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Abstract

The evaluation of Casimir energies in curved background spacetimes is an essential ingredient to study
the stability of traversable wormholes. In practice one has to calculate the contribution of the
transverse-traceless component of the metric perturbation on a curved spacetime background. This
implies the study of an eigenvalue equation involving a modified form of the Lichnerowicz operator.
For arbitrary background spacetimes, however, such an operator does not display transverse-traceless
properties, a fact that impedes the determination of the eigenvalues. Against this background, we show
that the problem can be circumvented. Casimir energies can be calculated by gauging the original
form of the modified Lichnerowicz operator into a transverse-traceless one.

1. Introduction

Traversable wormholes are spacetime geometries emerging as solutions of Einstein equations. Conventionally
they are thought as fascinating configurations that might have formed in remote regions of the Universe.
Nowadays such a perspective has changed: The understanding of the physics governing wormholes is
instrumental for the concrete realization of laboratory devices for interstellar travels [1].

The current efforts in such a research field are focused on the conditions of traversability of wormholes. In
practice, the wormhole throat can be stable only if there is a source of energy able to balance the gravitational
pull. Contrary to the case of ordinary stars, such a balance implies the source to be of exotic type. The latter isa
term used to indicate a non standard matter that violates the null energy conditions (NEC), namely the
positiveness of the energy momentum tensor, T, k*k” > 0 for any null vector k#. Wormbholes necessitate such a
violation of NEC since, according to the Raychaudhuri equation [2], the expansion of timelike congruence
becomes negative at the throat while remains positive elsewhere. In other words, a set of world lines undergoes a
contraction at the throat, indicating an inevitable collapse into a singularity unless exotic matter locally
counteracts it. Although the pressure of ordinary matter can, in general, counteract a collapse, it would not be
enough high to reestablish the positiveness of the congruence expansion on the other side of the throat [3]. As far
as we know, the Casimir energy represents the only artificial source of exotic matter realizable in a laboratory[1,
4-7]. Alternatively, alocal violation of energy conditions can occur due to the quantum fluctuation of the
graviton. This fact propelled the idea of self-sustained traversable wormholes, that have been introduced in [8-10].
To study such wormholes one considers the semiclassical Einstein equations,

1 e ren
G/W = H<Tm/>ren, <T/W>ren — _;<AG/”’(g;u/’ hMV)> (1)

where the source term is the expectation value of the renormalized quantum stress tensor of the metric
perturbation h,,,,, with & = &, + M. Equation (1) simplifies by focusing on the energy components, namely
by a projection on a constant time spacelike hypersurface 3. In such a way, one obtains Hamiltonian and energy
densities, that, after integration, give the equation for the stability of the wormhole:
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HY = —EF*. 2

Here E* is the total regularized graviton one loop energy coming from the quantized stress tensor and Hy"” is the
classical term, coming from the Einstein tensor. Only the transverse traceless (T'T) component of the graviton
contribute to the energy E* and for this reason we introduced the superscript . For a spherically symmetric line
element of the form

dr?

1 — b(r)

ds? = —exp (—2®(r))dt? + + r2dQ?, 3)

r

where ®(r) is the redshift function, b(r) is the shape function and d2*> = df? + sin? 0d¢? is the line element of
the unit sphere, the classical term reduces to

o B
HO = fz d3x[(167rG)Gijkm7T]7rk N %m
1 1> dret ()
=—— | d& R=—— . 4
167G Jx V8 2G ‘f;o 1—b(r)/r 1 ’

Here we have expressed the three dimensional scalar curvature 3R in terms of b(r). The symbol Gjj,,, denotes the
super-metric and 7 the super-momentum. Due to static conditions the kinetic term Gij, miimkm disappears.
For a full derivation see [11]. At the one-loop approximation level, the energy E* is identified as a Casimir like
energy against the fixed background. Its evaluation requires functional integration methods including the
solution of an appropriate eigenvalue equation in terms of a modified Lichnerowicz operator (see [11] for the full
derivation).

The conventional Lichnerowicz operator can be defined through its action on a tensor h;;as

(8rh)ij = Ay — 2Ruguh* + Rihf + Richf
A==V, ©)
where Latin indexes run from 1 to 3 and V*is the covariant derivative with respect to the 3-metric, g'ij. For ease of

notation we employ, in the following equations, the symbol g;; for the background without superscript -. As said
above, we have to consider the TT component of the field /; describing a spin 2 particle, namely

gihi =0, Vihi = 0. (6)
Thus, the problem turns into the determination of the eigenvalues of the following modified Lichnerowicz
operator,
(AhYyi = (M) — 4RSh; + *Rbyi 7
namely

(Ahhyi = Mgy, (8)
describing the energy spectrum of hl-]-L resulting from (1). To have a well-posed equation in (8), one has, however,

to make sure that the above operator does not change the TT properties of hi]-i. This is, in general, a major issue
because the Lh.s. is nota TT tensor for some kind of backgrounds [12].

The present paper aims to circumvent such difficulties and pave the way of a consistent study of wormhole
stability within this formalism.

2. The Lichnerowicz operator for TT tensors

Itis straightforward to see that the standard Lichnerowicz operator, (A ™)y, is traceless. This is, however, not
enough to conclude that ( Ath)ij is traceless too. Indeed, one has

Tr{(achb)y — 4Rihi* + *Rhy] = —4R{"h,, *. )

As afirst step, we aim to write such an operator in terms of a trace free part and a term determining the trace. For
the line element (3), the mixed Ricci tensor R; is:

. {b’(r) b V@) b Vo) b } (10)

bl bl
r? 2 23 2r? 2r3
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Therefore, we can write

RiWES = F(Oh + R — f(r)856ihY
traceless

where we have used the properties R = R = f(r)and h"' + h;"* + h;™> = 0. Asaresult, one finds

- ; - ; 1]3b b’ ; ;
(A hH] = (A YT + {E[% — r(zr)]éljél}hi“ (11)
with the trace free part defined as
(B! T = kD] = Af i + Ry, (12)

Now we compute the divergence of the above trace free part, namely [12]
V(A kY, = VT achY), — VEf (k] = Rhy)
= A (V" ?) + RV ) + (VIROR S — V™(4f (Dhy 7 — *Rhy, )
= (VIR " = 4V (M) hyy! + (VPR By . (13)
where we have used the transverse property V"h;-/ = 0 and
V(o BT = A (V7hy ) + RI(V B + (VIR

In summary one finds:

1”3 1’2

vm(ALhL)#T — {_% gnal[m N bl(r):léljéin}hrzrlL (14)

The r.h.s. of the above equation vanishes provided

7b(r) ()

3 2

= constant.

r r

Thus, one obtains
b(r) = Ar? (15)

where A is a constant coefficient. Accordingly, onehas A > 0 for de Sitter space, A < 0 for Anti-de Sitter space
and A = 0 for Minkowski space. In such cases, one finds that the trace in (11) vanishes. As a result, one can
conclude, from the condition (15), that the operator, (ALhL)l-j, isaTT tensor in case of constant or vanishing
curvature.

In the presence of a gravitational source, the curvature is, in general, not constant. The operator (ALhi)ij can,
however, satisfy the transverse condition up to negligible terms if the curvature variation is small. The reference
scale in such a case is the Planck mass cubed, Mj;. The vanishing of the trace in (11) requires the curvature itself
to be small with respect to Mg, namely

b 2 2
el v< S, (16)
r Ly Ly

where Lp = 1/Mp. As aresult, the trace freedom is a stronger condition with respect to the small variation of the
curvature. Both conditions are easily met in the large distance limit. It is sufficient to assume r > Lp for having
the TT condition fulfilled, provided b’ is bounded.

At short distance, namely at the wormhole throat, the r.h.s. of (14) vanishes because of the presence of the
metric coefficient g''. The conditions (16) are fulfilled for a wormhole throat r, such that r, > Lp, being
b'(r) < laccording to the flaring out condition. Up to now, the presented analysis has been focused on
differential conditions. To calculate the sought eigenvalues, one has, however, to consider matrix elements,
expressed in terms of the following integral

[ ax g BiEnh, (17)
2

resulting from the one loop Hamiltonian at the r.h.s of (1),

1 ) 1.
HL — a3 5 Gz]km 2k)K 1L s it + A AL S Xiakm | 18
5= e NI [( K) (%, X)ijk. @( L )jK(x x)k] (18)
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where
hi GRG0

l_>—>A _
K-(X's ¥ )iakm Z 2(7)

T

(19)

is the graviton propagator, £ (1) a set of variational parameters to be determined by minimizing (18) and 7
denotes a complete set of indexes (see [11]).

One can try to circumvent the problem of the TT nature of the operator (ALhi)ij, since integral relations
generally demand softer conditions than differential relations. To this purpose we observe that

f dx g b (BLhH] = f d*x 3 hjif[(ALhi){ + % 8/ (R, hkm)]z
) )
:f dx g b (B )T (20)
)

The integral of the term R,* hi-™ at the r.h.s. identically vanishes, being Tr 1™ = k% = 0. Dueto (9) and the
generic relation

1
(T)" =T — ggij[Tr Tim]- 1)

we obtained the trace free part. The operator ( Ath)ij is not traceless, but its integral is equivalent to that of its
trace free part. This property is instrumental to prove that, at level of integral relations, the transverse property is
satisfied too. After gauging the trace away by means of (20), the transverse property can be analyzed by
considering just the integral of the trace free part (12). The latter can be written as

- 1
(Ahhyf = (aghh)y — 4(12,—,<hjL k_ 3 gi].(Rmkhkim)) +° Rhj. (22)

We can further gauge the integral of (A; hJ-)lj T by adding a vanishing contribution whose integrand is traceless in
order not to alter the trace free property, namely

f dx g b (Ahh] T = f dx g B IERDIT + I, (23)
P %
where
2
(LM);; = ViM; + V;M; — ggij(VkMk)- (24)

One can check that the integral of (LM);; is vanishing by integrating by parts the first two terms V;M; and using
the transverse condition V. h]-L " = 0. The third term vanishes because h]-L "is trace free.
At this point, one can suitably select (LM);; to get the tranverse condition, namely

0= vi{[(ALhL),»j — 4(RimhjL m_ %gij(Rim h,ﬁ")) + 3Rh,ji] + (LM),»j}:

m i i m 4 m i
= (ViR"h,,' =V [ALR,'mh,-L -3 &® hy') — *Rhy — (LM)Z-]]:
= (ViRMhy' = 4V ()hj + (VPRb + VIILM);. (25)

provided (25) has solutions.
Alternatively one can consider, in place of (LM);; in (23), an antisymmetric term of the kind

(LN); = ViN; — V)N, (26)
that is trace free and has a vanishing integral. Its covariant derivative is formally equivalent to the four current of
the electromagnetic field tensor, namely

Vi(LN)] = 8. (27)

In such a case, one can select S/ provided the equivalent of (25) for (LN);; has solutions.
In conclusion, even if the operator is not a TT tensor for arbitrary backgrounds, its integral (17) is equivalent
to the integral of an operator (23) that display TT properties.

3. Final remarks

In this paper we have presented a solution to an open issue in the literature, namely the calculation of graviton
energies at the one-loop approximation associated to a Lichnerowicz operator. In case of spherically symmetric
spacetimes, such energies come from the TT component of the perturbation, namely

4
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3

B = [N + o | 28)

where the eingenvalues correspond to the two graviton polarizations. Unfortunately, the operator (A;h");; is
not, in general, a TT tensor, a fact that deprives the formalism of its predictive power, apart from the case of
specific spacetimes where the eigenvalue equations can be solved.

Against this background, we have shown that E* can be calculated in terms of another operator that exhibits
TT properties. Such an operator is obtained by a suitable ‘gauge’ of the original operator (A;h*);; in the integral
relations (17) and (18).

The proposed results can pave the way to further studies based on the Lichnerowicz operator to scrutinize
the conditions of stability of traversable wormholes spacetimes.
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