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Photocatalysis plays a key role in CO preferential oxidation
(CO-PROX) in H2-rich streams thanks to the great perfor-
mance this reaction can achieve when it is light driven, at at-
mospheric pressure and room temperature, with negligible
hydrogen loss. This short review is an attempt to summarize
the most recent advances in photo-PROX focused mainly on
the most popular strategies to improve TiO2 photocatalytic
activity, as well as on the active phases used, paying special
attention to the synthesis and deposition of noble metal
nanoparticles because of their outstanding properties. In this
work, we critically review these results with the aim of finding
general indications about the main characteristics of the cat-
alysts and the optimal operating conditions of photo-assisted
CO-PROX reaction.
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Introduction
The depletion of fossil fuels, together with the massive
greenhouse gases emissions, has led the scientific
community to the quest of clean and environment-
friendly energy resources that must meet the effi-
ciency requirement to be feasible on a large scale,
reducing the strong reliance of industrialized and
emerging countries on nonrenewable energy sources.

Hydrogen is considered as a clean energy carrier [1] that
can be used as feedstock for low-temperature fuel cells
such as polymer electrolyte fuel cells (PEMFCs), which
also have higher electrical efficiencies compared with
internal combustion engines. The industrially estab-
lished process for hydrogen production is by hydrocar-
bons’ catalytic reforming at high temperature.
Nevertheless, alternative processes are being developed
to promote the decarbonization of the energy sector,
including thermochemical, electrolytic or photolytic

ones such as alcohols reforming and autothermal
reforming [2], biomass gasification [3] and photo-
electrochemical water splitting [4].

Although steam reforming is the most economical
method, carbon monoxide is produced as by-product, so
water gas shift reaction (reaction (1)) must be carried
out to reduce the CO content to ca. 1% [1]:

COþH2O /CO2 þH2 ðþ heatÞ (1)

However, further CO purification [5] is required before
entering a PEMFC, as the platinum electrode is easily
poisoned by CO, thus lessening the cell power genera-
tion performance [6]. Different approaches, as selective
diffusion, pressure swing adsorption, hydrogen mem-
brane separation, selective CO methanation [7] and

preferential oxidation of CO to CO2 (CO-PROX) have
been considered to eliminate the traces of CO in the
hydrogen stream with a minimum hydrogen loss, the
latter being the most effective technology because of its
efficiency and mild operation conditions (Patm and
T = 30 to 200 �C).
CO preferential oxidation
CO preferential oxidation (CO-PROX) in hydrogen-rich
streams is interesting, given the possibility of coupling
this reaction to low-temperature PEMFCs, therefore
avoiding the need of hydrogen storage and allowing its
use for automotive applications as well as for both sta-
tionary and portable power generation [8].

The following reactions (Eq. 2e3) can occur in a CO-
PROX system:

CO(g) þ 1/2 O2(g) / CO2(g) DH
0
298 = �282.98 J/mol (2)

H2(g) þ 1/2 O2(g) / H2O(g) DH0
298 = �241.82 J/mol (3)
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Both reactions are irreversible, exothermic and
competitive. In the first reaction (Eq. (2)), an excess of
oxygen has to be provided (w2). In the second step, a
substantially higher oxygen excess factor (l) of 2e4 is
used, which is then processed with the remaining CO to
reduce the CO concentration to less than 10 ppm.

Equation (3) is highly undesirable because of the con-

sumption of hydrogen needed to feed a PEMFC;
nevertheless, as 100% selectivity is not possible, H2

oxidation takes place and H2O forms, reducing the ac-
tivity and selectivity of the catalyst.

Several factors affect oxidation rate and selectivity in
CO-PROX reaction: supports and promoters’
properties as well as chemical status of the metallic
phase. Also, surface coverage by CO molecules depends
on reaction parameters such as CO partial pressure, re-
action temperature and/or H2, O2 and CO gases ratios

[9].

Noble metal catalysts
Platinum-group metal (Pt, Pd, Rh and Ru) catalysts
supported on inert structures, such as alumina or silica,
have been traditionally applied in this reaction. Pt-based
catalysts have been widely studied, but their use in
PEMFCs at room temperature remains a challenge
because of their high sensitivity to CO poisoning. To
weaken CO adsorption, promoters [10] or reducible
oxides, such as CeO2, can be used as supports [11], with
an enhancement of activity in comparison with
nonsupported Pt-based catalysts. Ru and RuO2 catalysts
supported on silica and zeolites have presented a high

activity in the range 80e160 �C [9,12,13], hindering
methanation and reverse water gas shift reactions and
also showing an excellent selectivity towards CO
oxidation in the presence of H2, as CO would prefer-
entially adsorb in the Ru surface, hampering the inter-
action between H2 and Ru active sites [14].

Transition metal oxide catalysts
Transition metal oxides, such as Co, Fe, Cu or Zn oxides,
have also shown considerable activity in the PROX re-
action at low temperatures, especially CuOeCeO2

system reporting close values to those of noble metals
[15,16] but with great selectivity for CO2 formation,

thanks to both the supply of oxygen adsorption sites
from the Ce3þ/Ce4þ pair which creates surface oxygen
vacancies and the improvement of the redox properties.
In addition, iron oxide has also shown a significant pro-
motional effect, also because of its role as oxygen
reservoir [17].

Au-based catalysts
Gold had been regarded as a catalytically inert metal
until Haruta et al. [18] demonstrated the supported
gold catalysts’ outstanding activity in the low-
Current Opinion in Green and Sustainable Chemistry 2020, 21:9–15
temperature CO oxidation reaction. It has been re-
ported that the catalytic activity of these Au-based
catalysts is closely related to the size of gold particles,
nanometric ones being the most active [19]. Moreover,
the catalytic activity also relies on the nature of the
support material [20]. Reducible oxides as TiO2 [21],
Fe2O3 [22] or CeO2 [23] supports show great ability to
provide reactive oxygen to the active Au sites, which

significantly enhances the catalytic activity.
2

Photo-PROX
Despite the good performance of Au/TiO2-based cat-
alysts in CO-PROX reaction, their catalytic activity

can be further improved when it is light driven
because of two main reasons: TiO2 is an n-type semi-
conductor showing a striking photoactivity in a wide
ream of reactions [24e27] and Au nanoparticles (NPs)
present a remarkable photoresponse behaviour, thanks
to their optical properties due to the local surface
plasmon resonance, a collective oscillation of free
(weakly bonded) electrons excited by an oscillating
electric field, such as that of light [28]. This fact opens
up the opportunity to a new research line focused on
the study of light-driven CO-PROX. Table 1 shows

some examples of photocatalysts used for the so-called
photo-PROX, and it is clearly noticeable that Au
supported on TiO2, despite the very low metal loading,
outstands as the benchmark photocatalyst for this
reaction.

Synthesis strategies of TiO2

Titania is regarded as the photocatalyst per excellence;
it is a widely spread, nontoxic, low-cost material, ther-
mally and chemically stable and with notable optical
properties [6]. Intrinsic properties such as particle size
distribution, mean pore size, specific surface area and
crystal structure are reported to be determining in its
photocatalytic performance [34]. TiO2 naturally exists

in three crystallographic polymorphs [36]: rutile
(tetragonal), brookite (orthorhombic) and anatase
(tetragonal) phases. Controlling anataseerutile transi-
tion through thermal treatment (calcination) is crucial
[37] because the combination of these two polymorphs
in variable proportions (usually 10e30 wt%) has shown
higher efficiency than pure phases [34].

Besides, modifying titania morphology can also improve
its activity, as amorphous titania hardly shows photo-
activity even under UV irradiation, demonstrating the

relevance of crystallinity and morphology [38]. Thus,
the synthesis method rises as a pivotal step to obtain
highly active TiO2-based catalysts. Apart from calcina-
tion temperature as mentioned above, the synthesis pH
is also determining to obtain anatase or rutile phases:
basic conditions in a hydrothermal synthesis
produce anatase, whereas with acidic treatment, rutile
polymorph is preferred [32].
www.sciencedirect.com
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Table 1

Catalysts used in photo-PROX reaction in recent years.

Catalyst % wt Au Type of reactor Reaction
temperature (�C)

CO
conversion (%)

CO2

selectivity (%)
Ref.

Au/TiO2 1.0 Fixed-bed flow reactor 25 25 60 [29]
Au/TiO2@CuO 1.0 Fixed-bed flow reactor 25 70 85 [29]
Mo-MCM-41 1.0 Closed system 20 98 98 [30]
Au/ZnCo2O4 0.94 Fixed-bed flow reactor 25 61.7 64.5 [31]
Au/TiO2 nanorods 1.0 Fixed-bed flow reactor 30 40 100 [32]
Au/TiO2 -PANI 1.0 Fixed-bed flow reactor 25 55 80 [33]
Au/Meso-TiO2 0.47 Fixed-bed flow reactor 30 95 69 [34]
AuCu/SBATi 1.5 Fixed-bed flow reactor 30 80 80 [35]
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Another strategy is incorporating titania NPs into
mesoporous materials with uniform pore channels and
long-range ordering structures, such as MCM-41 or SBA-

15 [39,40], which allows the introduction of titanium
species both on the external surface and in the pore
channels of these ordered materials maintaining their
organized mesoporous structure and high surface area.

TiO2 limitations
The photocatalytic oxidation of a reactant on TiO2 can
be generally summarized in four sequential stages [41]:
(1) generation of charge carriers by UVevisible irradia-
tion; (2) separation and migration of these photo-
generated carriers; (3) trapping of photogenerated
carriers to produce active species; and (4) reactant
oxidation by either active species or photogenerated

holes.

The most restrictive limitation in TiO2-based applica-
tions, other than the rapid recombination rate of the
photogenerated electronehole pairs within its particles,
is the need to use ultraviolet irradiation (l< 387 nm) to
promote an electron from the valence to the conduction
band (band gap: 3.2 eV anatase, 3.0 eV rutile) [42]. UV
irradiation promotes O2 and CO adsorption at TiO2

surface and inhibits H2 chemisorption by hindering the
process by which hydrogen adatoms react with lattice

oxygen [43]. However, only 5% of the incident solar
spectrum consists of UV light, the rest being visible (ca.
45%) and infrared light (50%). For this reason, the
development of new materials photoactive in the visible
light range seems very appealing so that an efficient use
of sunlight can be accomplished.

TiO2 nonmetal doping
First approaches to narrow titania’s band gap consisted
of transition metal doping [44,45] and the use of TiO2

reduced forms, but both techniques resulted in long-
term unstable catalysts because doped metals acted as
electronehole recombination sites [46].

Conversely, nonmetal doping with C [47], N [48], S
[49] and combination of thereof [50], replacing oxygen
in the lattice of TiO2, is also of interest, because these
www.sciencedirect.com
elements can modify titania cell parameters and reduce
the pristine band gap and/or the Fermi level, as well as
enhance charge carriers separation.

For example, N-doped TiO2 tested in pollutants
photodegradation in aqueous media accomplished
13.6% and 7.8% of improvement under visible and UV
light than pure TiO2, respectively [51]. The incorpora-
tion of F increases the acidity because of the interaction
of Ti4þ and F� ions that supplies Ti3þ cations on the
surface, obtaining a band gap narrowing of 0.2e0.6 eV
[52]. Also, semimetal doping with B has proved to
enhance visible light photoresponse, thanks to the
mixed valence band formed between boron and oxygen,

as it can be incorporated into the TiO2 crystal lattice
forming a solid solution [53].

Au NPs supported on TiO2

Undoubtedly, the best strategy to accomplish good
photocatalytic performance in the visible region is
coupling titania with noble metals such as Ag, Pd, Pt and
especially Au, thanks to their exceptional optical prop-
erties and notable reactivity at low temperatures,
especially when using noble metal NPs, as they can act
as electron sinks for conduction band electrons in TiO2

and promote charge carriers separation, improving the
quantum yield [28,54,55]. Although oxygen dissociation

is the rate-limiting step in CO-PROX reaction over Au-
based catalysts because it is inhibited on single gold
crystal [56], when supported on TiO2, it has shown
remarkable photoactivity, suggesting that this reaction
takes place at the metal-support interface. Moreover,
gold can form alloys with a second, more widespread,
economical metal on which oxygen adsorption and
activation occur easily [35,57]. Besides displaying
outstanding optical properties due to the local surface
plasmon resonance phenomenon [28], Au nanoparticles
supported on a semiconductor give rise to a Schottky

barrier, formed when at the metalesemiconductor
interface, there is an energy difference between titania
conduction band and gold Fermi level that creates
electron states within the band gap. This potential
barrier reduces the recombination rate between elec-
trons and holes, as titania electrons are trapped in the
Current Opinion in Green and Sustainable Chemistry 2020, 21:9–15
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metal, therefore improving the photocatalytic activity
[35,58].

Synthesis methods for Au-supported catalysts
The morphology and size of Au NPs play an important
role, and once again the synthesis procedures employed
are key. Under mild operating synthetic conditions, gold
particles below 10 nm supported on a matrix with

considerable specific surface area can be obtained with
very low metal loadings [19].

Traditional wetness impregnation method has turned
out as ineffective for obtaining Au-based photocatalysts,
as it leads to larger Au particles (>10 nm) even when
mesoporous supports are used [59].

Microwave-assisted hydrothermal reaction approach for
AuNPs TiO2/SBA-15 nanocomposites, reported by Chen
et al. [60], accomplishes high TiO2 surface area with

short rod-like morphologies and close interaction be-
tween Au and TiO2.

Colloidal chemical coreduction with chloride salts in
water uses a surfactant, typically polyvinyl alcohol,
NaBH4 as a reducing agent and HCl solution as an
acidifier. Although chloride ions are reported to improve
the dispersion of Au NPs, Cl� ions must be carefully
eliminated as they can cause deactivation and accelerate
NP sintering [61]. With this synthesis method, well-
distributed round-shaped nanoparticles with sharp size

distribution can be obtained [62e64].

Photodepositionmethod is a simpler process, with tunable
light irradiation source, so different particle sizes can be
obtained. In this process, the support, in powder form, is
solubilized in deionized water or a mix of deionized water/
methanol and sonicated. Then, the Au precursor is added,
pH adjusted to 9.5 using NH4OH and the suspension is
irradiated (LED,UV lamp) at aparticularwavelength, then
filtered, washed, dried and calcined [65].

Currently, most of the syntheses are carried out using

the depositioneprecipitation technique, which uses
NaOH, Na2CO3 or urea as the precipitating base.
Continuous control on pH, temperature, reagents con-
centration and washing is crucial for obtaining finely
dispersed supported Au NPs (size 2e3 nm). In a typical
synthesis, a solution of gold salt precursor such as
HAuCl4$3H2O is prepared, in which a precipitating base
solution is added until reaching pH 9. The support is
added, and the resulting suspension is kept at 70 �C for
several hours, keeping the pH constant. The recovered
solid is washed, dried and calcined [34].
4

Concluding remarks and outlook
Promising catalysts with high photoactivity are the basis
for purifying hydrogen-rich streams using solar energy
Current Opinion in Green and Sustainable Chemistry 2020, 21:9–15
via CO preferential photo-oxidation. The development
of catalysts with specific structural, textural and optical
properties, as summarized above in this review, is the
most effective way to understand the catalytic mecha-
nisms in detail and to obtain high intrinsic photo-
catalytic activities.

In general, each of the catalyst types herein reported has

an optimum operating conditions range, outside of
which CO conversion is too low and/or selectivity to CO2

decreases in favour of H2 oxidation. Control of the un-
desirable hydrogen oxidation reaction that affects the
CO2 selectivity is a key issue for CO-PROX catalysts.
Another fundamental parameter is the photoactive
support, which plays a crucial role in any photocatalytic
reaction. Crystalline phases, particle size and
morphology of the support exert a significant influence
on the CO preferential photo-oxidation reaction. Un-
doubtedly, the best strategy to accomplish good photo-

catalytic performance in the visible region is coupling
titania with noble metal nanoparticles, especially Au
alone or as Au/Cu binary system. Modifying the nature
of the interface between the noble metals and the
support and systematic variation of the size of both the
gold (gold-copper) nanoparticles and the support are
required for the development of more effective
supported gold photocatalysts for CO-PROX.

Although some encouraging progresses have been made
in the recent decade in the development of suitable

photocatalysts, none of these entirely solve the issues of
stability, selectivity and high CO conversion. In this
sense, much has been attained but an improvement in
the design and development of photo-PROX catalysts is
still necessary, also taking into consideration the use of
more economical and abundant materials.
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