a
value larger than 1, so our value of R0= 1 for q= 2 gives the
absolute minimum effect of the energy loss on the spectrum.
It should be noted that the above values of ELEF parameters

are uncertain because of the absence of measurements of
turbulence characteristics at r< 20Re. Thus, the results
presented below based on these parameters should be
considered as a representative range of the possible effects of
energy loss. Our main goal, to be dealt with in upcoming
papers, is to use Fermi and RHESSI observations to constrain
these parameters.

4. CRe Spectral Variation and Resultant Radiation Flux

As described above, CRes with the spectrum observed at 1
au are guided along B fields following Parker spirals to the Sun
maintaining the isotropic pitch-angle distribution because of
scattering by turbulence. This process changes (1) their energy
loss rate and thus their spectra, and (2) their number density
because of the reduction of their bulk flow and focusing by
converging magnetic fields.
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4.1. Energy Loss Rate and CRe Spectral Variations

The energy loss rate given by Equation (12) is enhanced by
the factor R(r, γ). Thus, by multiplying the energy loss rate
given in Equation (14) by R(γ, r) in Equation (23), we obtain



g g
z

= ´
= + d

-

-
 d R g r R d r R

g x x h x x

7.8 10 ,

. 24

q 7
0

2

( ) ( )
( ) ( ( ) ) ( )

Integrating this for an electron with initial Lorentz factor γ0 at 1
au (xau= 214) gives the variation of the Lorentz factor with
distance as

ò
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There is no simple analytic expression for G(x). For this
purpose, we set h(x)= 0.5(x−2+ x− n), with n? 1 to account
for the sharp increase in h(x) as x→ 1. Using this form, which
gives an identical value for G(1) for n= 8, we obtain
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From this, we obtain
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where we have defined the critical function

g g= -A x CG x, , 28q 1( ) ( ) ( )( )

which is shown in Figure 2 (right panel) for ξ= 0.04, three
values of q, and Lorentz factors γ= 106, 105, and 104. As is
evident, this crucial factor has similar distance dependencies

for the three models. However, the dependence on energy (or
the Lorentz factor) is more variable.
Given A(x, γ) we obtain the spectral variation with r of CRe

density10 as g g g g g g g= =N r N r d d N r, , , q
0 0 0 0( ) ( ) ( )( ) .

Setting the energy dependence of N(γ0, r) to the observed
spectrum at 1 au given in Equation (9), (and changing E to γ)
we obtain the spectral shape at different distances inside 1 au,
due to energy loss as11

g
g

=
-

´ -

-

- -

⎜ ⎟
⎛
⎝

⎞
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

N r N r
A r R

A r R

,
1

1 , 29

q

q q

0 1 1

1

( ) ( )
[ ( )]

[ ( )] ( )

( )

( )

where N0(r) describes the spatial variation, with
N0(r= 1 au)= N0 defined below Equation (9). The (correction)
term in the square brackets will be more important at higher
energies and closer to the Sun with maximum value at the
photosphere with = = -G G 1 0.5 1max ( ) ( ) + 0.5/
(n− 1− ò) + ζ/(2δ− 1− ò)∼ 1.

4.2. Spatial Variations

As mentioned above the spatial variation is affected by two
processes. First, in the regions where gyroradius is smaller than
the B-field scale height HB (i.e., r< rcr), the convergence of
field lines toward the Sun focuses the particles so that their
number density in a bundle of field lines increases inversely
with the cross-sectional area, A(r), of the bundle and
N0(r)∝ 1/A(r)∝ r−2 for radial or Parker spiral field lines.
Second, interactions with turbulence change the CRe residence

Figure 2. Left panel: spatial variation of the ratio τcross /τsc ,0 = R(r/Re, γ = 1) (modulo the scaling factor ξ1/2) for the IK model with q = 3/2, Kolmogorov with
q = 5/3, and free transport approximation q = 2. Note that the ratio R(r, γ = 1) is very different for the three models at γ = 1 but because of the different energy
dependence of the models the differences at the relevant energies 104 < γ < 106 is much smaller. The dotted line denoted Fichtner et al. is based on theoretical
calculations of Vainio et al. (2003). Right panel: radial variations of A(r/Re, γ) defined in Equation (28), for three values of γ and three values of q; q = 3/2, ò = 0.25,
R0 = 3000, q = 5/3, ò = 0.40, R0 = 200, and q = 2, ò = 0, R0 = 1.0. As is evident, the differences between the models at high energies are smaller.

10 We use number density rather than flux because in calculating the emissivity
in Equation (1) we need the number density.
11 Note that we require A(x, γ) > 1, which means the spectra at small distances
→0 for g g= º -CG x q

max
1 1[ ( )] ( ).
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time, or the escape time, Tesc . This changes the normalization
by the ratio Tesc/τcross , which in the strong diffusion limit is
equal to t t = = R r R r Rcross sc,0 0 0( ) ( )/ . The combined
effect then yields

= = -
⎜ ⎟
⎛
⎝

⎞
⎠

N r N r
A r R r

A r R r
N r r r . 300 0 cr

cr 0

0 cr
0 cr cr

2( ) ( ) ( ) ( )
( ) ( ))

( )( ) ( )

As shown in Appendix D, this spatial variation can be derived
by the integration of Equation (19) over the volume of a bundle
of field lines.

4.3. CRe Spectral Variation

Because of the uncertainty in the value of rcr, here we focus
on the effects of commonly ignored energy loss, which gives
the dependence of flux on energy setting N0(r)= N0. The
inclusion of the spatial variation in Equation (30) will scale the
energy spectra by -r rcr

2( ) .
In Figure 3, we show spatial variations of the CRe spectra

flux, g g=F r cN r, ,( ) ( ), from 1 au to the photosphere12 for
three models of the transport and two scenarios of the B-field
structure (Pätzold model and PSP) described in Equation (4).
First, we consider the free transport case ignoring scattering
and field convergence, which means we set q= 2, R0= 1.0,
and ò= 0. The results are shown in the left panel of Figure 3,
which represent the minimum effect of the transport on spectral
variation. We also show spectra for two more realistic models
of turbulence: the IK model with q= 3/2, R0= 3000, and
ò= 0.25 in the middle panel, and Kolmogorov with q= 5/3,
R0= 200, ò= 0.40 in the right panel.

As is evident, the most pronounced loss and modification of
spectra occur near the Sun. For a closer comparison of spectra
for different turbulence models, in the left panel of Figure 4, we
show, for two models of the B field, the spectra at the
photosphere for the three models of turbulence used in
Figure 3. In the right panel, we show spectra for smaller
values of the critical parameter, R0= 2000 and 130 for q= 3/2

and 5/3, respectively, to demonstrate the possible range of
spectra.
It should be noted that there are some uncertainties in the

value of the three primary model parameters, B0, ò, and q, used
here, in addition to the uncertainty in the normalization values
discussed above (Equation (30)).
Substituting these electron spectra in Equation (1) one can

calculate the spectra of synchrotron and IC emissivities, η(ν, r),
as a function of distance from the Sun, for appropriate
interaction cross sections, which depend directly on the
variations with r of the B field and optical photon energy
density, respectively.

4.4. Expected Radiative Flux at 1 au

The observed flux of radiation at Earth at the distance 1 au
from the Sun will depend on the angle θ between the
observation line of sight and the Sun-Earth connection and
angular area q q fW =d d dsin , depicted in Figure 5. The total
flux will be an integral over the line of sight:

ò òn q d
h n

p p
h nW = =

W¥ ¥
F

r dV dl

l
dl

d
r dl,

,

4 4
, ,

31
0 2 0

( ) ( )( ) ( )

( )

where the volume element dV= A⊥dl yielding
(dV/dl)/(4πl2)= (dΩ/4π), and q= + -r a l al2 cos2 2 2 ,
where a= 1au. From this, we find

q=  -dl dr r r a sin2 2 2 , with the minus sign for the
integral from Earth, l= 0 to q= =l l a cos0 (or r= a to

q q= =r a lsin tan0 ), and the plus sign for l= l0 ( q=r a sin )
to, in principle, infinity but in practice we can use

q=l a2 cosmax (or =r amax ) as the upper limit, since most
of the radiation will come from the vicinity of the Sun. This
makes the two integrals equal yielding

òn q d
d
p

h n
q

W =
W

-q
F r

rdr

r a
,

2
,

sin
. 32

a

a

sin 2 2 2
( ) ( ) ( )

Thus, to calculate the expected radiation fluxes from the solar
disk and around it we need the electron spectra, N(γ, r) from 1
au to the Sun. For the azimuthally symmetric situation at hand,

Figure 3. Variation with the distance of the spectrum of CR electrons from 1 au (black line fitted to observed AMS02 and H.E.S.S. points) to the Sun, at several
distances obtained from Equation (29). The top curve shows an analytic fit to the observed data described by Equation (9). The red-solid and blue-dashed curves show
spectra for the two specified models of the B field: (left panel) q = 2, R0 = 1.0, and ò = 0.0, which means we are ignoring scattering and field convergence effects. The
middle panel illustrates the Kolmogorov model with q = 5/3, R0 = 200, and ò = 0.40 and the right panel illustrates the IK model with q = 3/2, R0 = 3000, and
ò = 0.25; see Figure 2, left panel.

12 As described in Section (3.1), the kinetic equation used here is only
approximately true at high energies in the outer r > rcr ∼ 10Re region.
However, as can be seen in these figures most of the variation of the spectra
occurs in the inner region where the kinetic approach is required.
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we integrate over f to obtain d p q qW = d2 sin , and using the
dimensionless distances x= r/Re,

q= = =x a R 214 1 sinau 0, we then obtain

òn q d q q h n
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W = =

´
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q F R d x r R

xdx

x x

, sin ,

sin
. 33

x

x
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2
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2 2

au

au( ) ( ) ( )

( )

4.4.1. Flux from the Solar Disk and Beyond

For emission at the photosphere (i.e., θ� θ0), we only see
half of the flux because of the high optical depth of the Sun,
and the lower limit of the integral, q =x sin 1au independent of
θ. Thus, we can change the order of integration, first integrating
over the angle θ from 0 to θ0 and obtain the flux from the whole
disk,

ò òn h n

q q

q

= =

´
-

q
 F R x r R xdx

d

x x

1 2 ,

sin

sin
, 34

x
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2
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2 2

au 0( ) ( ) ( )

( )

Since θ0= 1, we can set q q=sin , in which case the integral
over θ can be carried out easily yielding

òn q

h n

=

= - -
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F R

x r R x x x dx

1 2 sin

, 1 , 35

a R
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2
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2
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with q = ´R1 2 sin 7.6 10 cm2
0

5( ) . At the photosphere,
the emission increases by a factor of 2.13 For radiation from
regions larger than the Sun the angle integrated flux can be

obtained as

òn q n n q q q< = + ¢ ¢ ¢
q

q
F F F d, , sin , 36disc

0

( ) ( ) ( ) ( )

where n q¢F ,( ) is given in Equation (33).
In summary, given the radiation emissivity η(ν, r) and

spectral variation of the CRe spectrum, Equation (29), we can
obtain the expected fluxes from the disk, Equation (35), and
areas larger than the disk from Equation (36).

5. Summary and Conclusions

CRs are observed in great detail by the near-Earth
instruments around 1 au and beyond in the outer heliosphere,
but there are scant measurements of CRs in the inner
heliosphere. However, CRs interacting with solar gas and
fields can produce high-energy radiation mainly in the gamma-
ray range (observed first by EGRET instruments on board
CGRO and in greater detail by the Large Area Telescope on
board Fermi) involving well-known emission processes during
the quiet phases of the Sun (QS). Interpretation of these
emission processes requires a knowledge of the flux, spectrum,
and other characteristics of CRs in the inner heliosphere (inside
1 au), which requires an accurate treatment of the transport of
CRs from 1 au, where these characteristics are known, to
the Sun.
The past interpretations of this radiation have treated the

transport of CRs using a phenomenological modulation method
(see, review by Orlando & Strong 2021), which has had some
success treating the transport of CRs from the outer boundaries
of the solar wind to 1 au. The primary physical process
affecting this transport is the interaction of CRs with turbulence
in the solar wind, but in the inner heliosphere other effects such
as the presence of a strong guiding magnetic field, and for
CRes, energy losses become dominant. The modulation
methods do not treat these aspects. In particular, to the best
of our knowledge, the important role of energy losses has not
been treated quantitatively.

Figure 4. CRe spectra at the photosphere for two B-field models (PSP and Pätzold). The left panel illustrates the three models of turbulence with the characteristics
given in Figure 3 and the right panel illustrates different values of the critical parameter R0 = 2000, 130 for q = 3/2 and 5/3, respectively.

13 For emission near the limb one must consider optical depth effects that
depend on the energy of emitted photons. In general, the optical depth
decreases rapidly above the photosphere except at the radio regime where
synchrotron self-absorption and free–free (or bremsstrahlung) absorption may
remain significant to a larger distance.
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The aim of this paper is the development of an algorithm for
this analysis with a focus on the transport of CRes. It is well
known that CRes interacting with solar optical photons near the
Sun produce some of the observed gamma rays via the IC
process (Abdo et al. 2011). Our results can provide a more
accurate treatment of this radiation. On the other hand, there
has not been any estimate of possible synchrotron radiation by
CRes spiraling along magnetic field lines. Our eventual goal is
an accurate calculation of the synchrotron emission using the
transport method we have developed in this work. Observation
and interpretation of the synchrotron emission by CRes is best
carried out during the QS when, as we have shown,
synchrotron emission near the Sun is expected to be mainly
in the EUV to HXR range. Observation by RHESSI (Hannah
et al. 2010) has provided a robust upper limit on the QS flux in
the X-ray band from 3–100 keV, which can constrain the
predictions of the synchrotron model.

Below we give a brief summary of the salient aspects of our
paper relevant to the transport of CRe from 1 au to the Sun.

1. We show that treatment of transport requires a kinetic
approach because for prevailing B fields, especially
closer to the Sun, the gyroradius of >GeV electrons is
smaller than the B-field scale height so that CRes are tied
to the strong guiding field and spiral around them losing a
significant amount of energy (and producing synchrotron
radiation). This transport can be treated by the Fokker–
Planck equation, including three main ingredients: B-field
convergence, synchrotron, and IC energy losses, and
scattering by turbulence. The first two require the
structure of the amplitude magnetic field and variation
of well-known photon energy density. The last requires
the spatial variation of the energy density and spectrum of
turbulence.

2. Several instruments, in particular PSP, provide in situ
measures of the B field down to about 0.1 au, and there
are several indirect estimates of the B field inside this
region. We use a combination of these measurements
described in Section 2.1. For IC energy loss, we use solar
photon energy variation derived by Orlando & Strong
(2008). Several earlier in situ measurements describe the
characteristics of turbulence at around 1 au and PSP has

extended these measures to about 0.1 au. We do not have
any measurements below this so we rely on extrapolation
and some theoretical calculations in this region.

3. Instead of solving the kinetic equation numerically, we
use a simpler method based on numerical simulations by
Effenberger & Petrosian (2018), which accounts for field
convergence and pitch-angle diffusion, Dμμ, due to
scattering with turbulence. This method introduces the
concept of the resident time or escape time, which allows
separating the determination of the spatial and spectral
variations. In addition, the ratio of the escape to free
crossing time enhances the rates of synchrotron and IC
energy losses, and reduces the overall density of the
CRes. The density, however, increases toward the Sun, in
regions where the gyroradius is small, due to the focusing
effect of the converging field lines. This critical timescale,
described in Equation (20), depends on the free advection
or crossing time, τcross , on B-field scale height, HB, and
the mean-free path, λmfp, or scattering time,
τsc = λmfp/v∼ 〈1/Dμμ〉, which is the most critical scale.

4. In general, the mean-free path or scattering time depends
on characteristics of turbulence, plus B-field and plasma
density, in a complicated way. However, for relativistic
electrons, which interact mainly with low-frequency
Alfvén or fast-mode turbulence, this relation is consider-
ably simplified and depends on two parameters: the
Alfvén speed and an interaction rate (or timescale) that
bundles several turbulence and B-field parameters into
one, described by Equation (22), which varies with
distance in a complicated way. Detailed descriptions of
the variation with the distance of turbulence character-
istics and calculation of this critical timescale are given in
Appendices A and B. These results are summarized in
Figures 2 (left panel) and 6. The energy dependence in
the relativistic regime is simple with τsc ∝ γ2− q, where q
is the power-law index of turbulence in the inertial range,
and according to the PSP measurement, it varies from the
Kolmogorov (outer region) value of 5/3 to the IK value
of 3/2, from about 0.3–0.2 au.

5. We use both of the above models and a third with q= 2
to account for the free (unaffected by B field and
turbulence) transport case, which shows the effects of

Figure 5. Geometry of the calculation of the expected radiative flux at the Earth.
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energy loss alone, and calculate the spectral and spatial
variation with the distance of the CRe spectrum and
density (or flux) from their measured values at 1 au to the
Sun. The spatial variation derivation is detailed in
Appendix D.

6. These spectra can be used to calculate the emissivity of
synchrotron and IC emissions, as described in Section 2,
and the expected radiation flux at 1 au from the disk of
the Sun and regions around it, described in Section 4.4.

In forthcoming papers, using these models of transport and
resultant CRe spectra, we will calculate the IC spectra more
accurately than done previously, and the synchrotron spectra
for the first time. These can then be compared with
observations by Fermi-LAT and RHESSI.

The work of V.P. is supported by the NASA Living With a
Star program grant NNH20ZDA001N-LWS. E.O. acknowl-
edges the ASI-INAF agreement No. 2017-14-H.0 and NASA
grant No. 80NSSC20K1558.

Appendix A
In Situ Measurements of Turbulence

In this section, we summarize three in situ measurements of
intensity and spectrum of turbulence in the frequency range of

10−5< f< 1 Hz, with corresponding wavenumbers k= 2πf/vA.
Most of these show a Kolmogorov spectrum, with power-law
index q= 5/3 in the inertial range ( < <f f fmin max). There is
generally some steepening above, and most measurements
show a distinct spectral flattening below this range with index
q∼ 1 down to the measured limit of ~ -f 10lim

5 Hz. We need to
calculate the total energy density of turbulence

 ò= f df
f

f
turb

lim

1 ( ) . Assuming that to spectrum below fmin

extends to flim with index q= 1, it is easy to show that

 =
-

-

+

-f f
q

f f

f f

1

1
1

ln . A1

q
turb min min min max

1

min lim

( ) [ ( )

( )] ( )

( )

Leamon et al. (1998, 1999) measured a Kolmogorov spectrum
(q= 5/3) at ∼1 au with the specific energy density of
 =f 10min

3( ) (nT)2 Hz −1, in the inertial range of
= =-f f10 , 0.1 Hzmin

3
max . The spectrum steepens to q∼ 3

above 0.1 Hz. This yields a total turbulence energy density of
 > ~f f 1.5min( ) (nT)2. They do not provide any measure-
ments below fmin, but extending this to = -f 10lim

5 yields
 ~ 7turb (nT)2.

Bruno & Carbone (2013) show the Helios measurements at
r= 0.9, 0.7, and 0.3 au, with Kolmogorov spectrum between

Figure 6. Radial variations of CRe energy independent relevant quantities related to turbulence and scattering of the particles assuming the IK model with q = 3/2. Φ
(x), Equation (B5) (solid black lines); turbulence energy density Wturb, Equation (A5) (blue line); turbulence to the B-field energy ratio, fturb, Equation (A6) (green
line); characteristic turbulence rate t-p

1, Equation (B2) (red line); scattering time τsc ,0, Equation (B3) (magenta line); and the crossing to scattering time ratio,
Equation (B8) (black lines). The results in the outer region are based on PSP measurements, with extrapolation to the inner part (long-dashed lines). The two dashed
and solid lines in the inner part are based on the two models of the B-field models, GY11 and Pätzold. The dotted line denoted Fichtner et al. is based on theoretical
calculations of Vainio et al. (2003).
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f= 0.1 and fmin, which decreases slightly with distance. Below
fmin, the spectrum flattens to q∼ 1 down to = ´ -f 2 10lim

5

Hz. From these, we obtain

 >

=
= ´ =

= ´ =

= ´ =

-

-

-

⎧

⎨
⎪

⎩⎪

f f

f r

f r

f r

5.0 nT 6 10 Hz, 0.9 au

15.0 nT 2 10 Hz, 0.7 au

156 nT 5 10 Hz, 0.3 au.

A2

min

2
min

4

2
min

3

2
min

3

( )

( )

Extending to = -f 10lim
5 Hz, we obtain the total turbulence

energy densities of

 =
=
=
=

⎧

⎨
⎩

r
r

r

r

20 nT 0.9 au,

61 nT 0.7 au,

620 nT 0.3 au.

A3turb

2

2

2

( ) ( )

Recently, PSP measurements (Chen et al. 2020) have extended
this information from 1 to 0.17 au, and in the spectral range of
2× 10−5< f< 1 Hz, showing a gradual change in the spectral
index q above = -f 10min

3, from the Kolmogorov 5/3 value at
r> 0.3 au to the IK value of 1.5 for r< 0.2 au. In a similar
manner as above, the estimation based on Figure 1 in Chen
et al. (2020), gives the following values for the turbulence
energy density:

 =

= =

= ´ =

= ´ =

= =

-

-

-

-

⎧

⎨

⎪

⎩
⎪

r

f r

f r

f r

f r

10 nT 10 Hz, 0.82 au,

83 nT 2 10 Hz, 0.5 au,

730 nT 5 10 Hz, 0.3 au,

4800 nT 10 Hz, 0.17 au.

A4

turb

2
min

4

2
min

4

2
min

4

2
min

3

( )

( )

The break frequency, fmin, seem to increase inversely with
distance as -f r10 aumin

4˜ ( ) Hz, with PSP showing slightly
smaller values than Helios. The values of rturb( ) are plotted in
Figure 6 showing rough agreement between different estimates.
A power-law fit to these eight measured values yields

 =
= < <

-

-


r r

r R r

12 au nT

0.033 G , 0.1 au 1. A5
turb

3.1 2

3.1 2

( ) ( )
( ) ( ) ( )

We will use this relation below.
We do not have any information on the turbulence energy

density in the more critical inner region (r< 20Re). We
consider two methods of extrapolation to the inner region. In
one we assume that the above radial dependence continues to
the Sun, then using the B(r)-field models described in Section 2
we calculate the ratio of turbulence to magnetic field energy
densities, =f r r B rturb turb

2( ) ( ) [ ( )] , needed for the evalua-
tion of τsc and ELEF (see below), to be

=
< <

<
´ <

-

-

⎧

⎨
⎩

 

 

 

f r

r R r R

r R r R

r R r R

0.033 20 214

0.35 20, GY11

4.7 10 20, Patzold.

A6

turb

0.6

0.2

4 2.0

( )
( )

( )
( ) ̈

( )

However, considering that the turbulence energy density is
almost proportional to [B(r)]2 in the outer region, it is
reasonable to assume that, like the B field in the Pätzold
model,  rturb( ) increases faster in the inner region, yielding a

flatter, nearly constant fturb(r)∼ 0.3. We will use a combination
of both these extrapolations shown in Figure 2.

Appendix B
Scattering Time

The pitch-angle diffusion coefficient, Dμμ, and hence κss and
τsc , can be obtained from gyro-resonance interaction rates of
particles with plasma waves of frequency ω and wavevector k,
obeying the resonance condition

w m g- = Wk k v , B1( ) ( )

where v, γ, and Ω are the velocity, Lorentz factor, and
gyrofrequency of the particle, and k∥ is the component of the
wavevector parallel to the B field. The interaction rates depend
on the dispersion relation of the waves, ω(k), the energy density
of the waves,turb, its spectrum (mainly the spectral index q in
the inertial range, < <k k kmin max), and the background
plasma B field and density, n (or Alfvén velocity, vA).
However, for a power-law spectrum of turbulence,
 = -k k k k q

min min( ) ( )( ) , the diffusion rate (or scattering
time) scales with the characteristic time τp or characteristic rate
(see, e.g., Dung & Petrosian 1994)

t p= W - F F = W- -f q ck2 1 with , B2p
q1

turb
1

min( ) ( ) ( )( )

where the fraction of turbulence energy density, fturb∼ (δB/B)2

is given in Appendix A.
In general, the scattering time, in addition to this scaling,

depends in a complicated way on q and Alfvén velocity (or
βA= vA/c), and on particle energy and pitch angle (see, e.g.,
Pryadko & Petrosian 1997, 1999; Petrosian & Liu 2004; Jiang
et al. 2009). However, for high-energy protons and relativistic
electrons with Lorentz factors γ>mp/me, i.e., energies greater
than 1 GeV, which is the case for our problem, the main
interactions are with Alfvén waves, with the dispersion relation
ω= k∥vA for waves propagating parallel to the B field and for
ω<Ωp, the proton gyrofrequency, and with fast-mode waves
with ω= kvA and k= 1 for both parallel and perpendicular
wave propagation. In this case, the equations describing the
above characteristics are simplified considerably, especially
when βA= 1, which is the case here. As shown in Figure 1, vA
has a nearly constant value of ∼500 km s−1 in the inner region
(r< 20Re) and decreases with distance to 30 km s−1 at 1 au as
vA= 30(au/r)1.2.
As shown in Pryadko & Petrosian (1997) and Petrosian &

Liu (2004) for parallel propagating waves, the pitch-angle
averaged scattering time appropriate for relativistic electrons
with isotropic pitch-angle distributions, and for βA= 1, is

t g t t t

b

=

=
- - <
- =

-

-⎧
⎨⎩

q q q

q

with

2 2 4 2
3 4 1 2 ln 2.

B3

q
p

A

sc
2

sc,0 sc,0

1[( )( )]
( )

( )

( )

Using vA= 500 km s−1 for r< 20Re, where most of the losses
take place, we obtain

t t
g
g=

=
=
=

⎧

⎨
⎩

q

q
q

1.6 3 2

2.6 5 3
3.9 2.

B4psc

1 2

1 3 ( )

( )

( )/
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B.1. Scaling Details

To complete the calculation of the scattering time we need to
specify the numerical value of τp and its variation with
distance, which depends on Ωe (or the B field), fturb, and the
somewhat unknown p=k f v2 Amin min , the inverse of the
largest scale of the turbulence. This length scale is related to the
correlation length of the injected turbulence and is expected to
be a fraction, ξ, of the size of the region, which here is ∼r, is
defined as x p= k r2 min( ). The correlation length at the base
of the corona, r= Re, is estimated to be p ~k2 10 cmmin

9

implying ξ∼ 0.03. The correlation length most probably
increases with distance. PSP observations of decreasing

~ -f r10 aumin
4( ) in the outer regions seem to agree with this.

Using ~ ´ -f 2 10min
3 and vA= 500 km s−1 at r= 20Re yields

ξ∼ 0.04. For now, we will keep ξ as a free parameter.
Using the general magnetic field model of B(r)= B0x

− δ,
with x= r/Re we obtain

F
W

= F = F
< <

< <
< <

d- ⎧

⎨
⎩

ck x

B

x x
x x

x x

1.0 20 214
3.3 1 20 BY11
0.12 1 20 Patzold,

B5

e

min
0

1

0
0

0.9

0.5

1.6 ̈
( )

with Φ0= 1.5× 10−7/ξ∼ 3.7× 10−6. PSP observations indi-
cate that the spectral index changes from 5/3 to 3/2 between
0.3 and 0.2 au. We are not aware of any direct measurement of
the index closer to the Sun where the energy loss rate is most
significant. Thus, we will consider three values of q= 3/2, 5/
3, and 2. Now substituting the above values for Φ, q, fturb, and
the magnetic field, in Equations (B2) and (B3) we can calculate
t-p

1 and τsc . For example, for q= 3/2 we obtain

t x=
´ < <
´ <

<

-

-

-
⎧

⎨
⎩







r R x

r R x

r R x

0.04

1.4 10 20 214

4.8 10 20, GY11

76 20, Patzo

B6

p
1 1 2

2 0.70

3 1.25

0.2

( )
( )
( )

( ) ̈
( )

and from Equation (B3) we obtain

t x=

´
´ < <
´ <
´ <

-

-

- -

⎧

⎨
⎩

 

 

 

r R r R

r R r R

r R r R

0.04

1.8 10 20 214

3.4 10 20, GY11

2.1 10 20, Patzold,

B7

sc,0
1 2

2 0.75

4 1.35

2 0.3

( )

( )
( )
( ) ̈

( )

which for τcross = 5.6x (Equation (15)) gives the critical ratio
(for q= 3/2)

t t x=

´
´ < <
´ <
´ <

-
⎧

⎨
⎩

 

 

 

r R r R

r R r R

r R r R

0.04

1.6 10 20 214

8.2 10 20, GY11

1.3 10 20, Patzold.

B8

cross sc,0
1 2

2 0.25

3 0.35

2 1.3

( )

( )
( )
( ) ̈

( )

Similar expressions can be obtained for the other two values of
q. The left panel in Figure 2 shows τcross/τsc,0 for the three
values of q. As is evident, there is a large difference between
the two models of the B field in the inner region. This is due to
the extrapolation of turb from the outer to the inner region,
which as mentioned in Appendix A may not be correct. Using
the flatter variation of fturb in the inner region we obtain the

dashed lines, which are halfway between the two models of B
(r). We will use these extrapolations, which give the ratio
τcross /τsc at γ= 1.
The final crucial ratio R(r, γ) can then be obtained using

Equation (20). However, as evident τsc< τcross , even at the
highest energies, γ< 106, especially for q= 3/2 and 5/3,
implying that we are in the strong diffusion limit with R(r,
γ)= [τcross (r)/τsc,0(r)]γ

( q−2).
There have been many theoretical attempts to estimate the

radial and energy dependence of the above characteristics of
turbulence in the heliosphere, in particular, that of the
scattering time or mean-free path
l g l g= d -r r au, q

mfp 0
2l( ) ( ) ( ). For example, Chhiber et al.

(2017) present several results from MHD simulations on the
spatial variation (for r< 1 au) of the mean-free path of protons
with 0< δl< 0.6, and λ0∼ 0.2± 0.1 au or τsc ,0∼ 100 s at 1
au, which is much larger than the τsc,0 obtained from
observations shown above. Vainio et al. (2003) give the result
of the scattering of 10MeV protons by Alfvén waves showing
λmfp/r varying from 0.02 at the Sun to 0.01 at 1 au. Based on
results from Petrosian & Liu (2004), this indicates a
λmfp/r= 0.02γ(2− q) for relativistic electrons, or
τsc,0∼ 0.047 s at r= Re.
The ratio τcross/τsc,0 for the Fichtner model is also shown in

the left panel of Figure 2, which lies between the q= 3/2 and
5/3 cases. The actual effect of the transport coefficients is
better demonstrated by the term A(x, γ) defined in
Equation (28) and shown in Figure 2 (right panel) for the
three values of q and Lorentz factors γ= 106, 105, and 104.
As is evident, the spatial variation of this crucial factor is

similar for the three values of the index q, but there are
significant differences in their energy dependencies. However,
these differences are much smaller For 103< γ< 106 com-
pared to the values shown for γ= 1 (left panel).

Appendix C
Perpendicular Diffusion

In strong guiding B fields diffusion perpendicular to the field
lines can be ignored, but when the scattering mean-free path
becomes comparable to or larger than the particle gyroradius,
perpendicular diffusion becomes important. As shown in
Section 3.1, the gyroradius of relativistic electrons is
rg= 1.3× 103γ(G/B) cm and the mean-free path is
λmfp= cτsc= ca(q)γ(2− q)τp, where a(q) and τp are given in
Appendix B. Simple algebra shows that

l p gº = F -R r a q f4 . C1g
q

diff mfp turb
1[ ( )] ( ) ( )( )

In the outer region (r> 20Re) with q= 5/3, a(q)= 2.6,
Φ=Φ0x

0.9, and fturb= 0.033x0.6, we obtain

g= ´ -R x1.3 10 , C2diff
7 2 3 1.2 ( )

so that for γ� 106, Rdiff� 0.8 and 0.05 at 1 au and r= 20Re,
respectively. In the inner region (r< 20Re) with q= 3/2, a
(q)= 1.6, Φ= 1.2Φ0x

1.6 and fturb= 4.7× x2.0 we obtain

g= ´ -R x5 10 C3diff
7 1 2 2.6 ( )

so that for γ� 106, Rdiff� 10−4 and 0.05 at the Sun and
r= 20Re, respectively.
Because we are mainly interested in the inner region

neglecting the perpendicular diffusion is well justified.
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Appendix D
Details of the Density Variation

Here, we use the steady state, ∂N/∂t= 0, Equation (19). We
first note that for relativistic CRes,
κss= 3v2τsc= 3c2τsc,0γ

(2− q), so that if we multiply this
equation by q( q−2), the first term in this equation will depend
only on the spatial variable and describes the implicit spatial
variation N0(r). This will also alter the energy loss rate by this
factor similar to what was used in Section 4.1. If we now ignore
the energy terms, we can obtain a simple approximate solution
for the CRe density variation by integration of the resultant
equation over the volume, dV(s)= A⊥(s)ds, of a bundle of field
lines with cross-section area, A⊥(s), from the starting point
s= 0, the point where the kinetic equation becomes valid
(r= rcr∼ 10Re) for any s (or any r< rcr). We set ds= 1.2dr,
τcross = 1.2r/c, and t t= = R r R r R0 cross sc,0 0( ) ( ) to
obtain N(r) by integration over s as

ò

ò

g k

t= - =t

-
^

¶
¶

¶
¶

A s ds

A N r 0. D1

q s

s ss
N

s

c dN

dr r

r c

r

r d A

dr

2
0

3

1.2 sc,0
3

1.2

2

c

2

cr

sc ,0( )
( )

( ) ( )

( )

( )

Since A(r)∝ r2 and t µ dr rsc,0 sc( ) obey simple power laws, we
expect a power-law behavior for N(r) and can set

=dN dr N r d N d rln ln( )( ), with the power-law index
d = d N d rln lnN as nearly constant. This then allows for
completing the integration, which after some algebra leads to

= ⎜ ⎟
⎛
⎝

⎞
⎠

N r N r
A r R r

A r R r
, D2cr

cr 0

0 cr
( ) ( ) ( ) ( )

( ) ( ))
( )

which leads to the conjecture in Equation (29).
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