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Abstract
In this work we develop the Gaussian quadrature rule for weight functions involving
powers, exponentials and Bessel functions of the first kind. Besides the computation
based on the use of the standard and the modified Chebyshev algorithm, here we
present a very stable algorithm based on the preconditioning of the moment matrix.
Numerical experiments are provided and a geophysical application is considered.

Keywords Gaussian quadrature · Moment-based methods · Chebyshev algorithm ·
Bessel function of the first type
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1 Introduction

This work deals with the construction of Gaussian quadrature rule for the computation
of integrals of the type

Iν,α,c( f ) =
∫ ∞

0
f (x)xαe−cx Jν(x)dx, (1.1)

where Jν is the Bessel function of the first kind of order ν ≥ 0, α > −1, c > 0 and f
is a smooth function. Since for the Bessel functions it holds |Jν(x)| ≤ 1, for ν ≥ 0,
x ∈ R (see [1, p. 362]), we consider weight functions of the type

wν,α,c(x) = xαe−cx [Jν(x) + 1] on [0,+∞). (1.2)
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Then, we rewrite (1.1) as

I Jν,α,c( f ) − I Lα,c( f ),

where

I Jν,α,c( f ) =
∫ ∞

0
f (x)xαe−cx [Jν(x) + 1]dx, (1.3)

and

I Lα,c( f ) =
∫ ∞

0
f (x)xαe−cxdx . (1.4)

We notice that the integral (1.4) can be accurately computed using a slight modifica-
tion of the Gauss–Laguerre quadrature rule. In this setting, our aim is to construct a
Gaussian rule with respect to the function wν,α,c. Since we do not know the explicit
expression of the corresponding monic orthogonal polynomials, that we denote by
πk , k ≥ 0, we need to employ a numerical scheme to derive the coefficients of the
three-term recursion

πk+1(x) = (x − αk)πk(x) − βkπk−1(x), k ≥ 0,

π−1(x) = 0, π0(x) = 1,

with βk > 0. This can be done by computing the associated moments

μ
ν,α,c
k =

∫ ∞

0
xkwν,α,c(x)dx, k ≥ 0, (1.5)

and then using the Chebyshev algorithm (see [9, Sect. 2.3]). These coefficients define
the tridiagonal symmetric Jacobi matrix, whose eigenvalue decomposition provides
abscissas and weights of the quadrature rule. This final step is efficiently implemented
by the famous Golub and Welsh algorithm [14]. Some alternatives to this algorithm
have been later developed and we refer to [17] for a general discussion and a rich
bibliography. Nevertheless, it is well known (see e.g. [11]) that the computation of the
recurrence coefficients can be inaccurate for growing k because the problem is severely
ill conditioned when starting from the power moments (1.5). The ill conditioning can
be partially overcome by using the modified moments, having at disposal a family
of polynomials orthogonal with respect to a weight function similar to the one of the
problem. This approach may be efficient in general but not always when working with
unbounded intervals of integration (see [10, 11]). The idea of using modified moments
was introduced by Sack and Donovan in [19], who developed an algorithm similar to
the so called modified Chebyshev algorithm, advanced by Gautschi [9, Sect. 2.4]. The
same algorithm was independently obtained by Wheeler [24].

In this work we present an alternative approach that is based on the preconditioning
of the moment matrix. In particular, since the three-term recurrence coefficients can be
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written in terms of ratios of determinants of the moment matrix or slight modifications
of them (see [4, Sect. 2.7]), we exploit the Cramer rule to show that the coefficients
can be computed by solving a linear system with the moment matrix. Since the weight
function (1.2) can be interpreted as a perturbation of the weight function of the gen-
eralized Laguerre polynomials, we use the moment matrix of these polynomials as
preconditioner. The numerical experiments show that this technique is always (inde-
pendently of the parameters ν, α, c) much more stable than the modified Chebyshev
algorithm.

As an application we use the developed Gaussian quadrature to evaluate integrals
of the type (1.1) arising in geophysical electromagnetic (EM) survey. In particular, we
consider the electromagnetic fields over a layered earth due to magnetic dipoles above
the surface (see [22]). In this framework, f is a smooth function, ν = 0, 1, α = 0 and
0 < c < 1.

We remark that other methods for the computation of the integral in (1.1), still of
Gaussian type, have been developed over the years. Among the others we quote here
[2, 25] and the references therein.

The paper is organized as follows. In Sect. 2 we derive a recursive relation for the
practical evaluation of the power moments. In Sect. 3 we show the necessary details
for the construction of the Gaussian rule for (1.1) by using the Chebyshev algorithm.
In Sect. 4 we employ the modified Chebyshev algorithm working with the modified
moments generated by the generalized Laguerre polynomials. In Sect. 5 we present
the alternative approach based on the preconditioning of the moment matrix, using
again the generalized Laguerre polynomials. Finally, in Sect. 6 we apply the method
for the computation of EM fields.

2 Computation of themoments

In order to compute the moments

μk = μ
ν,α,c
k =

∫ ∞

0
xk+αe−cx [Jν(x) + 1]dx, k ≥ 0, (2.1)

we first derive a recursive relation for the so called core moments, defined as

μk,0 = μ
ν,α,c
k,0 =

∫ ∞

0
xk+αe−cx Jν(x)dx, k ≥ 0. (2.2)

We remark that the term core moment was introduced by Gautschi [12].

Proposition 2.1 For k ≥ 0 it holds

μk,0 = 1

(
√
c2 + 1)k+α+1

�(k + α + ν + 1)P−ν
k+α

(
c√

c2 + 1

)
, (2.3)

where � is the Gamma function and P−ν
k+α is the associated Legendre function (see

e.g. [1, ch.8] or [18, ch.14]) of order −ν and degree k + α.
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Proof We start from the general relation [7, p.713]

∫ ∞

0
e−t cos θ Jν(t sin θ)tk+αdt = �(k + α + ν + 1)P−ν

k+α(cos θ),

which holds for each k ≥ 0 whenever α > −1, ν ≥ 0. By the change of variable
s = t sin θ , we have that

∫ ∞

0
e−s cos θ

sin θ Jν(s)s
k+αds = sink+α+1(θ)�(k + α + ν + 1)P−ν

k+α(cos θ).

Setting θ = arctan
( 1
c

)
, 0 < θ < π

2 , so that c = cos θ
sin θ

, and using the relations

sin(arctan x) = x√
1 + x2

, cos(arctan x) = 1√
1 + x2

,

we obtain the result. ��

Proposition 2.2 The following three-term recursion holds

μk+1,0 = 1

c2 + 1
{c [2(k + α) + 1]μk,0 − [(k + α)2 − ν2]μk−1,0}, k ≥ 1,

(2.4)

with

μ0,0 = �(α + ν + 1)

(
√
c2 + 1)α+1�(ν + 1)

(√
c2 + 1 + c

)−ν

× 2F1

⎛
⎝−α, α + 1; 1 + ν; 1

2
√
c2 + 1

(√
c2 + 1 + c

)
⎞
⎠ , (2.5)

μ1,0 = �(α + ν + 2)

(
√
c2 + 1)α+2�(ν + 1)

(√
c2 + 1 + c

)−ν

× 2F1

⎛
⎝−α − 1, α + 2; 1 + ν; 1

2
√
c2 + 1

(√
c2 + 1 + c

)
⎞
⎠ , (2.6)

where 2F1 is the hypergeometric function.

Proof From Eq. (2.3) and using the following three-term recursive relation for the
associated Legendre functions [1, p. 334]

(k + α + ν + 1)P−ν
k+α+1(z) = (2k + 2α + 1)zP−ν

k+α(z) − (k + α − ν)P−ν
k+α−1(z),
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we can write

μk+1,0 = 1

(
√
c2 + 1)k+α+2

�(k + α + ν + 2)P−ν
k+α+1

(
c√

c2 + 1

)

= �(k + α + ν + 2)

(
√
c2 + 1)k+α+2

[
2(k + α) + 1

k + α + ν + 1

c√
c2 + 1

P−ν
k+α

(
c√

c2 + 1

)

− k + α − ν

k + α + ν + 1
P−ν
k+α−1

(
c√

c2 + 1

)]
. (2.7)

Rearranging (2.7) and using again (2.3) for μk,0 and μk−1,0, we obtain the relation
(2.4). Equations (2.5) and (2.6) follow directly from (2.3) with k = 0 and k = 1,
respectively, and from the relation [7, p. 999]

P−ν
k+α(x) = 1

�(ν + 1)

(
1 + x

1 − x

)− ν
2

2F1

(
−k − α, k + α + 1; 1 + ν; 1 − x

2

)
,

for x ∈ (0, 1). ��

Finally, we can derive a recursive relation for the moments.

Proposition 2.3 For k ≥ 1 it holds

μk+1 = 1

c2 + 1

{
c [2(k + α) + 1]μk −

[
(k + α)2 − ν2

]
μk−1

+ �(k + α)[(k + α)2 + (k + α) − c2ν2]
ck+α+2

}
, (2.8)

with

μ0 = μ0,0 + �(α + 1)

cα+1 , μ1 = μ1,0 + �(α + 2)

cα+2 .

Proof By definition (2.1), the moments μk are given by

μk =
∫ ∞

0
xk+αe−cx Jν(x)dx +

∫ ∞

0
xk+αe−cxdx

= μk,0 + �(k + α + 1)

ck+α+1 ,
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where we have used [7, Sect. 3.381, n.4]. Therefore, from relation (2.4) for k ≥ 1, we
can write

μk+1 = μk+1,0 + �(k + α + 2)

ck+α+2

= c[2(k + α) + 1]
c2 + 1

(
μk − �(k + α + 1)

ck+α+1

)
− (k + α)2 − ν2

c2 + 1

(
μk−1 − �(k + α)

ck+α

)

+ �(k + α + 2)

ck+α+2
.

After some simple manipulations, we obtain the result. ��

3 Computing the three-term recursion

One of the most used method for the computation of the coefficients αk and βk of the
recurrence relation

πk+1(x) = (x − αk)πk(x) − βkπk−1(x), k ≥ 0π−1(x) = 0, π0(x) = 1,

(3.1)

with βk > 0, is the Chebyshev algorithm (see [9, sect.2.3] and [11]).
Given the first 2n moments μ0, . . . , μ2n−1, the algorithm uniquely determines the

firstn recurrence coefficientsαk andβk , k = 0, . . . , n−1, by using themixedmoments

σkl =
∫ ∞

0
πk(x)x

lwν,α,c(x)dx, k, l ≥ −1.

The Chebyshev algorithm is summarized in Algorithm 3.1.

Algorithm 3.1 Initialization

α0 = μ1

μ0
, β0 = μ0,

σ−1,l = 0, l = 1, 2, . . . , 2n − 2,

σ0,l = μl , 0, 1, . . . , 2n − 1,

for k = 1, 2, . . . , n − 1
for l = k, k + 1, . . . , 2n − k − 1

σk,l = σk−1,l+1 − αk−1σk−1,l − βk−1σk−2,l ,

αk = σk,k+1

σk,k
− σk−1,k

σk−1,k−1
, βk = σk,k

σk−1,k−1
.
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The corresponding Jacobi matrix

J =

⎡
⎢⎢⎢⎢⎢⎢⎣

α0
√

β1 0√
β1 α1

√
β2

√
β2 α2

. . .

. . .
. . .

√
βn−1

0
√

βn−1 αn−1

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ R
n×n,

contains the coefficients of the three term recurrence relation for the orthonormal
polynomials, that is,

√
βk+1π̃k+1(x) = (x − αk)π̃k(x) − √

βk π̃k−1(x), k ≥ 0,

π̃−1(x) = 0, π̃0(x) = 1√
β0

.

It is well known that the eigendecomposition of the matrix J provides the nodes xi
and the weights wi , i = 1, . . . , n of the n-point Gaussian rule (see e.g. [4, Sect. 2.7],
and the reference therein).

Finally, for the computation of (1.1), we use the approximation

I Jν,α,c( f ) ≈ I Jn ( f ) =
n∑

i=1

wi f (xi ),

for the integral (1.3). Then, denoting by t Li ,w
L
i respectively the nodes and the weights

of the Gauss–Laguerre rule with respect to the weight function wα(t) = tαe−t , α >

−1, the integral (1.4) is approximated by

I Lα,c( f ) = 1

cα+1

∫ ∞

0
f

(
t

c

)
tαe−t dt

≈ I Ln ( f ) = 1

cα+1

n∑
i=1

wL
i f

(
t Li
c

)
.

Finally, we thus have

Iν,α,c( f ) ≈ I Jn ( f ) − I Ln ( f ). (3.2)

Below we present the results of the numerical experiments carried out in Matlab.
In particular, the Matlab routine that implements the Chebyshev algorithm is taken
from [13]. Since for integrals involving Bessel functions, exponentials and powers the
exact solution is known, in our simulations we choose f (x) = e−0.5x . In Fig. 1 we
consider two examples, for different values of the parameters ν, α and c, and plot the
error between the approximation obtained with the developed Gaussian rule and the
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exact solution (see [7, Sect. 6.624, n. 6] and [7, Sect. 8.704]) given by

Iν,α,d( f ) = �(d + ν + 1)

(
√
c2 + 1)d+1�(ν + 1)

(√
c2 + 1 + c√
c2 + 1 − c

)− ν
2

× 2F1

(
−d, d + 1; 1 + ν; 1

2
− c

2
√
c2 + 1

)
,

where d = c + 0.5.
Moreover, since for the truncation error it holds (see [4, Sect. 4.4])

En( f ) = Iν,α,c( f ) − (I Jn ( f ) − I Ln ( f ))

= (I Jν,α,c( f ) − I Jn ( f )) − (I Lα,c( f )) − I Ln ( f ))

= f (2n)(ηJ )

(2n)!(k Jn )2
− f (2n)(ηL)

(2n)!(kLn )2
, ηJ , ηL ∈ (0,∞),

where k Jn and kLn are the leading coefficients of the corresponding orthonormal poly-
nomials of degree n, in Fig. 1 we also provide the plot of the upper bound of En( f )
given by

|En( f )| ≤ ‖ f (2n)‖∞
(2n)!

(
1

(k Jn )2
+ 1

(kLn )2

)
. (3.3)

The coefficients k Jn are numerically evaluated by using the relation (see [4, sect.2.7])

k Jn = 1∏n
j=0

√
β j

,

while for kLn we employ the known explicit formulation

kLn = 1√
n!�(n + α + 1)

.

It is well known that, in general, the error bound (3.3) is not very sharp. More reliable
a posteriori and a priori error estimates for the approximation (3.2) are studied in [5].

4 Themodified Chebyshev algorithm

The picture on the right of Fig. 1 shows the stability problem when working with
the power moments μk . Indeed the Chebyshev algorithm typically starts to produce
negative values of βk for k around 20 or even before. This behavior is rather common
and has been observed by many authors in the past [11, 14, 24]. As already mentioned,

123



BIT Numerical Mathematics            (2023) 63:53 Page 9 of 25    53 

0 2 4 6 8 10 12 14 16 18
10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100 error
error bound

0 5 10 15 20
10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

Fig. 1 Error behavior of (3.2) and error bound (3.3) with respect to n for ν = 1, α = − 0.5, c = 1 on the
left and for ν = 0.5, α = 0.5, c = 0.2 on the right. In both cases f (x) = e−0.5x

the problem is that the coefficients αk and βk are extremely sensitive to small changes
in the moments. In fact, the nonlinear map

Kn : R2n → R
2n

μ �→ ρ

which maps the moment vector μ = [μ0, μ1, . . . , μ2n−1]T to the vector ρ =
[α0, . . . , αn−1, β0, . . . , βn−1]T of recursion coefficients becomes extremely ill condi-
tioned as n increases (see [11] for the complete analysis).

In order to overcome this difficulty, themodified Chebyshev algorithm (see [9, Sect.
2.4]) can be employed. It is based on the use of the modified moments

mk = mν,α,c
k =

∫ ∞

0
pk(x)wν,α,c(x)dx, k ≥ 0, (4.1)

and on the mixed moments

σ̃kl =
∫ ∞

0
πk(x)pl(x)wν,α,c(x)dx, k, l ≥ −1,

where {pk}k≥0 is a given system of orthogonal polynomials, chosen to be close to the
desired polynomials {πk}k≥0, which satisfies the three-term recurrence relation

pk+1(x) = (x − ak)pk(x) − bk pk−1(x), k ≥ 0

p−1(x) = 0, p0(x) = 1,

with coefficients ak ∈ R, bk ≥ 0 that are known.

123



   53 Page 10 of 25 BIT Numerical Mathematics            (2023) 63:53 

In our case, since the weight function can be interpreted as a perturbation of the
weight function relative to the generalized Laguerre polynomials {Lα

k }k≥0, we choose
as {pk}k≥0 the system {Lα,c

k }k≥0 of the monic polynomials

Lα,c
k (x) = 1

ck
L̃α
k (cx), (4.2)

where L̃α
k (t) = (−1)kk!Lα

k (t) is themonic generalized Laguerre polynomial of degree
k. This system satisfies the relation

L̃α
k+1(t) = (t − Ak) L̃

α
k (t) − Bk L̃

α
k−1(t),

with

Ak = 2k + α + 1, Bk = k(k + α) k ≥ 1. (4.3)

As a general reference on orthogonal polynomials, here we quote [18, ch.18].

Proposition 4.1 Themonic polynomials {Lα,c
k }k≥0 definedby (4.2)are orthogonalwith

respect to the weight function xαe−cx and satisfy the three-term recurrence relation

Lα,c
k+1(x) =

(
x − Ak

c

)
Lα,c
k (x) − Bk

c2
Lα,c
k−1(x), (4.4)

in which Ak and Bk are defined in (4.3).

Proof The orthogonality follows from the change of variable cx = t , that leads to

∫ ∞

0
Lα,c
k (x)Lα,c

l (x)xαe−cxdx = 1

ck+l
(−1)k+l k!l!

∫ ∞

0
Lα
k (cx)Lα

l (cx)xαe−cxdx

= (−1)k+l k!l!
ck+l+1−α

∫ ∞

0
Lα
k (t)Lα

l (t)tαe−t dt .

Now, from the recursive relation for the monic generalized Laguerre polynomials
{L̃α

k }k≥0

L̃α
k+1(cx) = (cx − Ak)L̃

α
k (cx) − Bk L̃

α
k−1(cx), (4.5)

by (4.2) we obtain

ck+1Lα,c
k+1(x) = c

(
x − Ak

c

)
ck Lα,c

k (x) − Bkc
k−1Lα,c

k−1(x),

and then (4.4). ��
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Using the polynomials {Lα,c
k }k≥0, themodifiedmoments (seeEq. 4.1) can bewritten

as

mk =
∫ ∞

0
Lα,c
k (x)xαe−cx Jν(x)dx +

∫ ∞

0
Lα,c
k (x)xαe−cxdx .

Clearly, by orthogonality, the second integral is zero for k ≥ 1. Hence, for k ≥ 1, by
(4.2) and the following explicit expression for the generalized Laguerre polynomials
(see [1, p. 775])

Lα
k (x) =

k∑
j=0

(−1) j
(
k + α

k − j

)
1

j ! x
j ,

we have that

mk =
∫ ∞

0
Lα,c
k (x)xαe−cx Jν(x)dx

= (−1)kk!
ck

∫ ∞

0
Lα
k (cx)xαe−cx Jν(x)dx

= (−1)kk!
ck

k∑
j=0

(−1) j
(
k + α

k − j

)
1

j !c
j
∫ ∞

0
xα+ j e−cx Jν(x)dx

= (−1)kk!
ck

k∑
j=0

(−1) j
(
k + α

k − j

)
1

j !c
jμ j,0, (4.6)

where the last equality comes from (2.2). Finally, for k = 0 we obtain

m0 = μ0,0 + �(α + 1)

cα+1 ,

by [7, Sect. 3.381, n.4].
Using themodifiedmoments,we can employ theChebyshev algorithm, summarized

in Algorithm 4.1. We remark that the case ak = bk = 0 yields pk(x) = xk , and
Algorithm 4.1 reduces to Algorithm 3.1.

Algorithm 4.1 Initialization

α0 = a0 + m1

m0
, β0 = m0,

σ−1,l = 0, l = 1, 2, . . . , 2n − 2,

σ0,l = ml , 0, 1, . . . , 2n − 1,

for k = 1, 2, . . . , n − 1
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Fig. 2 Relative error behavior with respect to n for ν = 0.5, α = 0.5, c = 0.2 on the left and for ν = 1,
α = 0.5, c = 0.7 on the right. In both cases f (x) = e−0.5x

for l = k, k + 1, . . . , 2n − k − 1

σk,l = σk−1,l+1 − (αk−1 − al)σk−1,l − βk−1σk−2,l + blσk−1,l−1,

αk = ak + σk,k+1

σk,k
− σk−1,k

σk−1,l−1
, βk = σk,k

σk−1,k−1
.

In Fig. 2 we compare the results of Algorithms 3.1 and 4.1. We provide only two
representative examples that, nevertheless, are sufficient to say that Algorithm 4.1
in general allows to gain stability for further 5 ÷ 10 iterations, working in double
precision arithmetic, but in many cases there is no effective improvement.

5 A preconditioned Cramer based approach

Let

Mk =

⎡
⎢⎢⎢⎣

μ0 μ1 · · · μk−1
μ1 μ2 · · · μk
...

...
...

μk−1 μk · · · μ2k−2

⎤
⎥⎥⎥⎦ ∈ R

k×k,

be the moment matrix, and
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Nk =

⎡
⎢⎢⎢⎣

μ0 μ1 · · · μk−2 μk

μ1 μ2 · · · μk−1 μk+1
...

...
...

...

μk−1 μk · · · μ2k−3 μ2k−1

⎤
⎥⎥⎥⎦ ∈ R

k×k .

It is known (see [4, 21]) that the recurrence coefficients in (3.1) can also be written as

αk = Fk+1

Dk+1
− Fk

Dk
, βk = Dk−1Dk+1

D2
k

k ≥ 0, (5.1)

where

Dk = det(Mk), for k ≥ 1,

Fk = det(Nk), for k ≥ 2,

and

D0 = D−1 = 1,

F0 = 0, F1 = μ1.

Consider the linear system

Mk+1x
(k+1) = ek+1, (5.2)

where ek+1 = (0, . . . , 0, 1)T ∈ R
k+1. In the following, we denote by x (k+1)

i the i-th
component of the solution of (5.2). First of all, we observe that, by Cramer’s rule,

Dk

Dk+1
= x (k+1)

k+1 .

Moreover, since

det(Nk) = − det Mk+1,(k),

in which Mk+1,(k) is the matrix Mk+1 with the k-th column substituted by the vector
ek+1, we have that

Fk
Dk+1

= −det Mk+1,(k)

det Mk+1
= −x (k+1)

k .

Hence, we obtain

Fk
Dk

= Fk
Dk+1

Dk+1

Dk
= − x (k+1)

k

x (k+1)
k+1

.
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In this setting, the coefficientsαk andβk canbe expressed in termsof the components
of the solutions of appropriate linear systems as follows:

αk = − x (k+2)
k+1

x (k+2)
k+2

+ x (k+1)
k

x (k+1)
k+1

, βk = x (k)
k

x (k+1)
k+1

, k ≥ 1, (5.3)

with

α0 = μ1

μ0
, β0 = μ0.

The system (5.2) rapidly becomes severely ill conditioned, so that the procedure
does not offer any improvement with respect to the Chebyshev algorithm. Neverthe-
less, since Mk+1 is a symmetric positive definite matrix, the idea is to use a bilateral
preconditioner in order to solve efficiently (5.2). Analogously to the choice made for
the modified Chebyshev approach, here we want to use as preconditioner the moment
matrix corresponding to the generalized Laguerre polynomials.

Let ηk , k ≥ 0, be the moments relative to the weight function xαe−cx , given by

ηk = η
α,c
k =

∫ ∞

0
xk+αe−cxdx = �(k + α + 1)

ck+α+1 ,

where we have used again [7, Sect. 3.381, n.4]. We can write

ηk = 1

cα+1

γk

ck
,

where

γk = γ α
k =

∫ ∞

0
xk+αe−xdx = �(k + α + 1) (5.4)

are the moments relative to the generalized Gauss–Laguerre rule. Hence, we can write
the corresponding moment matrix

Mα,c
k =

⎡
⎢⎣

η0 η1 · · · ηk−1
...

...
...

ηk−1 ηk · · · η2k−2

⎤
⎥⎦ ∈ R

k×k,

as

Mα,c
k = 1

cα+1 EkM
α
k Ek,

where

Mα
k =

⎡
⎢⎣

γ0 γ1 · · · γk−1
...

...
...

γk−1 γk · · · γ2k−2

⎤
⎥⎦ ∈ R

k×k,
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and Ek = diag
(
c0, c−1, . . . , c1−k

)
.

At this point, if we consider the Cholesky decomposition of Mα
k

Mα
k = (Rα

k )T Rα
k ,

we have

Mα,c
k = 1

cα+1 Ek(R
α
k )T Rα

k Ek = (Rα,c
k )T Rα,c

k ,

where

Rα,c
k = 1

(
√
c)α+1

Rα
k Ek .

The following proposition provides the explicit expression for Rα
k , and therefore for

Rα,c
k .

Proposition 5.1 The Cholesky decomposition of the matrix Mα
k is

Mα
k = (Rα

k )T Rα
k ,

with

Rα
i j = ( j − 1)!

( j − i)!
�(α + j)√

�(i)�(α + i)
, for i ≤ j ≤ k.

Proof Since the matrix Mα
k is symmetric, we can restrict the analysis to the case i ≤ j .

By (5.4) we know that

(Mα
k )i j = �(i + α + j − 1).

Now,

((Rα
k )T Rα

k )i j =
i∑

l=1

Rα
l j R

α
li

= �( j)�(α + j)�(i)�(α + i)
i∑

l=1

1

( j − l)!(i − l)!�(l)�(α + l)
.

Writing

(
x

y

)
= �(x + 1)

�(y + 1)�(x − y + 1)
, (5.5)

with x = α + i − 1 and y = l − i , we have

1

�(α + l)(i − l)! =
(

α + i − 1

i − l

)
1

�(α + i)
.
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Moreover,

1

( j − l)!(l − 1)! =
(
j − 1

l − 1

)
1

( j − 1)! .

Using the above relations, we obtain

((Rα
k )T Rα

k )i j = �(α + j)�(i)
i∑

l=1

(
α + i − 1

i − l

)(
j − 1

l − 1

)
.

At this point, by the following slight modification of the Chu–Vandermonde identity
(see [3]),

q∑
u=1

(
t

u − 1

)(
s − t

q − u

)
=

(
s

q − 1

)
,

we obtain

((Rα
k )T Rα

k )i j = �(α + j)�(i)

(
α + j + i − 2

i − 1

)
.

Using again (5.5), with x = α + j + i − 2 and y = i + 1, it holds

(
α + j + i − 2

i − 1

)
= �(i + j + α − 1)

�(α + j)�(i)
,

and finally

((Rα
k )T Rα

k )i j = �(i + α + j − 1).

��
We observe that the matrix Rα

k can be written as

Rα
k = Dk R̃

α
k ,

with

(R̃α
k )i j = ( j − 1)!�(α + j)

( j − i)!�(i)�(α + i)
, for i ≤ j,

and Dk diagonal matrix such that

(Dk)i i = √
�(i)�(α + i).
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Since

(Rα
k )−1 = (R̃α

k )−1(Dα
k )−1.

and

(R̃α
k )−1

i j = (−1)i+ j (R̃α
k )i j ,

we have that the explicit expression for (Rα
k )−1 is given by

(Rα
k )−1

i j = (−1)i+ j
√

( j − 1)!�(α + j)

( j − i)!�(i)�(α + i)
, for i ≤ j .

Therefore, the matrix (Rα,c
k )−1 can be written as

(Rα,c
k )−1 = (

√
c)α+1E−1

k (R̃α
k )−1(Dα

k )−1,

with

(Rα,c
k )−1

i j =
√
cα+1ci−1(−1)i+ j√( j − 1)!�(α + j)

( j − i)!�(i)�(α + i)
. (5.6)

Finally, the linear system (5.2) can be preconditioned as

(Rα,c
k+1)

−T Mk+1(R
α,c
k+1)

−1y(k+1) = (Rα,c
k+1)

−T ek+1, (5.7)

with

x (k+1) = (Rα,c
k+1)

−1y(k+1). (5.8)

Since the matrix Mk+1 can be written as Mk+1 = Mα,c
k+1 + Mα,c

k+1,0, where Mα,c
k+1,0 is

the matrix of the core moments defined by Eq. (2.2), we have that

(Rα,c
k+1)

−T Mk+1(R
α,c
k+1)

−1 = (Rα,c
k+1)

−T (Mα,c
k+1 + Mα,c

k+1,0)(R
α,c
k+1)

−1

= (Rα,c
k+1)

−T Mα,c
k+1(R

α,c
k+1)

−1 + (Rα,c
k+1)

−T Mα,c
k+1,0(R

α,c
k+1)

−1

= Ik+1 + (Rα,c
k+1)

−T Mα,c
k+1,0(R

α,c
k+1)

−1 := Qk+1, (5.9)

where Ik+1 is the identity matrix. The system (5.7) becomes

(Ik+1 + (Rα,c
k+1)

−T Mα,c
k+1,0(R

α,c
k+1)

−1)y(k+1) = (Rα,c
k+1)

−T ek+1. (5.10)

In Table 1 we show the remarkable effect of the preconditioning.
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Table 1 The Euclidean condition number of the matrix Mk and of the preconditioned matrix Qk , defined
in (5.9), for different values of k

k 5 10 15 20 25 30

κ2(Mk ) 2.4e + 13 7.8e + 32 1.0e + 51 2.2e + 69 4.6e + 88 1.1e + 107

κ2(Qk ) 1.0e + 00 1.3e + 00 1.4e + 00 1.4e + 00 1.5e + 00 1.6e + 00

In this example ν = 0.9, α = 0.1 and c = 0.1

We observe that, since (Rα,c
k+1)

−1 is an upper triangular matrix, the components of
the solution used in (5.1) can be written as

x (k+1)
k = (Rα,c

k+1)
−1
kk y

(k+1)
k + (Rα,c

k+1)
−1
k,k+1y

(k+1)
k+1 , (5.11)

x (k+1)
k+1 = (Rα,c

k+1)
−1
k+1,k+1y

(k+1)
k+1 . (5.12)

We notice that the numerical implementation of the procedure to calculate αk and
βk as in (5.3), by using expressions (5.11) and (5.12), starts to show instability around
k = 60 ÷ 70, depending on the parameters, when x (k+1)

k and x (k+1)
k+1 are close to the

underflow. In order to gain more stability the idea is to rewrite the coefficients αk and
βk , for k ≥ 1, in terms of the components of the vectors y(k), y(k+1), y(k+2), defined
in (5.8), and exploit the relation (5.6). Indeed, we observe that for i ∼ j ∼ k,

(Rα,c
k )−1

i j ∼ ck

k! ,

and therefore y(k+1)
i � x (k+1)

i for i = k, k + 1. By (5.1) and (5.6), we obtain

αk = −
√

(k + 1)(α + k + 1)

c

(
y(k+2)
k+1

y(k+2)
k+2

− √
(k + 1)(α + k + 1)

)

+
√
k(α + k)

c

(
y(k+1)
k

y(k+1)
k+1

− √
k(α + k)

)
, (5.13)

βk =
√
k(α + k)

c

(
y(k)
k

y(k+1)
k+1

)
. (5.14)

The final procedure, explained inAlgorithm 5.1, allows toworkwith 80÷90 points,
dependently on the parameters.

Algorithm 5.1 Define α0, β0, β1, y(1), y(2).
for k = 2, . . . , n − 1
calculate y(k+1) by solving (5.10)
βk ← y(k+1), y(k) by (5.14)
αk−1 ← y(k+1), y(k) by (5.13)

end
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Fig. 3 Relative error histories for ν = 1, α = 0.7, c = 0.3 on the left, for ν = 0.9, α = 0.1, c = 0.1 in the
middle and for ν = 1.5, α = 0.5, c = 0.2 on the right. In all cases f (x) = e−0.5x

We remark that the computational cost of Algorithm 5.1 is, in general, higher than
the one of the Chebyshev algorithm, which requires O(n2) operations. This is due to
the solution of system (5.10) in which the coefficient matrix Qk+1 (5.9) is symmetric
and positive definite, but full. Anyway, the point in favour is that Qk+1 is actually a
perturbation of the identity (thanks to the preconditioner), so that using for instance
the Conjugate Gradient it is possible to achieve a good approximate solution in just
few iterations. This allows to keep the cost in the order of O(n2) operations.

In Fig. 3 we compare the results of Algorithms 3.1, 4.1 and 5.1. For all the examples
we can say that only the preconditioned Cramer based approach allows to achieve a
relative error around themachine precision, while the Chebyshev andmodifiedCheby-
shev algorithms lose stability much earlier. In fact, as shown in Fig. 4, Algorithms 3.1
and 4.1 start to provide inaccurate values of the coefficients αk and βk for k around
15÷25, while Algorithm 5.1 is definitely more stable. Since the plot is in logarithmic
scale, the missing parts of the curves are relative to negative entries.

Further examples are reported in Table 2, where we consider different values of the
parameters ν, α, c and test the performance of the Gaussian rule (3.2) for the integral
in (1.1). In particular, workingwith f (x) = e−0.5x and f (x) = (1+e−x )−1, we report
the total number of points used in formula (3.2), that is, 2n, necessary to achieve a
relative error ∼ 10−8. In general, at least in the interval [0, 1], we can observe that the
value of α does not significantly affect the results. In the case of the entire function
f (x) = e−0.5x , we have that the complexity of the problem increases with increasing
ν and decreasing c. As for the meromorphic function f (x) = (1+e−x )−1, we observe
different behaviors depending on the parameters ν and c. For small values of c (that
is, c ≤ 0.3) the method is more accurate for increasing ν, while for c > 0.3 the
behavior is opposite. On the other side, for α and ν fixed, by increasing the value of c
the complexity of the problem reduces.
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Fig. 4 Plot of the coefficients αk (solid lines) and βk (dashed lines) for ν = 0.9, α = 0.1 and c = 0.1

Table 2 Number of function evaluations necessary to achieve a relative error ∼ 10−8 by changing the
parameters of the weight function

α c f (x) = e−0.5x f (x) = (1 + e−x )−1

ν = 1 ν = 10 ν = 20 ν = 1 ν = 10 ν = 20

0.1 0.15 36 46 60 160 118 64

0.3 22 28 40 80 80 50

0.5 16 22 30 50 56 52

1 12 18 26 28 40 80

0.3 0.15 36 46 58 162 126 96

0.3 24 28 38 82 66 50

0.5 16 22 30 52 56 60

1 12 18 30 28 42 56

0.5 0.15 48 44 52 156 130 100

0.3 24 28 32 84 66 56

0.5 16 22 30 54 64 62

1 12 18 30 28 36 72

0.7 0.15 38 42 52 158 134 98

0.3 24 30 34 88 64 60

0.5 18 22 28 56 58 50

1 12 18 28 28 36 46

1 0.15 40 44 54 128 118 102

0.3 24 30 39 88 70 54

0.5 18 22 28 52 46 40

1 12 18 30 24 40 54
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6 Electromagnetic fields

In this section we deal with an interesting application arising in geophysical
electromagnetic (EM) survey. We consider the theoretical EM response, i.e. the elec-
tromagnetic fields components, over a N -layered earth due to verticalmagnetic dipoles
above the surface, composed of a transmitter coil and couples of receiver coils. The
receiver couples are placed at different distances (offsets) from the transmitter coil.
In this case, the electromagnetic induction effect, encoded in the first-order linear dif-
ferential equations, produces eddy alternating currents in the soil which on their turn,
induce response EM fields. Under the assumption that each layer is characterized by
a certain conductivity σi and thickness hi (the deeper layer is assumed to have infinite
thickness), the general integral solutions of Maxwell equations are given by (see [16,
22])

H (N )
z = m

4π

∫ ∞

0
(1 + R0(λ)e−2Hλ)λ2 J0(λr)dλ,

H (N )
ρ = m

4π

∫ ∞

0
(1 − R0(λ)e−2Hλ)λ2 J1(λr)dλ,

where m is the magnetic moment, H is the height of the dipole with respect to the
surface and r is the offset. In the above formulas R0(λ) is the reflection term, recursively
defined by

R0(λ) = R1(λ) + �1(λ)

R1(λ)�1(λ) + 1
,

R j (λ) = R j+1(λ) + � j+1(λ)

R j+1(λ)� j+1(λ) + 1
e−2u j (λ)h j , j = 1, ..., N − 1,

RN (λ) = 0,

with

� j (λ) = u j−1(λ) − u j (λ)

u j−1(λ) + u j (λ)
, j = 1, ..., N ,

in which u0(λ) = λ and u j (λ) =
√

λ2 − k2j , k j = √−iωμσ j , for j = 1, . . . , N ,

where ω is the angular frequency and μ is the magnetic permeability of vacuum. We
refer to [22, Section 4] and the reference therein for an exhaustive background. Since
in the case of conductivity of geological materials only the imaginary part of the fields
are considered, using the change of variable λr = x , we obtain

�(H (N )
z ) = m

4πr3

∫ ∞

0
�

(
R0

( x
r

))
e− 2H

r x x2 J0(x)dx, (6.1)

�(H (N )
ρ ) = − m

4πr3

∫ ∞

0
�

(
R0

( x
r

))
e− 2H

r x x2 J1(x)dx . (6.2)
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Fig. 5 Relative error history for the computation of �(H (3)
z ) with respect to n for parameters H = 0.4 m,

r = 3 m, h1 = 2.5 m, h2 = 0.5 m, σ1 = 0.05 S/m, σ2 = 0.0055 S/m, σ3 = 0.02 S/m on the left and for
parameters H = 0.5 m, r = 3 m, h1 = 2.5 m, h2 = 0.5 m, σ1 = 0.033 S/m, σ2 = 0.1 S/m, σ3 = 0.01
S/m on the right
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Fig. 6 Relative error history for the computation of �(H (3)
ρ ) with respect to n for parameters H = 0.4 m,

r = 6 m, h1 = 2.5 m, h2 = 0.5 m, σ1 = 0.333 S/m, σ2 = 0.02 S/m, σ3 = 0.1 S/m on the left and for
parameters H = 0.4 m, r = 6 m, h1 = 3.5 m, h2 = 1.5 m, σ1 = 0.033 S/m, σ2 = 0.1 S/m, σ3 = 0.01
S/m on the right

In the numerical experiments we use Algorithm 5.1 to evaluate the fields (6.1) and
(6.2) in the case of a 3-layered underground model. Referring to (1.1), in our examples
we set ν = 0, 1, α = 0, c = 2H

r and f (x) = � (
R0

( x
r

))
x2. Regarding the choice of

the parameters σi and hi , i.e. of the underground models, we consider real life values
of river levees (see e.g. [6]).
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In Figs. 5 and 6 we provide the relative error between the approximated fields
�(H (3)

z ) and �(H (3)
ρ ), and a corresponding reference solution (see e.g. [15, 20]). In all

examples we stop the procedure when the relative error is less than 10−5. The main
reason of this choice is that for these parameters the method works with kmax ∼ 85,
but in order to reach higher accuracy more points are necessary. To overcome this
issue, extended precision arithmetic is necessary (see e.g. [12]), but this is beyond the
purpose of the present paper.

7 Conclusions

In this work a Gaussian type quadrature rule for the computation of integrals involving
fractional powers, exponentials and Bessel functions of the first kind, is presented. In
this framework, the techniques commonly used in the computation of the coefficients
of the three-term recurrence relation, for the corresponding orthogonal polynomials,
are the standard and the modified Chebyshev algorithm. Since it is well known that the
results of these methods can be inaccurate for growing number of quadrature points
and especially for unbounded intervals of integration, an alternative and very stable
approach, based on the preconditioning of the moment matrix, is developed. In par-
ticular, an algorithm, which exploits the Cramer rule to compute the coefficients by
solving a linear system with the moment matrix, is presented. The numerical experi-
ments confirm the reliability of this preconditioned Cramer based approach and shows
that it is definitely more stable than the modified Chebyshev algorithm, since, in dou-
ble precision arithmetic, it allows to work with further 40 ÷ 60 points, depending on
the parameters.

We remark that, in principle, the approach can be applied to each weight function
that is not so far to the standard ones, because it is necessary to be able to construct
the preconditioner. Finally, we also point out that, similarly to the Gauss Laguerre
rule, the weights decay exponentially and therefore a truncated approach can also be
introduced as well.
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