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Abstract: Sediments of alpine lakes serve as crucial records that reveal the history of lacustrine
basins, offering valuable insights into the effects of global changes. One significant effect is the
variation in rainfall regimes, which can substantially influence nutrient loads and sedimentation
rates in lacustrine ecosystems, thereby playing a pivotal role in shaping biotic communities. In this
study, we analyze subfossil chironomid assemblages within a sediment core from an alpine lake
(western Italian Alps) to investigate the effects of rainfall and flood regime variations over the past
1200 years. Sediment characterization results highlight changes in sediment textures and C/N ratio
values, indicating phases of major material influx from the surrounding landscape into the lake basin.
These influxes are likely associated with intense flooding events linked to heavy rainfall periods over
time. Flooding events are reflected in changes in chironomid assemblages, which in our samples
are primarily related to variations in sediment texture and nutrient loads from the surrounding
landscape. Increased abundances of certain taxa (i.e., Brillia, Chaetocladius, Cricotopus, Psectrocladius,
Cricotopus/Orthocladius Parorthocladius) may be linked to higher organic matter and vegetation inputs
from the surrounding landscape. Biodiversity decreased during certain periods along the core profile
due to intense flood regimes and extreme events. These results contribute to our understanding of
alpine lake system dynamics, particularly those associated with intense flooding events, which are
still understudied.

Keywords: chironomidae assemblages; environmental features; flood regimes; paleolimnology

1. Introduction

Alpine lakes are often considered key indicators of environmental health due to their
sensitivity to human activities and their typically untouched nature, a result of their remote,
sparsely populated locations. Despite their pristine appearance, these ecosystems undergo
changes in their physical, chemical, biological, and morphological properties [1,2]. They
are influenced by local activities such as water extraction, tourism, and the introduction of
alien species, as well as global factors like long-distance pollution, acid rain, and climate
change [3,4]. These lakes, commonly found in mountainous areas, capture erosion materials
from their surroundings, and their sediments provide important historical environmental
data. They are also valuable for studying ecological changes, particularly those related to
global warming [5,6]. Mountain regions are particularly vulnerable to climate change, as
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demonstrated by the disparity between high-elevation mean temperatures and global aver-
ages [7,8]. Increased greenhouse gas levels have led to more frequent heavy precipitation
events due to changes in atmospheric moisture transport [9]. These areas frequently expe-
rience severe floods, which cause notable damage, and variations in rainfall patterns can
notably influence nutrient and sedimentation levels in lakes. By identifying sediment layers
in different energy environments, researchers can reconstruct past alluvial phases linked to
climatic trends and heavy rainfall events [10,11]. The thickness of these deposits can also
indicate the intensity of such events [12,13]. While studying alpine lake sediment records
can yield valuable insights, interpreting these records within the context of climate change
is challenging [8]. The impact of global warming on flood activity in mountainous regions
is notable, with an increase in extreme precipitation events observed in the European Alps
since the 1980s [7,8,14]. These changes also affect biotic communities, including those
used as environmental indicators and paleolimnological proxies. Chironomid assemblages,
whose larval head capsules are well-preserved in lake sediments, are crucial biological
proxies [15–17]. They are influenced by water temperature [15,18,19] and other factors such
as trophic conditions and sediment characteristics [20]. The introduction of fish can alter
chironomid communities, as shown in recent paleolimnological research [6,17].

This study focuses on subfossil chironomid assemblages in Upper Balma Lake, lo-
cated in the western Italian Alps (Piedmont, Italy), a site not previously studied from a
paleolimnological standpoint. The main goals were to examine the relationship between
changes in chironomid communities and variations in rainfall and flood patterns by (i) ana-
lyzing lake sediments for grain size and geochemical properties, (ii) identifying subfossil
chironomid assemblages, and (iii) exploring the connections between biotic assemblages
and changes in trophic conditions and sediment geochemistry in relation to rainfall and
flood regime changes. We hypothesize that changes in rainfall and flood patterns would
have influenced chironomid communities over time, both directly through extreme events
and indirectly by modifying nutrient loads and sediment characteristics. The presence of
fish was also considered, as it could affect data interpretation, particularly in historically
fishless alpine lakes where non-native species were introduced for fishing purposes in the
late 20th century [2].

2. Materials and Methods
2.1. Study Area

The research was conducted at Upper Balma Lake, a typical alpine lentic environment
in the Cottian Alps, situated within the Municipality of Coazze (Piedmont, Northwest
Italy) at an elevation of 2216 m above sea level (a.s.l.) (Figure 1a). This glacial lake has
an S-shaped basin divided into two sub-basins by a shallow mid-section. Its perimeter is
774 m, surface area 1.82 ha, and maximum depth 2.77 m. The catchment area is primarily
ophiolite metamorphic bedrock. There is a small grassy area situated to the south where a
small stream enters, while another stream begins at the northeast corner and flows into the
Lower Lake. These lakes constitute a two-lake alpine system that has been examined in
previous ecological and ecotoxicological studies, i.e., [21,22].

Both lakes are situated within the Special Area of Conservation (SAC) and Special
Protection Area (SPA) IT1110006 “Orsiera Rocciavrè” and are part of the Orsiera Rocciavrè
Natural Park.

During the latter part of the 20th century, the primary influences on the region included
the distant transport of pollutants from urban areas, grazing, and fishing activities [21].
Originally devoid of fish, brook trout (Salvelinus fontinalis Mitchill, 1814) were introduced
for recreational angling in the 1970s [21,22]. Key physicochemical (temperature, dissolved
oxygen, pH, conductivity, and alkalinity) and nutrient (ammonia, nitrate, and phosphorus)
water parameters were assessed on-site using field probe (Hanna Instruments Inc. model
HI98494-multiparameter, Woonsocket, RI, USA) and documented throughout 2021, as
detailed in Table 1.
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Figure 1. (a) Study area and (b) location of the sampling site in Upper Balma Lake.

Table 1. The mean values and standard deviations (S.D.) of the water physicochemical parameters
measured at Upper Balma Lake.

Parameter Mean S.D.

Temperature (◦C) 8.61 ± 2.94
Dissolved oxygen concentration (mg L−1) 6.50 ± 0.33
pH (unit) 7.40 ± 0.19
Conductivity (µS cm−1) 12.81 ± 1.35
Alkalinity (mg/L) 47.31 ± 16.60
Secchi Disk (m) 1.1 ± 0.1
NH4

+ (mg L−1) 0.04 ± 0.02
NO3

− (mg L−1) 2.75 ± 1.47
P (mg L−1) 0.05 ± 0.02

2.2. Core Sampling and Sediment Characterization

In July 2021, a coring campaign was carried out using a 50 mm gravity Kajak-type
sediment corer [15]. A single 40 cm long core was retrieved from a deep section of the lake
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(Figure 1), sealed in a sampling tube, and stored at –20 ◦C. The core was then sectioned
into 37 transverse slices, each approximately 1 cm thick, based on guidelines for paleolim-
nological studies in mountain lakes [15,22,23]. Each section was further divided into two
sub-sections to analyze core chemistry, trace element concentrations, and grain size. The
sections were labeled with “L” followed by a number from “1” to “37” (L1 representing
the top section and L37 the bottom), then frozen at –20 ◦C. Subsequently, the samples were
freeze-dried through vacuum evaporation. For textural analysis, each section was filtered
using a 1000 µm mesh size filter. The residues were set aside while the remaining sediments
were analyzed with a Malvern Mastersizer 3000 laser diffraction particle size analyzer,
Worcestershire, UK. The one percentile coarse granule (Cµ) and the median diameter (Mµ)
in micrometers were used as indices of high transport capacity.

2.3. Core Chemistry (Organic Matter, C/N Ratio and Trace Elements Analyses) and Core Dating

Three separate aliquots, each comprising about 10–20 µg, were extracted from each
section for the analysis of total carbon (Ctot), total organic carbon (TOC%), and total
nitrogen (TN%). The samples were pulverized using an agate mill and dried in an oven at
105 ◦C for 24 h. Total Organic Carbon (TOC) analysis involved acidifying the samples with
HCl, gradually increasing its concentration to 18%. Determination of TOC and TN was
performed using a CHN Analyzer (ECS 4010 CHNSO; Costech Analytical Technologies
Inc., Valencia, CA, USA) [24], followed by calculation of the C/N ratio.

For trace element (Pb, Mn, Zn, As, Mo, and Cd) analysis, freeze-dried sediment sam-
ples (CoolSafe 55-4 SCANVAC) were manually ground using an agate mill. Aliquots of
0.250 g underwent acid digestion in PTFE vessels within a closed microwave system (Multi-
wave PRO, Anton Paar, Graz, Austria). The digestion process included a certified reference
material (PACS-3 Marine Sediment Certified Reference Material, NRCC, Whitehorse, YT,
Canada) to ensure accuracy, achieving recoveries between 88% and 107%. Acid digestion
was carried out with a mixture of 5 mL nitric acid (HNO3, 67–69%), 1 mL hydrochloric acid
(HCl, 34–37%), 1 mL hydrofluoric acid (HF, 48%), 4 mL boric acid (H3BO3, 6%), and 0.5 mL
hydrogen peroxide (H2O2, 30%), following a modified EPA Method 3052. The mineral-
ization process involved two heating steps and H3BO3 was added during the second step
to neutralize excess HF. The resulting solutions were diluted to 25 mL with MilliQ water,
further diluted 1:20, and analyzed via ICP-MS using a NexION 350X Spectrometer with
an ESI SC Autosampler (PerkinElmer, Waltham, MA, USA). The instrument calibration
utilized five standard solutions (0.5 to 100 µg L−1) prepared by diluting a multistandard
solution for ICP analysis (10 mg L−1, Periodic Table MIX 1 and MIX2, Sigma Aldrich Milan,
Italy). The analytical precision, expressed as RSD%, was less than 3%.

Two bulk sediment samples, obtained from depths of 17–37 cm, were freeze-dried
for AMS (Accelerator Mass Spectrometry) radiocarbon dating. Radiocarbon ages were
determined at the Poznan Radiocarbon Laboratory (Poznan, Poland), employing the cal-
ibration dataset by Heaton et al. [25]. Lead (Pb) pollution data were incorporated to
establish an age-depth model [6,8,25–33]. The age-depth model for Upper Balma Lake
was constructed using the RStudio Package rbacon, updated to version 3.10 [34]. This
approach employs Bayesian statistics to reconstruct accumulation histories by integrating
radiocarbon and other dating outcomes. The modeling yielded four distinct age groups for
further examination.

2.4. Chironomid Head Capsule Identification

The extraction of head capsules (HCs) followed the protocols described by Brooks
et al. [15]. Initially, the samples were dispersed in warm distilled water (40 ◦C) for 20 min
and then filtered through a 100 µm mesh. The remaining residues were carefully examined,
and chironomid HCs were isolated using a stereomicroscope with a minimum magnifica-
tion of 25×. To ensure robust statistical outcomes, each sample was processed to yield a
minimum of 100 HCs per section [6,15]. Subsequently, the HCs underwent gradual dehy-



Diversity 2024, 16, 693 5 of 18

dration in 80% and 100% ethanol (5 min per step) before being mounted on microscope
slides with the ventral side facing up using Euparal® essence.

Identification of the HCs to the genus or species level (where feasible) was conducted
using an optical microscope set at 60×–100× magnification, following identification ref-
erences such as Oliver [35], Pinder and Reiss [36], Sæther [37], Brooks et al. [15], Lencioni
et al. [38], Moller Pillot [11,39,40], and Andersen et al. [4]. For each core section, three
subsamples were analyzed for statistical validity, with each subsample containing more
than the recommended minimum of 50 HCs (n > 50), as advised by Brooks et al. [15].

2.5. Statistical Analyses

To examine changes in chironomid communities over the core’s depth, taxa appearing
in at least two samples with percentages exceeding 2% were included. Prior to analysis,
data underwent log-transformation (log(x + 1)) to mitigate the influence of highly abundant
taxa [41]. A resemblance matrix was generated using the Bray–Curtis measure. Strati-
graphic zones were identified using hierarchical cluster analysis with CONISS methodology,
and cluster significance was assessed using the broken stick method [42–44], implemented
via the rioja package in RStudio [45].

Differences among stratigraphic zones were evaluated using a one-way ANOSIM [46]
with 999 permutations, due to significant results from the PERMDISP procedure [47]. The
SIMPER test [46] identified key taxa contributing to the observed variability.

Redundancy Analysis (RDA) [48,49] was employed to examine relationships between
biotic data and abiotic features across core sections. Redundancy Analysis was chosen
based on Detrended Correspondence Analysis (DCA) indicating gradient lengths of less
than 4 standard deviations [50]. To mitigate multicollinearity, a subset of variables was
selected using Pearson correlation analyses. Variables with strong correlations (r < |0.7|,
p < 0.001) were adjusted by excluding one of the correlated variables [51], with fish presence
also included as a variable.

Variation partitioning analysis (VPA) [52] was then used to apportion the total ex-
plained variance among four variable groups: nutrients, trace elements, sediment charac-
teristics, and fish presence. The contribution of each group was visualized using a Venn
diagram. The significance and interactions of variable groups were assessed using Monte
Carlo permutation tests (999 permutations). All analyses were performed in RStudio (ver-
sion 2021.9.0.351) [53,54], with a significance level set at p < 0.05. Figures were created in
RStudio and finalized using Inkscape (version 0.92).

3. Results
3.1. Core Geochemistry and Age-Depth Model

Sediment analysis allowed us to identify two main sections along the Upper Balma
Lake core, corresponding to different depositional phases. From the bottom to the L13
section, sediment showed an alternation of coarse material and fine sediments. This
alternation disappeared from the L12 section to the top of the core where specific sediment
structures were not observed. This difference along the sediment core indicates a change in
the sedimentation dynamic of the lake catchment. According to the Nota Classification,
the Upper Balma core sediments were mainly represented by very sandy pelite and pelitic
sand. Silt percentages were higher than clay and sands in 29 sections, while the remaining
8 samples showed higher levels of sand. Four sand peaks were identified in the core (L10,
L19, L22, and L31) with the maximum value (88.6%) observed at L19 (Figure 2). Values of
Cµ ranged between 1855 µm (L22) and 395 µm (L30), whereas Mµ ranged between 413 µm
(L22) and 35 µm (L34).
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core sections sampled in the Upper Balma Lake. Results of the element analysis in light blue color are
also reported.

Total Organic Carbon (TOC%) ranged between 0.07% (L1) and 2.65% (L2), whereas TN
was between 0.005% (L18.5) and 0.23% (L1.5), showing parallel trends along the sediment
core, with elevated percentages at the top of the core followed by intermediate peaks (L12
and L13 for TN and TOC, respectively, and L24 and L32 for both) alternated with decreasing
values at L10, L19, and L30 (Figure 2). The C/N ratio reached the maximum value (36.4) at
L27, whereas the minimum value (9.9) was observed at L35. Values generally exceed 15,
whereas peaks higher than 30 were observed at sections L10, L27, and L31. From the top to
the bottom of the core, the trend showed an increasing phase, especially between sections
L5 and L10, followed by a heavy decrease (sections L11–L12). Other significant decreasing
points were recorded between L19–L20 and at L35 (Figure 2).

Regarding the trace elements, concentrations of Pb, Zn, As, Cd, and Mo showed a
similar trend along the sediment core, with the highest values observed in the upper core
sections (L1–L10) decreasing at the bottom (L20–L37) (Figure 2). In particular, the highest
value for Pb (45.1 µg g−1) was recorded at section L5, whereas the lowest was observed
at section L30 (1.6 µg g−1) (Figure 2). Intermediate peaks were found at sections L12
and L25 (slightly below 15 µg g−1). Similarly, Zn showed the maximum concentration
at section L5 (67.8 µg g−1), whereas the minimum value was recorded at section L31
(12.5 µg g−1); in the case of As and Cd, the maximum peak was observed at section
L7 (1.3 µg g−1 and 0.2 µg g−1, respectively) and minimum at level L31 (0.2 µg g−1 and
0.05 µg g−1, respectively). Concentrations of Cd were higher in levels L1–L13 and slightly
constant in the lower sections. Values observed for Mo showed high variability, with
several peaks along the core, maximum levels were observed at section L3 (0.3 µg g−1) and
minimum at L31 (0.03 µg g−1). Finally, concentrations of Mn showed a constant trend with
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increasing depth, ranging between 776 µg g−1 and 959 µg g−1, with the only exception
represented by L31, which displays a lower concentration (237 µg g−1).

The results of the radiocarbon analysis allowed us to date sections L19 and L33
(Table 2).

Table 2. Radiocarbon ages for samples of the Upper Balma Lake core.

Depth of Sample Lab Code 14C Age (Years BP) Calibrated 2σ Age
(Year BP)

18–19 BLM1 Poz-157773 920 ± 30 814–930
21–33 BLM3 Poz-158593 1155 ± 30 1097–1213

The Pb concentration ensured the indirect dating of surface levels (depth range: 0–10 cm)
by recording the peak of Pb concentration dated at ca. 1970s, and then the decrease in
concentration up to the present day. The obtained data and the information derived from the
total Pb pollution analysis allowed us to build the age-depth model reported in Figure 3. The
sedimentation rate calculated from the model was equal to 0.029 cm year−1.
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3.2. Subfossil Chironomid Assemblages

The examination of the Upper Balma Lake core sample enabled the detection of 5413
chironomid head capsules (HCs) across 5 subfamilies and 25 genera. Consistent with
Brooks et al. (2007), the abundance of HCs was notably substantial across all sections,
consistently surpassing the threshold considered necessary for significant findings (n > 50),
except for section L19, which yielded only a single capsule. The greatest concentration
of HCs (n = 436) was recorded in section L5. Among the core sections, mean HC density
was equal to 24.8 ± 19.2 HC g−1. Biodiversity showed fluctuating trends all along the
core: total number of chironomid taxa ranged between 1 (L19) and 13 (L1, corresponding
to the actual communities), while values of the Shannon–Wiener index ranged between
0 and 2.10, following the trend described for the number of observed taxa; on the other
hand, dominance showed an opposite trend (Figure 4). Five periods of heavy reduction in
biodiversity levels were highlighted at sections L2, L11, L19, L30, and L34, especially for
section L19, where only Paratanytarsus was found, with few individuals in each sample.
Subfamily Chironomidae was the most abundant along the core profile, especially the
Tanytarsini tribe. Among them, genus Paratanytarsus was observed in all the sections with
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high percentages (36.6–100%), whereas species Corynocera oliveri and genus Micropsectra
were observed in almost all the core sections, ranging between 19.2–34.3% and 4.2–24.2%,
respectively. Genus Microtendipes (tribe Chironomini) was recorded only in the top section
L1. Subfamily Orthocladiinae showed the highest number of taxa along the core (n = 21).
Among them, Heterotrissocladius marcidus was recorded in 20 sections, despite frequencies
being generally low (0.35–4.4%). Psectrocladius sordidellus (0.23–4.11%) and the genus
Chaetocladius (0.27–3.85%) were observed in 12 and 11 sections, respectively. The genera
Cricotopus and Hydrobaenus were recovered in a few samples, but their frequencies were
generally higher than previously observed Orthocladiinae (0.40–20.0% for Cricotopus and
1.61–7.0% for Hydrobaenus).

Four genera belonging to the subfamily Tanypodinae were observed. Macropelopia was
widely present (28 sections), with percentages ranging between 0.4 and 20.0%. Moreover,
genus Apsectrotanypus (0.23–1.61%) was observed in 12 sections. Finally, genera Zavrelimyia
(0.41–6.25%) and Procladius (0.35–1.45%) were found in 6 sections (Figure 4).

The cluster analysis based on the chironomid data allowed us to highlight stratigraphic
zones or section groups, indicated with letters A–F from the top to the bottom of the core
(Figures 4 and 5a). The significant number of groups was six, in agreement with the broken
stick analysis (Figure 5b).

All these groups were significantly different from each other in terms of the com-
position of chironomid assemblages (ANOSIM R = 0.361, p < 0.001), except for group B
(sections L5–L11), which was not different from groups C (sections L12–L16) and E (sections
L22–L27). In this context, the SIMPER test highlighted that the main contribution to the
observed variability was due to Paratanytarsus, Corynocera oliveri, Micropsectra, Macropelopia,
and Heterotrissocladius marcidus, which were associated with 78.1% of the observed dis-
similarity. The remaining taxa showed contributions lower than 3%, but they were still
significant (Table 3).

Table 3. SIMPER test outcomes concerning chironomid communities noted in the sediment core of
Upper Balma Lake for the sample groups identified through hierarchical cluster analysis.

Taxon Av. Dissim. Contrib. % Cumulative %

Paratanytarsus 7.35 30.88 30.88
Corynocera oliveri 6.02 25.29 56.17
Micropsectra 3.76 15.8 71.97
Macropelopia 1.45 6.09 78.05
Heterotrissocladius
marcidus 0.76 3.19 81.24

Chaetocladius 0.54 2.26 83.5
Apsectrotanipus 0.48 2.01 85.52
Zavrelimyia 0.46 1.93 87.45
Psectrocladius
sordidellus 0.45 1.87 89.32

Prodiamesa olivacea 0.42 1.77 91.09
Psectrocladius 0.42 1.75 92.84
Cricotopus 0.41 1.74 94.58
Hydrobaenus 0.28 1.17 95.75
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Figure 5. Cluster analysis defining stratigraphic zones (groups of sections) along the core based on
the chironomid assemblages in the Upper Balma Lake (a) and broken sticks analysis defining the
proper number of groups (b) (n = 6). Obtained stratigraphic zones are indicated with the same colors
used for RDA analysis (see Figure 6a).
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model, as its peaks can be related to hypoxia conditions (Boothman et al., 2022), which 

Figure 6. (a) Redundancy Analyses (RDA) illustrate the associations between chironomid taxa and
the variables under consideration and (b) Venn diagrams depict the results of variance partitioning
analysis (VPA) for the four variable groups: nutrients (TOC and C/N ratio), trace elements (Pb, Mo),
sediment characteristics (first percentile Cµ and median diameter Mµ), and the presence of fish in
relation to chironomid taxa. Variance that is unexplained or accounts for less than 1% is omitted. The
group colors used in the RDA analysis correspond to those in the cluster analysis (refer to Figure 5).

3.3. Relationships Between Subfossil Assemblages and Environmental Features

A strong significant correlation was observed among percentages of sand, silt, and
clay (r > 0.90, p < 0.001) and with Cµ and Mµ (r > 0.66, p < 0.001). Therefore, only Cµ and
Mµ were considered representative of sediment characteristics for further analysis, as their
correlation was under the threshold level (r = −0.23, p < 0.05). The Total Organic Carbon
(TOC) was weakly correlated to C/N ratio (r = −0.37, p < 0.05) and highly correlated with
TN (r = 0.89, p < 0.001). Therefore, the latter feature was excluded from the analysis. Highly
significant correlations were observed among trace elements (r ≥ 0.69, p < 0.001). Therefore,
Pb was chosen as a presentative trace element, and Mo was also kept in the model, as
its peaks can be related to hypoxia conditions (Boothman et al., 2022), which can affect
Chironomid communities. The dataset utilized for RDA and VPA analyses comprised TOC
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and C/N ratio for nutrient parameters, Pb and Mo for trace elements, and Cµ percentile
and Mµ median diameter for sediment characteristics. The results of the RDA application
are shown in Figure 6a.

The RDA 1 and RDA 2 axes were both significant, accounting for 45.9% and 4.0% of the
observed variability, respectively (Figure 6a; Table 4). The primary gradient, represented
by RDA 1, is closely linked with TOC, trace elements, and Cµ, while RDA 2 appears to be
more associated with the presence of fish. All the variable groups considered to explain the
variation in subfossil chironomid assemblages throughout the core were significant (Table 4),
collectively accounting for 51.1% of the total variance (Figure 6b). Of the individual factors,
sediment characteristics explained the largest portion of the variation (19.0%), with the
interaction between sediment and nutrients accounting for 11.0%. Fish presence explained
7.0% of the variation, and trace elements contributed a minor portion (2.4%).

Table 4. Outcomes of (a) Redundancy Analysis (RDA) and (b) Variance Partitioning Analysis (VPA)
conducted on Chironomidae taxa found in sediment core samples from Balma Lake. VPA variable
groups included nutrients (TOC and C/N ratio), trace elements (Pb, Mo), sediment properties (first
percentile Cµ and median diameter Mµ), and fish presence.

(a) RDA

RDA1 RDA2 RDA3

Eigenvalue 0.014 0.001 0.001
Proportion Explained 0.459 0.040 0.022

Cumulative Proportion 0.459 0.499 0.521
Significance (999 permutations) 0.001 0.003 0.049

(b) VPA

Variable Adjusted r2 d.f. F p-Level

Sediment + Nutrients + trace
elements + Fish 0.511 7 17.437 <0.001

Sediment 0.333 2 28.505 <0.001
Nutrients 0.319 2 26.777 <0.001

Trace elements 0.178 2 12.935 <0.001
Fish 0.018 1 3.047 0.045

4. Discussion

Lacustrine sediments provide a continuous chronological record that reveals the his-
torical conditions of a lake [56–59]. By examining sediment layers formed in environments
with varying energy levels, researchers can reconstruct periods of alluvial activity influ-
enced by climatic patterns, particularly rainfall and extreme weather events [10,11,29]. The
thickness of these alluvial layers serves as an indicator of the intensity of such events [12,13].
This study focused on analyzing chironomid communities in an alpine lake, considering
factors such as nutrient levels, trace elements, sediment properties, and the presence of fish.

4.1. Sediment Core Characteristics and Flood Events in Alpine Areas

From a sedimentological perspective, the examined core revealed various distinct
zones, with an intense alternation of coarse and fine sediments at the bottom, a noticeable
but reduced alternation in the central section, and massive sediments at the top. These struc-
tures seem to correspond to fluctuations in rainfall patterns, with peaks in coarse sediments
within the grain size distribution of the core indicating intense or extreme weather events.
The observed sediment textures suggest that heavy rainfall periods are associated with
core sections at depths between 8 and 12 cm (L8–L12), 17 and 22 cm (L17–L22), and 28 and
32 cm (L28–L32). These observations are consistent with findings from other high-altitude
alpine lakes as reported by several researchers [60,61]. In alpine lakes, sediment deposition
dynamics are closely linked to the characteristics of the lake’s drainage area. Large catch-
ment areas composed of easily erodible materials, such as periglacial deposits, contribute
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to higher sedimentation rates through processes like glacier erosion, frost-induced rock
breakage, overgrazing, or heavy rainfall [10]. Additional deposition processes may include
wind erosion, bank erosion due to ice or wave action, and direct contributions from glacial
sediments [62]. Coarse grain sizes in sediment records serve as indicators of flood intensity
in lake catchments [63,64], and examining sediment archives can help estimate changes in
flood and rainfall periods. For example, Moreno et al. [11] reconstructed intense rainfall
events during the Little Ice Age (LIA) compared to the Medieval Warm Period (MWP) in a
Spanish alpine lake. In the Italian Alps, the distribution of debris-flow layers over the past
2000 years has been interpreted as evidence of frequent extreme rainfall events [13]. As
sediment characteristics are crucial for macrobenthic invertebrate communities in fresh-
water environments, these changes can significantly influence the structure of chironomid
assemblages over centuries, alongside other environmental and climatic factors.

4.2. Geochemistry in Core Layers

An additional method for reconstructing past environmental conditions through
paleolimnological analyses involves examining the organic matter (OM) content in sediment
layers. The primary sources of OM include aquatic organisms and contributions from the
surrounding shorelines and terrestrial areas. Peaks in total nitrogen (TN) and total organic
carbon (TOC) within the sediment core are likely linked to warmer periods, increased solar
radiation, and higher pH levels, which enhance lake productivity. The C/N molar ratio is
frequently employed to qualitatively differentiate the contributions of terrestrial vegetation
and aquatic organisms to the organic carbon in lake sediments. Typically, terrestrial vascular
plants have low nitrogen content, resulting in high C/N ratios, while aquatic plants have
higher nitrogen content and lower C/N ratios [65,66]. It is suggested that phytoplankton
have a C/N ratio of less than 10 [67]. A C/N ratio exceeding 20 indicates a significant
terrestrial OM input, whereas values between 10 and 20 suggest a mix of aquatic and
terrestrial plant contributions [68–70].

In the Upper Balma core, C/N ratios ranged from 9.9 to 36.4, generally indicating high
levels and suggesting a combination of aquatic and terrestrial plant presence [71]. Ratios
above 20 point to a predominance of terrestrial OM. Notably, at specific core depths (10,
26, and 30 cm), values surpass 30, signaling substantial terrestrial material input likely
associated with intense flooding and heavy rainfall events. Conversely, depths of 19 and
34 cm highlight a predominance of lake-derived OM, indicative of climatic periods with
reduced rainfall and diminished terrestrial OM input. Trace elements along the sediment
core showed concentration patterns consistent with other lake ecosystem studies. Lead (Pb)
levels in sediments are primarily attributed to atmospheric pollution, which began during
the Roman Empire and surged after the Industrial Revolution (around 1850), peaking in
the 1970s due to the use of leaded fuels [72,73]. Similar peaks of Pb levels in core sediments
of the lacustrine ecosystem were widely recorded in many studies [10,27,28,31,32,47,57]
allowing us to associate the core sections showing these peaks to a period corresponding
to the 1970s decade, when fish were introduced in the Piedmont area alpine lakes [6].
This trend reversed following the introduction of strict emission controls and lead-free
fuels [27,28,74]. Similar trends were observed for zinc (Zn) and cadmium (Cd), with
concentrations decreasing from the top to the bottom of the core and highest levels in recent
layers [57]. Elevated molybdenum (Mo) concentrations in sediments may indicate anoxic
events, impacting the chironomid community [75].

4.3. Subfossil Chironomid Assemblages

The analyzed assemblages were predominantly composed of typical alpine taxa. The
genus Paratanytarsus was the most prevalent, found in every section, and is commonly one
of the most frequent and often dominant midges in alpine [18–77]. Significant abundances
were also noted for Micropsectra and Corynocera oliveri (present in 36 sections), which are cold
stenothermic insects usually associated with oligotrophic environments [15]. Additionally,
another alpine species indicative of oligotrophic conditions, Heterotrissocladius marcidus,
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was widely present in many sections analyzed (n = 20). The subfamily Orthocladiinae
was well represented throughout the core profile and includes species adapted to low
water temperatures and the harsh conditions of high-altitude environments [18,76,78]. The
prevalence of Tanytarsini, the widespread occurrence of H. marcidus, the numerous genera
belonging to the Orthocladiinae, and the absence of Chironomini (except in the topmost
section) are generally linked to stable oligotrophic conditions [6]. This indicates that
despite observed variations in the core profile, Upper Balma Lake has remained relatively
oligotrophic over the past 1200 years. These findings are consistent with paleolimnological
studies conducted in Lower Balma Lake [6], which is hydrologically connected to the Upper
Lake by a small creek. While the subfossil communities in the Upper Lake indicate general
oligotrophic conditions, biodiversity showed notable fluctuations along the sediment
core, associated with changes in the abundance of certain taxa, as evidenced by ANOSIM
and SIMPER tests. Intense rainfall regimes can reduce biodiversity [79], aligning with
trends in the main community indices calculated for the Upper Balma core. Variations in
chironomid assemblages are likely influenced by changes in sediment texture and nutrient
loads from the surrounding landscape, as highlighted by RDA and VPA analyses. This
may explain the increased abundance of taxa such as Brillia, Chaetocladius, Cricotopus,
Psectrocladius, Cricotopus/Orthocladius, and Parorthocladius, which are commonly associated
with organic matter detritus and vegetation [6,15,76]. The high abundance of these taxa may
correspond to periods of heavy rainfall. Paratanytarsus is also linked to aquatic vegetation
and algae [15,80], which were commonly observed in the Upper Lake and increased during
periods of intense rainfall (Figure 4). During these times, the frequency of Macropelopia, a
cold stenothermic predator associated with increasing temperatures in alpine lakes due to
climate change [81], also rose. This suggests a relative increase in water temperatures during
periods of intense rainfall, usually associated with warmer periods [8]. The appearance of
Zavrelimyia in surface layers indicates an adaptation to warm temperatures and shallow
habitats, possibly related to increased lake productivity during hot summers and global
warming [82], as observed in the Lower Lake [6]. A significant reduction in biodiversity
in section L19 may be linked to gravity-reworked sediments caused by slope failure from
seismic activity or extreme events [83,84]. Ongoing analysis of other biological proxies,
such as diatoms and testate amoebae, will provide further insights into this point.

Lastly, chironomid assemblages appear to be partially influenced by fish presence in
the top sections (L1–L5), although this impact seems less significant than factors related
to climatic effects, such as sediment variations and nutrient loads from rainfall regimes.
Fish introduction can dramatically affect lakes through predation and trophic web alter-
ations [85], leading to a decrease in some predators and detritivore taxa and an increase
in grazer organisms [17]. In Upper Balma Lake, grazers like C. oliveri, Micropsectra, and H.
marcidus decreased in the top core sections corresponding to the fish introduction period,
consistent with paleolimnological analyses in Lower Lake [6]. The concurrent occurrence
of alien fish introduction and global warming complicates the separation of individual
factors as primary drivers for changes in chironomid assemblages, with overlapping effects
from climatic factors [6,17,20]. As seen in the Lower Lake, trends in Upper Balma Lake
likely reflect increased water temperatures due to global warming. However, fish introduc-
tion could bias temperature reconstructions for the last century, overlapping with global
warming [8,86].

5. Conclusions

This research examines the geochemical properties and subfossil chironomid com-
munities within a sediment core extracted from an alpine lake (Upper Balma Lake) in
the western Italian Alps. The goal is to understand how variations in rainfall and flood
patterns over the past 1200 years have impacted the region. The findings reveal periods
of community restructuring linked to changes in sediment and nutrient inputs driven by
rainfall variations. This study enhances our understanding of the factors influencing alpine
lake ecosystems, particularly in relation to significant flood events, an area that remains
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underexplored. Further analysis of other paleo-communities, such as diatom and testate
amoebae assemblages, is recommended to gain a more comprehensive understanding of
system dynamics. Comparisons with studies from other lakes, like Lower Balma Lake,
which exhibited both similar and differing trends due to catchment differences, underscore
the importance of context-specific analyses. Given the increasing impact of global climate
change on rainfall patterns and the frequency of extreme events, it is crucial to deepen our
knowledge of these effects. Studying paleo-communities in alpine sediment records can
offer valuable insights into these dynamics.
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