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A B S T R A C T

In this paper a novel embedded system for remote monitoring and fault diagnosis of photovoltaic systems is 
introduced. The idea is to embed machine leaning algorithms into a low-cost edge device for real-time 
deployment. First, an artificial neural network is developed to detect faults. Then an effective stacking 
ensemble learning algorithm is developed to classify the nature of the fault. The method performance is eval-
uated through common error metrics such as RMSE, MAE, MAPE, r and confusion matrix. Additional algorithms 
are also embedded into the edge device in order to remotely control the photovoltaic array parameters. Users can 
be notified by email and SMS about the state of their photovoltaic array. The Blynk IoT platform is used to 
monitor remotely the photovoltaic array parameters. The experimental results demonstrate the ability of the 
proposed embedded system to diagnose and monitor the photovoltaic array with a good accuracy.   

1. Introduction

According to the International Energy Agency more than 940 GW [1]
of photovoltaic (PV) capacity were installed at the end of 2021, which 
means that a huge number of PV plants were installed worldwide. In 
order to keep these plants working efficiently, with small losses and 
short down times, and in order to avoid the risk of fire, it is important to 
detect faults early and take rapid decisions [2–5]. 

Currently, visual inspection is the mostly used method to check the 
correct functionality of PV plants. However, this method is relatively 
expensive and very time consuming as the operator needs to go to the 
site where the PV plant is installed, which is not always accessible or 
feasible. Therefore, the design of a remote-monitoring system with an 
innovative fault diagnosis method plays an important role for the early 
fault detection and diagnosis of PV plants [6,7]. 

In this direction, numerous monitoring, supervision such as SCADA 
[8] and protection systems [9] have been developed. Recently, re-
searchers are more and more attracted by the Internet of Things (IoT) 
and Industrial IoT (IIoT) to design smart monitoring systems [10–12]. 
This can significantly reduce the efforts in helping users to control their 
installation remotely [13]. The feasibility of remote monitoring systems 

based on Embedded System (ES) and IoT is demonstrated in Ref. [14]. A 
new monitoring solution (narrowband-IoT) suitable for 
self-consumption was developed in Ref. [15]. The developed monitoring 
system can monitor parameters such as current, voltage, and other 
environmental variables. The main contribution is that the designed 
prototype was verified for a real PV self-consumption system. 

In [16] the authors developed an IoT-enable smart energy meter by 
using LoRa (Long Range) network to monitor consumed energy by a PV 
system. The designed system is able to monitor and upload data to the 
cloud, the collected data are: current, power, voltage, temperature, light 
intensity and relative humidity). A centralized cloud-based solar con-
version recovery system was proposed in Ref. [17]. This configuration 
combines IoT and centralized architecture to remotely control the 
amount of soiling deposits on PV modules. An artificial neural network 
(ANN) is integrated with this system to reduce the amount of required 
hardware in this system. 

Recently, Artificial Intelligence (AI) techniques including Machine 
Leaning (ML), Ensemble Learning (EL), and Deep Learning (DL) based- 
algorithms have gained popularity in dealing with PV fault detection 
and classification problems [18–21]. They showed their capability to 
classify major faults or defects, such as shading, dust or sand 
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accumulation on the PV surface, bypass diodes failures, disconnections 
of PV modules, shunting of PV modules, and other defects. An explain-
able ANNs for PV fault detection is designed in Ref. [22]. The obtained 
results showed the usefulness to create valuable insights on model 
comportment. In Ref. [23] the authors developed and applied ensemble 
learning (EL) algorithms to detect and classify possible line-to-line (LL) 
faults. This approach is based on the measurement of the I–V curves and 
the main features were extracted to fed the model. In this work only LL 
fault is addressed. A 3-D convolutional neural network (CNN) was 
developed for fault detection and classification of faults in a PV system. 
The method is based on the image processing of a the collected I–V 
curves and the results demonstrated that this approach outperforms 
ML-based algorithms, such as K-Nearest Neighbour (K-NN), Random 
Forest (RF) and Support Vector Machine (SVM) [24]. In Ref. [25], the 
authors have clearly demonstrated the importance and the capability of 
ML-based methods to classify complex fault based on the I–V curves. In 
terms of accuracy, the classification rate was in the range [81%–99%]. 
Nevertheless, the developed method was not verified experimentally. A 
robust logistic regression method for fault diagnosis of PV arrays is 
developed [26] and the results demonstrated that data processing can 
increase diagnosis accuracy up to 18.4%. 

It should be pointed out that most available fault diagnosis methods- 
based on ML have been tested and simulated using Matlab/Simulink, 
Python or other programming languages, while very limited attempts 
have been done to check them experimentally. According to the litera-
ture, there are no papers related to the development of embedded sys-
tems using IoT and ML techniques for the purpose of fault detection and 
diagnosis of PV arrays. 

Recently, in our previous work [27] we have designed a PV fault 
detection and classification method using decision tree and random 

forest algorithms. However, in this method only single faults were 
addressed. In addition, the system was not able to notify the users about 
the state of their PV system. To address the limitations of this system, a 
novel fault diagnosis and monitoring system is proposed and verified 
experimentally. 

The main contributions can be listed as follows: 

• A hybrid fault diagnosis method based on an Artificial Neural Net-
works (ANN) and a Stacking Ensemble Machine Learning-based al-
gorithm (SEL) has been developed.

• The developed algorithms have been embedded into a micropro-
cessor (i.e., design an embedded machine learning system) for a real- 
time deployment.

• Both single and multiple faults are addressed in this work. In such a
situation the identification process became relatively complex and
require more advanced ML algorithms.

• Two additional algorithms have been also integrated in order to
monitor remotely and notify the users regarding the state of their PV
system.

• The Blynk IoT dashboard application is developed to store and
visualize remotely data (such as currents, voltages, incident solar
irradiance, air temperature, cell temperature and the state of the
system).

2. Methods and data

2.1. Datasets description 

In order to develop the fault detection and diagnosis method, two 
datasets have been built, the first one consists of 4500 samples with a 

Fig. 1. Test facility: a) I–V curves logged with a “Prova-210” tracer, b) solar irradiance, air temperature and PV power measurement using a data-acquisition system 
(DAS) based on an Arduino™ Microcontroller, c) example of measured I–V and P–V curves. 
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time step of 1 h which includes measured data of solar incident irradi-
ance, air temperature, cell temperature, and PV output power. The 
second dataset contains 1585 measured I–V curves collected at various 
working conditions and include both normal and faulty cases. Fig. 1 
shows the test facility used to collect the data in order to build both 
datasets. The considered PV array consists of three PV modules con-
nected in parallel; the nominal power of the PV modules is 60 Wp. 

In this work two categories of faults have been addressed:  

1) Single faults: dust deposit on PV module surface (F1) and partial
shading (F2);  

2) Multiple faults: open circuited diode and dust accumulation on a PV
module (F3), partial shading and dust accumulation (F4), and
shunted diode in a shaded PV module (F5).

As an example, Fig. 2a shows the collected I–V curves under both
normal and abnormal working conditions. Fig. 2b depicts the measured 
PV power (P) for 1000 samples. 

2.2. Features extraction and selection 

From an I–V characteristic curve, six main features can be easily 
extracted: voltage at open circuit (Voc), current at short circuit (Isc), 
voltage at the maximum power (Vmp), current at the maximum power 

Fig. 2. a) Measured I–V curves under normal and abnormal (Faulty curves: F1, F2, F3, F4 and F5) working conditions, b) PV powers for a period of 1000 h.  

Fig. 3. Flowchart of the fault detection and diagnosis method based on ANN and SEL.  
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(Imp), maximum power (Pmp), and Fill Factor (FF). Other features could 
be extracted from the I–V curve, however, to simplify and reduce the 
complexity of the algorithms only the above-mentioned features are 
considered. These features are extracted from the I–V curve as follows: 
Let’s consider two vectors In(k) and Vn(k), corresponding to the 
measured current and voltage respectively, where n represents the size 
of the vectors. Therefore:  

Voc = In(0), Isc = Vn(0)                                                                           

Pn = In*Vn                                                                                            

{x, y} = Max(Pn), Vmp = Vn(x), Imp = In(y)                                               

Pmp = max(Pn)                                                                                      

FF=Pmp*(Isc*Voc)− 1                                                                                

2.3. The proposed fault detection and classification method 

This subsection aims to describe the fault detection and classification 
method. First, an ANN is developed to detect the fault based on the 
predicted PV power, and then a Stacking Ensemble Machine Learning- 
based algorithm (SEL) is developed to classify and identify the type of 
fault. The flowchart of the developed PV fault detection and classifica-
tion is illustrated in Fig. 3 which includes two main functions: the 
detection and the classification function. 

The parameters Im, Vm, Gi, Tc, and I–V are the measured current, 
voltage, incident solar irradiance, cell temperature and I–V curve 
respectively, Th is a defined threshold (estimated after a number of ex-
periments), Pm is the measured power, P̃ is the predicted power and Fi is 
the fault type {i = 1, …,5}. 

2.3.1. Fault detection based on artificial neural networks 
To develop the fault detection algorithm, the well-known multilayer 

perceptron neural networks (MLP) is used. Fig. 4 shows the basic 
structure of the MLP used to predict the PV power. The inputs of the MLP 
are Gi, Tc at time t, while the output is the produced PV power Ppv at time 
t. 

The first dataset is divided into two parts: the first contains 80% 
(3600 samples) of data used to train the MLP, and the rest 20% (900 
samples) is used to test the model. The mathematical formula of the 
MLP-based model can be given as follows: 

P̃=MLP(Gi,Tc, t) (1) 

The fault detection procedure is carried out by comparing the pre-
dicted power with the measured Pm one. If the difference (ΔP = |P̃ −

Pm| > Th) is greater than a defined threshold (Th), a fault that is iden-
tified, otherwise the system is in normal operation. 

The main tuned parameters are: number of neurons in each hidden 
layer, the activation function type (Tansig, ReLU, etc.), the training al-
gorithm (trainlm, traingdx, adam, etc.), and the learning rate parameter. 

2.3.2. Fault classification based on a stacking ensemble learning 
To classify the faults, a stacking ensemble learning classifier is 

developed. Stacking belongs to the category of EL algorithms that learns 
how to best combine predictions from multiple high-performance ML 
models. Fig. 5 shows the workflow of the SEL classifier. It consists of two 
levels: the first level contains the base selected models: CatBoost [28], 
XGBoost [29] and LightGBM [30]. The second level consists of a 
Random Forest (RF) algorithm [31], which can be considered as a 
meta-model. 

The second dataset is used to develop the SEL classifier. Open source 
libraries of CatBoost (Gradient decision on boosting tree), XGBoost 
(eXtreme Gradient Boosting) and LightGBM (Light Gradient Boosting 
Machine) have been used to develop the classifier. The three ML algo-
rithms have different hyper-parameters that should be tuned; these are 
essential for the good performance of the model. In this work a grid 
search technique is used to hyper-parameter tuning [32]. 

The main steps for training and testing the stacking EL classifier are 
summarized in the following procedure: 

Step #1. Split the dataset (k-folds, e.g. k = 10) 

Step #2. Select 1 fold for validation and k-1 (9 folds) for training 

Step #3. Train the selected base models (CatBoost, XGBoost and 
LightGMB) on the training set 

Step #4. Generate the corresponding 3 predictions on the validation 
set 

Step #5. Repeat steps 2 and 4 for the k-1 folds and create an 
augmented dataset with the predictions of each base model 

Step #6. Train the meta-mode (random forest algorithm) on the 

Fig. 4. MLP-based PV power prediction.  

Fig. 5. Stacking ensemble learning-based fault classification.  
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augmented dataset 

The expression of the SEL classifier can be given as: 

Class= SEL
(
Isc,Voc, Imp,Vmp,Pmp,FF

)
(2) 

This stacking EL classifier is then used to classify the nature of PV 
faults based on the extracted features. 

2.4. The proposed remote-monitoring and fault diagnosis system 

2.4.1. The smart remote monitoring system 
The smart monitoring system aims to monitor remotely the consid-

ered PV array by displaying the following parameters: Gi, Tc, Ta, I, V and 
P. Fig. 6 depicts the basic configuration of the PV monitoring system 
using the IoT technique. An open source IoT platform named Blynk is 
used. This comprises an analogue to digital converter for the irradiance 
and the cell temperature, and a number of sensors for the measurements 
of currents, voltages, solar irradiances and temperatures. A low-cost 
WiFi module (NodeMCU ESP8266) is used to collect and display the 
measured parameters in a webpage. The parameters can be displayed 
locally into an LCD display too. 

The algorithm is embedded into an ESP8266 microcontroller using 
the C programming language. To monitor and visualize the measured 
data using a smart-phone, a Blynk App is employed. The Blynk is an IoT 
company which provides a platform for building mobile (IOS and 

Android) applications that can connect electronic devices to the internet 
and remotely monitor and control these devices. 

2.4.2. The proposed embedded system 
In order to use the developed method in real-time, the codes have 

been implemented into the Raspberry Pi 4. The flowchart of the devel-
oped embedded system is shown in Fig. 7 where the essential part is the 
embedded fault detection and diagnosis method. This consists of two 
incorporated ML-based algorithms. The first is the MLP used to check if 
the PV array is healthy or unhealthy. The second is a SEL-based multi-
class classifier used to identify the nature of the fault, which should be 
immediately started in order to make a prompt decision. Two additional 
algorithms have been also developed and embedded into the Raspberry 
Pi 4 in order to notify the users by SMS and email about the status of 
their PV array. 

The implemented codes were written in Python language, which is 
suitable for implementing such ML-based algorithms into the micro-
processor Raspberry Pi 4. In addition, various machine learning and 
deep learning libraries are open sources (e.g. Keras, Tensorflow, etc.) 
and provide a Python interface, which is the main reason why pro-
gramming language was used. 

The steps of the embedded system are summarized as: 

Step #1. Read the I–V curve 

Step #2. Extract features 

Fig. 6. Basic configuration of the developed smart remote monitoring system based on the IoT technique using an open source IoT Blynk application.  

Fig. 7. The proposed embedded system for fault diagnosis and remote monitoring of PV arrays.  
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Step #3. Import and run the optimized file 

If the class ∕={1} then go to Step #5. 

Step #4. Import and run the multiclass procedure 

Step #5. Display the result on the LCD, send email and SMS 

Step #6. Display the measured data on the Blynk platform 

2.5. Performance metrics 

To assess the performance of the developed ML-based models, errors 
metrics such as the Mean Absolute Error (MAE), Mean Relative Per-
centage Error (MRPE), Root Mean Squared Error (RMSE), and the cor-
relation coefficient have been used. 

Fig. 8. a) Loss function, b) Comparison between measured and MLP-predicted PV powers, c) Scatter curve.  

Table 1 
ANN-model parameters and calculated error metrics (RMSE, MAE, r and MRPE).  

ANN-Model parameters RMSE (W) MAE (W) r (%) MRPE (%) 

Training algorithm = Trainlm, 0.05 0.02 97.5 − 2.85 
Epoch = 200, 
Activation function = TanSig, 
Number of hidden layer = 1, 
Number of neurones = 50, 
Learning rate = 10− 2  

Fig. 9. The confusion matrix of the SEL-classifier.  

Table 2 
Model hyper-parameters and the calculated error metrics (Precision, recall, F1- 
score and accuracy of the SEL-classifier).  

Model hyper- 
parameters 

Faults’ 
classes 

Precision 
(%) 

Recall 
(%) 

F1- 
score 
(%) 

Accuracy 
(%) 

XGBoost: 
min_data_in_leaf =
200, max_depth = 4 
colsample_bytree =
0.63, gamma = 3.2, 
max_depth = 5.0, 
min_child_weight =
1.0, reg_alpha = 55, 
reg_lambda = 0.91 
CatBoostClassifier: 
(iterations = 2000, 
learning_rate = 0.05, 
random_strength =
0.78, depth = 5, 
border_count = 190) 
LGBMClassifier: 
learning_rate = 0.014, 
boosting_type = gbdt, 
num_leave = 25, 
max_depth = 5, 
iterations = 1000, 
bagging_fraction =
0.8. 

Fault classification using SEL algorithm 
F1 
{class 
#1 } 

99 97 98 96.80 

F2 
{class 
#2 } 

97 99 98 

F3 
{class 
#3 } 

99 96 97 

F4 
{class 
#4 } 

97 96 97 

F5 
{class 
#5 } 

79 94 86      
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MAE =
1
n

∑n

i=1
|xi − yi| (3)  

MAPE =
100%

n

∑n

i=1

⃒
⃒
⃒
⃒
xi − yi

xi

⃒
⃒
⃒
⃒ (4)  

r =

∑n

i=1
((xi − x)(yi − y))

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(xi − xi)

2∑
n

i=1
(yi − yi)

2
√ (5)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n

(
∑n

i=1
(xi − yi)

2

)√
√
√
√ (6)  

Where xi and yi are the measured and forecasted values, respectively, 
and x and y are the average values of the measured and the forecasted 
data, respectively. The parameter n represents the length of the 
observation. 

The confusion matrix including precision, recall, F1-score and ac-
curacy have beeneen calculated and used to evaluate the SEL classifier 
algorithm. 

Accuracy=
(TP + TN)

(TP + FP + TN + FN)
(7)  

Precision=
TP

(TP + FP)
(8)  

Recall=
TP

(TP + FN)
(9)  

F1 − score=
2(Precision ∗ Recall)
(Recall + Precision)

(10)  

Where TP is the number of true positive, TN is the number of true 
negative, FP is the number of fault positive, and FN is the number of fault 
negative. 

3. Results 

3.1. Simulation results 

Concerning the fault detection stage, the predicted PV power for 
eight days is depicted in Fig. 8. Here, the cost function is less than 0.01, 
and an acceptable correlation between measured and predicted PV 
powers (Fig. 8b and c) can be observed, particularly for sunny days. 

Fig. 10. Smart remote monitoring and PV fault diagnosis system: a) DAS for measuring I, V, Gi, Tc and Ta, b) Remote monitoring system using NodeMCU ESP8266 
WiFi module, c) I–V tracer circuit for measuring and saving data into CSV format and d) GSM module (SIM808). 
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Table 1 lists the parameters of the ANN model and the calculated 
errors. The correlation coefficient is 97.5%, the MRPE is 2.43%, while 
the RMSE and MAE are quite small. The MLP-model has an approximate 
tolerance of 2.5% that needs to be considered when defining the 
threshold to avoid false alarm (fault detection function). In addition, this 

model should be trained periodically over time to keep its accuracy. 
Regarding the classification stage, the Confusion Matrix (CM) is 

shown in Fig. 9. From the first row of the CM, it can be seen that two 
samples of class F1 were misclassified in F3 and F5 classes. In the second 
row, one sample of class F3 is misclassified in F4. In the third row three 

Fig. 11. Dashboard based on the Blynk App (smart-phone) displaying the measured data in real time (I, V, P, Ta, Tc and Gi).  

Fig. 12. Experimental results: a) Dust deposit on PV modules (fault class #2), b) Received email from the developed system, c) Received SMS from the GSM module.  
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samples of F3 are misclassified in F1 and two in F5 classes. In the fourth 
row, three samples of class F4 are also misclassified in F2 and F5 classes. 
For the last row, one sample of class F5 is misclassified in F4. The 
calculated precision, recall, F1-score and accuracy are listed in Table 2. 
The misclassified rate is 3.5%. 

Table 2 reports the tuned hyper-parameters and the calculated error 
metrics of the developed classifier model. The classification accuracy is 
96.50%. It can be concluded that the SEL classifier can identify the faults 
F1 and F3 (corresponding to dust and open circuited diode + dust) with 
good precision (99%). Fault F2 and F3 (corresponding to shading and 
shading dust) with acceptable precision (97%), as the I–V curves in both 
faults are relatively similar. The model classifies the F5 with (shunted 
diode + shading) with a low precision. This error (misclassified rate 
3.5%) was mainly due to the complex I–V curve and similarity between 
certain types of fault, which make the classification task difficult. Also, 
this error should be considered when calculating the uncertainty of the 
designed embedded system. 

3.2. Experimental results 

Fig. 10 shows the test facility including the designed smart remote 
monitoring and the PV fault diagnosis system with the data-acquisition 
system for measuring I, V, Gi, Tc and Ta (Fig. 10a) using low-cost sensors. 
A remote monitoring system is based on the IoT technique (Fig. 10b) 

using a WiFi module (NodeMCU ESP8266). An I–V tracer circuit for 
measuring and saving the I–V characteristic into a CSV format is shown 
in Fig. 10c. A GSM module (SIM808) is used for sending messages (SMS) 
to the user (Fig. 10d). 

The developed codes have been optimized and then embedded into 
the Raspberry Pi 4. Fig. 11 illustrates an example of the online collected 
and posted data in the Blynk App. The posted data have been collected 
for a cloudy day with a PV voltage, current and power of 17.05 V, 1.6 A, 
and 28 W respectively. 

To check experimentally the designed remote-monitoring and fault 
diagnosis system various experiments have been carried out. As an 
example, a fault class #1 (dust accumulated on the PV module surface, 
Fig. 12a) was created, and the embedded codes inside the Raspberry Pi 4 
have been run. As a result, Figs. 12b and c show the email and the SMS 
received indicating the type of the fault (F1: Dust deposit on a PV 
module PV module). 

3.3. Cost and uncertainties 

Table 4 lists the used components, specification, cost and un-
certainties. The budget of sensors including current, voltage, air tem-
perature, cell temperature and reference solar cell was approximately 67 
$. While the budget of the electronics devices including WiFi-module, 
microprocessor, digital displayer, GSM module and I–V curve tracer 
was approximately 140 $. It should be noted that these costs can be 
reduced if the prototype is scaled up from the laboratory scale to mass 
production. 

The accuracy of the designed embedded system depends on the ac-
curacy of the classifiers (MLP = 2.5%, SEL = 3.5%), and on the uncer-
tainty of the sensors used to measure currents, voltages, cell 
temperatures and solar irradiances. 

4. Discussion 

In some of the tests (such as F2, F4 and F5 faults), a wrong notifi-
cation was received. This means that the multiclass classifier needs to be 
improved working on the dataset quality and size. In the case of the fault 
detection procedure based on the ANN, particularly for cloudy days, the 
produced power is estimated with low accuracy, and this leads to false 
alarms. Thus, a more efficient algorithm should be also developed to 
predict the PV power accurately. The dataset plays a vital role to in-
crease the accuracy of the fault detection procedure. It is worth noting 
that the capacity (RAM, CPU or GPU) of the used hardware (Micropro-
cessor or Microcontroller) should be carefully considered when using 
complex ML-based algorithms. Some advantages and disadvantages, of 
the designed system, are given in the following Table 3. Recommenda-
tions are also listed in Table 3. 

The main results and findings can be summarized as follows:  

- An MLP-based model was developed for the fault detection and an 
SML algorithm was developed for the classification purpose.  

- Simulation results showed a good accuracy for both classifiers (the 
detection rate is 97.5%, while the classification rate is 96.8%).  

- Single and multiple faults have been addressed at the same time 
while measuring the I–V curve.  

- Experimental tests indicate the capability of such embedded system 
to remotely monitor and diagnose the PV array.  

- The Blynk mobile App was employed to monitor and display data in 
real-time via a digital dashboard. 

5. Conclusion and perspectives 

In this work a smart embedded system for remote monitoring and 
fault diagnosis of a photovoltaic array is proposed and verified experi-
mentally. The feasibility of designing an embedded machine learning for 
fault diagnosis of PV arrays was demonstrated. The designed system is 

Table 3 
Advantages, disadvantages and recommendations for the considered system.  

Advantages Disadvantages Recommendations 

Inexpensive as 
embedded fault 
diagnosis solution. 

Database preparation 
requires an expert 
supervision (e.g. labelling 
defects). 

Increase the size and 
improve the quality of the 
dataset. 

Help operators to 
make adequate 
decisions. 

Databases with faults are not 
always available. 

Generalize the method for 
different PV module 
technologies. 

Maintain PV systems 
working safely. 

The classification accuracy 
needs to be improved, 
particularly for multi- 
classification (complex 
faults). 

Study the scalability of the 
method. 

Help to reduce the 
maintenance 
operation costs. 

The database should be 
periodically updated. 

Use ultra-low power edge 
device. 

Smart remote PV 
monitoring 
system.  

Apply more efficient ML 
algorithms.  

Table 4 
The estimated cost and uncertainty of the used sensors and devices.  

Components Specification Sensitivity/ 
Resolution 

Uncertainty 
(%) 

Cost 
($) 

Sensors 
Current sensor ACS720 (30A) 66 mV/A 0.2 3 
Voltage sensor AV25 5 V/25 mA 1 2 
Cell 

temperature 
Type K 0.1 ◦C ±0 .75 5 

Air temperature DHT11 ±1 ◦C ±2 ◦C 2 
Reference solar 

cell 
Mono 
crystalline Si 

< ms; matched to 
PV response 

±5% 55 

Electronic devices 
ADC converter ADS1015 12 bits 

4 channels 
0.01% 6 

NodeMCU 
ESP8266 Wifi 

WiFi module – – 8 

Raspberry pi 4 4G – – 58 
LCD display 16 × 04 – – 3 
SIM808 GSM module – – 15 
I–V tracer I–V – – 50 
Total cost 207  
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able to notify the users by email and SMS of the status of their photo-
voltaic system. Future work will focus on:  

- The possibility to generalize the method and use it for different 
photovoltaic technologies.  

- The accuracy of both models which could be improved by increasing 
the size of the dataset and by applying more efficient algorithms (e.g. 
multi-stacking ensemble learning or deep reinforcement machine 
learning).  

- The average cost which could be reduced by using low-cost and ultra- 
low-power microcontrollers.  

- Test the system in different countries under different weather 
conditions. 
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