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Abstract: This systematic review and meta-analysis aimed to determine if probiotic supplementation
in pregnancy reduced maternal Group B streptococcus (GBS) recto-vaginal colonization in pregnant
women at 35–37 weeks of gestation. Electronic databases (i.e., PubMed, MEDLINE, ClinicalTrials.gov,
ScienceDirect, and the Cochrane Library) were searched from inception up to February 2022. We
included RCTs assessing the effects of probiotic supplementation in pregnancy on GBS recto-vaginal
colonization. The primary outcome was GBS-positive recto-vaginal cultures performed at 35–37 weeks
of gestation. Secondarily, we evaluated obstetric and short-term neonatal outcomes. A total of
132 publications were identified; 9 full-length articles were reviewed to finally include 5 studies.
Probiotic supplementation reduced vaginal GBS colonization: the GBS positive culture rate was
estimated at 31.9% (96/301) in the intervention group compared to 38.6% (109/282) in the control
group (OR = 0.62, 95% CI 0.40–0.94, I2 4.8%, p = 0.38). The treatment started after 30 weeks of gestation
and was more effective in reducing GBS colonization (OR 0.41, 95% CI 0.21–0.78, I2 0%, p = 0.55).
Probiotic administration during pregnancy, namely in the third trimester, was associated with a
reduced GBS recto-vaginal colonization at 35–37 weeks and a safe perinatal profile. Whether this new
strategy could reduce the exposition of pregnant women to significant doses of antibiotics in labor
needs to be evaluated in other trials.

Keywords: group B streptococcus; probiotics; pregnancy; intrapartum antibiotic prophylaxis; perinatal
outcomes; neonatal sepsis

1. Introduction

Group B streptococcus (GBS) is an important cause of maternal and neonatal morbidity
and mortality worldwide. In Europe, the percentage of women colonized with GBS in preg-
nancy ranges from 1.5 to 30% and accounts for chorioamnionitis, cystitis, pyelonephritis,
bacteremia, fever, and postpartum endometritis [1,2]. The presence of the pathogen in the
maternal urinary tract at the time of delivery is the most important risk factor for neonatal
GBS infection; alternatively, GBS can reach the amniotic fluid by ascending through the
cervix with intact or ruptured membranes [3], especially in the cases of prolonged labor,
premature rupture of membranes (PROM), or preterm birth (PTB) [4]. Less frequent GBS-
related morbidities are represented by surgical wound infection after cesarean delivery,
pelvic abscesses, pelvic septic thrombophlebitis, and osteomyelitis [5]. Approximately 98%
of colonized newborns are asymptomatic while the early-onset symptomatic forms have a
1–3% incidence with a 50–60% neonatal mortality [6,7].

GBS is detected with universal culture screening at 35–37 weeks’ gestation; currently,
antibiotic prophylaxis in active labor is the most effective intervention to counteract early
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neonatal infections in GBS-positive women [8]. Antibiotic prophylaxis is also effective when
administered to women with risk factors for GBS colonization (i.e., labor <37 weeks, amniotic
membrane rupture for ≥18 h, or intrapartum T > 38◦C) and unknown GBS status [9].

However, the widespread use of intrapartum antibiotics likely affects the biodiversity
of maternal and neonatal microbiota and is associated with mother and infant gut microbiota
dysbiosis [10,11]. The vaginal microbiota has indeed been recognized as a novel factor by
which maternal stress and perturbations may contribute to reprogramming the developing
brain of the offspring, predisposing individuals to neurodevelopmental disorders [12].

Moreover, intrapartum antibiotic prophylaxis (IAP) may secondarily decrease the
susceptibility to penicillin or ampicillin, the agents of choice used to prevent GBS dis-
ease [13,14]. Therefore, several strategies have been tested as alternatives. A small study
showed that intrapartum vaginal flushing with chlorhexidine was as effective as ampicillin
in preventing GBS transmission to neonates and also reduced the rate of neonatal E. coli
colonization [15]. The WHO launched the first GBS maternal immunization program to
develop a GBS vaccine but the results are not available yet [16]. Natural antibacterial
phytochemicals (i.e., Carvacrol) have been shown to compromise the cell membrane in-
tegrity by inducing changes that lead to leakage of cytoplasmic contents such as lactate
dehydrogenase enzymes and nucleic acids, demonstrating an additive–synergistic effect
with clindamycin or penicillin [17]. In addition, plant-based compounds were used to
inhibit the virulence properties and gene expression [18] of Streptococcus species; indeed,
promising results have been reported regarding the synergistic effects of citral (citrus oil
with anti-inflammatory and bactericidal properties) and phloretin (a polyphenolic chalcone
that has many interesting biological properties, including inhibition of Gram-positive and
Gram-negative bacteria) to combat the virulence of Streptococcus [19]. Finally, probiotics
were studied to reduce GBS colonization rates at 35–37 weeks of gestation to prevent
neonatal infections.

Probiotics are live microorganisms that, when administered in adequate amounts,
confer a health benefit to the host [20]. Their supplementation is increasingly widespread
and accepted globally due to their documented health benefits [21,22].

Research studies have proven that women with higher vaginal colonization of lac-
tobacilli are more likely to have no detectable vaginal GBS [23–25]. Indeed, probiotics
have the potential to maintain vaginal homeostasis through the occupation of niches that
impede the expansion of other bacteria and the establishment of biofilms, the increase
in lactic acid and production of other antimicrobial compounds, and the regulation of
the local cervicovaginal mucosal immune responses [26–28]. Moreover, no major safety
concerns were reported for probiotics [29] and a recently published systematic review and
meta-analysis stated that probiotics and prebiotics in pregnancy and lactation were safe.
Only one study that administered Lactobacillus rhamnosus and L. reuteri showed a higher
risk of vaginal discharge and changes in stool consistency, but overall, no serious health
concerns to the mother or infant have been raised regarding probiotic and prebiotic use [30].

On these grounds, we conducted a systematic review and meta-analysis to summarize
the available evidence on the effects of probiotic supplementation to decrease maternal
GBS recto-vaginal colonization.

2. Materials and Methods
2.1. Search Strategy

The review protocol was established by two investigators (G.C. and D.M.) before
the commencement of the study and was registered with the PROSPERO International
Prospective Register of Systematic Reviews (registration no. 184589). The electronic
databases MEDLINE, ClinicalTrials.gov, PROSPERO, and the Cochrane Central Register
of Controlled Trials were searched from the inception of each database until February
2022 using the following terms: ‘GBS’, ‘group B streptococcus’, ‘colonization’, ‘probiotics’,
‘recto-vaginal colonization’, ‘GBS colonization’, and ‘randomized trial’. All manuscripts
were reviewed for pertinent references. No language restrictions were applied.
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2.2. Study Selection

Selection criteria included RCTs that evaluated the effects of probiotic supplementation
in pregnancy on GBS recto-vaginal colonization. We included RCTs involving pregnant
women receiving probiotics. The primary outcome was GBS-positive recto-vaginal cul-
tures performed at 35–37 weeks’ gestation. Secondarily, we evaluated obstetric outcomes:
preterm birth (PTB), preterm rupture of membranes (PROM), chorioamnionitis, and neona-
tal outcomes (neonatal infection and neonatal intensive care unit (NICU) admission).

2.3. Data Extraction and Risk-of-Bias Assessment

Data from each eligible study were extracted without modification of original data
onto custom-made data collection forms. A two-by-two table was used to calculate the
relative risk (OR). The summary measures were reported as OR with 95% CI; between-
study heterogeneity was accounted for using random-effects meta-analyses. Subgroup
analyses were performed according to the positive or unknown GBS baseline according to
the gestational age at beginning of the treatment with probiotics (after 30 weeks or before
30 weeks) and to the duration of the treatment (less or more than 12 weeks). Data analysis
was performed using Stata 15.1 (StataCorp, College Station, TX, USA).

We assessed the risk of bias in each included study using the criteria outlined in
the Cochrane Handbook for Systematic Reviews of Interventions [31]. Seven characteristics
related to the risk of bias were assessed in each included trial because there is evidence
that these issues are associated with biased estimates of treatment effect: (1) random
sequence generation; (2) allocation concealment; (3) blinding of participants and personnel;
(4) blinding of outcome assessment; (5) incomplete outcome data; (6) selective reporting;
and (7) other bias. Review authors’ judgments were categorized as ‘low risk’, ‘high risk’, or
‘unclear risk’ of bias [31]. Publication bias was evaluated using a funnel plot. Our study was
exempt from IRB approval because it collected and integrated publicly available research.
The review was reported according to the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) statement (see the Supplementary File S1).

3. Results

The flow diagram of the electronic search details and selection process is shown in
Figure 1. A total of 132 publications were identified; of these, 123 were excluded according
to the title or the abstract, while 9 full-length articles matched the inclusion criteria. After
revision, three studies were excluded because they were non-RCTs and one was excluded
because only the protocol was available. Thus, five eligible RCTs were finally included in
the analysis. The main features of the included studies are summarized in Table 1.
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Table 1. Study and population characteristics.

Study Country Ethnicity Probiotic/
Placebo Intervention Doses Time

Ming-Ho, 2016
[32] China Asian 49/50 L. rhamnosus GR-1 and L.

reuteri RC-14

2 × 109 CFU/day
from 35–37 weeks

until delivery
2 weeks

Olsen, 2017 [33] Australia Caucasian 21/13 L. rhamnosus GR-1 and L.
reuteri RC-14

1 × 108 CFU (108 viable
strains) for three

weeks/until delivery
3 weeks

Aziz, 2018 [34] USA
Caucasian
Hispanic

Other
125/126 L. rhamnosus GR-1 and L.

reuteri RC-14

5.4 × 109 CFU daily in
capsule started

at 28 weeks
12 weeks

Sharpe, 2019 [35] Canada Caucasian 73/66 L. rhamnosus GR-1 and L.
reuteri RC-14

5 × 109 daily started at
23–25th week

12 weeks

Farr, 2020 [36] Austria Caucasian 33/27

L. jensenii Lbv116; L.
crispatus Lbv88;

L. rhamnosus Lbv96; L.
gasseri Lbv150

4 × 109 CFU daily
oral intake started

between 32–36 weeks
2 weeks

CFU: colony-forming unit.

As reported in Figure 2, most of the included studies were considered to have a low or
unclear risk of bias. The blinding of participants and personnel was the most frequent bias
among the included studies. All of the studies were exempt from selection bias thanks to
the randomization, as well as from reporting bias.
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Figure 2. Assessment of bias risk. (A) Summary of risk of bias for each trial. A plus sign indicates
a low risk of bias; a minus sign indicates a high risk of bias; a question mark indicates an unclear
risk of bias. Aziz, 2018 [34], Farr, 2020 [36], Ming-Ho, 2016 [32], Olsen, 2017 [33], Sharpe, 2019 [35].
(B) Risk of bias graph for each risk of bias item presented as percentages across all included studies.

The population was Caucasian in three studies [33,35,36] while one study also included
Hispanic and other ethnicities [34]; the remnant one was conducted on Asian women [32].
The sample size ranged from 34 to 151 pregnant women. All of the included studies
tested oral supplementation with probiotics. Probiotic strains were the same in four of
the studies (Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 L) [32–35], while
Lactobacillus jensenii Lbv116, Lactobacillus crispatus Lbv88, Lactobacillus rhamnosus Lbv96,
and Lactobacillus gasseri Lbv150 were used in the remnant study [36]. Doses ranged from
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1 ×108 CFU to 5.4 ×109 CFU daily. The duration of supplementation ranged from 2 to
12 weeks (Table 1). While three studies investigated women known to have GBS-positive
cultures [32,33,36], the remnants included women with an unknown GBS status [34,35].

Probiotic supplementation caused a drop in vaginal GBS colonization: the GBS-
positive culture rate was 31.9% (96/301) in the intervention group compared to 38.6%
(109/282) in the placebo group (OR = 0.62, 95% CI 0.40–0.94, I2 4.8%, p = 0.38; Figure 3).

Nutrients 2022, 14, x FOR PEER REVIEW 6 of 13 
 

 

 

Figure 3. Forest plot for the GBS colonization. Ming-Ho, 2016 [32], Olsen, 2017 [33], Aziz, 2018 

[34], Sharpe, 2019 [35], Farr, 2020 [36]. 

This positive result also was confirmed among women with a GBS-positive baseline 

that encountered a significant conversion to negative culture after probiotic treatment (OR 

= 0.41, 95%CI 0.21–0.78, I2 0%, p = 0.55; Figure 4). 

 

Figure 4. Forest plot for the GBS colonization according to positive or unknown GBS baseline. 

Ming-Ho, 2016 [32], Olsen, 2017 [33], Farr, 2020 [36], Aziz, 2018 [34], Sharpe, 2019 [35].  

The subgroup analysis showed that if the treatment was started after 30 weeks of 

gestation, it was more effective in reducing GBS colonization (OR 0.41, 95% CI 0.21–0.78, 

I2 0%, p = 0.55; Figure 5). 
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Sharpe, 2019 [35], Farr, 2020 [36].

This positive result also was confirmed among women with a GBS-positive baseline
that encountered a significant conversion to negative culture after probiotic treatment
(OR = 0.41, 95%CI 0.21–0.78, I2 0%, p = 0.55; Figure 4).
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The subgroup analysis showed that if the treatment was started after 30 weeks of
gestation, it was more effective in reducing GBS colonization (OR 0.41, 95% CI 0.21–0.78,
I2 0%, p = 0.55; Figure 5).
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Figure 5. Forest plot for the GBS colonization according to the gestational age at beginning of the
treatment with probiotics (after 30 weeks or before 30 weeks). Ming-Ho, 2016 [32], Olsen, 2017 [33],
Farr, 2020 [36], Aziz, 2018 [34], Sharpe, 2019 [35].

The duration of the treatment (less or more than 12 weeks) did not seem to alter the
effect on GBS colonization because the stratified group showed positive trends toward the
protective effect of probiotics (Figure 6).
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The secondary outcomes were not meta-analyzed because they were reported in
only a few studies; these outcomes are summarized in Table 2. Ming-Ho et al. [32] and
Sharpe et al. [35] described fewer NICU admissions as well as lower rates of clinical
chorioamnionitis and neonatal infections when probiotics were prescribed to pregnant
mothers, although significance was not reached. No differences in intrapartum fever,
preterm birth, or neonatal infections were reported in the other studies. Of note, none of
the studies reported cases of adverse effects related to probiotics, neither for the mothers
nor the babies.

Table 2. Secondary outcomes in the probiotic and control/placebo groups.

Study N Maternal Labor and Delivery Intervention

Ming-Ho, 2016 [32] 99
Intrapartum fever:

Placebo: 0/50
Probiotic: 1/49 (2.0%)

N/A
NICU admission

Placebo: 0/50
Probiotic: 1/49 (2.0%)

Olsen, 2017 [33] 34
PTB

Control: 0/13
Probiotic: 0/21

Emergency CS
Control: 5/13 (38.5%)

Probiotic: 0/21 *

Neonatal allergies ª
Control:0/13

Probiotic: 0/21

Aziz, 2018 [34] 251
PTB

Placebo: 3/121 (2.5%)
Probiotic: 4/116 (3.5%)

Chorioamnionitis
Placebo: 4/116 (3.5%)

Probiotic: 5/113 (4.4%)

Neonatal infections
Placebo: 2/121 (1.7%)

Probiotic: 4/115 (3.5%)

Sharpe, 2019 [35] 139 N/A
Intrapartum infections

Placebo: 3/56 (5.3%)
Probiotic: 4/57 (7.0%)

NICU admission
Placebo: 3/56 (5.3%)

Probiotic: 0/57

Farr, 2020 [36] 60
PTB

Placebo: 1/41 (2.4%)
Probiotic: 4/41 (9.8%)

Cesarean section
Placebo: 22/41 (53.7%)

Probiotic: 22/41 (53.7%)

Neonatal sepsis
Placebo: 0/41

Probiotic: 0/41

ª Asthma, rhinitis, or eczema. * Significant values (p < 0.05).

No risk of publication bias was detected according to funnel plot (Figure 7).
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4. Discussion

GBS colonizes approximately 20% of pregnant women and represents the most important
risk factor for neonatal early-onset sepsis (EOS) with a high rate of morbidity and mortality.
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This systematic review and meta-analysis was conducted to determine if probiotic sup-
plementation in pregnancy reduced maternal GBS recto-vaginal colonization in pregnant
women at 35–37 weeks of gestation.

We found that women receiving probiotic supplementation in pregnancy, when com-
pared to those receiving placebo, had lower GBS positive recto-vaginal cultures at universal
screening performed at 35–37 weeks gestation. These findings also were confirmed among
known GBS-positive women who reached a higher conversion to a negative culture [32,36].
A subanalysis showed that this effect was amplified when treatment began after the 30th
week of gestation, meaning that proximity to delivery could play a key role, while the long
duration of the treatment did not improve the effects.

Such an effect was observed across all studies and was independent of the study effect
size as indicated by the low between-study heterogeneity in the treatment effect (I-squared
of 4.8%) and the low between-study variance (tau-squared of 0.01).

The composition of probiotics in primary studies included Lactobacillus spp., which have
shown anti-GBS activity “in vitro” [37]. Indeed, Lactobacillus cells have been demonstrated to
be able to interact and aggregate with Streptococcus cells and kill the GBS, underlining the im-
portance of bacterial co-aggregation as an antimicrobial mechanism against pathogens [37].
Afterward, Lactobacilli compete with Streptococcus for adhesion to vaginal mucosa cells
and nutrients and produce antimicrobial substances (hydrogen peroxide, lactic acid, and
bacteriocins) that affect GBS replication; they can also counteract other pathogens such as
C. vaginalis and N. gonorrheae as demonstrated in bacterial co-aggregation studies [38–40].

In three of the included studies, probiotic administration did not significantly reduce
GBS recto-vaginal colonization [33–35]. The short duration of the intervention (3 weeks)
may account for such results in the study by Olsen et al. [33], while the probiotic compo-
sition, compliance, and population baseline characteristics may have played a role in the
studies by Sharpe et al. [35] and Aziz et al. [34].

Regarding safety concerns, probiotics are generally considered safe and well tolerated.
Current data suggest that probiotic supplementation is rarely systemically absorbed when
used by healthy individuals. One meta-analysis of several randomized controlled trials con-
ducted with women during the third trimester did not report an increase in adverse neonatal
outcomes [41]. We confirmed these findings supporting maternal probiotic administration,
which did not worsen short-term neonatal health (NICU admission or sepsis). Furthermore,
according to a recently published meta-analysis and systematic review, probiotic products
have other clinical benefits during or after pregnancy such as preventing or treating gestational
diabetes [42], mastitis [43], preterm birth [44], and infantile atopic dermatitis [45].

Therefore, these products may contribute to improving the health of pre-pregnant,
pregnant, and postpartum patients and their children in specific situations, and their
benefits may outweigh the documented minimal risks.

Our meta-analysis demonstrated that probiotic supplementation was also associ-
ated with a significant reduction in emergency cesarean sections [33]. However, the trial
was not equipped for this secondary outcome and the finding has not been confirmed
in another RCT [36].

Interestingly, another study reported that prenatal probiotics significantly reduced the
incidence of bacterial vaginosis, increased colonization with vaginal Lactobacillus and
intestinal Lactobacillus rhamnosus, altered immune markers in serum and breast milk,
and improved maternal glucose metabolism, resulting in significantly higher counts of
Bifidobacterium and Lactococcus lactis (healthy intestinal flora) in neonatal stool [46].

It is nowadays recognized that the maternal microbiota influences the colonization in
the infant. Recent studies suggested that this mechanism begins before delivery during
intrauterine life. Indeed, during gestation, the fetus can encounter microorganisms of
maternal origin. In fact, fragments of bacterial DNA have been found in the umbilical cord,
in the amniotic fluid, and even in the meconium [47].

Their presence is made possible by the fact that during gestation, the maternal gut
becomes more permeable, which favors bacterial translocation. Commensal microbes
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translocate from the maternal gut to the placenta or fetal gut during pregnancy. These
microbes impact the development of fetal immunity via various mechanisms including
epigenetic changes, the release of short-chain fatty acids, and alteration of the cytokine
environment. This aspect is of fundamental importance because if the mother is in condi-
tions of eubiosis, the contact of the fetus with the correct bacterial strains will create a very
favorable condition for the newborn gut. If, on the other hand, the mother has an altered
microbiota, it is possible to witness the passage from the maternal bloodstream through the
placenta to the fetus of different bacterial strains that could lead to greater exposure of the
newborn to diseases [48].

This reinforces the importance of maintaining a healthy maternal microbiota not only
in the proximity of childbirth, but also throughout the entire pregnancy and even during
breastfeeding thanks to healthy lifestyles and the use of probiotics.

A recent systematic review and meta-analysis [49] that also included non-randomized
and quasi-experimental clinical studies reported the efficacy of probiotic intervention in
reducing the rate of GBS-positive women, although with less strength of the evidence
(few placebo-controlled studies). Moreover, our evaluation, which included RCTs only,
provided additional information. Indeed, the efficacy of probiotics seems to be related
to third-trimester supplementation with respect to treatment implemented long before
parturition. Finally, we also provided some insights into neonatal health.

Supporting these promising data on probiotics and neonatal health, a recent multi-
center study was conducted on infants (up to 32 weeks’ gestation) admitted to 289 neonatal
intensive care units (NICUs) receiving probiotics during the first postnatal days. Several
adverse outcomes were evaluated: necrotizing enterocolitis (NEC), bloodstream infections,
meningitis, and death. The authors reported a decrease in the odds of NEC and death but
concluded that little is known about the doses of particular strains and the mechanism of
action that determine which treatment produces the maximum safety and efficacy [50].

The strengths of our study included the comprehensive search strategy of including
only RCTs with no language restrictions and the low degree of heterogeneity in the included
studies. The limitations primarily related to the low number of studies included in the
meta-analysis and the quality of the studies, as some of them were judged to have an
unclear risk of bias. In particular, the study by Aziz et al. [34], which had the highest risk
of bias, was also the most numerous one, thus it primarily drove the others included in
the meta-analysis. Moreover, since probiotics are not treated as medicines, the different
strains at different dosages and different routes of administration are not well regulated
by governing agencies in most countries. In addition, compliance with treatment was
not adequately addressed across the surveys, as only Olsen et al. [33] identified that fully
compliant women had a significant increase in the quantity of vaginal commensal bacteria.

5. Conclusions

Preventing maternal GBS colonization has an important impact on the health of the
newborn because it may avoid the 1–3% of early-onset symptomatic forms [6,7]. It also
has an impact on women’s exposure to IAP, which has potential perinatal microbiological
sequelae of exposure for the mother and the newborn. Thus, primary prevention strategies
for GBS colonization are increasingly urgent; probiotics, with their antagonistic activities
against GBS, are promising. This systematic review and meta-analysis demonstrated that
the administration of probiotics during pregnancy, namely in the third trimester, was asso-
ciated with a reduced GBS recto-vaginal colonization at 35–37 weeks and a safe perinatal
profile. Probiotics also may be useful to counteract GBS colonization when it is already
established, showing a considerable negativization rate in GBS-positive women. Whether
this new strategy could reduce the exposure of pregnant women to significant doses of
antibiotics in labor needs to be further investigated. Future double-blind randomized
controlled trials with larger and more diverse samples are required.
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