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A B S T R A C T 

We present the merging of the Particle-Mesh (PM) relativistic GEVOLUTION code with the TreePM GADGET-4 code, with the 
aim of studying general relativity effects in cosmology. Our code, called GRGADGET , is able to track the evolution of metric 
perturbations in the weak field limit by using GEVOLUTION ’s implementation of a relativistic PM in the Poisson gauge. To 

achieve this, starting from GEVOLUTION , we have written a C ++ library called LIBGEVOLUTION , which allows a code to access 
and use the same abstractions and resources that GEVOLUTION uses for its PM-only N -body simulations. The code works under 
the assumption that particle interactions at short distances can be approximated as Newtonian, so that we can combine the forces 
computed with a Newtonian Tree with those computed with a relativistic PM. The result is a TreePM simulation code that 
represents metric perturbations at the scales where they are rele v ant while resolving non-linear structures. We validate our code 
by closely matching GADGET-4 forces, computed with the Tree switched off, with those computed with LIBGEVOLUTION in the 
Newtonian limit. With GRGADGET , we obtain a matter power spectrum that is compatible with Newtonian GADGET-4 at small 
scales and contains GR features at large scales that are consistent with results obtained with GEVOLUTION . We demonstrate that, 
due to the better resolution of the highly non-linear regime, the representation of the relativistic fields sampled on the mesh 

impro v es with respect to the PM-only simulations. 

Key words: large-scale structure of Universe – cosmology: theory. 
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 I N T RO D U C T I O N  

he state of the art of precision cosmology provides a standard cos-
ological model, � CDM, that is consistent with most observational

vidence on large scales, but relies on the existence of a dark sector
opulated by dark matter (DM) and dark energy (DE). The first
s responsible for the formation of cosmological structures such as
alaxies and their large-scale density field, while the second causes
he observed accelerated expansion of the universe in the present
poch. Their physical nature is an open problem, since the only
vidence of their existence comes from their gravitational interaction
ith visible matter. A possible explanation is that the dark sector is
ue to a misrepresentation of gravity, which on large scales does not
ollow Einstein’s general relativity (GR), at the basis of the � CDM
odel. 
This fact has triggered a wave of interest in modifications of GR,

hich can lead to extra terms that explain DE or DM (see e.g.
ilvestri & Trodden 2009 ; Capozziello & De Laurentis 2012 , and
eferences therein). Such modifications must be significant only on
arge scales or low density, because GR is very accurate in predicting
lanetary orbits, light deflection, and Doppler effects in solar system
ests and has more recently been successfully tested with the detection
 E-mail: eduardo.quintana@pm.me 
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Pub
f gravitational waves (Abbott et al. 2016 ) and the direct imaging of
lack hole event horizons (Event Horizon Telescope Collaboration
019 ). 
In order to characterize DE in the age of its dominance, many

rojects have been planned to surv e y large parts of the sky and
robe the large-scale distribution of matter using galaxy clustering
nd galaxy lensing, both from the ground (DES 

1 , Krause et al. 2017 ;
ESI 2 , DESI Collaboration 2016 ; Rubin’s LSST 

3 , Ivezi ́c et al. 2019 ;
KAO 

4 surv e ys) and from space (Euclid 5 , Laureijs et al. 2011 ;
oman 6 , Spergel et al. 2015 ; SphereX 

7 , Dor ́e et al. 2014 ). Some
f these surv e ys hav e already started to produce a flood of data
hat will soon lead to a precise characterization of the galaxy and

atter density fields. A comparison of these observations to model
redictions, either using summary statistics or field-level inference,
ill lead to unprecedented tests not only of the cosmological model
ut also of the gravity theory behind it. With precision being
uaranteed by the amount of available high-quality data, accuracy
www.skao.int
 sci.esa.int/ web/ euclid 
 roman.gsfc.nasa.gov 
 spherex.caltech.edu 
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ill be achieved only by rigorous control of systematics, both in the
ata and in theory predictions. 
The highly non-linear nature of the observed density field and the 

on-locality of gravity make cosmological simulations necessary to 
ompare the predictions of current theories with the observations 
t an increasing level of accuracy. Yet most of the widely adopted
imulation codes, like e.g. GADGET-4 (Springel et al. 2021 ), use 
ewtonian dynamics for the evolution of matter perturbations. This is 
ot the ideal configuration to pass from the unobservable distribution 
f matter in a periodic comoving box to the observable distribution
f light in the past light cone. Relativistic corrections can be added
 posteriori by post-processing Newtonian simulation outputs; one 
pecific example of this approach is the modelling of lensing due 
o the distortion of null geodesics (Bartelmann & Schneider 2001 ), 
hile a more comprehensive approach to adding relativistic effects is 
resented by Borzyszkowski, Bertacca & Porciani ( 2017 ). However, 
ven though the biases introduced by this approach are expected to 
e small, a fully self-consistent approach is necessary to convinc- 
ngly demonstrate our ability of controlling theory systematics. For 
nstance, galaxy clustering is affected by magnification bias due to 
ensing, and neglecting this effect induces a non-negligible bias in 
arameter estimation (Lepori et al. 2020 ; Alam et al. 2021 ). This is
ven more true when modified gravity theories are used: extensions 
f gravity are typically derived in a full relativistic context, and 
hile they influence the Newtonian limit of gravity, the small but 
easurable relati vistic ef fects may provide smoking-gun signals of 
 specific class of gravity theories. In this sense, restricting to the
reatment of the Newtonian limit of modified gravity theories (as e.g. 
n Li et al. 2012 ; Puchwein, Baldi & Springel 2013 ; Llinares, Mota &

inther 2014 ; Hern ́andez-Aguayo et al. 2021 ) may leave out crucial
bservable signatures, which may arise from the metric degrees of 
reedom (e.g. vector and tensor modes), their interaction with the 
atter sector and the coupling of the scale factor with the evolution

quations. 
Two examples of fully relativistic N -body codes for the evolution 

f cosmic perturbations, which integrate Einstein’s equations to 
ollow the motion of massive particles along their geodesics, are 
he adaptive mesh refinement (AMR) code GRAMSES (Barrera- 
inojosa & Li 2020 ) and the Particle-Mesh (PM) code GEVOLUTION 

Adamek et al. 2016 ). These have proven to be precious tools to
roduce accurate cosmological predictions, like a self-consistent 
reatment of massive neutrinos (Adamek et al. 2022 ), and to explore
henomena that were previously o v erlook ed, lik e the strength of
he frame dragging field acting on DM haloes (Barrera-Hinojosa 
t al. 2021 ). These codes sample the fields in a mesh that fills the
imulated v olume, b ut while GRAMSES uses an AMR scheme to
ncrease resolution only where it is needed, PM schemes working 
n a single non-adaptive mesh are well known to be limited by
emory, so they are unable to achieve the large dynamic range 

equired, e.g. to resolve DM haloes in large cosmological volumes. 
he integration of Newtonian particle trajectories has historically 
een addressed with the introduction of an oct-tree data structure 
Barnes & Hut 1986 ) that provides a N log N scaling for the com-
utation of gravity without compromising its accuracy. Because 
he integration of large-scale perturbations is very slow in this 
cheme, such an oct-tree is used to compute short-range forces and is
omplemented by a PM code on large scales. The resulting algorithm 

s commonly called TreePM, and it is the standard gravity solver for
ADGET-4 . 
As we will show in next section, deviations from a pure Newtonian

pproach become significant on scales that are comparable with the 
ubble horizon, so a Newtonian treatment of small-scale clustering, 
erformed by the Tree algorithm, would introduce a negligible error 
f large scales are treated by a fully relativistic gravity solver. This
an be achieved, in a TreePM scheme, by using a relativistic PM
ode for large-scale gravity, where relativistic potentials are sampled 
n a small enough mesh so as to be ef fecti vely Ne wtonian on the
cales where the Tree code gets in. 

In this paper, we present an implementation of GADGET-4 that 
ses a PM library, based on GEVOLUTION relativistic code, as 
he PM part of the TreePM solver. This is a step toward the
onstruction of an ecosystem of codes and post-processing tools 
o perform end-to-end simulations of future surv e ys, with the aim
f achieving optimal control of all systematics, including theoretical 
nes. The paper is organized as follows: Section 2 gives an overview
f the theory of relativistic perturbations, with a focus on the
pproach used in GEVOLUTION . Section 3 gives a description of
he GADGET-4 and GEVOLUTION codes and describes the implemen- 
ation of LIBGEVOLUTION and GRGADGET . Section 4 presents the 
ests performed to validate GRGADGET , while Section 5 gives our 
onclusions. 

 T H E O RY  O F  RELATIVISTIC  

E RTU R BAT I O N S  

he success of Newtonian simulations in describing the large-scale 
tructure of the universe follows from the fact that, for an observer at
est with respect to the CMB, the metric of spacetime is very close
o Friedmann–Lemaitre–Robertson–Walker’ s (FLR W). Deviations 
rom the Newtonian approach are expected to be significant, albeit 
mall, on scales near the Hubble horizon, or when the energy-
omentum tensor has relativistic components like radiation or fast 
assi ve neutrinos. De viations from FLRW metric are expected to

e strong in the proximity of compact objects, but this happens
n scales that are far smaller than the resolution that can be
fforded in simulations of large comoving volumes. It is thus 
air to assume that the perturbations to the metric are small and
an be described in a weak-field regime. This does not imply
hat deviations of the components of the energy-momentum tensor 
rom homogeneity are assumed to be small, density perturbations 
an be highly non-linear: what we require is that the size of
elf-gravitating objects is much larger than their gravitational 
adius. 

The GEVOLUTION code (see Adamek et al. 2016 ) models the
pacetime metric with a perturbed FLRW metric in the weak field
egime. In the Poisson gauge , the metric can be written as: 

 s 2 = a 2 
(−c 2 d τ 2 (1 + 2 �) − 2 c d τd x i B i + 

+ d x i d x j 
(
γij (1 − 2 � ) + h ij 

))
, (1) 

here a ( τ ) is the scale factor of the FLRW background, τ is the
onformal time, and x i are the space coordinates. It is possible to
xploit the residual degrees of freedom of the metric to impose the
onditions B i | i = 0, h i i = 0, and h ij | j = 0. In our notation, repeated latin
nde x es denote Einstein’s summation o v er the spatial coordinates
,2,3 and the vertical bar subscript, e.g. B i | j , denotes a covariant
eri v ati ve with respect to the affine connection that emerges from
he background spatial metric γ ij . 

The choice of the Poisson gauge is convenient because the two
otentials � and � are the gauge-invariant Bardeen potentials, and in
he Newtonian limit, the field � can be interpreted as the gravitational
otential. In other words, this is the gauge in which the standard
 -body solver is integrating the right equations of motion in the
ewtonian limit (Chisari & Zaldarriaga 2011 ). 
MNRAS 522, 5238–5253 (2023) 
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.1 Field equations 

he background, characterized by a ( τ ), is by construction a solution
f the Einstein’s equations in the presence of a homogeneous and
sotropic energy-momentum tensor T̄ μν : 

¯
 

μ
ν = −8 πG 

c 4 
T̄ μν , (2) 

here Ḡ 

μ
ν is Einstein’s tensor constructed from the metric ( 1 ) with

he perturbations �, � , B i , and h ij set to zero. Applying equation ( 2 )
o the FLRW metric, one obtains Friedmann’s equations. 

To solve for the perturbations of the metric, the usual procedure
onsist in subtracting ( 2 ) from the full Einstein’s equations: 

 

μ
ν − Ḡ 

μ
ν = −8 πG 

c 4 

(
T μν − T̄ μν

)
. (3) 

he right-hand side now contains the perturbation of the energy-
omentum tensor due to inhomogeneities in mass and energy

istributions, while the left-hand side is a very complicated non-
inear expression containing the potentials �, � , B i , and h ij and their
pace-time deri v ati ves up to second order. 

To reach a tractable set of equations that we can interpret and solve
umerically, we apply the weak field assumption. The perturbations
, � , B i , and h ij are assumed to be of order ε � 1. Spatial

eri v ati ves are kno wn to increase their amplitude by a factor of ε−1/2 ,
ccounting for the presence of shortwave fluctuations induced by
he non-linear structure in the energy-momentum tensor, while time
eri v ati ves are assumed to preserve the perturbation order. Then
ne can expand G 

μ
ν − Ḡ 

μ
ν in terms of the metric perturbations,

eglecting contributions with order higher than ε. F or e xample, �
s a term of order O( ε), � , i has order O( ε1 / 2 ), � | n n is a leading
erm (order 1, because of the second deri v ati ve), quadratic terms like
 , n � , n are O( ε), and a term like � , 00 is considered as O( ε). This

ype of expansion is known as the shortwave correction (Adamek,
urrer & Kunz 2014 ). 
Furthermore, experience has shown that the scalar perturbations �

nd � are generally larger than the vector and tensor perturbations B i 

nd h ij . Indeed, the scalar potentials, which are sourced by the density
erturbation 
 T 

00 , become the Newtonian potential in the Newtonian
imit, while the vector perturbation B i is sourced by 
 T 

0 i , that is small
y a factor of v/ c for non-relativistic matter perturbations, and h ij by
 T 

ij , that is suppressed by a ( v/ c ) 2 factor. Hence, it is fair to drop
uadratic terms of B i and h ij in this weak field limit approximation. 
In this approximation, from equation ( 3 ), it descends that its time-

ime component yields a Poisson-like equation for the scalar � : 

 | n n (1 + 4 � ) − 3 
H 

c 2 
� , 0 + 3 

H 

2 

c 2 
( χ − � ) + 

3 

2 
� | n � | n 

= 

4 πGa 2 

c 4 

T 0 0 , (4) 

here H = a −1 da 
dτ

and χ = � − �. From the time-space section of
quation ( 3 ), we obtain: 

B i| n n 

4 c 
− � ,i0 

c 2 
− H 

c 2 
( � ,i − χ,i ) = −4 πGa 2 

c 4 

T 0 i , (5) 

hat, taking advantage of the condition B n | n = 0, can be reduced to: 

B i| n n 

4 c 
= −4 πGa 2 

c 4 
P ⊥ 


T 0 i , (6) 

here P ⊥ 

is a linear operator that selects from a vector field its
ivergenceless component. 
NRAS 522, 5238–5253 (2023) 
The traceless part of the spatial section of equation ( 3 ) leads to: (
δj 

b δ
a 
i − 1 

3 
δa 

b δ
j 
i 

)[
χ| j i − 2 � | j i χ + 4 �� | j i + 2 � | j � | i 

+ 

1 

2 c 2 
h 

i 
j, 00 + 

H 

c 2 
h 

i 
j, 0 − 1 

2 
h 

i 
j | n n 

+ 

1 

2 c 

(
∂ 

∂ τ
+ 2 H 

)(
B 

i | j + B j | i 
) ]

= 

(
δj 

b δ
a 
i − 1 

3 
δa 

b δ
j 
i 

)(
−8 πG 

c 4 

T i j 

)
, (7) 

rom which we can determine the rest of the metric degrees of
reedom χ and h ij . Since the source of χ and h ij are the perturbation
f the of the energy-momentum tensor 
 T 

i 
j , their amplitude in a

atter-dominated universe is suppressed by a factor ( v/ c ) 2 . That is
qui v alent to say: since DM is non-relativistic, χ and h ij must be
ery small with respect to � or even B i . 

As a matter of fact, V1.2 of GEVOLUTION implements an impro v ed
xpansion of the metric perturbations, which has been presented
n Adamek, Durrer & K unz ( 2017 ). F or our tests, we used the
mplementation of the original expansion, the one presented abo v e.
o we v er, the impro v ed e xpansion has been ported to LIBGEVOLUTION

nd will be used when analysing result on the past light cone. We
o not expect the results presented in this paper to depend on the
pecific expansion used. 

.2 Motion of particles along geodesics 

assive particles move along geodesics, whose equation can be
xpressed as: 

d x i 

d τ
= 

cp 

i √ 

( mca) 2 + p 

2 
+ cB 

i 

+ 

cp 

i √ 

( mca) 2 + p 

2 

(
� + � 

2( mac) 2 + p 

2 

( mac) 2 + p 

2 

)
, (8) 

d p i 

d τ
= − c 

(
p 

n B n | i + � ,i 

√ 

( mca) 2 + p 

2 + 

p 

2 � ,i √ 

( mca) 2 + p 

2 

)
, (9)

here p i is the space part of the particle momentum and p its
orm. The right-hand side in the last equation is the generalized
orce acting on the particles. The term proportional to � , i becomes
he Newtonian force in the limit of small velocities, while p n B n | i 
epresent the corrections due to fr ame dr a g ging and the third term in
arenthesis is a further relativistic correction. 
The energy-momentum tensor is constructed from the knowledge

f particle positions and momenta, but its computation depends on
he perturbed metric. This means that, in equations ( 4 ), ( 6 ), and
 7 ), the source terms on the right-hand sides depend on the potentials
hemselves. These implicit equations may be solved starting from the
otentials at the previous time-step and solving the equations itera-
ively until convergence. The integration scheme that GEVOLUTION

mplements is simpler: at each time-step, the energy momentum
ensor is computed using the potentials from the previous step, then
he Poisson equations are solved to find the updated potentials, that
ill be used in the next time-step to compute the energy-momentum

ensor. 
The Newtonian limit is reco v ered when we consider Fourier modes

arger than H/c, and we further neglect B i and consider � � 1; then
quation ( 4 ) becomes: 

� | n n = 

4 πGa 2 

4 

T 0 0 (10) 
c 
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hile ( 8 ) and ( 9 ) become: 

d x i 

d τ
= 

p 

i 

ma 
, (11) 

dp i 

dτ
= −� ,i mc 2 a . (12) 

 A L G O R I T H M S  A N D  C O D E  

NFRASTRUCTURE  

.1 GEVOLUTION 

EVOLUTION 

8 (Adamek et al. 2016 ) is an N -body relativistic cosmo-
ogical code, written in C ++ and parallelized with the MPI paradigm.
he physical theory behind this code has been described at length in
ection 2 . Numerically, this code implements a PM scheme to follow

he evolution of energy-momentum tensor perturbations. As in PM 

odes, the advantage of working with a single grid and using Fast
ourier Transforms (FFTs) to solve the Poisson-like equations for 

he fields is paid with a high cost in memory, of O( N 

3 ), where N is
he number of grid points per dimension. 

GEVOLUTION can run in either Newton or General Relativity 
odes. The Newtonian gravity solv er inv erts the Laplace operator 

n the Poisson equation for the Newtonian potential, equation ( 10 ).
hen running the GR mode, the code solves equations ( 4 ), ( 6 ),

nd ( 7 ), which require the computation of the perturbed energy-
omentum tensor. This is performed using a Cloud-In-Cell (CIC) 

cheme both for the density and for particle velocities; details are 
iven in the presentation paper. Then the Hamiltonian forces to which 
articles are subjected are computed from equations ( 8 ) and ( 9 ). 

GEVOLUTION solves the field equations in Fourier space, using a 
 ++ library, called LATFIELD 2 to operate FFTs on classical fields in
assively parallel applications with distributed memory. LATFIELD 2 

rovides a programming interface to perform operations on the fields, 
ither in their real or Fourier space representations. This library 
mplements FFTs of 3D fields whose memory is distributed among 
arallel processes, following a 2D uniform decomposition of space, 
n which each process owns in memory a portion of the grid with a rod
hape (Daverio, Hindmarsh & Bevis 2015 ). In this way, LATFIELD 2
 v ercomes the scaling limitations of a simpler 1D domain ( slab )
ecomposition provided by the mainstream FFTW3 library. 9 FFTW3 
s used, ho we ver, to compute 1D FFTs. 

.2 GADGET-4 

ADGET-4 10 is a state-of-the-art TreePM N -body hydrodynamical 
osmological code written in C ++ (see Springel et al. 2021 ); it is
assively parallelized in a distributed-memory paradigm using MPI . 
As in most N -body codes, gravity in GADGET-4 is represented 

n the Newtonian limit, but the equations of motion are modified to
ake into account the Universe expansion, obtained by integrating the 
riedmann equations separately. As mentioned abo v e, this approach 

s consistent with GR in the Poisson gauge and gives the leading-order 
erm of weak field expansion. This amounts to neglecting the metric 
egrees of freedom B i , χ and h ij and is valid on scales much smaller
han the Hubble horizon. In a typical configuration that is convenient 
 ht tps://github.com/gevolut ion-code 
 http:// fftw.org/ 
0 https://wwwmpa.mpa-garching.mpg.de/gadget4 

1

s
t

or large cosmological volumes, the code solves for the forces acting
n each particle, representing them as the sum of two contributions,
ne due to the interactions with nearby particles, computed with a
ree algorithm, and one due to long-range interactions, computed 
ith a PM algorithm. 11 

The Tree algorithm works by partitioning the space into cubic 
ells, called nodes; in turn, each node is recursively partitioned into
ight children nodes down to a pre-determined maximum refinement 
evel. A tree structure tracks the list of particles that are located within
ach node. This structure is used to speed up the computation of
ravitational force on a particle: in a particle-particle (PP) integration 
cheme, this force is computed by adding up a series of � r m/r 3 terms,
ne for each particle pair, but we know that the accuracy of force
 v aluation does not depend strongly on the small-scale distribution
f distant particles, so in the Tree scheme, the e v aluation of gravity
s performed by grouping particles that belong to the same node,
nder the condition that the node subtends a given aperture angle
. PP computation is then used only for the nearest neighbours.
his is equi v alent to considering the leading order in a multipole
xpansion of the gravity force from particles belonging to a distant
ell. While the construction of the Tree is e xpensiv e in terms of
omputing time, it allows to achieve O( N p log N p ) scaling for the
orce computation, where N p is the total number of particles in the
imulation. Thus the Tree is able to compute with high accuracy 
he short-wavelength modes of the gravitational interaction, while 
eeping the computational time low for large simulations. However, 
he Tree code is slow in integrating particle motions near the initial
onditions when the departures from homogeneity are small. This is 
hy it is often coupled with a PM code to speed up the first time-steps
f a cosmological box. 
The PM algorithm represents gravity through the gravitational 

otential field � , e v aluated on a Cartesian cubic mesh of fixed size.
he potential is found from the density field by solving the Poisson
quation in Fourier space, while the force is computed from the
radient of the potential, obtained with a finite differences scheme. 
ccording to the Nyquist–Shannon theory, this implies that the 

nformation handled by the PM is limited to the long modes, up
o the Nyquist frequency. 

To combine the forces provided by the PM and Tree codes, the
ravitational potential is split into the sum of two fields: 

 = � 

( L ) + � 

( S) , (13) 

here � 

( L ) represents long-range modes from the PM , and � 

( S ) 

epresents short-range modes from the Tree. Written in Fourier space 
tilde on top of symbols denotes a Fourier transform), the Poisson
quation reads: 

˜ 
 k = −4 π

k 2 
˜ ρk , (14) 

here ρ denotes the mass density. We can split the density as a sum
f short-range and long-range terms, using Gaussian filters: 

˜ 
 k = −4 π

k 2 
˜ ρk 

(
1 − exp 

(−k 2 r 2 a 

)) − 4 π

k 2 
˜ ρk exp 

(−k 2 r 2 a 

)
. (15) 

he scale r a is the one at which we split long- and short-range modes.
e can obtain � 

( S ) by solving the modified Poisson equation for short
MNRAS 522, 5238–5253 (2023) 

1 The code can work in other configurations (a non-cosmological volume, 
witching off the PM, enhancing the Tree part using multipole expansion) 
hat are ho we ver not rele v ant for this paper. 

https://github.com/gevolution-code
http://fftw.org/
https://wwwmpa.mpa-garching.mpg.de/gadget4
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Figure 1. PM class hierarchy in LIBGEVOLUTION . 
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odes: 

˜ 
 

( S) 
k = −4 π

k 2 
˜ ρk 

(
1 − exp 

(−k 2 r 2 a 

))
, (16) 

nd � 

( L ) by solving the modified Poisson equation for long modes 

˜ 
 

( L ) 
k = −4 π

k 2 
˜ ρk exp 

(−k 2 r 2 a 

)
. (17) 

The long-mode Poisson equation ( 17 ) is solved by the PM in
ourier space, so the convolution with the kernel is a simple
ultiplication. The Tree, on the other hand, works in real space, hence

quation ( 16 ) has to be transformed; this can be done analytically,
ielding: 

 

( S) ( � x ) = −G 

∑ 

i 

m i 

| � x − � r i | erfc 

( | � x − � r i | 
2 r 2 a 

)
(18) 

.3 GRGADGET 

.3.1 LIBGEVOLUTION library 

n order to have a relativistic PM code working in GADGET-4 , we
eveloped a library that implements both the Newtonian and the
elativistic PM algorithms of the monolithic GEVOLUTION code.
his was done by forking the GEVOLUTION github repository into
IBGEVOLUTION , a library that is publicly available on GITHUB 

12 

nder MIT license. 
The rationale behind the development of LIBGEVOLUTION is to

ncapsulate GEVOLUTION ’s resources and methods into abstract
bjects. This yields several benefits. First, GEVOLUTION maintenance
s eased by the logical modularization of the code, i.e. instead of a

onolitic code with a unique workflow, we can divide GEVOLUTION

nto components ( C ++ classes and/or namespaces) with well-
efined purposes. Secondly, we are allowed to re-use GEVOLUTION

omponents within other applications, such as we do within GADGET-
 in the present paper. 
We give here an o v erview of the library; the precise signature of

ll the defined functions, methods, and data structures is described in
he technical documentation of the code. LIBGEVOLUTION is based on
hree cornerstones: (i) a particle container implemented through the
lass Particles gevolution ; (ii) a PM data structure named
article mesh , templated on the particle container type, which
an be used either as a relativistic pm or a newtonian pm ;
iii) an e x ecutable application that uses the previous components
o produce N -body simulations as the original code does. parti-
le mesh has to be understood as a container that is aware of

he parallelization of the tasks and distribution of memory; it holds
he gravitational fields, and it allows the user to compute the forces
cting on the simulation particles. The user interface declared in
article mesh consists of the following functions: 

(i) sample(...) that builds the sources (density field or
nergy-momentum tensor) by sampling particle properties in the
esh; 
(ii) compute potential(...) that solves Poisson equa-

ions to compute the potential fields; 
(iii) compute forces(...) that computes the forces acting

n particles. 

particle mesh is specialized to solve the Newtonian problem
r the General Relativistic problem using class inheritance; Fig. 1 il-
NRAS 522, 5238–5253 (2023) 

2 https:// github.com/Grgadget/ gevolution-1.2 

o
 

f  
ustrates the class hierarchy of LIBGEVOLUTION ’s particle mesh .
he expert user will be able to specialize particle mesh to
is/her own needs, for example by deriving a PM that solves a
odified gravity problem. 
newtonian pm is the specialization of particle mesh that

ontains a real Latfield2::Field scalar field � Newton and its
omple x Latfield2::Field F ourier transform 

˜ � Newton , plus
 Latfield2::PlanFFT that connects � Newton with ˜ � Newton 

hrough discrete Fourier transform. relativistic pm is the
pecialization of particle mesh that contains the abo v e quoted
egrees of freedom of the perturbed FLRW metric, � , B i and
. These are represented as real Latfield2::Field , with
omplex Latfield2::Field counterparts to represent their
ourier transforms and a Latfield2::PlanFFT for each
eld. 
As a first testing phase, we run LIBGEVOLUTION , called with a

imple wrapper, and the native GEVOLUTION code, applying them
o the same set of initial conditions, checking that the results
ere identical both in the Newtonian and relativistic cases. Then
e stripped down GADGET-4 by switching off the Tree code, and

ompared its results to the Newtonian results of LIBGEVOLUTION . It
s necessary that this comparison gives nearly identical results if we
ant LIBGEVOLUTION to substitute the native PM code of GADGET-4
ithout loss of accuracy. To achieve a satisfactory match of the two
M codes, we had to change the GEVOLUTION scheme in a few points.
We started from V1.2 of GEVOLUTION , which implemented a

rst-order version of finite differences instead of the fourth-order
cheme of GADGET-4 . This resulted in a difference with GADGET-
 run on the same initial conditions, and in a per cent-level offset
f the matter power spectrum on large scales at low redshift. We
pgraded the computation of spatial deri v ati ves to fourth order,
n parallel with the GEVOLUTION developers that had noticed the
ame problem; our implementation is equi v alent the most recent
ssue of GEVOLUTION (used, e.g. in Adamek et al. 2022 ). The
pgrade is the following: let’s consider the gravitational potential
long one direction of the mesh, and let’s call its values � i ,
here the index i denotes its position along that direction. Its first
eri v ati ve is computed with finite differences at the first order 
s: 

∂ � i 

∂ x 
= 

� i+ 1 − � i 

h 

+ O( h ) , (19) 

here h is the size of the mesh cell. Fourth-order Taylor expansion
ives: 

∂ � i 

∂ x 
= 8 

� i+ 1 − � i−1 

12 h 

− � i+ 2 − � i−2 

12 h 

+ O 

(
h 

4 
)

. (20) 

his has a smaller error of order O( h 

4 ), so it achieves higher precision
han ( 19 ) with the little cost of knowing the potential value at
he second-nearest cell, which implies a negligible communication
 v erhead. 
Another impro v ement with respect to V1.2 of GEVOLUTION , which

ollows an implementation of GADGET-4 , was the application of

https://github.com/GrGadget/gevolution-1.2
art/stad1174_f1.eps
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Figure 2. Diagram of resource ownership and relations for LIBGEVOLUTION integrated into GADGET-4 ’s workflow. Each solid box represent a memory resource (an 
instantiation of a variable type), while the dashed boxes indicate ownership. The newly developed code, represented in the right part of the diagram denoted with 
the namespace gadget::gevolution api , consists of a class named relativistic pm that owns a particle handler object that reads and writes 
directly into gadget::simparticles , a latfield handler that takes care of setting up and inspect the state of Latfield2::parallel , and some 
types defined in LIBGEVOLUTION , that are defined in gevolution namespace, like cosmology , Particles gevolution , and relativistic pm . The 
methods sim::begrun1() and sim::gravity long range force() in gadget:: interact with the relativistic pm through their interface 
init periodic() and pmforce periodic() . 
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orrecting filters to the density in Fourier space to compensate for
IC interpolation. Indeed, as discussed e.g. in Springel ( 2005 ) or
efusatti et al. ( 2016 ), CIC interpolation at some finite order leads

o some loss of power that can be compensated for in Fourier space
sing suitable kernels. This was applied both to the computation 
f the density and to the computation of energy-momentum tensor 
omponents in the relativistic case. 

Lastly, to make the Newtonian PM scheme equivalent to that of
ADGET-4 , we changed the form of the discrete Laplacian operator 

n the Poisson equation solver from its original form 

 

2 → −4 N 

2 

L 

2 

(
sin 2 

πk x 

N 

+ sin 2 
πk y 

N 

+ sin 2 
πk z 

N 

)
, (21) 

escribed in Adamek et al. ( 2016 ), equation (C.5), to the form used
n GADGET-4 : 

 

2 → −4 π2 

L 

2 

(
k 2 x + k 2 y + k 2 z 

)
. (22) 

.3.2 Calling LIBGEVOLUTION from GADGET-4 

he implementation of LIBGEVOLUTION in GADGET-4 was performed 
s follows. We created a new PM class with a similar interface as
he original one in GADGET-4 , so that it is initialized and e x ecuted
ith the same functions as GADGET-4 , i.e. init periodic() and 
mforce periodic() . A new class relativistic pm was 

mplemented within an gadget::gevolution api namespace, 
 v oiding to use the wider gadget namespace to make a clear
istinction of purpose between the original GADGET-4 code and our 
dditional features. This relativistic pm class acts much like 
 mediator taking information in and out of gadget simulation 
articles, processing the correct units conversion and calling the 
ethods on gevolution namespace. Fig. 2 shows a diagram that 

ummarizes the contents of this PM class, its relation with GADGET- 
 ’s resources and the entry points for gevolution ’s api. 
relativistic pm consists of: 
(i) A variable of type simparticle handler that acts as 
 wrapper for providing particle information from GADGET-4 ’s 
imparticles global variable and writing back the data produced 
y gevolution ’s PM . 
(ii) A variable of type latfield handler that takes care of 

orrectly initializing LATFIELD global state. Indeed, while GADGET-4 
an run with any number of MPI processes, LATFIELD has limitations
hat depend on the number of grid points in the PM . lat-
ield handler also takes care of creating a sub-communicator 

rom GADGET-4 ’s MPI global communicator that satisfies the con- 
traints set by LATFIELD . 

(iii) A variable of type gevolution::cosmology that con- 
ains the parameters for the background evolution. 

(iv) A container of type gevolu- 
ion::Particles gevolution that holds particle 

nformation, stored according to their location on the PM 

rid. 
(v) Variables of type gevolution::relativistic pm and 
evolution::newtonian pm that perform the actual PM com- 
utations, i.e. construct the sources, either density or the components 
f the energy-momentum tensor, compute the gravitational potential 
r the metric perturbation fields and the forces that act upon the
articles. 
(vi) The methods pm init periodic and pm- 
orce periodic for initialization and e x ecution of the 
M , respectively. 

.3.3 Kick and drift operators 

n order to keep the Hamiltonian character of the equations of motion
n GADGET-4 , we have to describe the state of each particle through its
osition and momentum, not v elocity. F ollowing a leap-frog scheme,
he momentum should be updated with a kick operation using the full
elativistic equations ( 8 ) and ( 9 ). Howev er, v elocities in GADGET-4
re to be interpreted as momenta (per unit mass) of non-relativistic
articles in the Newtonian limit. Then we redefine the GADGET-4 kick
MNRAS 522, 5238–5253 (2023) 
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Table 1. Cosmological simulation configurations used to validate 
GRGADGET . 

Name N p (particles) N (PM grid points) L (box size) 

N64 64 3 64 1 Gpc h −1 

N256 256 3 256 1 Gpc h −1 

high res 512 3 512 500 Mpc h −1 
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nd drift operators assuming non-relativistic matter, p � mca , and
urther neglecting the very small contribution coming from χ : 

d x i 

d τ
= 

p 

i 

ma 
( 1 + 3 � ) + cB 

i , (23) 

d p i 

d τ
= −cp 

n B n | i − � ,i mc 2 a . (24) 

he right hand side of ( 24 ) is what we call force . 

.3.4 Adding long-range and short-range forces 

o combine the forces computed with the relativistic PM and
ADGET-4 ’s Newtonian Tree, we hav e e xtended the idea of the
ree PM coupling. From equation ( 13 ), one obtains that the force
cting on a particle in a Tree PM scheme consists of two terms: 

� 
 = S r a 

[ 
� F 

Tree 
Newton 

] 
+ L r a 

[ 
� F 

PM 

Newton 

] 
. (25) 

he first term is the force computed using the Tree on which an
xponential high-pass filter S r a is applied, lea ving short-wa velength
odes. The second term corresponds to the PM force on which

he complementary low-pass filter L r a is applied to leave long-
avelength modes. The symbols S a and L a formally denote these

inear operators: 

 r a [ f ] ( � r ) = 

1 

N 

∑ 

� k 

˜ f � k 
(
1 − exp 

(−k 2 r a 
2 
))

exp 
(
−i � k · � r 

)
, (26) 

nd 

 r a [ f ]( � r ) = 

1 

N 

∑ 

� k 

˜ f � k exp 
(−k 2 r a 

2 
)

exp 
(
−i � k · � r 

)
. (27) 

he grid smoothing scale r a scales with the PM mesh size, and
ts value is optimized in GADGET-4 , in a way that will be tested
elow, to minimize the impact of the two different treatments of the
ravitational force. 
In order to account for the relativistic dynamics while preserving

he match between tree and PM contributions that is valid in the
ewtonian case, we choose the following strategy: GADGET-4 calls
oth newtonian pm and relativistic pm , the Newtonian
alue of the force is added to the Tree force as in a standard Newtonian
imulation, while the difference between the Newtonian and the
elativistic forces is added on top as a correction, but filtered on a
ifferent scale r b , that we call gr-smoothing scale . Equation ( 25 ) then
ecomes: 

� 
 = S r a 

[ 
� F 

Tree 
Newton 

] 
+ L r a 

[ 
� F 

PM 

Newton 

] 
+ L r b 

[ 
� F 

PM 

GR − � F 

PM 

Newton 

] 
. (28) 

he case r a = r b would correspond to simply adding the relativistic
orce to the Tree: 

� 
 = S r a 

[ 
� F 

Tree 
Newton 

] 
+ L r b 

[ 
� F 

PM 

GR 

] 
. (29) 

o we ver, while the size of r a , which regulates the match between
ewtonian Tree and PM forces, is very well tested within GADGET-
 , the optimal value of r b is to be found; we will show in the next
ection that using r b larger than r a allows us to achieve per cent
ccuracy at small scales. 

The grid smoothing scale r a has a direct impact on the code
erformance because the short-range forces decay exponentially with
he distance to the source as shown in equation ( 18 ); this fact is
xploited by the tree code that ignores contributions to the force
oming from sources at distances much larger than r a (Springel
005 ). On the contrary, the gr-smoothing scale r b is implemented
NRAS 522, 5238–5253 (2023) 
nly with a function convolution in the PM ; thus it has no direct
mpact on the speed of the calculations. Ho we ver, the v alue of r b 

ust be within an upper bound set by the physical scale where
he Newtonian forces are numerically similar to GR in our gauge
nd a lower bound around 3 L / N set to reduce the numerical noise
roduced by the PM discretization (where L is the boxsize and N is
he number of grid points per dimension of the PM ; these constraints
ill be discussed in details in the following sections). Therefore, if
 b is fixed, the mesh resolution must be fine enough (for example
ncreasing the value of N ) to allow 3 L / N ≤ r b ; in this way, r b has an
ndirect impact on performance. 

 VA LI DATI ON  

he GRGADGET code has been validated by running it on a few real-
zations of initial conditions, listed in Table 1 . These were generated
ith GADGET-4 ’s ngenic code at z = 19, starting from a linear
ower spectrum generated with CAMB 

13 and with cosmological
arameters consistent with Planck 2018 result (Planck Collaboration
I 2020 ): �b h 2 = 0.0223, �c h 2 = 0.120, H 0 = 67 . 3 km s −1 Mpc −1 ,
 s = 2.097 × 10 −9 , and n s = 0.965. 

.1 GEVOLUTION and GADGET-4 original codes 

s already discussed in Section 3.3.1 , the newtonian pm im-
lementation in V1.2 of GEVOLUTION computes the Newtonian
orces differently from those obtained with GADGET-4 ’s PM . Before
mplementing LIBGEVOLUTION as the PM engine of GADGET-4 , we
eed to make the two algorithms work in the same way. 

To this aim, we have run a set of simulations with the configuration
64 (described in Table 1 ) with a small number of particles
 p = 64 3 to be able to compute forces using a straightforward PP

cheme, which can be taken as the true force that we are trying
o approximate. The same initial conditions at z = 19 have been
ed to both GADGET-4 (with Tree either on or switched off to have
 pure PM run) and GEVOLUTION (in Newtonian mode) codes. At
ater times, z = 8 and z = 0, we have written snapshots of the
orces that the simulation particles experience, separating the PM and
he Tree PM components; we have then compared those to the true
ewtonian force computed with the PP scheme. The data we have
btained are summarized in the plots shown in Fig. 3 . We have binned
articles according to the value of the true force; then for each bin,
e have computed the mean (coloured lines) and standard deviation

shaded regions) of the difference between the force computed with
pproximate methods ( PM or Tree PM ) and the true value. Forces
re given in GADGET-4 ’s default units, which is actually acceleration,
easured in units of 10 H 0 km / s = h km 

2 s −2 kpc −1 . The green line
hows the PM result using the original GEVOLUTION code (the true
orce is anyway computed with GADGET-4 and matched particle by

https://camb.info/
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Figure 3. Difference of gravity force with respect to the true PP value, binned according to the true force, for N64 initial conditions, at z = 8 (left-hand panel) 
and z = 0 (right-hand panel). Lines represent the mean value of force difference in the bins, with colours explained in the legend; the shaded regions give the 
standard deviation of the corresponding force difference. 
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Figure 4. Matter power spectrum of N256 cosmological simulations. The 
lower panel shows residuals with respect to GADGET-4 ’s original code (in 
red) used as baseline. The black line shows the linear power spectrum 

obtained with CAMB. Red lines show results obtained with GADGET-4 , with 
the Tree part on (solid line) or switched off (dotted line). Green lines show 

results obtained with GEVOLUTION in Newtonian configuration, with finite 
differences at first order (dotted line) or second order (solid line). 
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article), while the red line is obtained from a pure PM using GADGET- 
 ’s original code. The black line gives the Tree PM method precision,
btained using GADGET-4 . 
Looking at the red and green lines (and their shaded areas), we find

wo known results. First, the Tree PM method produces far less bias
nd dispersion when estimating forces; for instance, in the left-hand 
anel of Fig. 3 the error is of the order 14 of 0 . 1 h km 

2 s −2 kpc −1 ,
hile in the right-hand panel, it is larger but barely visible when

ompared with the other curves. Second, while the PM force has low
ias but a much larger variance than the Tree PM one at high redshift,
t low redshift, i.e. at higher level of non-linearity, it underestimates 
he value of the Newtonian force as its magnitude increases. This
nderestimation is due to the failure of PM in resolving interaction 
t scales smaller than the grid resolution. 

When comparing GEVOLUTION PM and true forces, we notice an 
 -shaped feature in the plot, much more visible at high redshift.
s anticipated in Section 3.3.1 , this is mostly due to the first-order

nterpolation used to find the gradient of the potential in the code
ersion that we tested. 

In Fig. 4 , we show the matter power spectra 15 obtained at z =
 from a set of larger simulations with the configuration N256
see Table 1 ). The red solid line shows the result obtained with
he original GADGET-4 code with its Tree PM method, while the red
otted line shows the results obtained by switching off the Tree so
hat the forces are computed using the PM alone. The green lines
how results obtained with the latest develop version of GEVOLUTION 

hat implements higher-order schemes for finite differences; the 
otted line gives results obtained with GRADIENT ORDER = 1 
nd is identical to the result obtained with V1.2 of GEVOLUTION ; the
reen solid line uses GRADIENT ORDER = 2 that corresponds to 
4 This quantification is in code units; we can take this value as a reference 
or a high accuracy gravity solver. 
5 In this paper, all particle power spectra were computed using PowerI4 
ode presented in Sefusatti et al. ( 2016 ). Unless otherwise stated, all power 
pectra are computed up to the the Nyquist frequency of the PM mesh. 

a
d
i  

i  

s
t

 second-order scheme. These power spectra show that the matter 
istribution in GEVOLUTION using first-order gradients loses power 
n what seems to be a uniform trend for large-scale modes. This
s a behaviour that is not inherent to the PM nature of the code,
ince that type of numerical approximation should predict very well 
he linear evolution at large scales; indeed, the higher-order scheme 
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M

Figure 5. Forces due to a point source: the points are test particles located at 
different distances (in units of the mesh resolution L / N ) from the source, and 
the lines represent the RMS of the difference between real and TreePM forces 
in different distance bins. The red line corresponds to GADGET-4 original 
Tree PM , while the blue line was obtained with GRGADGET in Newtonian 
mode. As for the grid smoothing scale, the default value was used: r a = 

1.25 L / N . For this test, we have used N = 256 and L = 1 Gpc h −1 . 
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Figure 6. Matter power spectrum of four simulations starting from the same 
initial conditions high res : blue lines give results for GADGET-4 original 
code, and red lines give results for GRGADGET . In both cases, dotted lines 
refer to runs with PM -only, and solid lines refer to runs with full Tree PM . 
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eco v ers power on large scales to sub-per cent accurac y. Conv ersely,
ADGET-4 ’s PM and Tree PM agree very well at wavenumbers below
 ∼ 0.1 h Mpc −1 scale. 

The higher-order differentiation worsens the loss of power of
EVOLUTION for high values of k , which is not present in GADGET-
 . This can be explained as a consequence of the particle-to-mesh
ampling and mesh-to-particle interpolation described in Section
.3.1 . As discussed there, GADGET-4 ’s PM corrects for these effects,
esulting in a power spectrum that degrades only at very high values
f k as we approach the Nyquist frequency, while producing a
2 per cent o v ercorrection at k ∼ 0.4 h Mpc −1 . 
After implementing the higher-order differentiation scheme,

he correction for the loss of power discussed abo v e and the
hange in the discrete Laplacian operator (Section 3.3.1 ), the
esults of native GADGET-4 and LIBGEVOLUTION PMs become
ndistinguishable. 

.2 Newtonian forces 

e have tested our implementation of the GRGADGET code by running
 standard test in GADGET-4 : we create an N -body configuration in
hich there is a single massive particle in the entire simulation box,
hile other massless test particles are placed at different distances

rom the first. In this setting, the exact value of the force on each
article is known, hence one can compare the numerical results
oming from the Tree PM algorithm to the analytical solution. 

The results are shown in Fig. 5 , where each dot represents a
est particle. The x-axis gives the distance to the massive particle
hat sources the gravitational field in units of the PM resolution
 L / N ), while the y-axis gives the corresponding absolute value of
he relative difference of the true and estimated forces acting on the
est particle. The red and blue lines correspond to the mean value of
orce residuals, for particles binned into distance bins; the red line
NRAS 522, 5238–5253 (2023) 
enotes the statistics obtained from a simulation using GADGET-4 ’s
riginal Tree PM implementation, and the blue line was produced
sing GRGADGET , in this case with the Newtonian gravity engine. 
This figure shows that the accuracy with which the Tree PM code

eproduces the gravitational force is at worst at per cent level on
cales of a few mesh cells, corresponding to the scale where the PM
nd Tree contributions are matched, and gets very accurate in the
imits where either the Tree (small scales) or the PM (large scales)
ominates. 

GADGET-4 ’s and GRGADGET ’s Newtonian PM s show basically the
ame accurac y, ev en though their PM implementations are v ery
ifferent. 
In Fig. 6 , we show the matter power spectra of a set of N256

imulations (see Table 1 ). In this case, we are comparing the matter
lustering of GRGADGET , in blue (with Newtonian forces for testing
urposes), against GADGET-4 , in red. In agreement with the previous
est of force differences, we find that both codes produce the same
atter power spectrum up to floating-point errors. This is verified

oth in the case of simulations computing forces using a pure PM
nd in the case of Tree PM . 

.3 Relativistic simulations with GRGADGET 

e present here results obtained by running GRGADGET with rela-
ivistic pm , comparing them with the corresponding relativistic
ersion of GEVOLUTION . We expect that the power spectrum of the
atter density displays some relativistic features at large scales due

o terms preceded by H in the field equation ( 4 ), while at small
cales, results should be compatible with GADGET-4 ’s Newtonian
imulations. Ho we ver, the matter power spectrum shown here is not
n observable quantity, so this comparison is just meant to give a first
alidation of the results. A more thorough comparison of observables
econstructed on the past light cone will be presented in a future paper.

Fig. 7 shows the matter power spectra for a series of N256
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Figure 7. Matter power spectrum of GADGET-4 , GEVOLUTION, and GRGAD- 
GET runs, the last code being run in relativistic mode. The upper panel 
shows the absolute value and the lower panel the relative difference with 
respect to GADGET-4 ’s Tree PM . The black line gives the linear matter power 
spectrum; red and blue lines give GADGET-4 and GRGADGET results, with 
full TreePM forces (solid lines) or with the Tree switched off (dotted lines). 
Green lines give GEVOLUTION results, dotted line referring to first-order finite 
differences ( GRADIENT ORDER = 1 ) and solid line referring to second- 
order calculation ( GRADIENT ORDER = 2 ). 
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imulations (see Table 1 ). In this case, GEVOLUTION and GRGAD- 
ET are run in GR mode. The parameter that regulates the scale
f the relativistic correction [equations ( 28 ) and ( 29 )] is set to
 b = 6 L/N ≈ 23 Mpc h 

−1 , i.e. the relativistic corrections of the PM
ethod are smoothed at distances below six grid cells. The plot 

ho ws that relati vistic PM -only simulations, GRGADGET (blue dotted 
igure 8. In the left plot: power spectrum of the metric perturbation � in a high 
f k 2 � and T 0 0 . For modes well below the Hubble horizon and small perturbations

y

ine) and GEVOLUTION (green lines) are compatible on large scales ( k
 0.03 h Mpc −1 ) up to a small per cent-level difference that it is likely

aused by the use of different orders for finite-difference gradient; 
ndeed, going from first- to second-order differences (from dotted 
o solid green line), the power spectrum gets nearer to GRGADGET ’s
ourth-order one. The plot also confirms that our combination of Tree
nd PM forces in the relativistic weak field limit with GRGADGET 

blue solid line) reproduces the Newtonian non-linear features to 
ub-per cent level at small scales, that is for k > 0.1 h Mpc −1 ; here,
ADGET-4 (red solid line) is again our reference for the non-linear
lustering. 

Being designed for the use of Fourier methods from the beginning,
IBGEVOLUTION offers an interface for the computation of the power 
pectrum of the fields defined through the library’s interface. Thus, 
e can also extract and analyse the power spectra of the individual

omponents of the metric perturbations from the relativistic simula- 
ions. Figs 8 and 9 show the power spectra of the relativistic poten-
ials, � , B i , and χ , for a high-resolution configuration high res
see Table 1 ). These plots show a comparison of PM (blue lines) and
ree PM (red lines) simulations. The power spectrum of the gravita-

ional potentials converge for both methods on large scales. Ho we ver,
elow 1 Mpc h −1 , the PM -only simulation loses power with respect
o the Tree PM one; the differences can reach up to 40 per cent as we
pproach the Nyquist frequency. This pattern is equally found for the
calar fields � and χ , as well as for the individual components of B i .

The right plot in Fig. 8 helps to understand the reason behind
his result. Generally speaking, energy density, momentum density, 
nd their respective density current (the components of the Energy- 
omentum tensor) are sources of the metric perturbations. Even 

hough those quantities, as fields, are found at discrete positions of
pace defined by the mesh, their values are computed by sampling
he energy and momentum carried by the particle distribution, 
hich contain information on the clustering due to the short-range 

nteractions (through the Tree) that goes well below the mesh 
esolution L / N . Therefore, Tree PM simulations, having power on
cales well smaller than the PM mesh, give a better representation of
he source of metric perturbation, and thus allow to reco v er power at
requency modes right below Nyquist. Fig. 8 highlights the particular 
ase of T 

0 
0 (the matter density) as a source for � ; by comparing T 0 0 
MNRAS 522, 5238–5253 (2023) 

res simulation obtained with GRGADGET . In the right plot: power spectrum 

, it should be verified that k 2 ˜ � ≈ ˜ T 0 0 . 
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M

Figure 9. In the left plot: power spectrum of the metric perturbation B i (the x component) in a high res simulation obtained with GRGADGET . In the right 
plot: power spectrum of χ . 
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Figure 10. Power spectrum of matter density for GADGET-4 and GRGADGET , 
on a N256 simulation configuration. The upper panel shows the absolute 
value and the lower panel the relative difference with respect to GADGET-4 ’s 
Tree PM . Different shades of blue indicate different values of the gr-smoothing 
scale parameter r b = 1.5, 3, and 6 in units of L / N . The PM smoothing 
scale is r a = 1 . 5 L/N . The power spectra in this plot are computed beyond 
the Nyquist frequency to show the convergence of the matter distribution 
correlations for distances below the grid resolution, the Tree regime. 
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ith k 2 � , we are verifying the Poisson equation k 2 ˜ � ≈ ˜ T 0 0 that
s valid for wavelengths below the Hubble horizon. This confirms
hat the presence of small-scale clustering in the particle distribution
ropagates to the gravitational fields up to the maximum resolution
hat the PM allows. The same thing is visible in the vector modes B i 

nd in χ (Fig. 9 ), where we also notice a small, few-per cent mismatch
n large scales. These fields are known to give sub-per cent effects
n observables, so this difference, that is likely due to some degree
f numerical mode coupling, is non considered as a problem. 
In Fig. 10 , we sho w ho w the matter power spectrum obtained

sing GRGADGET is affected by the choice of the gr-smoothing
cale parameter r b . We have used an N256 box configuration to
erform this test and tested values of r b = 1.5, 3, and 6 in units
f L / N ≈ 4 Mpc h −1 . We find that large-scale power is independent
f the value of r b parameter; structures on scales below the PM
esolution are resolved by the Tree algorithm, hence for k > k Nyquist ,
here is a convergence of all simulations to a common non-linear
ower spectrum tail. It is in the medium to small scales k Nyquist >

 > 0.2 Mpc −1 h that we notice differences in the power spectrum
bo v e the ∼ 1 per cent (dashed grey line). For small values of
 b ( ∼ 1 . 5 L/N ), we obtain discrepancies in the power spectrum
t k ∼ 0.5 Mpc −1 h that can be as large as 5 per cent and indicate
he limitations of our force summation scheme [equation ( 28 )]. A
alue of r b = 3 L/N or possibly higher is needed to obtain a good
ompatibility of GRGADGET and GADGET-4 for all modes greater
han 0.1 Mpc −1 h , where relativistic features in the matter clustering
s negligible. 

The last test we present here regards the convergence of the numer-
cal results for increasing resolution. Fig. 11 shows the matter power
pectrum obtained from running GADGET-4 ’s Tree PM (red lines),
RGADGET with PM -only (blue dotted lines) and GRGADGET with
ree PM (blue continuous line). These various code configurations
ere run with different combinations of the number of grid points
er dimension N = 256, N = 512 and box length L = 250, 500, 1000,
nd 2000 Mpc h −1 ; the number of particles was fixed as N p = N 

3 . In
ll cases, we have set the PM smoothing scale to r a = 1 . 5 L/N and
he gr-smoothing scale to r b = 3 L/N . It can be observed with the
nest resolution, in the top plots, that there is a matching between
R and Newtonian dynamics in the small scales. Then as the mesh
NRAS 522, 5238–5253 (2023) 
ize becomes coarser, in the middle plots, some discrepancies in the
ower spectrum start to appear which become more evident for even
oarser meshes, in the bottom plots. This mismatch may be caused by
 b = 3 L/N moving towards larger scales, so that the assumption that
M forces are Newtonian on the small-scale breaks. Indeed, while
ith L / N = 1 h −1 Mpc ( r b = 3 h −1 Mpc), the scales where relativistic

f fects become e vident in the matter power spectrum and the scales
here the pure PM prediction starts to deviate from TreePM are well
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Figure 11. Matter power spectrum from cosmological simulations at z = 0 using GRGADGET (the blue lines) and compared to GADGET-4 (the red line) at z = 0. 
The dotted line is obtained with a simulation in which only the PM is used to compute forces. The plots show the relative difference with respect to the power 
spectrum obtained with GADGET-4 . The left column corresponds to simulations with N = 256 grid points per dimension, while for the right column N = 512. 
The boxsize changes along the ranks so that for the top plots the resolution is the highest L / N ≈ 1 Mpc h −1 , in the middle L / N ≈ 2 Mpc h −1 and the bottom plots 
correspond to L / N ≈ 4 Mpc h −1 . In all cases r a = 1 . 5 L/N and r b = 3 L/N . The grey dashed line indicate a 1 per cent error. 
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eparated, for larger L / N values the two scales get nearer, indicating
hat the assumption of pure Newtonian forces on the mesh scale may
ot be very good. This conclusion is apparently at variance with 
he discussion of Fig. 10 , where a larger value of r b was preferred;
o we ver, that figure refers to L / N = 1 and is shown at z = 0.5, where
lustering is a bit weaker. We thus recommend to work with mesh
izes of L / N ∼ 1 Mpc h −1 . 

 C O N C L U S I O N S  

e have constructed a relativistic TreePM code, which we call GR-
ADGET , where the large-scale contribution to the gravitational force 

s computed using the relativistic C ++ PM library LIBGEVOLUTION , 
ased on GEVOLUTION code, while gravity coming from small scales 
s computed by the Tree code of GADGET-4 . The code works under
he assumption that, in the context of cosmological simulations, DM 

an be treated non-relativistically and then the equations of motion 
f tracer particles tend to the Newtonian limit at scales well below
he Hubble horizon. Following the GEVOLUTION approach, we use 
 weak field approximation of GR, where the perturbations of the
pace-time metric with respect to FLRW background are encoded as 
elds and simulated by the PM . 
With respect to the pure PM implementation of GEVOLUTION , 

he predictive power of GRGADGET gives an improvement even on 
he scales sampled by the mesh. This is due to the fact that the
nergy-momentum tensor, which sources the equations of the fields 
MNRAS 522, 5238–5253 (2023) 
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hat represent the perturbations of the metric, is computed from a
ully non-linear distribution of particles, with gravity being resolved
own to a much smaller softening length and not down to the mesh
ize. This may be very useful, e.g. when assessing the possibility
f detecting the frame-dragging effect in the presence of vorticity
Bruni, Thomas & Wands 2014 ) that arises mainly from the orbit
rossing of particles in the non-linear regime. 

Comparing the matter power spectrum from GRGADGET simula-
ions with that of original GADGET-4 and GEVOLUTION codes, we
onclude that the code produces consistent results as long as the gr-
moothing parameter is greater than approximately three grid cells;
.e. r b ≥ 3 L/N , see Fig. 10 , this is a scale set by numerical stability.
here is also a physical upper bound on r b that arises when the
ewtonian dynamics differs from the GR equations in our gauge,

eading to a mismatch of GR forces computed in the PM and the
ewtonian forces from the Tree. From the plots in Fig. 11 , we can

onclude that our scheme starts to break when r b ≈ 6 Mpc h −1 . Hence
e recommend setting 3 L / N ≤ r b ≤ 6 Mpc h −1 . This constraint sets
 lower limit on the resolution of the PM : L / N ≤ 2 Mpc h −1 , meaning
or example that a simulation with a boxsize of L = 4 Gpc h −1 must
ave at least N = 2000 grid cells per dimension. 
Furthermore, this code is a development of the widely used

ADGET-4 code, and because the PM sector of the code is called
nly by the computation of the gravity force, our code can be easily
xtended to simulations of galaxies or galaxy clusters by switching
n the hydrodynamics, star formation, and feedback sectors. All
he physics described by these sectors can safely be treated in the
e wto wnian limit; one should in principle add thermal energy of gas
articles to the energy-momentum tensor, but while this extension is
traightforward, it is likely to provide a negligible contribution. 

This is, for our group, a further step in the construction of
n ecosystem of simulation codes and post-processing tools for
odelling the evolution of structure in the Universe, with the aim of
aking predictions for precision cosmology. Sub per cent accuracy

n cosmological predictions, which matches the smallness of the
tatistical error that will be obtained with forthcoming galaxy surv e ys
entioned in the Introduction, can only be obtained taking into

ccount relativistic effects (e.g. Lepori et al. 2020 ), and we can
oresee that a self-consistent treatment of these effects (to within the
equired accuracy) will soon become the standard in cosmological
imulations. These effects can also be added by post-processing
ewtonian simulations, but a validation of these procedures requires

he comparison against a more self-consistent approach. Conversely,
 large community is developing GEVOLUTION in the direction
f adding modifications of gravity (Hassani et al. 2019 , 2022 ;
ev erberi & Dav erio 2019 ; Hassani & Lombriser 2020 ; Hassani,
damek & Kunz 2021 ; Christiansen et al. 2023 ) whose formulation

s typically w ork ed out in a general relativistic context. This line
f development, coupled with a Newtonian treatment of modified
ravity in the Tree code, would be precious in the formulation of
ests of gravity, because relativistic effects may hide smoking-gun
eatures of specific classes of modified gravity theories. 
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igure A1. The fraction of PM time to the total running time. Relativistic
uns are shown in blue, while Newtonian runs are shown in red, whereas
ymbols distinguish the value of grid points per dimension N (squares and
ircles for N = 256 and 512, respectively). We plot the time fraction on the
 -axis (log scale) versus the mesh resolution L / N on the x -axis. 
s expected that the run-time scaling of our code follows that of the
arent codes. 

Ho we ver, the LIBGEVOLUTION ’s PM is obviously different from
ADGET-4 ’s, and we added the translation of particles data from the
ost code to the target relativistic PM. Both this facts require that
e establish the o v erall scaling of GRGADGET in its fully relativistic

onfiguration and the o v erhead associated to both the relativistic PM
nd the interface between the two codes. 

In Fig. A1 , we show the fraction of time spent in the PM in
oth the original and relativistic configurations as a function of the
rid cell size (see the caption for details). The relativistic PM is an
rder of magnitude more e xpensiv e than the original GADGET-4 ’s
ewtonian PM, although in absolute sense, it is still either negligible
r secondary in the simulation sets that have been tested (it reaches
 maximum value of 16 per cent at highest resolution, i.e. in the
 = 512, L = 250 Mpc h −1 ). Ho we ver, it scales with both the

esolution and the grid number as the original Newtonian PM 

oes. 

Figs A2 and A3 report the scaling of run time in strong and weak
caling tests, respectively, for the total run time, the tree time, and the
M time (left-hand, middle, and right-hand panels in both figures; 
ee the captions for details). As inferred from Fig. A1 , the run-time
nd hence its scaling are dominated by the GADGET-4 ’s Tree section.
MNRAS 522, 5238–5253 (2023) 
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Figure A2. Strong-scaling test. We present the code scaling as the number P of MPI tasks is increased while running the same simulation set-up. All the 
results refer to GRGADGET , i.e. to the configuration with fully relativistic PM. On the x -axis, P increases from 24 to 192, by ×2 steps. On the y -axis, we report 
the speed-up (normalized so that the ideal speed-up for P = 1 is 1) for the total running time, the time spent in the PM, and the time spent in the Tree on 
the left-hand, middle, and right-hand panels, respectively. Note that the ideal behaviour (black dotted line) would result in a linear speed-up. The PM data 
include the translation of particles data from GADGET-4 to LIBGEVOLUTION . We show the results for N = 128, 256, and 512 (solid, dashed, and dot–dashed 
lines, respectively) for four different box sizes (i.e. mass resolutions), L = 250, 500, 1000, and 2000 Mpc h −1 (circles, squares, and stars, respectively). See the 
discussion in Appendix A for details. 
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Figure A3. W eak-scaling test. W e present the code scaling as the number P of MPI tasks is increased for a proportionally increasing problem, then keeping 
constant the particles-per-task occupancy. All the results refer to GRGADGET , i.e. to the configuration with fully relativistic PM. On the x- axis, P increases from 

24 to 192 with only two test cases. On the y- axis, we report the speed-up for the total running time, the time spent in the PM, and the time spent in the Tree 
on the left-hand, middle, and right-hand panels, respectively. Note that the ideal behaviour would result in a constant running time (horizontal dotted black 
line). The PM data includes the translation of particles data from GADGET-4 to LIBGEVOLUTION . We show the results for two cases: from N = 128 to N = 256 
(solid lines with circles), and from N = 256 to N = 512 (dashed lines with squares). Each of the two cases has been run for three different box sizes (i.e. mass 
resolutions): L = 250 → L = 500 Mpc h −1 , L = 500 → L = 1000 Mpc h −1 , and L = 1000 → L = 2000 Mpc h −1 (red, green, and blue colours, respectively). 
See the discussion in Appendix A for details. 
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