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V. Kansal91, E. Keihanen76 , C. C. Kirkpatrick76, A. Loureiro53,118,119 , J. Macias-Perez120 ,

M. Magliocchetti112 , R. Maoli121,8, S. Marcin80, M. Martinelli8 , N. Martinet20 , M. Maturi122,123,
P. Monaco103,98,63,99 , G. Morgante32, S. Nadathur31 , A. A. Nucita124,125,126, L. Patrizii35, V. Popa127,

C. Porciani78 , D. Potter128 , A. Pourtsidou53,129 , M. Pöntinen114 , P. Reimberg72, A. G. Sánchez28 ,
Z. Sakr24,122,130 , M. Schirmer73 , E. Sefusatti98,63,99 , M. Sereno32,35 , J. Stadel128 , R. Teyssier131,

J. Valiviita132 , S. E. van Mierlo23 , A. Veropalumbo133 , M. Viel103,98,99,97, J. R. Weaver134,135 , and D. Scott136

(A�liations can be found after the references)

Received 22 September 2022 / Accepted 21 October 2022

ABSTRACT

The various Euclid imaging surveys will become a reference for studies of galaxy morphology by delivering imaging over an unprecedented area
of 15 000 square degrees with high spatial resolution. In order to understand the capabilities of measuring morphologies from Euclid-detected
galaxies and to help implement measurements in the pipeline of the Organisational Unit MER of the Euclid Science Ground Segment, we have
conducted the Euclid Morphology Challenge, which we present in two papers. While the companion paper focusses on the analysis of photometry,
this paper assesses the accuracy of the parametric galaxy morphology measurements in imaging predicted from within the Euclid Wide Survey.
We evaluate the performance of five state-of-the-art surface-brightness-fitting codes, DeepLeGATo, Galapagos-2, Morfometryka, ProFit and
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SourceXtractor++, on a sample of about 1.5 million simulated galaxies (350 000 above 5�) resembling reduced observations with the Euclid

VIS and NIR instruments. The simulations include analytic Sérsic profiles with one and two components, as well as more realistic galaxies
generated with neural networks. We find that, despite some code-specific di↵erences, all methods tend to achieve reliable structural measurements
(<10% scatter on ideal Sérsic simulations) down to an apparent magnitude of about IE = 23 in one component and IE = 21 in two components,
which correspond to a signal-to-noise ratio of approximately 1 and 5, respectively. We also show that when tested on non-analytic profiles, the
results are typically degraded by a factor of 3, driven by systematics. We conclude that the o�cial Euclid Data Releases will deliver robust
structural parameters for at least 400 million galaxies in the Euclid Wide Survey by the end of the mission. We find that a key factor for explaining
the di↵erent behaviour of the codes at the faint end is the set of adopted priors for the various structural parameters.

Key words. methods: data analysis – galaxies: evolution – galaxies: fundamental parameters – cosmology: observations

1. Introduction

Measurements of galaxy morphology o↵er easily accessi-
ble information for constraining physical processes that reg-
ulate galaxy growth and evolution. Galaxy morphologies
are therefore among the most important observables avail-
able from extragalactic imaging campaigns and continues to
be so throughout the era of big data astronomy. This is
because the distribution of the stellar light emitted by a
galaxy can be correlated to its stellar populations, angular
momentum, and the star formation and merger histories (e.g.
Cole et al. 2000; Conselice et al. 2003; Kormendy & Kennicutt
2004; Förster Schreiber et al. 2009; Brennan et al. 2017).

A fundamental goal of extragalactic astronomy is under-
standing how the diversity of galaxy morphologies is established
across time. This is predicated on earlier observations, which
already revealed that galaxies come in various types (e.g. Hubble
1926). The most fundamental distinction di↵erentiates disc-
dominated structures that often appear with bright spiral arms
and bulge-dominated galaxies with smooth light distributions.
Most galaxies are in fact a combination of both shapes, featur-
ing both a bulge and a disc with varying weights. This simple
scheme describes the essential building blocks of nearby galax-
ies. However, a descriptive classification for grouping galaxies
into two rough classes is a simplification, and in reality the vis-
ible part of most galaxies result from a combination of multiple
components.

Characterising and classifying galaxies based on their opti-
cal morphologies is not straightforward. A number of di↵er-
ent approaches for quantifying galaxy structure and morphol-
ogy have been developed, documented, and tested in the last few
decades, each designed with specific applications in mind. The
general goal of all of these methods is to obtain a quantitative
measurement – and an error budget – of the morphological prop-
erties of galaxies that are easy to understand, use, quantify, and
replicate. Contemporary examples include visual classifications
(e.g. Lintott et al. 2008; Mortlock et al. 2013; Bait et al. 2017),
non-parametric morphologies (Conselice 2003; Lotz et al. 2004;
Pawlik et al. 2016), 1D intensity profile fitting of a galaxy’s
light distribution, either treating each galaxy as a whole (e.g.
Sérsic 1968; Peng et al. 2002; Buitrago et al. 2008, 2013) or
decomposing them into two separable components (2D sur-
face brightness fitting, e.g. Simard et al. 2011; Lang et al. 2014),
machine learning techniques (e.g. Huertas-Company et al.
2008, 2011; Vega-Ferrero et al. 2021), and structural kinemat-
ics (Förster Schreiber et al. 2009; Falcón-Barroso et al. 2017;
van de Sande et al. 2017). The increasingly challenging nature
of observations of fainter and more distant galaxies makes defin-
ing and distinguishing between di↵erent structures a non-trivial
task. Traditional visual classifications also become ambiguous
for many objects, especially for early-type galaxies. In addi-
tion, techniques need to be able to e�ciently deal with the ever
increasing sample sizes of galaxies in contemporary and future
all-sky surveys, with an increased statistical accuracy. Light

profile fitting is a quantitative, generally automatic, or semi-
automatic, and often a faster approach, compared to the quali-
tative visual classification process. This is especially important
for statistical approaches using the very large datasets we are
expecting with missions such as Euclid in the near future.

Euclid is a European Space Agency 1.2 m space-based tele-
scope mission, primarily designed to investigate dark energy
and dark matter by mapping a large fraction of the visible sky
(Laureijs et al. 2011). In order to achieve this goal, Euclid will
conduct a Wide Survey of around 1.5 billion galaxies out to
z ⇠ 3 with relatively high spatial resolution wide-field opti-
cal and near-infrared (NIR) imaging, as well as low-resolution
grism spectroscopy (R ⇠ 250). These data will be provided
by the VIS instrument, which features one broad optical band
called IE, covering approximately 540 nm to 900 nm (i.e. cov-
ering most of the usual r, i, and z bands), and a mean image
quality of 0.0017 FWHM (Cropper et al. 2010). The Euclid Wide
Survey will therefore provide a unique combination of high
spatial resolution and wide area coverage, enabling studies of
galaxy morphology and structure with unprecedented statistics.
The uncommonly large wavelength range of the VIS filter pro-
vides unknown e↵ects for determining galaxy morphologies
with Euclid since no previous large studies have used such a
wide filter. While this filter was especially designed with Euclid

core cosmological science in mind, it is essential to fully char-
acterise the use of this filter for the measurement of galaxy mor-
phologies. Euclid’s other instrument is the Near Infrared Spec-
trometer and Photometer (NISP), which will observe in three IR
bands, YE, JE, and HE, covering approximately 950 to 2020 nm
(Euclid Collaboration 2022a).

Euclid’s nominal requirements are to image 15 000 deg2 or
35% of the accessible sky down to at least a 10� depth of mag-
nitude IE = 24.5 in the optical and down to a 5� depth of mag-
nitude 24.3 at NIR wavelengths (YE = 24.3, JE = 24.5, and
HE = 24.4). Observing strategies and initial tests of the instru-
ment forecast higher sensitivity than the nominal requirements.
In addition, the Euclid Deep Survey will provide images two
magnitudes deeper in a smaller area of 40 deg2, as part of the
deep fields. Euclid will thus provide an unprecedented number of
high spatial resolution images for morphological measurements,
which will be an extraordinary database for a range of legacy
science questions including galaxy formation and evolution, as
well as a plethora of follow-up projects.

The Sérsic law (Sérsic 1968) is a commonly used paramet-
ric model to describe galaxy radial profiles, which can describe
a variety of shapes, from a disc or underlying smooth com-
ponent of spiral galaxies (Freeman 1970; Kormendy 1977),
to elliptical galaxies and bulges (de Vaucouleurs 1948). The
practice of fitting the Sérsic law to astronomical images of
objects has become widely used. Its aim is to measure and
quantify the shapes of galaxy profiles (i.e. the surface bright-
ness profile). The success of Sérsic profiling for morphology
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measurements has been repeatedly shown. For example, mas-
sive elliptical galaxies are well described by one-component
Sérsic profiles (Graham & Guzmán 2003; Trujillo et al. 2001)
out to around eight e↵ective radii (Tal & van Dokkum 2011).
Deep imaging of large samples of face-on late-type galaxies
confirm that this type is well represented by an exponential
profile (Sérsic profile of n = 1) down to faint limits of µ =
27 mag arcsec�2 (Pohlen & Trujillo 2006) out to at least 17 e↵ec-
tive radii (Bland-Hawthorn et al. 2005).

Given the large number of galaxies that will be observed by
Euclid, it is essential to obtain a fast and reliable way of mea-
suring morphological parameters of galaxies from images. In
order to understand the capabilities of measuring morphologies
and structures from Euclid-detected galaxies, we have created
the Euclid Morphology Challenge to test, quantify, and eval-
uate the performance of galaxy morphology measurements by
existing parametric fitting codes on simulated Euclid data. The
structural measurements evaluated in this work are not tailored
to a specific science case. Rather, we provide a comparison of
the measurements of parameters (Euclid data products) that will
enable astronomers to investigate a range of research questions
related to galaxy evolution and morphologies or structures with
Euclid. For example, as Sérsic indices are an approximation to
statistically distinguish early- from late-type galaxies, probing
those indices in a large range of redshift can help us understand
morphology evolution. They will also be combined with other
parameters of interest such as colour or stellar mass to scrutinise
current models. The depth and volume of Euclid will constrain
these relations and open a variety of investigations needed to
make progress in galaxy evolution science.

The challenge comprises a simulated dataset of five fields,
each realised with single-Sérsic, double-Sérsic, and neural-
network-generated galaxies in the IE band. In addition, one of
the fields has been simulated in the NIR (YE, JE, and HE) bands,
and in the five u, g, r, i, and z Rubin Observatory bands to
test the accuracy of multi-band-based model fitting with ancil-
lary data. While Rubin will only cover the southern hemisphere,
other facilities such as CFHT (MegaCam) or DES will also
cover the northern hemisphere in similar bands. The compan-
ion paper (Euclid Collaboration 2023; hereafter EMC2023) pro-
vides a visualisation of the bandwidth and wavelengths (see their
Fig. 1).

In this work, we focus on quantifying galaxy structures
through analytic functions that describe the shape of the sur-
face brightness profile of each galaxy. The outcome is a set
of parameters that allow the reconstruction of the 2D photo-
metric shape of a galaxy, and thus provides important infor-
mation for the statistical study of galaxy evolution. To carry
out this challenge, we have invited a number of developers of
widely used software packages to retrieve morphologies and
structures from our large dataset of simulated galaxies. Five
teams participated in the challenge. Each team tested the per-
formance of their codes on a common set of simulated Euclid

galaxies that was provided to them. The codes are (in alphabet-
ical order) DeepLeGATo (Tuccillo et al. 2018), Galapagos-21

(Häußler et al. 2022), Morfometryka (Ferrari et al. 2015),
ProFit2 (Robotham et al. 2017), and SourceXtractor++3

(Bertin et al. 2020; Kümmel et al. 2020). At their cores, all of the
software packages describe the morphology or structure of each

1 https://github.com/MegaMorph/galapagos
2 https://github.com/asgr/ProFound
3 https://github.com/astrorama/SourceXtractorPlusPlus

galaxy from its surface brightness distribution. The five partici-
pating model-fitting software packages are described in detail in
EMC2023 and in the individual software publications referenced
in each section. All but one (DeepLeGATo) make use of para-
metric methods, which use functional forms to fit the light dis-
tributions from imaging data. DeepLeGATo bases its photometric
galaxy profile modelling on convolutional neural networks. All
of them fitted at least a single profile to each galaxy in the IE
band, and some teams and codes have extended the challenge to
include the simultaneous fitting of multiple images at di↵erent
wavelengths.

We present the comparison analysis based on the Euclid
Morphology Challenge in this paper. We investigate the out-
comes from the five participating codes on simulated Euclid

galaxies. Each software package incorporates its own preferred
scheme for dealing with the data and was run by the develop-
ers or developing teams themselves. Each participant was free
to choose setup parameters and criteria according to their best
practice and experience, with the hope that this would ensure
the best possible outcomes. This could include independent tests
or cross-checks from comparing their software to a subset of the
‘true’ parameters of the simulated data, which we made available
to the developers. Therefore, we can expect that each code devel-
oper’s knowledge contributes to the best possible performance
of each code. No further specifics, for example in relation to the
way of preparing or handling the data, was given to the partici-
pants. Each code has di↵erent ways of identifying unreliable fits,
and we refer the reader to the publications describing each code
for additional information. Our goal in this paper is to probe the
robustness and accuracy of the most optimal outcome of each
software package, examine the code-to-code scatter, and inves-
tigate the known bias towards over-estimating the fitting accu-
racy. This paper presents a tabulated score of the performance
of each code with the ultimate goal of using the optimal code
for future Euclid observations. Ultimately, one such code will
be implemented in the o�cial Euclid pipeline to retrieve galaxy
morphology parameters for Euclid legacy science.

In the rest of this paper, we first describe the data that formed
the base of the challenge (Sect. 2): these are single-Sérsic sim-
ulations, double-Sérsic simulations, and what we call ‘realistic’
simulations that use a variational auto-encoder (VAE) trained on
observed COSMOS galaxies. We then describe the metric we
designed to quantify the comparison between codes (Sect. 3).
In our results section (Sect. 4), we discuss each parameter sep-
arately and include a comparison of the recovery statistics, for
both single-Sérsic and double-Sérsic runs. In Sect. 4.2.6, we
briefly summarise multi-band fits for the four codes that pro-
vided multi-band results. This is an in-depth investigation that
was briefly introduced in the companion paper using the same
challenge data, but devoted to comparing results for photome-
try. The first sub-sections of each ‘result section’ detail an in-
depth analysis. Readers interested in the summary only will find
overview comparisons in the summary figures (Figs. 6, 13, and
19) and in the ‘global score’ sub-sections (Sects. 4.1.4, 4.2.8,
and 4.3.4). Section 4.4 focusses on quantifying the uncertainty
predictions that were requested as part of the challenge. We
conclude our analysis with a global score in Sect. 5. One goal
of this challenge is to find elements that will help to make
an appropriate choice for the task of measuring morphologi-
cal parameters for galaxies observed with Euclid. The score we
developed here is, however, not able to represent all science
objectives, for which individual choices will be required. Infor-
mation about the reproducibility of the results can be found in the
appendix.
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2. Data

The Euclid Morphology Challenge addressed the robustness of
structural measurements by comparing ‘True’ input parameters
of simulated Euclid galaxies to outcomes (fitted) ‘predicted’ val-
ues that are output from the software packages (often referred to
as ‘codes’ for simplicity) we test. Simulated galaxies with known
input parameters provide full control over measurement errors
while minimising systematic errors. In this section, we briefly
introduce the data used in the challenge. For more information,
we refer the reader to the companion paper, EMC2023.

We created five fields of 25 000 ⇥ 25 000 pixel each, at
0.001 pixel�1 scale, corresponding to a field of view (FoV) of
about 0.482 deg2. The fields were made available to the Chal-
lenge participants through an online repository, which included
a description, lists of source positions and true values of one
field that included single-Sérsic and double-Sérsic information
for internal consistency checks and for training purposes. Each
field was realised in three versions that are described in more
detail below: single-Sérsic profiles, double-Sérsic profiles; and
simulations with realistic morphologies for the IE band. In one
of the five fields we also provide double-Sérsic simulations in
eight di↵erent imaging bands, simulating the three NIR YE, JE,
HE filters and ancillary data from the five optical Rubin bands u,

g, r, i, and z to test multi-band capabilities.
We simulated roughly 314 000 galaxies in each field, ranging

from IE ' 15 to IE ' 30 magnitudes. For each field we provided
five lists of objects in the format: ID, x, y (pixel space) to the
participants. Four lists were created which included the simu-
lated objects brighter than a given VIS nominal signal-to-noise
ratio (S/N) thresholds for 100� (IE ' 22), 10� (IE ' 24.6),
5� (IE ' 25.25), and 1� (IE ' 27.1). The fifth list contains all
simulated sources, including objects below S/N = 1. We asked
the participants to fit those galaxies with at least an S/N over 5�,
where we defined the S/N of a source as the S/N of a point-source
in a circular aperture with a diameter of 200, and thus this value
corresponds to galaxies brighter than IE = 25.3. It is important
to note that this definition of the S/N does not consider each
galaxy’s relative profile, and could impact the completeness in
less concentrated profiles (lower Sérsic index or larger e↵ective
radius). The vast majority (more than 99%) of galaxies have a
magnitude IE fainter than 20 (Fig. 1), which should be kept in
mind when examining the results.

The input catalogues were created using the EGG simulator
(version v1.3.1, Schreiber et al. 2017), which outputs a double-
Sérsic components catalogue. The single-Sérsic catalogues are
derived from the double-Sérsic with empirical formulae to match
observations such as the one by the Hubble Space Telescope
(HST). Figure 1 gives an overview of the distributions of the
parameters we analyse in this paper for all galaxies with an S/N
greater than 5�: IE, e↵ective radius re (plotted as logarithmic,
log10 re); axis length ratio q; Sérsic index n for all simulated
single component galaxies; and bulge-to-total ratio b/t, which
is also shown for double component galaxies. The 5� limit is
defined based on the total flux of the galaxy, and roughly cor-
responds to IE = 25.3 (see EMC2023 for more details). We
describe in more detail the generation of these galaxies in the
following sections. We note that the fitted Sérsic indices only
range from 0.3 to 6, which are Galsim-related limitations. The
same is true for q, where restrictions prevent the simulation of
galaxies with an ellipticity larger than 0.9 (q smaller than 0.1).

The galaxy images were then created using the Galsim
software. This challenge was designed to mimic the obser-
vational depth and conditions of the Euclid Wide Survey

(Euclid Collaboration 2022b). The point spread function (PSF)
models the expected behaviour of the telescope and the VIS
instrument. It is more complex than a Gaussian PSF, but has a
full width at half maximum (FWHM) equivalent to 0.0017. To con-
volve the images, the PSF was over-sampled to di↵erent degrees:
6 times in VIS; 6 times in NIR at 0.003 pixel scale; and no over-
sampling in the external bands. Participants received a version
of the Euclid PSF before oversampling to use for their measure-
ments. There are no reported temporal or spatial variations in the
models, which were taken from Euclid’s Scientific Challenge 84.
Thus, the PSF is assumed to be constant over the FoV. Rubin’s
PSFs were simulated with PhoSim (Peterson et al. 2015). We
also added noise that matches the Euclid Wide Survey depth,
with the noise a sum of two sources, a Gaussian and a Poisson
component. The fact that we did not include correlated noise
could be a limitation of the simulation. Detailed information
about the simulation procedure can be found in EMC2023.

Our analyses are performed on a common catalogue that
consists of 212 000 objects for the single-Sérsic simulations,
207 064 for the double-Sérsic simulations, and 204 229 for the
realistic morphologies. Due to a technical issue with one of the
contributing software packages that occurred during the mea-
surements of the mono-band single- and double-Sérsic simu-
lations of one of the fields, only four of the five fields were
completed by all the participants. As a consequence, we only
used the four completed fields for our analysis, and only three
fields for the double-Sérsic case because one of the fields was
used for the multi-band analysis only. Several codes provide a
number of individual quality flags with further information on
their fits, including details in relation to reliability. While it is out
of the scope of this paper to analyse all the di↵erent flags of each
code, we test and discuss some important flags in Appendix D.
We explain our decisions and production steps for the common
catalogues in more detail in EMC2023.

2.1. Single-Sérsic simulations

Single-Sérsic profile simulations were created using the Galsim
software (version v2.2.1 Rowe et al. 2015) following a Sérsic
profile, which is a characterisation of the intensity I(r) of the
galaxy as a function of radius. The flux varies with the distance
to the centre according to the following relation:

I(r) / exp
2
666664�bn

 
r

re

!1/n3777775 , (1)

where re is the e↵ective or half-light radius, the radius in which
half of the galaxy’s flux is contained. This is usually considered
as a proxy for the size of the galaxy and is sometimes abbreviated
to ‘radius’ in this work. The Sérsic index is denoted n, which is
a shape parameter describing the curvature of the function. It
drives the steepness of the light profile, and thus describes its
shape or concentration. Typically, a profile with n = 4 fits well
to elliptical galaxies, and for n = 1, the Sérsic law forms an
exponential function, which is often used to describe a disc. We
note the presence of bn, which can be approximated by bn =
2n � 1/3, which links n and re (Ciotti 1991). Galsim simulates
the surface brightness profiles at high spatial resolution, which
we then sample at the image pixel scale. This is important to
do in order to avoid aliasing e↵ects, especially when the Sérsic
index is large.

4 Euclid’s Scientific Challenges are benchmark tests organised inside
the Euclid Consortium in preparation for the launch of the satellite.
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Fig. 1. Distributions of the simulated ‘true’ galaxy parameters measured
in the Euclid Morphology Challenge. Top left: IE distribution down to
5� detections. Top right: e↵ective radii for the single component galaxy
(blue), and for bulges (orange), and discs (green) separately. Middle
Left: Axis ratio distributions. Middle right: Sérsic index distributions
for single-component galaxies. We note that Sérsic indices of the bulges
are fixed to n = 4, and the discs to n = 1. Bottom left shows the bulge-
to-total ratio distribution. The black solid line shows the COSMOS dis-
tribution. We also note that for b/t, the y-axis is on a logarithmic scale.
The distributions are normalised such that the area is equal to 1. This
figure is replicated from EMC2023.

The galaxy model is then sheared to match the desired ellip-
ticity, or q, which is the semi-minor over semi-major axis of
the ellipse shape. The normalisation factor is fixed afterwards
to match the total magnitude of the object.

2.2. Double-Sérsic simulations

Galaxy formation and evolution studies gain essential knowl-
edge from tracing the individual galaxy components, that is
to say bulges and discs, by fitting two-component models.
At the simplest level, light profile decompositions enables the
classification of galaxies according to their bulge-dominance.
Double-component galaxies are each simulated with Galsim as
a pixel-wise sum of two profiles, one profile for a bulge and one
for a disc. The disc is simulated with a Sérsic profile with n = 1,

which thus simplifies to an exponential profile:

Idisc(r) / exp
"
�b1

 
r

re

!#
. (2)

The bulge profile is fixed with a Sérsic index of n = 4, so that
the total profile combines to:

I(r) / (1 � b/t) exp
"
�b1
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The two profiles are then sheared to fit the desired ellipticity, qb
and qd. The flux is first scaled to generate galaxies with suitable
b/t, and then the global flux is re-scaled to match the global flux
of the galaxy. The two components are always aligned to the
same position angle, and the PSF is applied to the global profile.
iven the overall aim of the challenge to probe the capacity of
software packages that attempt galaxy model fitting, we chose
to test the codes on ideal galaxy simulations with known and
fixed Sérsic indices to control for variations across the software
packages.

In addition, we created one field with double-Sérsic galax-
ies that includes images in nine bands, which will be relevant
for tests of multi-band fitting routines (Sect. 4.2.6). The struc-
tural properties in all bands are kept constant, and therefore
our simulations do not model wavelength dependent structural
changes.

2.3. Realistic simulation

Simulated galaxy images are inherently di�cult to produce real-
istically, which is why most tests for morphology measurements
focus on simulating and fitting smooth analytic profiles. The
Euclid Morphology Challenge also provides a dataset with
more realistic galaxies learned following a data-driven approach
using deep neural networks. This is described in detail in
Euclid Collaboration (2022c, referred to as B22 from here
onwards). Very briefly, we use a deep generative model called
the variational auto-encoder (Kingma & Welling 2019), that
compresses and decompresses images to learn a probabilis-
tic latent representation of the training set distribution. Using
HST images the model learns how to simulate real 2D noise-
less galaxy profiles at a VIS-like resolution. A second gen-
erative model, called Normalising Flow (Papamakarios et al.
2021) is then used to condition the latent distribution with
the structural parameters. The resulting architecture, called the
Flow-Variational AutoEncoder (FVAE), can therefore simulate
galaxies directly from a catalogue of parameters, provided that
the training set properly covers the range of values. The advan-
tage of the FVAE compared to a classical VAE or other genera-
tive network is the ability to constrain the physical parameters of
the emulated galaxies.

Given the lack of very large and bright galaxies in the HST
data used for training, this dataset does not include galaxies
larger than 0.2 arcminutes or brighter than 20.5 mag. This only
represents around 1% of the 314 000 simulated galaxies per field.
Although this dataset should allow us to quantify the perfor-
mance of the di↵erent codes in more realistic conditions, it is
important to emphasise that these simulations are not perfect.
Indeed, the conditioning of the latent space with galaxy mor-
phology is not always exact, which can introduce a systematic
bias in what we call the ‘true’ values for these realistic fields;
we refer the reader to the discussions in B22. We also note that
the model slightly di↵ers from the one used in B22, in the sense
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that the magnitude is also a parameter conditioned by the Flow,
which is then also re-calibrated using Galsim. This dependence
on the Flow allows us to keep the correlation between morphol-
ogy and magnitude. The post-processing steps (PSF and noise)
are the same as described in the previous sections.

3. Metrics

As in the companion paper EMC2023, we use four main indica-
tors to evaluate and compare the di↵erent codes: completeness
(C)5; bias (B); dispersion (D); and outlier fraction (O). We also
combine these values into a global score, S, to ease the com-
parison of the di↵erent codes. Each of these parameters is com-
puted for each galaxy structural parameter (p), and is plotted in
bins of apparent magnitude to quantify the impact of signal-to-
noise. In the following, we provide a definition of each of these
accuracy estimators, which slightly di↵ers from the ones used
in EMC2023. These di↵erences were necessary to better capture
the specifics of our parameter distribution, in particular the large
impact of outliers in the dispersion values.

3.1. Bias

The individual bias bp on a structural parameter p of a galaxy is
defined as the di↵erence between the predicted value, Predp, and
the true simulated value, Truep:

bp = (Predp � Truep) , (4)

where p = {re, q, n} for single-Sérsic fits and p =
{b/t, re,b, re,d, qd, qb} for double component fits. Sometimes it is
appropriate to calculate the relative bias, b̃p, which is defined as

b̃p =
Predp � Truep

Truep

. (5)

The use of either the absolute or relative bias depends on the
parameter. For example, the same absolute bias has a di↵erent
meaning in a small galaxy than in a large galaxy: a measurement
error of 0.001 for a galaxy of re = 0.002 is more problematic than
the same error on a galaxy with re = 3.000. This is not the case for
other parameters, such as q and b/t, which have a constrained
dynamical range between 0 and 1. We also chose to use the abso-
lute bias for the Sérsic index, even though this is less straightfor-
ward to measure, since the dependence of the profile on n is not
linear. For galaxies with n > 4, the impact of increasing n on
the surface brightness profile is small, which implies that errors
on large Sérsic indices are generally less severe than on small
values of n. However, since this dependence is not linear, the rel-
ative bias does not properly encapsulate this behaviour. In order
to make the interpretation easier, we simply use the same abso-
lute definition of b. The choice is also motivated by the fact that
the majority of galaxies in our simulations have a low Sérsic
index, for which the absolute bias is well suited (see Fig. 1).

We also define the global bias Bp of a population as the
median of all individual biases of the population, bp:

Bp = Q0.5(bp) , (6)

or if we take the relative bias,

B̃p = Q0.5(b̃p) , (7)

5 The completeness C measures the fraction of objects for which there
is a successful fit, see EMC2023 for details.

Fig. 2. Illustration of our dispersion metric choice. In both plot, we plot
the median, the standard deviation and our definition of the dispersion,
defined Eq. (8) for a Normal Gaussian distribution. In the right figure,
we add an outlier at y = 100. We can see that our definition is not sen-
sible of the presence of an outlier, compared to the standard deviation.

which is the value reported in all subsequent sections. A sta-
tistically unbiased measurement thus corresponds to Bp = 0.
Notice that Bp can have positive and negative values if a given
parameter is over- or under-estimated, respectively. This metric
is computed on all the objects of the common catalogue, without
removing the outliers, which are discussed in Sect. 3.3.

3.2. Dispersion

The dispersion of a population,Dp on a parameter p is defined as
the 0.68 quantile (Q0.68) of the absolute population biases from
which we subtract the median bias:

Dp = Q0.68
⇣���bp

��� � Q0.5
⇣
bp

⌘⌘
. (8)

Here again, the absolute bias b is used for q, n, and b/t, while
the relative bias b̃ is used for the e↵ective radii. The median bias
is removed to recentre the distribution around zero, so that the
quantile matches the significance of a standard deviation. We
use the 0.68 quantile because it is less sensitive to outliers than
the standard deviation. Outliers are quantified independently (see
Sect. 3.3). We note, however, that for Gaussian distributions both
Q0.68 and the standard deviation correspond to the same mea-
surement. Figure 2 illustrates the advantage of our dispersion
metric compared to a simple standard deviation, comparing the
classic standard deviation with our definition in presence of a
single outlier. Whenever we use the absolute error b̃, we define
the dispersion as D̃p.

3.3. Outlier fit fraction

In addition to bias and dispersion, we also quantify the fraction
of ‘outliers’, which could equally be called ‘fraction of bad fits’.
We define an outlier on a given structural parameter p when its
bias bp is larger than a given threshold (tb), which we fix to be
tb = 0.5 for all parameters p. The fraction of outliers (O) is thus
the number of objects above the threshold divided by the total
number of objects in the considered bin. Since the bias b is not
always defined in the same way for all parameters (see Sect. 3.1),
the meaning ofO also di↵ers in the following three cases. Firstly,
for the e↵ective radius: because we use the relative bias b̃, tb =
0.5 means that we consider an outlier if the relative error is larger
than 50%. Secondly, for the axis ratio and bulge-to-total ratio:
because the bias is absolute, but the range of possible values is
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limited to [0,1], tb = 0.5 means that an outlier is defined when the
error is larger than 50% of the maximum possible error. Finally,
for the Sérsic index: since the bias is not relative and the range is
not bounded, the outlier definition cannot be seen as a percentage
in this case; see the discussion in Sect. 3.1. We emphasise here
that the bias and dispersion metrics are computed including the
outliers.

3.4. Global score

Finally, in order to summarise the overall performance of a given
code and to compare more easily the codes to one another, we
define a global score Sp on a given parameter p, which encapsu-
lates the four previous measurements C, Bp,Dp, Op:

Sp = (1 � C) +
X

i

wi

⇣
kBBp,i + kDDp,i + kOOp,i

⌘
. (9)

We note that our three metrics, kB, kD, and kO are weights
applied to each of the di↵erent precision indicators. In our
case, we set the same relative weight that has been calibrated
empirically, so that the order of magnitude of the score, and
thus its interpretation, is consistent with the companion paper
EMC2023:

kB = kD = kO = 2.1 . (10)

With this calibration, scores generally range from 0.2 to 2, the
lower the better. The sum is performed over bins of apparent
magnitude. The di↵erent wi are therefore factors that weight
the score with regard to the S/N of the bin and the fraction of
objects in the bin (fewer objects and lower S/N will lead to a
smaller weight, and thus smaller impact on S); see EMC2023
for more details, where the definitions of the diagnostics are
similar, but not identical, due to di↵erent use cases. We empha-
sise that the score is intended to provide a first-order estimation
of the performance of the di↵erent codes using a single num-
ber, but should not be used on its own to chose a ‘best code’
appropriate for every scenario. This is due to a number of addi-
tional important considerations, like the execution time or user-
friendliness, which are left out. We therefore acknowledge that
our global score is a simplification and point out that alterna-
tive metrics, which could be adapted for specific science goals,
might result in di↵erent conclusions. In order to support the
user in tailoring the diagnostics to their individual science case,
we have created an interactive plotting tool, which is published
alongside this paper. It enables the recreation and adaptation
of most figures shown in this paper. We describe this tool in
Appendix A.

4. Results

Summarising the results in a reasonable number of figures is
di�cult, since the problem is multi-dimensional with several
degeneracies between the di↵erent structural parameters. For
simplicity, we only show the metrics as a function of apparent
IE magnitude in the main text as taken from the ‘true’ input val-
ues, which is a proxy for S/N. This is a limited representation
of the complexity of the problem, but it is a reasonable trade-
o↵ between readability and information provided. We also pro-
vide an online interactive plotting tool6 for full exploration of the
data. Using this tool it is possible to investigate independently

6 https://share.streamlit.io/hbretonniere/euclid_
morphology_challenge

how the fits trend with other parameters, such as Sérsic index or
size. In Figs. D.2 and D.3, we show and comment on an example
of morphological parameters as a function of the true redshift.

The results are presented as follows. For each type of simu-
lation – single-Sérsic, double-Sérsic and realistic – we measure
our three metrics B, D, and O for each structural parameter and
every code on a common dataset containing only galaxies for
which all codes provide a valid fit (see also the companion paper
EMC2023). In this way, we ensure a fair comparison between
the di↵erent codes. These values are summarised in Tables 1
(single-Sérsic and realistic) and 2 (double-Sérsic). Throughout
the next sections, we step through our metrics analysis for each
of the datasets by discussing two main types of figure. The first
figure type is a scatter plot of magnitude versus b or b̃ for indi-
vidual objects. Because the dispersion increases towards fainter
fluxes (high magnitudes), the scatter plots produce a trumpet-
like shape, and are therefore referred to as ‘trumpet plots’. The
two metrics, B andD are represented with a running orange line
(D represented as error bars centred on B). In this first type of
figure, we also show the distribution of the bias b on the right
inset plot, with the reference 0 bias in thick blue lines, and the
overall bias in dashed white lines. The outlier threshold tb is rep-
resented by dashed red lines. The second type of plot, which we
call the ‘summary figure’, shows our three metrics B, D, and O
values in 11 bins of magnitude, from magnitude 14 to 26. This
allows us to plot in the same figure the five di↵erent codes for a
direct comparison.

4.1. Single-Sérsic results

In this section, we analyse results from the fitting of single-
component Sérsic functions that describe the radial surface
brightness profile, fitted on the IE-band images only. Figure 6
summarises the results, along with Table 1 and Sect.4.1.4. In
addition, Fig. 22 shows residuals between the simulation and
the modelled galaxies. Naturally, single-Sérsic fits are less sen-
sitive to small scale features, since they essentially smooth over
the individual components of a galaxy. Despite this drawback,
they are generally the fastest and most straightforward measure
of the sizes (via the half-light radius, Sect. 4.1.1), axis ratios
(Sect. 4.1.2), and shapes (via the Sérsic index Sect. 4.1.3) of
galaxies. All participants returned results for this analysis, which
is why figures in this section have five individual results for com-
parison.

4.1.1. Half-light radius

Figure 3 shows that the global behaviour of all five software
packages is similar, with the expected trumpet shape visible in all
plots: the scatter increases for faint objects. Moreover, the scatter
plots generally do not show a significant bias (with the exception
of DeepLeGATo for bright objects). Another commonality of all
codes is that the trumpet plot is skewed towards positive values,
that is the majority of outliers (points outside the two red dashed
lines) are due to an overestimation of the size.

Beyond this common general behaviour, some peculiarities
are notable. This includes the bias in Morfometryka’s plot (in
red), indicating a bi-modality at the faint end, with around 13%
of objects consistently fitted with a lower radius than expected
(the relative bias is around �0.5). This is due to convergence
problems for objects close to the lower limit, when the fits do
not update beyond the first guesses that the software uses, so out-
puts stall at Sérsic indices between 0.1 and 0.2. Morfometryka
recognises the unreliability of these fits with an internal flag that
is given to objects with sizes smaller than the PSF’s FWHM.
Generally, these objects also have low Sérsic indices. This flag,
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Fig. 3. Scatter plots showing the recovery of the half-light radius mea-
sured from the single-Sérsic simulation. Each panel shows a di↵erent
code. The main plot of each panel shows the relative bias per galaxy
as a function of apparent IE magnitude, while we summarise the bias
distribution as a histogram on the right. The opacity is proportional to
the density; the darker colours mean more points. The blue solid line
highlights a zero bias for reference, and the grey dashed line represents
the mean value of the bias for all magnitude bins together. The orange
points indicate the running mean biasB in bins of magnitude, with error
bars representing the dispersionD (see Sect. 3).

‘TARGETISSTAR’, is designed to flag stars, which these are not,
but their small sizes and low Sérsic indices are recognised inter-
nally as such. Such flags were not provided to the authoring team
as part of the challenge. They represent around 14% of the com-
mon catalogue. We decided to keep these objects in the overlap-
ping catalogue even after the flags were provided. The reason
for this is that removing them would bias codes that were gen-
erally able to fit these objects, and because of the non-negligible
fraction of the catalogue they represent. Nevertheless, even if
Morfometryka is not able to fit these objects, they are able
to recognise the problem and flag them. We show in Fig. D.6 a
version of the trumpet plot without those particular objects.
DeepLeGATo (in purple) also shows a characteristic

behaviour, with a strong negative bias and dispersion for
very bright objects (IE < 18), and an apparent discontinuity
around 24.5 mag. The first can be explained by the fact that the
dataset used to train the model lacks bright objects which are
rare in the observations. This is a well known e↵ect of machine
learning models, which are sensitive to the distribution of
properties apparent in the training dataset. The second distinctive
observation of all DeepLeGATo plots, the discontinuity around
24.5, is a direct consequence of the training strategy of the
neural networks in bins of S/N. The abrupt change corresponds
to a change of the deep learning model. Indeed, in an attempt
to improve performance on both bright and faint objects, the
DeepLeGATo algorithm was trained separately for two sets of
objects, objects fainter and brighter than magnitude 24.5 (which

corresponds to an S/N of 10). This leads to two sets of weights
and thus to two models, which can and do behave di↵erently.
This behaviour is seen in all structural parameters for which
DeepLeGATo produced results.

Looking ahead to the ‘summary plot’ in Fig. 6, the first
row of the plot compares the e↵ective radius measurements that
we are discussing here. Each column shows one of the three
accuracy indicators: bias (B); dispersion (D); and outliers frac-
tion (O). We note that to better highlight the small di↵erences
between the codes, the y-axis range has been reduced.

The first column, B, reveals that in general all codes slightly
overestimate galaxy sizes, which confirms the trend seen in the
trumpet plots. Only DeepLeGATo dramatically under-estimate
the radius of the very bright galaxies, with a decreasing bias from
�0.4 (outside the plotted area) at IE = 14.5 to �0.05 at IE = 17.5.
In addition to the lack of bright objects in the training set, this
can be explained by the fact that DeepLeGAToworks with a fixed
stamp size of 64⇥64 pixel, which can cut the edges of the galaxy
profile and thus lead to an under-estimation of its radius. We can
also see that ProFit very slightly under-estimates the radius for
the first bin (very bright galaxies). However, given that this bin
has less than ten galaxies, the statistics may not be large enough
to point to a particular trend. We again note that the first four
bins only hold around 100 galaxies, which represent less than
1% of the entire catalogue. Importantly though, the absolute
value of the bias remains smaller than 7% for all magnitudes
and all codes (and for IE > 17 for DeepLeGATo, as discussed),
which means that despite their di↵erent approaches, there are no
major di↵erences between the B values of the di↵erent codes.
We can see that for the three brightest bins, Galapagos-2,
Morfometryka, and SourceXtractor++ perform very sim-
ilarly, with Galapagos-2 reaching a slightly smaller bias.
ProFit’s bias is less stable; tt first has a slightly higher bias,
which decrease between IE = 17 and IE = 23.5. For those inter-
mediate magnitudes, Galapagos-2 and SourceXtractor++
perform very similarly, while DeepLeGATo and Morfometryka
have a higher positive bias. Finally, for the very faint galax-
ies (IE > 24), SourceXtractor++ has a bias close to zero,
followed by Morfometryka, DeepLeGATo, Galapagos-2 and
ProFit.

The second column of the summary figure compares the
dispersion D of all codes. The trends are generally compara-
ble, staying below 0.1 at IE < 24 for all codes except for
DeepLeGATo for bright objects. Here again, and for the same
reasons explained in the previous paragraph, DeepLeGATo shows
a high dispersion, decreasing from about 0.8 (o↵ the displayed
plotting area) at IE = 14.5 to 0.2 at IE = 17.5. We can also see the
higher dispersion for ProFit in the first magnitude bin. The four
codes behave similarly with di↵erences of only a few percent for
IE < 23.5, with SourceXtractor++ having the smaller disper-
sion, followed by ProFit and Galapagos-2, DeepLeGATo and
Morfometryka. For fainter objects, DeepLeGATo’s dispersion
stays below 0.10, while SourceXtractor++, Galapagos-2
and ProFit increase to 0.15. Morfometryka shows the largest
dispersion, up to 0.45 (again, o↵ the plotting area) for the lowest
S/N bin. As seen in the trumpet plot, the dispersion at the faint
end is dominated by a long tail in the distribution, with a large
fraction of objects being estimated to be too large.

Regarding the fraction of outliers (third column), we see
that at the bright end, all codes except DeepLeGATo have
no bad fits (the only bin with a non-zero outlier fraction
is ProFit and that concerns only one galaxy). For IE <
23, all the codes have less than 10% outliers, with ProFit
and Galapagos-2 showing the smallest numbers of bad fits,
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Fig. 4. Fitting results for the axis ratio q of the single-Sérsic simulation.
See caption of Fig. 3 and Sect. 4 for further information.

followed by SourceXtractor++ and Morfometryka. For
fainter objects, all measurements except for DeepLeGATo, and to
some extend SourceXtractor++, increase significantly, up to
approximately 30% for Morfometryka and 20% for ProFit
and Galapagos-2. On the contrary, DeepLeGATo has close to
zero outliers for 23  IE  26 and SourceXtractor++ also
keeps a relatively small fraction of bad fits, with up to 5% for the
fainter objects. Morfometryka’s outlier fraction for faint objects
is due to the accumulation of galaxies around b = �0.5, which
we have commented on before and are flagged during a reg-
ular output catalogue with the flag ‘TARGETISSTAR’ (see also
Fig. D.6). We remind the reader that even if the individual three
metrics in Fig. 6 seem unfavourable for DeepLeGATo measure-
ments of bright galaxies, this has little impact on the global score
S, a↵ecting only 93 galaxies, less than 1% of the fitted catalogue.

4.1.2. Axis ratio

We now move on to the axis ratio q. Recall that q has the oppo-
site interpretation compared to ellipticity, a high q describing a
circular galaxy. We see in the trumpet plot of Fig. 4 an overall
good recovery from all codes, with almost zero bias and a rea-
sonably low dispersion. The discontinuities between S/N bins
for DeepLeGATo is much less noticeable, and the bias for bright
objects is also lower. Evidently, also Morfometryka’s buildup
of unreliable size measurements for small objects (and Sérsic
indices as we subsequently see in the next section) are not a
problem for providing accurate axis ratios.

The second row of Fig. 6 shows the summary of the three
metrics for q. Axis ratios are measured remarkably well, with a
bias smaller than 3% for IE < 26 for all codes, and for IE < 23
for Galapagos-2. Galapagos-2 has a slightly larger bias than
the other codes for the faint objects, with a tendency to esti-
mate more elongated galaxies. However, it remains smaller than

0.07 even in the faintest object bin. We still see a large bias for
DeepLeGATo, which oscillates between around �0.09 and 0.07
from IE = 14 to IE = 17 (cut by the y-axis range in the graph
for visualisation purposes). For IE < 24, SourceXtractor++
and ProFit behave similarly well (nearly no bias), followed by
a fraction of percent for Morfometryka and Galapagos-2.
Morfometryka over-estimates q for faint objects and under-
estimates it for bright objects. In the last (faintest) magnitude
bin, we can see that SourceXtractor++ and DeepLeGATo
slightly over-estimate q, while the other three under-estimate it,
which could suggest that the problem comes from the di�culty
of the task at very low S/N, rather than a problem linked to the
estimation of the PSF.

Regarding the dispersion, all codes except DeepLeGATo have
a smooth increase with magnitude, from zero up to respec-
tively 0.10 for SourceXtractor++ and DeepLeGATo, 0.15 for
Morfometryka and ProFit, and 0.20 for Galapagos-2, and
it remains smaller than 0.1 for all codes at IE < 24. For IE < 22,
Morfometryka and SourceXtractor++ achieve the small-
est dispersion. DeepLeGATo’s high dispersion at the bright end
relates to issues already expanded on previously.

The outlier fraction (third column in Fig. 6) is overall below
1% for all codes and magnitudes. This is another sign that the
ellipticity is one of the parameters which is generally recovered
reliably by all software packages, even though an outlier thresh-
old of 0.5 is quite permissive. Indeed, galaxies with a true value
of 0.5 cannot be fitted as outliers, but we chose to keep this defi-
nition for simplicity of the metric. Furthermore because the met-
ric is the same for all codes, we believe this comparison to be fair.
We can see that even though DeepLeGATo has the strongest bias
and dispersion for bright objects, they are still well below the
outlier threshold, and stay very close to zero even for the faintest
galaxies. For the other software packages, the fraction of outliers
starts to be non-zero for 19  IE  21. The interested reader
is invited to use the interactive plotting tool released together
with this work to investigate the result on the fraction of out-
liers. It allows one change (and therefore to decrease) the outlier
threshold.

We highlight that the error in the axis ratio measurement is
the sum of at least two procedures: the prediction of the two
semi-axis lengths (impacted by the S/N and the PSF) but also
of the position angle (PA) of the galaxy, necessary to define the
two semi-axis. We note that the PA is not part of our current
comparison.

4.1.3. Sérsic index

In this section we inspect the estimation of the Sérsic index
of galaxies (Fig. 5). As a reminder, the Sérsic function is a
simplified model that does not capture the entire galaxy, but
gives important information about how the intensity varies with
radius. Compared to other morphological parameters retrieved
from single-Sérsic model fitting, the Sérsic index is regarded as
the most challenging parameter to recover (Buitrago et al. 2013;
dos Reis et al. 2020). Because the dependence of light profiles
on the Sérsic index is exponential, we always analyse log10(n)
instead of n in the following (see e.g. Kelvin et al. 2012 for an
extended discussion).

All codes display the familiar trumpet shapes with the
known caveats in DeepLeGATo and Morfometryka. Beyond
that, we observe that DeepLeGATo, Morfometryka and
SourceXtractor++ tend to be skewed towards negative val-
ues for faint objects (indicating the prediction of smaller log10(n)
compared to the truth), while Galapagos-2 and ProFit show
the opposite trend.
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Fig. 5. Fitting results for the Sérsic index of the single-Sérsic simula-
tion. See caption of Fig. 3 and Sect. 4 for further information.

The third row of Fig 6 presents the metrics for the loga-
rithm of the Sérsic index. While DeepLeGATo’s performance
for fitting bright objects is less biased compared to the pre-
vious parameters, it still has the largest negative bias for the
smallest magnitude bins, which means it predicts bright galax-
ies without steep cores (i.e., bulges). Beyond this bright end,
DeepLeGATo is the only code that does not over-estimate the
Sérsic index, which means it does not predict steeper galaxy
profiles in their cores. For fainter galaxies, from IE = 17 to
IE = 26, DeepLeGATo achieves the most robust bias calibra-
tion, mitigated by the fact that it has the highest dispersion.
SourceXtractor++ and ProFit have a similarly small bias
(around 0.01) for IE < 23, which then decrease close to zero for
SourceXtractor++ and increases to around 0.5 for ProFit.
Morfometryka’s and Galapagos-2’s bias steadily increase for
ever fainter galaxies. Galapagos-2 increase up to 0.07, while
Morfometryka abruptly falls to �0.1 due to the known accu-
mulation of objects that were not successfully modelled.

The behaviour of the dispersion (second column) is sim-
ilar for all codes except for DeepLeGATo for IE < 23, with
a dispersion lower than 0.10. SourceXtractor++ has the
lowest dispersion, followed by Galapagos-2 and ProFit,
Morfometryka, and DeepLeGATo. Here again, the di↵er-
ence between the four first codes is very marginal. The dis-
persion D then increases for every code, up to 0.16 for
SourceXtractor++ and DeepLeGATo, 0.2 for ProFit, 0.25
for Galapagos-2, and 0.65 for Morfometryka, which can
once again be explained by the cluster of points around 0.5.
None of the codes su↵er from bad fits (third column, O) for
IE < 19, and just up to few percents for IE < 22. The frac-
tion then increases steeply at faint magnitudes. The increase is
highest for Morfometryka, from about 1% at IE = 20 up to
34% at the faintest bin, again related to the discussed failed
fits. Galapagos-2 increases to 15% only in the faintest bin.
DeepLeGATo achieves the lowest number for all magnitudes, fol-
lowed by SourceXtractor++ also at the faint end.

Fig. 6. Summary plot for the single-Sérsic simulation. The di↵erent
rows show the results for the three di↵erent structural parameters: half-
light radius re (top), axis ratio q (middle) and Sérsic index n (bottom).
Columns represent (1) the mean bias B, (2) the dispersion D, and (3)
the fraction of outliers O, per bin of IE magnitude (see text for details).
We note that the y-axis is sometimes cut at low values to highlight the
small di↵erences between the software packages. Each code is plotted
with a di↵erent colour as labelled.

4.1.4. Global scores

The blue numbers in Table 1 summarise the global scores (see
Eq. (9)) for the three parameters of the single-Sérsic simula-
tions and for the five codes. An average global score µS is also
provided. They are also plotted in the first part of Fig. 23. The
best score is obtained for SourceXtractor++, which achieves
a value of S = 0.28. In addition, the table also shows that
some codes behave better than others for some specific structural
parameters. For example, Morfometryka is better for the axis
ratio than for the e↵ective radius, where it is highly penalised
by the large dispersion for faint objects that we discussed. We
emphasise again that this score is very sensitive to the di↵er-
ent weights on the number of objects, the S/N, and the weights
of the metrics. In particular, the weights of the smallest magni-
tude bins(from IE = 14 to IE = 19) have close to no impact on
the score, because of the very small number of objects in those
bins. It explains why DeepLeGATo has a good global score while
performing worse than the other codes for bright objects, while
other codes like Galapagos-2 or Morfometryka perform best
for certain parameters. By the nature of how we set up the met-
ric, the order of the global score ranking can therefore change if
we adjust the di↵erent weights to reflect a specific emphasis. We
encourage the reader to explore the interactive tool released with
this work, to tune this score to their particular science case.

4.2. Double-Sérsic results

We now analyse the measurements from the double-Sérsic sim-
ulations. Figure 13 summarises the results, along with Table 2
and Sect. 4.2.8.
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Table 1. Comparison of the scores S obtained by the di↵erent software
packages in all structural parameters for the single Sérsic simulations.

FVAE

Galsim
Sre Sb/a Sn µS

DeepLeGATo
;

0.37

;

0.25

;

0.38

;

0.33

Galapagos-2
2.05

0.58

0.79

0.43

1.29

0.60

1.38

0.54

Morfometryka
;

1.10

;

0.37

;

1.20

;

0.89

ProFit
1.82

0.47

0.65

0.21

0.78

0.40

1.09

0.36

SourceXtractor++
1.84

0.38

0.60

0.18

0.75

0.29

1.06

0.28

Notes. Numbers in blue are results from Galsim simulations (discussed
in Sect. 4.1), and numbers in black quote results from measurements
of simulations with the deep generative model FVAE (discussed in
Sect. 4.3). The last column is the mean of the parameters. A smaller
S means a better fit.

As expected, separating the galaxy light into two compo-
nents is a more degenerate problem than the single-Sérsic model
fitting. This is enhanced by the fact that bulges and b/t in our
sample are generally small, that is the bulge component has
a low S/N compared to the disc (see Fig. 1). We also note
that Morfometryka did not provide results for the bulge-disc
decomposition. It is therefore excluded from the comparison
in the following sections. Another di↵erence compared to the
single-Sérsic dataset is that one of the fields contained multi-
ple bands including Euclid NIR and Rubin filters. In the fol-
lowing we only show results for 3/5 fields with VIS-only data.
The multi-band dataset is analysed separately in Sect. 4.2.6.
Finally, we note that while the simulations were made with a
bulge Sérsic index fixed to n = 4, and a disc with a fixed
n = 1, we asked the participants to also model the galaxies with
a free bulge Sérsic index. We compare the results for free and
fixed bulge fittings in Sect. 4.2.7. Here, we concentrate on the
model using a fixed value of n. Notice that because DeepLeGATo
does not fit a model, it does not have those two di↵erent
versions.

4.2.1. Bulge-to-total flux ratio

We first inspect how accurately the bulge-to-total flux ratio b/t
is recovered. The results are shown in Fig. 7. First, we see that
SourceXtractor++ and DeepLeGATo are less impacted by the
low S/N at the faint end of the plot than the other two codes,
with the trumpet shape highly concentrated towards zero bias
(peaked Gaussian distribution in the histograms). Galapagos-2
and ProFit have highly non-Gaussian distributions of biases,
with a tendency of over-estimating b/t for faint objects. This is
obvious both in the distributions of b/t and of the bulge radius
(Fig. 8). This suggests that in cases where the bulges are small
and faint, these codes tend to fail to properly disentangle the
flux of the bulge from the flux of the disc. As a consequence,
a part of the disc’s flux gets attributed to the bulge. A possi-
ble explanation for the SourceXtractor++ and DeepLeGATo

ability to avoid this e↵ect could be the use of favourable priors.
Surprisingly, the figure shows that the metrics are better for faint
objects, where the constraining power of the data is theoretically
the lowest, and therefore the estimation is mostly driven by the
prior. SourceXtractor++ uses an explicit prior of 0.022 for
b/t, which matches the average b/t in the simulation. It was cal-
ibrated by the participants on a sub-sample of the dataset with
known ground truth. DeepLeGATo also implicitly learns the prior
from the data during training, by maximising the likelihood.
Galapagos-2 uses arbitrary priors and initially places half the
light in the bulge and half in the disc. ProFit starts with reason-
able initial guesses for the profile solution based on runs of the
ProFound software on the cutouts (Robotham et al. 2018), but
these initial conditions remain less accurate than the ones used
by SourceXtractor++. These trends seem to confirm that the
information contained in the images at the faint end is limited
and therefore the final results are in most cases driven by the
priors.

The summary of the metrics is provided in Fig. 13; the first
row detailing b/t. For IE < 23, Galapagos-2 achieves the low-
est bias, followed by SourceXtractor++. ProFit has a ten-
dency to over-estimate b/t, even for the brighter objects with
increasing bias up to 0.37 for the faintest objects. Galapagos-2
has a similar bias in the faint end, but starts rising at fainter mag-
nitudes (IE ' 23 versus IE ' 19 for ProFit). DeepLeGATo
starts to be competitive around IE = 20, and achieves the
lowest bias at the faint end, followed by SourceXtractor++.
DeepLeGATo generally under-estimates b/t, which is the oppo-
site trend than the one seen in the other codes. This may be
due to DeepLeGATo’s learning being driven by the implicitly
learned prior rather than by a disentangling of light based on
profile fitting. Galapagos-2 has the smallest dispersion (sec-
ond column) for the brightest objects, but then D increases to
0.14 for fainter objects. This is comparable to ProFit from
IE ' 17.5 onwards. DeepLeGATo has a high dispersion up to
IE ' 21, which decreases from 0.5 to 0.05 at the faint end – a
similar dispersion to SourceXtractor++. SourceXtractor++
stays relatively stable at all magnitudes, with dispersion between
⇠0.05 (bright) and 0.10 (faint). The trends for the outlier frac-
tions are similar in all codes, with ProFit’s outliers starting to
increase from IE ⇠ 19 onwards and up to a fraction of 30%
for the faintest galaxies. Galapagos-2 has close to no outliers
up to IE ' 22 and a fraction of 0.28 for the faintest galax-
ies. Compared to Galapagos-2, SourceXtractor++ has a
slightly larger outlier fraction, but then keeps outliers to under
5% in the faintest bins. DeepLeGATo retains the lowest number
of outliers for 20 < IE < 26, but reports some bad fits among the
brightest objects.

4.2.2. Bulge half-light radius

We now inspect the estimation of the e↵ective radius of the bulge
component. Figure 8 clearly reflects the di�culty in obtaining
reliable structural measurements of bulges. First, for all codes,
the bias distributions are skewed towards positive values, that is
an over-estimation of the true size. This can be directly linked
to the fact that the bulge-to-total flux ratios are generally over-
estimated. Figure 1 shows that bulge radii are small, and because
the bulges are generally smaller than the discs, they are sub-
merged inside the disc profiles, making it increasingly challeng-
ing to accurately estimate their radii.

The second row of the summary figure (Fig. 13) details this
observation. We note that the scale is logarithmic for the bias
and the dispersion, to help appreciate the di↵erences for faint
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Table 2. Comparison of the scores S obtained by the di↵erent codes in all structural parameters for the double Sérsic simulation (with a fixed
bulge Sérsic index fit in red, and with with a free bulge Sérsic index fit in black).

Free bulge fit

Fix bulge fit
Sre,b Sre,d Sqb Sqd Sb/t µb, µd

DeepLeGATo
;

2.42

;

0.49

;

0.50

;

0.21

;

0.23

;

1.05 ; 0.31

Galapagos-2
17.45

23.13

1.46

0.91

2.74

3.50

1.29

0.51

0.99

0.95

7.06 ; 1.26

9.19 ; 0.96

Profit
37.65

89.37

1.37

1.14

1.92

1.76

0.60

0.51

1.22

1.17

13.6 ; 1.06

30.76 ; 0.93

SourceXtractor++
3.00

3.00

0.51

0.48

0.54

0.53

0.29

0.29

0.27

0.26

1.26 ; 0.36

1.26 ; 0.34

Notes. The last column is the mean of the parameters, first for the bulge components and b/t, second for the disc components and b/t. DeepLeGATo
is not a model-fitting algorithm, and thus has no fixed or free bulge Sérsic index modes. A smaller S means a better fit.

Fig. 7. Fitting results for the bulge-to-total flux ratio using the double-
Sérsic simulation. See caption of Fig. 3 for further information.

objects. We can see that the four codes (except DeepLeGATo)
for the first two bins of very bright objects) have a simi-
lar value absolute for IE < 20. SourceXtractor++ and
ProFit slightly over-estimate the radius while DeepLeGATo
and Galapagos-2 slightly under-estimate it. For fainter objects,
DeepLeGATo keeps the lowest bias, followed by Galapagos-2
and SourceXtractor++ and then ProFit for IE < 22.5. For
the challenging faint galaxies, SourceXtractor++ decreases
to close to zero bias, which could be explained by the cor-
rect choice of priors, as discussed in the previous subsection.
Galapagos-2 and ProFit’s B rise up to approximately 10 and
60, respectively, at the faint end. A similar behaviour is visible
in the dispersion: ProFit and Galapagos-2 increase in similar

ways up to 4 at IE = 23, which rises up to 80 for ProFit, while
DeepLeGATo and SourceXtractor++ keep their dispersions
below 1. The challenge of fitting bulges becomes even more
obvious when we look at the outlier fraction. Indeed, we can see
that for the faintest bins – and always according to our arbitrary
definition of outlier – more than half of the galaxies are poorly
fit, close to 100% for ProFit. For brighter objects (IE < 23.5),
Galapagos-2 maintains the lowest number of outliers, from
close to zero to around 10%, while SourceXtractor++ goes
up to ⇠30%, and ProFit 50%. Again, this seems to reflect the
fact that when the fit can be robustly constrained by the data
because it has high S/N, Galapagos-2 performs well since the
prior is not that relevant.

In order to better understand this large bias and fraction
of outliers, we show in Fig. 9 the di↵erent metrics as a func-
tion of the bulge-to-total fraction (x-axis) in addition to mag-
nitude (y-axis). It is well known that the accuracy of bulge-disc
decompositions are correlated with magnitude and bulge-to-total
ratios. Understanding the metrics in relation to the true value
of a galaxy’s b/t can help to disentangled those two e↵ects. In
this figure, we want to highlight the absolute magnitude of the
bias and dispersion, independent of their sign. The plot therefore
shows for which types of objects measurement errors are large
versus where they are small. For this, we compute the absolute
mean bias per bin of magnitude and b/t,

|B̃re | = |b̃re | ,

while the dispersion is the same as for the other cases (see
Eq. (8)). In this figure, the colour of the square shows the bias
|B̃p| (lighter colours indicate smaller bias), and the coloured
discs indicate the dispersion (the redder the point the smaller the
dispersion). The first column plots results for the bulge radius,
the second for the disc radius, and each line is a di↵erent soft-
ware code. We note that we limit the magnitudes to faint galaxies
(IE > 18.5) and that for ProFit and Galapagos-2, the colour-
bars are on a logarithmic scale to accommodate the large values.
The expected behaviour is particularly clear for ProFit (third
row), which we use here to for demonstration. The bias of the
bulge radius B becomes smaller for brighter and more bulge-
dominated galaxies (lower right corner of the plot) and the dis-
persion is low. On the contrary, a faint galaxy with small b/t has
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Fig. 8. Fitting results for the bulge radius using the double-Sérsic simu-
lation. Notice that only four codes provided results for the double-Sérsic
simulation. From top to bottom and from left to right: DeepLeGATo;
Galapagos-2; ProFit; and SourceXtractor++. See caption of Fig. 3
for further information.

a high bias and high dispersion. The opposite is seen for disc
radii: biases are highest in faint bulge-dominated galaxies. The
figure therefore confirms that most of the catastrophic fits for
Galapagos-2 and ProFit correspond to faint galaxies with low
b/t. When the bulge component is dominant, the overall accu-
racy improves significantly. For example, for Galapagos-2, the
dispersion stays below 1.5 if we remove the extreme bin of
b/t (b/t < 0.2), and the bias remains under 2. We can see the
same behaviour for ProFit if we remove the low b/t (first col-
umn), and faint objects (top row), with a dispersion and bias
staying lower than 3. The plot also uncovers some unexpected
behaviour: SourceXtractor++ struggles to measure bulge and
disc radii for faint bulge dominated objects, but also for brighter
objects (disc radius) and bright objects with small bulges. We
encourage the reader to go to the online platform and adapt those
graphs according to their interests, for example removing the
extreme cases, for a better visualisation.

4.2.3. Disc half-light radius

Figure 10 shows the trumpet plots for the half-light radius mea-
surements of the disc component. Results are noticeably more
symmetric than for the bulge component and in fact are similar
to the results reported for the single-Sérsic case. One noticeable
di↵erence is the bias of DeepLeGATo, which is inverted; bright
galaxies are estimated with larger discs compared to the truth.
As previously discussed this is related to discs generally being
larger than bulges and the small bulges contained in the simula-
tions. While being symmetric, the ‘trumpets’ (and thus the bias
distributions) are significantly wider, with prominent wings in
the histograms.

The third row of Fig. 13, confirms that the overall reliabil-
ity of the estimation of the disc structural parameters is com-
parable to the single-Sérsic re fit, with a slightly higher bias

Fig. 9. Absolute bias |B̃| and dispersion D̃ for the e↵ective radius of
bulge (left column) and disc (right column) components in the double-
Sérsic simulation, as a function of bulge-to-total ratio (x-axis) and
apparent IE magnitude (y-axis). Each row shows a di↵erent code. For
ProFit and Galapagos-2, the colour scale is logarithmic. In each
panel, the colour of the squares is proportional to the mean bias D
(lighter being smaller), and the colour of the dot inside each square indi-
cates the dispersion D (redder being lower). For most of the codes, we
find the expected behaviour: both the bias and the dispersion increase
for faint objects, as well as at small b/t for bulges and large b/t for discs.

and dispersion. Beyond that global view, trends for bright galax-
ies are opposite to these for the single-Sérsic radius estimation:
an over-estimation of the radius for DeepLeGATo and an under-
estimation for the three others. We can see that all codes maintain
absolute biases smaller than 0.04 – apart from DeepLeGATo, for
galaxies brighter than 21, and the fainter bin of Galapagos-2
(with a bias of 0.15). SourceXtractor++ retains its disc
radius bias close to 0 over all magnitudes except for the last one,
where it goes up to 0.04. ProFit has a slightly larger negative
bias at intermediate magnitudes. Similarly to bulges, the depen-
dence on magnitude is not as obvious as for the single-Sérsic
case, because of the additional dependence on b/t. However, the
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Fig. 10. Fitting results for the disc radius using the double-Sérsic simu-
lation. See caption of Fig. 3 for further information.

impact is less obvious for discs, given the b/t distribution skewed
towards small bulges (Fig. 1). The second column of Fig. 9 again
explores bias and dispersion for b/t and magnitude trends. It
shows that accuracy increases for bright objects and low b/t.
Regarding the dispersion (Fig. 13), we can see a steady increase
with magnitude, peaking at 0.19, (SourceXtractor++), 0.21
(DeepLeGATo), 0.30 (Galapagos-2), and 0.47 (ProFit). The
outlier fraction is less linear but with similar ranking. ProFit
has the lowest fraction of bright outliers, but is the highest in
the faint bins. For the faint bin, DeepLeGATo has the smallest
fraction, followed by SourceXtractor++. The fractions in the
last bins are nevertheless higher than for the single-Sérsic fit,
with respectively, 5%, 10%, 29%, and 30% for DeepLeGATo,
SourceXtractor++, Galapagos-2, and ProFit.

4.2.4. Bulge axis ratio

Figure 11 presents the accuracy in the estimation of the axis
ratio q of the bulge components. The characteristic trumpet
shape is no longer preserved, and distributions tend to be flat-
ter, especially for the faint objects. These results are quanti-
fied in the fourth row of Fig. 13. SourceXtractor++, ProFit,
and DeepLeGATo maintain an absolute bias smaller than 0.1 for
17 < IE < 26. SourceXtractor++ has close to no bias,
while ProFit has a tendency to under-estimate the bulges q,
that is predicting galaxies that are too elongated. It is the oppo-
site for DeepLeGATo, which over-estimates q, especially for the
brightest galaxies. Galapagos-2 is well calibrated for IE < 19,
and then starts to under-estimate q, with a negative bias down
to B = �0.42 on the faintest galaxies. For the dispersion D,
DeepLeGATo and SourceXtractor++ achieve the lowest val-
ues for faint objects, around 0.25. ProFit and Galapagos-2
have a strong increase for IE > 20, up to 0.5 and 1, respectively.
For brighter objects, all codes except DeepLeGATo achieve com-
parable results. Finally, DeepLeGATo and SourceXtractor++
achieve a very low outlier fraction only with few percent. For
IE < 20, the three codes (excluding DeepLeGATo) behave sim-

Fig. 11. Fitting results for the bulge axis ratio using the double-Sérsic
simulation. See caption of Fig. 3 for further information.

ilarly, but then O rises for ProFit and Galapagos-2 for IE <
22.5, and ends at 0.3 for ProFit and 0.42 for Galapagos-2.
DeepLeGATo’s fraction of outliers ranges from approximately
100% (bright) to 1% (faint).

We also investigated the 2D distributions of the metrics as a
function of magnitude and b/t, in the same way as we did for the
radius in Fig. 9. We found that removing cases with extreme b/t
significantly improves the results at all magnitudes. We let the
interested readers explore this behaviour with the online tool.

4.2.5. Disc axis ratio

In general, software packages were able to measure the axis ratio
q of the disc components (Fig. 12) more accurately than for the
bulges. They are comparable to results from the single-Sérsic
case, albeit with a higher dispersion and a larger negative bias for
faint objects for Galapagos-2 which tends to under-estimate q.

We can make a more in-depth comparison of the met-
rics by looking at the last row of Fig. 13. Their general
behaviour is comparable to the bulge axis ratio, but with smaller
values. The absolute bias remains smaller than 0.3 for all
codes for IE < 23 (apart from DeepLeGATo which is again
unreliable for bright objects). Galapagos-2’s and ProFit’s
biases are well calibrated for IE < 22.5, but then decline
to a value of �0.2. For the faintest bins, SourceXtractor++
has a slight tendency to under-estimate the axis ratio, while
ProFit and DeepLeGATo over-estimate it. For the dispersion,
Galapagos-2 is also the best calibrated for IE < 21, but
increases up to 0.45 for the faintest bins, while ProFit increases
to 0.23, SourceXtractor++ to 0.18, and DeepLeGATo to 0.15.
DeepLeGATo again starts to be comparable to other codes for
IE > 20, and improves to achieve the smallest dispersion for faint
objects. Galapagos-2 is also the best calibrated for IE . 18 for
the fraction of outliers, with less than 4% of outliers, and up to
12% in the faintest bins. It is still the second lowest for interme-
diate bins, followed by SourceXtractor++ and ProFit by a
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Fig. 12. Fitting results for the disc axis ratio using the double-Sérsic
simulation. See caption of Fig. 3 for further information.

few percent. From magnitudes18 to 26, DeepLeGATo achieves
the lowest number of bad fits, below 3%, followed by a frac-
tion of percent by SourceXtractor++ in the faintest bins. At
intermediate magnitudes (IE ' 17), DeepLeGATo and ProFit
increase to around 5%, and SourceXtractor++ to 7%.

4.2.6. Multi-band fits

Galaxies change appearance with varying wavelengths
(Kelvin et al. 2012; Vulcani et al. 2014; Kennedy et al. 2015).
As a result, the chosen waveband may influence the classifica-
tion and the determination of a galaxy structural parameters (see
e.g., Häußler et al. 2022 for a detailed discussion). As discussed
in the introduction, in addition to the VIS images, which deliver
the highest spatial resolution, Euclid will also provide NIR
images in three filters. In addition, a variety of ground-based
surveys such at the LSST will overlap with the Euclid footprint.
While the main focus of the Euclid Morphology Challenge is
on VIS, we included the option to test the capability of software
packages to fit images in multiple wavelength ranges. The
multi-wavelength simulations we provided are rather simplistic,
with only the total magnitude and the bulge-to-total ratio
b/t changing with wavelength. While the first is extensively
analysed in EMC2023, we focus here on the results for b/t.
We expect that b/t is best recovered in VIS and challenging
in other bands due to their lower S/N, lower resolution, noise
correlation, and artefacts related to the re-sampling. However,
it is interesting to check whether the constraints provided by
VIS help to improve the morphology estimated in the lower
resolution images.

We received multi-band fitting measurements from
Galapagos-2, ProFit, and SourceXtractor++. Not every
team interpreted the task to provide multi-band fitting in the
same way and thus methods and decisions vary from code to
code. The Galapagos-2 team ran all the bands simultane-
ously to produce the di↵erent parameters. In their bulge-disc

Fig. 13. Summary plot for the double-Sérsic simulations. From top to
bottom: bulge e↵ective radius, disc e↵ective radius, bulge axis ratio,
disc axis ratio, and bulge over total flux ratio. See caption of Fig. 6 for
further information.

decompositions, they fixed all the parameters apart from the
magnitude, for which complete freedom to vary with wavelength
was ensured. The b/t we compare in Fig. 14 is constructed from
these magnitude outputs. We note that the results are only shown
as a function of IE magnitudes, which is the deepest image by
far. The strength of codes like Galapagos-2 lies in improve-
ments for shallower data, like the NIR images. These can be
explored in the online tool. SourceXtractor++ also fitted all
the bands in a joint analysis, with the exception of b/t, which
SourceXtractor++ provides directly. This means that the b/t
parameter was fit independently in each band and the overall
model amplitude could scale freely. ProFit fitted all bands
independently, and thus galaxies can have di↵erent structural
parameters in the di↵erent bands. This choice disadvantages the
fitting process in the faint or low S/N bands (filters with narrow
pass-bands). It did however give us a good indication that B,D,
and O increase for all morphological parameters that we probe,
from IE to NIR y band, typically from a few percent in bright
galaxies to 10 and more percent in faint galaxies. We note that
ProFit has the option for a multi-band joint analysis, but this
mode was not used for the challenge.
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