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Quantum mechanics radically changed our understanding of 
nature. The superposition principle allows for the prepa-
ration of quantum systems in coherent superpositions of 

distinguishable physical configurations. This challenges our classi-
cal intuition according to which objects can only be in one definite 
physical state at a time. After almost one hundred years of experi-
mental endeavours, the validity of the superposition principle at the 
microscopic scale is beyond question. It has led to an unprecedented 
understanding of the behaviour of matter and light as well as to the 
development of several quantum technologies such as the laser and 
the transistor, which are now part of our everyday life.

Despite such success, we face a puzzling situation at the mac-
roscopic scale: we do not experience quantum superpositions, 
although quantum mechanics does not set any explicit upper bound 
to the size that such superpositions can have. One possible explana-
tion for the lack of observation of macroscopic quantum superposi-
tions is that the superposition principle progressively breaks down 
when moving from the microscopic to macroscopic world1–4.

In this regard, spontaneous wavefunction collapse models—
or simply, collapse models—provide a consistent phenomeno-
logical framework for the breakdown of quantum superpositions. 
The collapse mechanism becomes stronger with the size and 
complexity of a given system so that as the microscopic world is 
quantum mechanical, the macroscopic world is classical. The col-
lapse dynamics, which is controlled by a few parameters, differs 
from standard quantum dynamics. The differences can be experi-
mentally verified, and we have recently witnessed an increas-
ing effort in placing strong experimental bounds on the value of  
their parameters.

There are essentially two methods to test collapse models. The 
most direct approach is to perform interferometric experiments, 
aiming at detecting quantum superpositions (or the lack thereof) 
with increasingly larger objects5. The alternative approach is to con-
duct non-interferometric experiments, where the possible violation 
of the superposition principle is indirectly tested through various 
side effects of the collapse dynamics.

Despite their immediacy, interferometric experiments become 
increasingly harder to perform when the size of the system to test 
grows. Non-interferometric experiments are relatively easier as they 
do not require one to prepare the system in a quantum superposi-
tion. Instead, they require the precise monitoring of quantities such 
as the position or energy.

This Review Article addresses non-interferometric experiments 
and their ability to provide bounds in the parameter space of two  
of the most important collapse models, namely, the continuous 
spontaneous localization (CSL) model6,7 and the Diósi–Penrose 
(DP) model1,8.

Theoretical framework of collapse models
Collapse models provide a mathematically and physically consis-
tent dynamical framework, where quantum superpositions and 
wavepacket reduction are combined. This is achieved by embed-
ding in the Schrödinger equation the mechanism responsible for 
wavepacket reduction—the not-better-specified collapse of the 
wavefunction to a definite state on a measurement according to the 
standard formulation of quantum theory. Such a mechanism has 
two features: the first is nonlinearity, which is needed to break the 
superposition principle; the second is stochasticity, which allows to 
recover quantum indeterminacy.

To avoid superluminal signalling, nonlinear and stochastic terms 
must be carefully blended2,9. This yields a well-specific structure of 
the dynamical equation. For the models considered in this Review 
Article and using the Itô formalism for stochastic differential equa-
tions10, such a dynamical equation for the wavefunction ψ t at time 
t reads7,11,12
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where ℏ is the reduced Planck constant. The first term on the 
right-hand side is the standard quantum contribution as encoded by 
the system Hamiltonian Ĥ . The second and third terms describe the 
stochastic nonlinear collapse process weighted by the mass density 
operator M̂(x), which ensures that the wavefunction is progressively 
localized in space. The collapse process is driven by Brownian noise 
Wt(x) with spatial correlation equal to D(x− y) and by the nonlin-
ear contribution to the dynamics 

⟨

M̂(q)
⟩

=
⟨

ψ t|M̂(q)|ψ t
⟩

.
It is worth stressing that equation (1) is built in a way that the 

statistical operator ρ̂t = E[|ψ t⟩ ⟨ψ t|] (where E is the stochastic aver-
age with respect to noise) obeys the Lindblad equation

d
dt ρ̂t = −

i
h̄
[

Ĥ, ρ̂t
]

+

∫

d3xd3yD(x− y)[M̂(x), [M̂(y), ρ̂t]]. (2)

In contrast to the collapse-modified Schrödinger equation, the 
dynamics in equation (2) are linear. This forbids the possibil-
ity of superluminal signalling, in spite of the fact that collapse is 
a non-local process9. Although the collapse of the wavefunction is 
now hidden, equation (2) is easier to solve when computing the evo-
lution of the expectation values of operators.

Notice that the dynamics resulting from equation (1), although 
not unitary, are norm preserving and also embed an amplifica-
tion mechanism: the collapse rate of an object scales roughly with 
its size. Consequently, one can set extremely small values for the 
collapse rate for microscopic systems, thus effectively recovering 
the standard unitary quantum evolution. In turn, the amplifica-
tion mechanism implies a large collapse rate for macroscopic sys-
tems, which remain well localized in space, thus retrieving classical 
mechanics. In particular, when a microscopic system interacts with 
a macroscopic measuring device, the collapse dynamics makes sure 
that the outcomes at the end of the measurement are definite, which 
are distributed according to the Born rule. In this framework, the 
Born rule is not assumed but derived12.

The two most studied collapse models are the CSL and DP mod-
els, which are both described by equation (1) with different choices 
of the correlator D(x− y). The CSL model assumes a Gaussian 
correlator DCSL(x− y) = λ

m2
0
exp

(

−|x− y|2/4r2C
)

 (m0 is the mass
of a nucleon), characterized by two phenomenological parameters, 
namely, collapse rate λ (which sets the strength of the collapse for a 
single nucleon) and length rC (beyond which spatial superpositions 
are suppressed). The Ghirardi, Rimini and Weber (GRW) value pro-
posed elsewhere13 for the collapse rate is λ = 10−16 s−1, which guar-
antees an effective collapse only for macroscopic systems, whereas 
Adler14 proposed larger values of λ = 4 × 10−8±2 s−1 at rC = 10−7 m or 
alternatively λ = 1 × 10−6±2 s−1 at rC = 10−6 m, under the requirement 

of a collapse taking place in the mesoscopic regime during the pro-
cess of latent image formation in photography. On the other hand, 
there is a broad consensus in setting rC within the mesoscopic length 
scale of rC = 10−7 m. This choice would guarantee microscopic 
superpositions to survive and the suppression of macroscopic ones, 
although only experiments can determine its value.

The DP model relates the collapse mechanism to gravity by 
choosing a correlator proportional to the Newtonian potential 
DDP(x− y) = G

h̄
1

|x−y|, where G is the gravitational constant. When
applying the model to a distribution of point-like particles, the col-
lapse rate diverges, implying that the collapse is instantaneous even 
for microscopic systems. This is clearly falsified by experimental 
evidence. For this reason, regularization through the introduction 
of spatial cutoff R0 is needed, which gives a finite size to other-
wise point particles. In the first formulation of the model, Diósi8 
suggested to set R0 equal to the proton radius of around 10−15 m, 
giving the model the particular appeal of being free from fitting 
parameters and leading to a collapse time for a proton in a spatial 
superposition of around 106 years, which is fully compatible with 
observations. However, as we will discuss in detail below, sponta-
neous collapses induce an increase in the mean energy of the sys-
tem, resulting in heating. A comparison with experimental data 
shows that R0 = 10−15 m, and smaller values must be excluded as 
they would lead to unphysical heating15: the energy increase for a 
free nucleon would be of the order of 10−20 erg s–1 for R0 = 10−15 m, 
corresponding to a temperature increase of 7 × 10−5 K s–1. Over the 
life of the Universe, a free nucleon would have developed a tem-
perature of about 3 × 1013 K due to DP noise, which is not compat-
ible with observations15. A different estimate for R0 was given by 
Penrose16,17, effectively equating R0 to the width of the wavefunc-
tion of the system. This keeps the model free from any fitting 
parameter, endowing it with a cutoff that explicitly depends on the 
system under scrutiny. Following the most recent literature, we con-
sider R0 as a free parameter, whose value is eventually constrained  
by experiments.

The collapse parameters are ultimately bounded by experi-
ments. Below, we will review a number of them. For the CSL model, 
such bounds constrain the maximum value that can be taken by 
λ at given values of rC as—according to equation (2)—the collapse 
effect grows with the value of λ. Conversely, for the DP model, lower 
bounds on R0 are sought, as the collapse strength inversely depends 
on this parameter.

Besides collapsing the system’s wavefunction (or keeping it 
localized through time), the noise induced by the collapse mecha-
nism also results in Brownian motion in addition to the system’s 
dynamics. Detecting this motion is the goal of non-interferometric 
experiments.

Collapse noise

Measurement device

Outcome

Experimental setup

CSL

rC

λ

DP

R0

Bounds

Fig. 1 | Testing the collapse effects using a typical non-interferometric setup. The system (orange sphere) evolves as described by its quantum 
mechanical dynamics (for example, there can be a potential, represented by the purple line). The collapse noise (red arrows) will modify such dynamics, 
thus providing predictions that are different from those of quantum mechanics. A suitable measurement device (indicated by a magnifying glass) aims at 
detecting such a difference. The measurement outcomes are then used to draw the experimental upper bounds on the CSL model and lower bounds on the 
DP model, which are shown in Figs. 2 and 3, respectively.
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Interferometric and non-interferometric experiments
The most direct approach for testing collapse models is to prepare a 
spatial quantum superposition: let the different components inter-
fere—ideally in a noise-free environment—and then measure the 
corresponding interference pattern5. If interference fringes appear, 
the superposition principle holds for that type of system within the 
measurement error; otherwise, it is violated. This can be due to dif-
ferent reasons, such as localization of the system’s wavefunction pre-
dicted by a collapse model.

Interferometric experiments face difficulties that limit their 
capability to place experimental bounds on the collapse parameters. 
In particular, preparing and maintaining spatial superpositions of 
massive systems over time is challenging from a technical perspec-
tive as it requires isolation from any external agent that might spoil 
the superposition. Such an external action would prevent the occur-
rence of possible collapse mechanisms or disguise them. Typically, 
this requires low temperature, high vacuum and low-vibration con-
ditions. Another major challenge is the experimental preparation of 
an initial coherent superposition state that is large enough to generate  

a visible interference pattern. The challenge of the preparation stage 
grows with the size and mass of particles at hand. This process should 
be robust and reproducible as a large number of particles would need 
to be prepared in nearly identical initial states to allow for the acqui-
sition of sufficient statistics to resolve an interference pattern.

State-of-the-art interferometric experiments now employ par-
ticles of around 104 atomic mass units (AMU) and have set an upper 
bound of λ < 10−7 s−1 at rC = 10−7 m for the CSL model18. This is a 
few orders of magnitude away from testing Adler’s value and is a 
billion times weaker than what is needed to probe the GRW value. 
Probing such a value would need masses of 107 AMU and a size of 
the quantum superposition of around 180 nm, maintained for about 
20 s. The request on time is too demanding to make such an experi-
ment practical. A potential way forward is to perform experiments 
onboard a dedicated satellite to exploit the advantages provided by 
the space environment19,20 as its microgravity environment enables 
long free-fall times. To date, interferometric experiments have not 
set relevant bounds for the DP model. However, there are propos-
als for implementing experiments that need challenging technical 
developments, mainly concerning how to generate spatial superpo-
sitions of massive systems21–24.

As non-interferometric experiments do not rely on the prepara-
tion of quantum superpositions, they provide an important advan-
tage25. In fact, the collapse noise Wt(x) would act on the nucleons of 
a system regardless of the quantum or classical nature of the state 
it has been prepared into, making their dynamics stochastic. The 
nucleons will randomly accelerate, which leads to a variety of effects 
that will be discussed below. Among them, a violation of the energy 
conservation principle is predicted. This should not be seen as dis-
turbing in light of the phenomenological nature of the models being 
addressed (Fig. 1).

As the typical strength of the collapse rate is very small, a suc-
cessful experiment will still have to suppress other noise sources 
from the environment, as for the interferometric approach. The 
non-interferometric strategy is then to monitor the motion of a 
system in a controlled environment, looking for Brownian fluctua-
tions, whose detection would be the first hint of a collapse effect. 
The lack of observation of such hints provides a bound on the col-
lapse parameters, and allows one to draw the so-called exclusion 
plots that identify the regions of parameters that need to be explored 
to rule out a given collapse model. Figures 2 and 3 report the exclu-
sion plots for the CSL and DP models, respectively. Below, we indi-
vidually discuss the constraints obtained from the application of 
non-interferometric strategies.

Phonons in low-temperature experiments. The collapse noise 
affects the collective dynamics of atoms and modifies the phonon 
distribution in bulk materials, leading to an increase in the internal 
energy of the system26,27. The CSL model predicts a heating power 
given by

PCSL =
3
4
h̄2λm
m2

0r2C
, (3)

where m is the mass of the system. The system needs to be isolated 
to derive significant bounds. The main step in this direction is to 
perform the experiment at low temperatures, as in the case of the 
CUORE experiment28, where crystals of tellurium oxide weighting 
340 g are cooled to around 10 mK. Also, shielding the setup from 
other background noises—such as gamma radiation or cosmic 
rays—by resorting to underground facilities can improve the level 
of isolation29. Nevertheless, dissipative processes due to interaction 
with the surrounding environment will still take place. Therefore, 
materials with high density, which will enhance the collapse effect, 
and low thermal conductivity to reduce dissipation are the best 
candidates to test collapse-induced heating. Low-temperature 
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Fig. 2 | Exclusion plot for CSL parameters λ and rC from 
non-interferometric tests. The coloured areas correspond to 
experimentally excluded regions. The green-coloured regions are from 
cantilever-based experiments with masses of ~10 ng (ref. 38) (light green), 
~100 ng (ref. 39) (green) and multilayer structures40 (dark green). The 
blue areas are obtained from gravitational wave detectors46–48: AURIGA 
(light blue), LIGO (blue) and LISA Pathfinder (dark blue). The purple 
areas are from optomechanical systems levitating in a linear Paul trap49 
and a magnetic trap50. The orange area is from spontaneous X-ray 
emission tests51. The yellow area is from phonon excitation in the CUORE 
experiment27,30. The brown area is from the heating rate of Neptune63. The 
red area is drawn from cold-atom experiments32. The theoretical values 
proposed by GRW13 and the ranges proposed by Adler14 are shown as 
a black dot and black dots with bars that indicate the estimated range, 
respectively. Finally, the light grey area is excluded not from experiments 
but from the requirement that macroscopic superpositions do not persist 
in time, which is the main motivation behind collapse models. Specifically, 
the (relatively arbitrary but reasonable) requirement adopted here is that 
a graphene disk of radius 10 μm, approximately the smallest visible size for 
a human eye, collapses in 0.01 s, which is almost the time resolution of the 
human eye95. The white area is yet to be explored.

3

http://www.nature.com/naturephysics


experiments30 can reach heating rates as low as P/m ≈ 100 pW kg–1. 
The most accurate modelling of energy deposition from radioac-
tive decays and penetrating muons still leaves a residual heating 
of around P/m ≈ 10 pW kg–1 unaccounted. This, in turn, sets the 
bound27 to λ < 3.3 × 10−11 s−1 at rC = 10−7 m for the CSL model.

Cold atoms. State-of-the-art experiments in cold-atom technology 
allow cooling a cloud of atoms down to the picokelvin scale, thus 
enabling a high degree of control of such systems. The low operating 
temperature makes these systems good candidates to test the effects 
of collapse models, although the amplification mechanism cannot 
be exploited due to the negligible interaction among the atoms in 
the cloud.

As for the system discussed in the earlier section, the collapse 
noise produces an increase in the energy (temperature) of the atoms 
in the cloud at a rate given in equation (3), with m now being the 
mass of an atom. A comparison with experimental data31, taking 
into account several effects including heating induced by three-body 
interactions or cooling resulting from evaporation, leads to the 
upper bound as λ < 10−7±1 s−1 at rC = 10−7 m. A stronger bound can 
be obtained by considering diffusion in position32. CSL predicts that 
the position variance grows as

⟨

x̂2
⟩

t =
⟨

x̂2
⟩QM
t +

λh̄2

2m2
0r2C

t3, (4)

where 
⟨

x̂2
⟩QM
t  is the standard quantum mechanical spread, whereas 

the second term is the CSL-induced contribution. The latter grows 
as t3, contrary to the linear increase in the CSL contribution to the 
energy. The ideal experiment to test this prediction comprises cool-
ing down an atomic cloud to very low temperatures and then letting 
it freely evolve. The CSL model predicts that the collapse noise will 
make the cloud expand faster than the predictions from quantum 
mechanics. If such an extra expansion is not observed, this can be 
used to set bounds on λ and rC. The application of equation (4) to 
experimental data33 leads to λ < 5.1 × 10−8 s−1 for the reference value 
of rC = 10−7 m.

Optomechanical systems. Optomechanical systems are based on the 
interaction between a mechanical oscillator and a radiation field shone 
on it34. After the system has reached equilibrium, one can infer the 
dynamical properties of the mechanical component and consequently 

their modification due to external influences (such as those caused by 
collapse) by analysing the radiation field35–37. The mechanical oscilla-
tor, which is driven by the radiation-pressure coupling with the radia-
tion field, is assumed to be immersed in a thermal bath at temperature 
T, whose action is quantified by a temperature-dependent noise and 
dissipation. The overall noisy action on the mechanical system is 
characterized in terms of the density noise spectrum of the oscillator’s 
position, which reads as follows35–37:

SDNS(ω) = Sopto(ω) +
h̄ωmγm coth(h̄ω/2kBT) + SCM
m2[(ω2

eff − ω2)
2
+ γ2eff ω2]

, (5)

where Sopto(ω) is the standard optomechanical contribution from 
the radiation field on the mechanical resonator at frequency ω. The 
second term—the contribution from the environment—is charac-
terized by mass m of the mechanical part, mechanical damping γm, 
effective frequency ωeff, effective damping γeff and Boltzmann con-
stant kB. Collapse models contribute to the expression of the density 
noise spectrum with the addition of SCM, which depends on the mass 
density of the system, is proportional to λ, and can be interpreted as 
a variation in the equilibrium temperature (or energy E) of the sys-
tem. Equivalently, due to the equipartition theorem, an increase in 
the effective energy of the system is translated into an increase in the 
spread in position35–37 given by 

⟨

x̂2
⟩

≈
∫

dωSDNS(ω) ∝ E+ ΔECM,
where ΔECM is the collapse models’ contribution to energy.

Several experiments with optomechanical systems imposed 
significant bounds on the collapse parameters; we can separate 
these experiments into three main classes. The first class is that 
of clamped systems, as cantilevers, where the motion of a fer-
romagnetic sphere that is attached at the end of a silicon cantile-
ver is examined using a superconducting detector. The system 
with masses from tens38 to hundreds39 of nanograms is moni-
tored at different temperatures from 10 mK to 1 K to characterize 
the collapse-induced increase in the effective temperature. These 
tests constrained the CSL model to around λ < 1.9 × 10−8 s−1 at 
rC = 10−7 m. Recently, the setup40 was specifically tailored for testing 
the CSL model at rC = 10−7 m (ref. 41), yielding an upper bound of 
λ < 2.0 × 10−10 s−1, which completely covers the values suggested by 
Adler. The second class of experiments includes the gravitational 
wave detectors LIGO42, AURIGA43 and space-based prototype 
LISA Pathfinder44,45. These employ macroscopic masses from the 
kilogram to the ton scale, whose motion is monitored with opti-
cal techniques, effectively making them optomechanical systems. 
Although being fully in the classical, macroscopic regime, such 
experiments pose the strongest experimental bounds on the col-
lapse parameters46–48 for rC > 10−5 m. This is due to the fact that for 
such large masses, the collapse is magnified due to the amplification 
mechanism. Although the corresponding bounds are the strongest 
for large values of correlation length rC, they are softer at rC = 10−7 m: 
LIGO42 sets λ < 1.0 × 10−5 s−1, AURIGA43 gives λ < 4.6 × 10−2 s−1, 
whereas LISA Pathfinder44,45 provides λ < 3.8 × 10−9 s−1. The third 
class of experiments is that of levitated systems. The levitation of 
spheres of around 0.1–5.0 pg was made possible through the use 
of a linear Paul trap49 and a magneto-levitational trap50 at room 
temperature. The current bounds obtained from such experiments 
are comparable to those from interferometric experiments, yield-
ing λ < 4.1 × 10−5 s−1 and λ < 6.7 × 10−7 s−1 for the CSL model at 
rC = 10−7 m. Although these bounds are not yet competitive com-
pared with other non-interferometric methods, they hold promise 
to provide stricter bounds. One can expect a major improvement 
when working in cryogenic conditions.

Gamma and X-ray emission. Brownian motion, such as that 
induced by collapse noise, imparts a (random) acceleration to par-
ticles, which makes them radiate if charged. Since this radiation 
would not be there otherwise, it can be used to test collapse models.

LISA Pathfinder

Neptune

X-ray emission

10–16 10–15 10–14 10–13 10–12 10–11 10–10 10–9 10–8

R0 (m)

Fig. 3 | Exclusion plot for DP parameter R0 from non-interferometric tests. 
The coloured areas correspond to experimentally excluded values of R0. The 
blue bound is from LISA Pathfinder47, the brown area is from the heating 
rate of Neptune63 and the orange area is from X-ray emission tests52.
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The most recent analysis applied to the CSL model51 has shown 
that the radiation emission rate from a crystal is given by

dΓCSL
dE = Natoms

(

N2
A + NA

)

λh̄e2

4π2ε0m2
0r2C c3E

, (6)

where Natoms is the total number of atoms; NA, the atomic number; e, 
the elementary charge; ϵ0, the dielectric constant of a vacuum; c, the 
speed of light; and E, the energy of emitted photons. Equation (6) is 
valid for E ∈ [10, 105] keV, which corresponds to photon wavelengths 
larger than the size of a nucleus but smaller than that of an atom. In 
this regime, the protons in the same nucleus emit coherently, giving 
rise to the quadratic contribution N2

A. Because electrons emit inco-
herently from the atomic nuclei, their contribution does not cancel 
that of the protons and the electrons contribute linearly with NA.  
A similar expression is derived for the DP model52.

The first application53 of the induced radiation emission rate 
ruled out the Karolyhazy model54, which proposes a connection 
between wavefunction collapse and gravity. It was later applied to 
the mass-independent version of the CSL model, where the mass 
density M̂(x) in equation (1) is replaced by the particle number  
density times m0, effectively ruling it out55.

A recent comparison with data from a dedicated experiment—
performed in the underground Gran Sasso Laboratories (Italy)—
lead to the strongest bounds on the CSL51 and DP52 models of 
λ < 5.2 × 10−13 s−1 at rC = 10−7 m and R0 ≥ 0.54 × 10−10 m, respectively. 
It also ruled out the parameter-free version of the DP model relat-
ing R0 to the width of the wavefunction, as suggested by Penrose. 
According to this prescription, one would expect R0 ≈ 5 × 10−12 m for 
a germanium crystal cooled down to 77 K, which is about ten times 
smaller than the lower bound set by the experiment.

Decay of superconducting currents in SQUIDs. Below a critical 
temperature, metals become superconductors: electrons bind in 
pairs—so-called Cooper pairs—and flow without resistance on the 
metal surface56. A particularly interesting instance of such devices 
is the superconducting quantum interference device (SQUID) that 
is characterized by a superconducting loop interrupted by two 
Josephson junctions. It was suggested57—and later achieved58—that 
SQUIDs can be put in the superposition of two macroscopically 
distinct current states, and that these could be exploited to test the 
validity of the superposition principle.

Collapse models predict that superconducting currents are 
unstable, because the collapses tend to localize single electrons, thus 
breaking Cooper pairs, leading to the decay of current59,60. Such an 
effect is suppressed by the small value of electron mass with respect 
to the nucleon reference mass, but is enhanced by the large number 
of electrons taking part in the process. For the CSL model, the decay 
rate can be approximated as60

γCSL =
3

2√π
N
kF

λ

rC
, (7)

where N is the number of Cooper pairs and kF is the Fermi 
momentum. This is compared with the experimental rate56,61 of 
γ ≈ 3 × 10−13 s−1, which is obtained by measuring the decay of the 
field produced by the superconducting currents61, allowing to set 
an upper bound on the CSL rate of14 λ < 10−3 s−1 at rC = 10−7 m. The 
theoretical estimate of the supercurrent decay, however, neglects the 
recombination of electrons into Cooper pairs; therefore, the bound 
could be weaker. However, because the experimental data on super-
conducting current decay are dated61, more recent measurements 
could possibly allow to set stronger bounds.

Astronomical and cosmological observations. Astronomy and 
cosmology are becoming increasingly important for testing collapse 

models, because they provide an arena where the collapse effects 
can build up over very long times and for very large systems14. In 
the non-relativistic regime, one can exploit the collapse-induced 
Brownian motion to set bounds on the collapse parameters, which 
are reported in Table 1.

Collapse noise reduces the stability of bound systems, and this 
can be applied to a variety of situations. The dissociation of cos-
mic hydrogen during the evolution of the Universe11 results in the 
bound of λ < 1 s−1 for rC = 10−7 m. The same noise, by accelerating 
protons, perturbs the thermal history of the Universe. Besides the 
high-energy photons considered earlier, protons will also emit 
low-energy photons, which contribute to the cosmic microwave 
background (CMB) radiation; precision measurements of the latter 
give14 λ < 10−5 s−1 for rC = 10−7 m. Because the emission is not ther-
mal, these photons will distort the spectrum of the CMB. Data from 
the cosmic background explorer/far-infrared absolute spectropho-
tometer (COBE/FIRAS) observations bounds the CSL parameters 
to62 λ < 10−1 s−1 for rC = 10−7 m.

The intergalactic medium, consisting of highly ionized hydro-
gen, is heated by various astrophysical sources and is cooled by adia-
batic expansion of the Universe and by recombination cooling of 
plasma. As the collapse noise will add to the heating mechanism, 
it will increase the equilibrium temperature. Observations set the 
bound14 to λ < 10−8 s−1.

Another equilibrium argument can be applied to astronomi-
cal and astrophysical bodies, such as Neptune63 and the neutron 
star64 PSR J 1840-1419, which is one of the coldest neutron stars 
found so far. Under the assumption that the collapse-induced 
heating is equilibrated by the energy loss due to radiation emis-
sion, as described by the Stefan–Boltzmann law, one obtains 
λ < 9.4 × 10−7 s−1 for PSR J 1840-1419 and λ < 6.6 × 10−11 s−1 
for Neptune.

Collapse models have also been applied to cosmology. They were 
proposed as candidates to implement an effective cosmological 
constant65 or to justify the emergence of cosmic structures in the 
Universe66–68, whose imprint can be found in the observed tempera-
ture anisotropies of the CMB. The latter is a remarkable prediction 
of inflationary cosmology, where theory and observations match 
very well. Collapse dynamics having acted since shortly after the 
Big Bang will impact the spectrum of primordial perturbations, at 
both scalar and tensorial levels69–73.

Under this perspective, observational data applied to cosmic 
inflation were used to rule out the CSL model for a specific choice 
of the relativistic collapse operator74; soon after, however, it was 
shown that a different choice75 restores the compatibility of CSL 
with cosmological observations. The problem is that it is not clear 
how collapse models should be accounted for in relativistic situa-
tions76—and even less clear in situations where gravitational effects 
are strong.

Table 1 | Astronomical and cosmological bounds on the CSL 
model

Effect Bound on λ (s−1)

Non-dissociation of hydrogen11 <1

CMB distortion (COBE/FIRAS)62 <10−1

Contribution of heating of protons to the CMB14 <10−5

Heating in neutron stars64 <9.4 × 10−7

Heating of the intergalactic medium14 <10−8

Heating of Neptune63 <6.6 × 10−11

The listed bounds, which are discussed earlier, are computed for the reference value of the 
characteristic length of rC = 10−7 m. The strongest bound is also reported in Fig. 2.
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Perspectives
To accomplish further progress in testing collapse models, new 
dedicated experiments will have to be designed and performed to 
achieve unprecedented levels of control over the relevant degrees 
of freedoms of the probe mass. They will push for technological 
developments, which, in turn, will open the possibility of discover-
ing new physical properties. Here we will review some promising 
avenues that are currently being explored.

The first possibility is to test collapse models using the para-
metric heating of a trapped nanosphere. Specifically, a Paul trap is 
proposed77 to measure the heating rate of a single-charged levitated 
nanosphere. The hybrid trap cools the mechanical motion to a low 
temperature; thereafter, the optical field of the cavity is turned off 
to let the nanosphere evolve freely before measuring the particle’s 
energy. By comparing the predictions with a model including the 
heating induced by the collapse mechanism, one can test the param-
eter range to λ = 10−12 s−1 for a background pressure of 10−13 mbar 
and a temperature of the mechanical system of 20 K.

Although they are commonly the first candidate in many experi-
ments, translational degrees of freedom are not the only available 
option. Indeed, it is possible to provide very stringent constraints 
on the collapse parameters by using roto-vibrational degrees of 
freedom. A master equation describing roto-vibrational diffu-
sion due to collapse effects has been derived78, which is used in a 
non-interferometric proposal48 applied to an optomechanical sys-
tem. Such a proposal demonstrated that roto-vibrational diffusion 
can be employed to restrict the uncharted values of collapse param-
eters using both lab-based and space-bound configurations, poten-
tially down to the GRW parameters.

Performing non-interferometric experiments in free fall is 
another possible way to enhance the constraints on collapse param-
eters19. Indeed, in free fall, the system does not require external 
potentials that would inevitably introduce extra noises in the sys-
tem’s dynamics, hindering those due to the collapse mechanism. 
Concrete possibilities on ground are provided by the Bremen drop 
tower79 or the Hannover Einstein-Elevator platform80. Such experi-
ments could also be performed in dedicated space missions19,81 or 
onboard the International Space Station, where other quantum 
experiments were already conducted82.

The performance of testing collapse models can also be enhanced 
by incorporating information-theoretic techniques of sensing and 
metrology83. In particular, building on the success in estimating the 
temperature of open quantum systems84,85, techniques for estimat-
ing quantum parameters can be employed as a way to infer the equi-
librium temperature of a mechanical oscillator potentially subjected 
to the effects of the CSL model.

One can complement the latter schemes with the use of 
hypothesis-testing methods. By making use of Bayesian test 
protocols applied to both matter-wave interferometry86,87 and 
non-interferometric settings88, one can address the hypothetical 
modifications of quantum theory induced by the occurrence of col-
lapse mechanisms.

Current state-of-the-art non-interferometric investigations can 
be extended to the possible generalizations of collapse models. The 
CSL and DP models resort to white noise (which is not physical) 
that breaks the energy conservation of the system. The full resolu-
tion of both limitations requires the development of an underlying 
theory, which is not yet available, although some work in this direc-
tion has been made2. Meanwhile, non-white and dissipative gener-
alizations of the CSL89,90 and DP91 models have been formulated. In 
the former extension, a cutoff frequency Ω0 (a new collapse param-
eter) characterizes the noise spectrum, making it more similar to 
other physical noises. On the other hand, the dissipative exten-
sion avoids the energy of an otherwise isolated system to diverge. 
In such a model, the system eventually thermalizes to temperature 
T0, which is another collapse parameter. There are currently several 

experiments providing bounds on the collapse parameters of these 
extensions49,92–94. However, with the additional parameters Ω0 and 
T0, the parameter space widens, and thus, it becomes more challeng-
ing to fully cover its unexplored regions.

More ambitiously, collapse models call for an underlying 
deeper-level theory where the unitary dynamics, as well as collapse, 
emerge naturally. This would explain the physical origin of the col-
lapse of the wavefunction, be it related to gravity as suggested by 
Penrose1 and others or to yet unidentified degrees of freedom2.

The interest in collapse models and their experimental testing 
has considerably grown in the last decade, which is also sustained 
by substantial technological developments. The unprobed part of 
the parameter space has been greatly reduced, pushing the limits 
of quantum theory further. Nevertheless, the question on whether 
quantum mechanics is universally valid up to the macroscopic scale 
remains open: and only experiments can tell.
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