Development of Organocatalytic Darzens Reactions Exploiting the Cyclopropenimine Superbase

Carmine Lops +, Lucia Pasquato * and Paolo Pengo *

Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy; carmine.lops@hotmail.com

- * Correspondence: lpasquato@units.it (L.P.); ppengo@units.it (P.P.)
- ⁺ Current address: Aptuit, Via A. Fleming 4, 37135 Verona, Italy.

SUPPLEMENTARY MATERIALS

Table of content

Analytical and spectroscopic data of catalyst I·HCl	Page S1
Analytical and spectroscopic data for 3aa	Page S2
Analytical and spectroscopic data for 3ab	Page S3
Analytical and spectroscopic data for 3ac	Page S4
Analytical and spectroscopic data for 3ad	Page S5
Analytical and spectroscopic data for 3ae	Page S7
Analytical and spectroscopic data for 3af	Page S9
Analytical and spectroscopic data for 3ce	Page S10
Analytical and spectroscopic data for 3de	Page S12
¹ H NMR, ¹³ C NMR of Representative Compounds	Page S14
References	Page S23

Analytical and spectroscopic data of catalyst I·HCl

¹H NMR (400 M MHz, CDCl₃): δ 7.78 (d, *J* = 9.5 Hz, 1H, N*H*), 7.25-7.12 (m, 5H, Ar*H*), 5.2 (bs, 1H, -O*H*), 4.05-3.78 (m, 3H, NC*H*BnC*H*₂OH), 3.27 (ddd, *J* = 11.9, 8.4, 3.8 Hz, 4H, NCy*H*), 3.16-3.00 (m, 2H, -C*H*₂Ph), 1.98-1.00 (m, 40H, Cy*H*).

¹³C NMR (100 MHz, CDCl₃): δ 138.43 (1C, C=N), 129.52 (2C, Ar), 128.24 (2C, Ar), 126.33 (1C, Ar), 117.41 (Cq), 114.83 (Cq), 64.08 (1C, NCHBnCH₂OH), 61.9 (1C, NCHBnCH₂OH), 59.43 (4C, -NCy), 38.61 (1C, -*C*H₂Ph), 32.41 (4C, Cy), 32.24 (4C, Cy), 25.73 (4C, Cy), 25.67 (4C, Cy), 24.68 (4C, Cy).

MS (ESI, 5600eV): Calcd.:[M+H⁺]: 546.85; Found: [M+H⁺]: 546.28.

Analytical and spectroscopic data for 3aa

(67% yield, *cis/trans*= 1/0.7, white solid):

Trans ¹H NMR (400 M MHz, CDCl₃): δ 7.5 (d, *J* = 8.0 Hz, 2H, H-3'), 7.18 (d, *J* = 8.3 Hz, 2H, H-2'), 3.99 (m, 1H, H-3), 3.36 (d, *J* = 1.5 Hz, 1H, H-2), 1.54 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 166.86 (1C, C=O), 134.44 (1C, C-1'), 131.78 (2C, C-3'), 127.5 (2C, C-2'), 122.86 (1C, C-4'), 82.9 (1C, *C*H(CH₃)₃), 57.39 (1C, C-2), 57.01 (1C, C-3), 28.00 (3C, CH(*C*H₃)₃). *Cis* ¹H NMR (400 M MHz, CDCl₃): δ 7.48 (d, *J* = 8.0 Hz, 2H, H-3'), 7.31 (d, *J* = 8.5 Hz, 2H, H-2'), 4.17 (d, *J* = 4.5 Hz, 1H, H-3), 3.72 (d, *J* = 4.5 Hz, 1H, H-2), 1.23 (s, 9H).^{1 13}C NMR (100 MHz, CDCl₃): δ 165.45 (1C, C=O), 132.32 (1C, C-1'), 131.04 (2C, C-3'), 128.5 (2C, C-2'), 122.3 (1C, C-4'), 82.63 (1C, *C*H(CH₃)₃), 56.56 (1C, C-3), 55.89 (1C, C-2), 27.74 (3C, CH(*C*H₃)₃).

MS (ESI, 5600eV): Calcd:[M+H⁺]: 258.08; Found: [M+H⁺]: 258.8 R_f: 0.35 (18/2 Cyclohexane/EtOAc).

Chiral HPLC: Chiralpak IA (25×0.46 cm), 5 µm, *n*-hexane/EtOH = 85/15, 1 ml/min, 220 nm.

Rt (minutes)	Area (%)
4.6	33.8
5.2	31.2
5.7	16.7
5.9	18.3

Analytical and spectroscopic data for 3ab

(65% yield, cis/trans = 1/0.7, white solid):

Trans ¹H NMR (400 M MHz, CDCl₃): δ 7.43-7.2 (m, 4H), 4.02 (d, *J* = 1.5 Hz, 1H, H-3), 3.38 (d, *J* = 1.8 Hz, 1H, H-2), 1.57 (s, 9H, *t*-Bu).² ¹³C NMR (100 MHz, CDCl₃): δ 166.91 (1C, C=O), 134.75 (1C, Cq), 133.9 (1C, Cq) 128.84 (2C, C-3'), 127.22 (2C, C-2'), 82.9 (1C, *C*(CH₃)₃), 57.44 (1C, C-2), 56.97 (1C, C-3), 28.00 (3C, CH(*C*H₃)₃). *Cis* ¹H NMR (400 M MHz, CDCl₃): δ 7.43-7.2 (m, 4H), 4.21 (d, *J* = 4.8 Hz, 1H, H-3), 3.74 (d,

 $J = 4.8 \text{ Hz}, 1\text{H}, \text{H-2}, 1.24 \text{ (s, 9H, }t\text{-Bu}).^{2} \, ^{13}\text{C} \text{ NMR} (100 \text{ MHz}, \text{CDCl}_3): \delta 165.48 (1\text{C}, \text{C=O}), 134.17 (1\text{C}, \text{Cq}), 131.78 (1\text{C}, \text{Cq}) 128.19 (2\text{C}, \text{C-3}'), 128.1 (2\text{C}, \text{C-2}'), 82.61 (1\text{C}, C(\text{CH}_3)_3), 56.51 (1\text{C}, \text{C-2}), 55.96 (1\text{C}, \text{C-3}), 27.73 (3\text{C}, \text{CH}(C\text{H}_3)_3).$

MS (ESI, 5600eV): Calcd.: [M+H⁺]: 255.71; Found: [M+H⁺]: 255.02.

Rf: 0.36 (18/2 Cyclohexane/EtOAc).

Rt (minutes)	Area (%)
1.41	14
1.47	16

Chiral HPLC: Chiralpak IA (25×0.46 cm), 5 µm, *n*-hexane/EtOH = 90/10, 1 ml/min, 220 nm.

Analytical and spectroscopic data for 3ac

(32% yield, cis/trans = 1/0.9, white solid):

Trans ¹H NMR (400 M MHz, CDCl₃): δ 7.31–7.22 (m, 2H, H-2'), 7.09-7,01 (m, 2H, H-3'), 4.01 (d, *J* = 1.3 Hz, 1H, H-3), 3.37 (d, *J* = 1.5 Hz, 1H, H-2), 1.52 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 167.03 (1C, C=O), 163.08 (d, *J* = 245 Hz, C-4'), 131.1 (d, *J* = 2 Hz, C-1'), 127.6 (d, *J* = 8 Hz, C-2'), 115.65 (d, *J* = 21 Hz, C-3'), 82.82 (1C, *C*(CH₃)₃), 57.41 (1C, C-2), 57.05 (1C, C-3), 28.00 (3C, CH(*C*H₃)₃). Error! Bookmark not defined.

Cis ¹H NMR (400 M MHz, CDCl₃): δ 7.44–7.36 (m, 2H, H-2'), 7.09-7,01 (m, 2H, H-3'), 4.2 (d, J = 4.5 Hz, 1H, H-3), 3.7 (d, J = 4.5 Hz, 1H, H-2), 1.22 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 165.6 (1C, C=O), 162.7 (d, J = 245 Hz, C-4'), 129.01 (d, J = 3 Hz, C-1'), 128.5 (d, J = 245 Hz, C-4'), 129.01 (d, J = 3 Hz, C-1'), 128.5 (d, J = 245 Hz, C-4'), 129.01 (d, J = 3 Hz, C-1'), 128.5 (d, J = 245 Hz, C-4'), 129.01 (d, J = 3 Hz, C-1'), 128.5 (d, J = 245 Hz, C-4'), 129.01 (d, J = 3 Hz, C-1'), 128.5 (d, J = 245 Hz, C-4'), 129.01 (d, J = 3 Hz, C-1'), 128.5 (d, J = 245 Hz, C-4'), 129.01 (d, J = 3 Hz, C-1'), 128.5 (d, J = 245 Hz, C-4'), 129.01 (d, J = 3 Hz, C-1'), 128.5 (d, J = 245 Hz, C-4'), 129.01 (d, J = 3 Hz, C-1'), 128.5 (d, J = 245 Hz, C-4'), 129.01 (d, J = 3 Hz, C-1'), 128.5 (d, J = 245 Hz, C-4'), 129.01 (d, J = 3 Hz, C-1'), 128.5 (d, J = 245 Hz, C-4'), 129.01 (d, J = 3 Hz, C-1'), 128.5 (d, J = 245 Hz, C-4'), 129.01 (d, J = 3 Hz, C-1'), 128.5 (d, J = 245 Hz, C-4'), 129.01 (d, J = 3 Hz, C-1'), 128.5 (d, J = 245 Hz, C-1'), 128.5 (d,

= 8 Hz, C-2'), 114.89 (d, *J* = 22 Hz, C-3'), 82.51 (1C, *C*(CH₃)₃), 56.53 (1C, C-2), 55.98 (1C, C-3), 27.71 (3C, CH(*C*H₃)₃). MS (ESI, 5600eV): Calcd.:[M+H⁺]: 239.25; Found: [M+H⁺]: 238.95 R_f: 0.32 (18/2 Cyclohexane/EtOAc).

Ultra Performance LC analysis:

Chiral HPLC: Chiralpak AY-H (25×0.46 cm), 5 µm, *n*-hexane/EtOH = 85/15, 1 ml/min, 220 nm.

Analytical and spectroscopic data for 3ad

(47% yield, cis/trans = 1/0.7, white solid):

Trans ¹H NMR (400 M MHz, CDCl₃): δ 8.27–8.17 (m, 2H, H-3'), 7.50 (d, *J* = 8.5 Hz, 2H, H-2'), 4.13 (d, *J* = 1.3 Hz, 1H, H-3), 3.39 (d, *J* = 1.3 Hz, 1H, H-2), 1.54 (s, 9H). *Cis* ¹H NMR (400 M MHz, CDCl₃): δ 8.27–8.17 (m, 2H, H-3'), 7.62 (d, *J* = 8.5 Hz, 2H, H-2'), 4.3 (d, *J* = 4.5 Hz, 1H, H-3), 3.8 (d, *J* = 4.5 Hz, 1H, H-2), 1.22 (s, 9H).³ ¹³C NMR (100 MHz, CDCl₃): δ 166.28 (1C, C=O), 164.91 (1C, C=O), 142.64 (1C), 140.48 (1C), 130.47 (1C), 127.87 (1C, C-2', *cis*), 126.7 (1C, C-2', *trans*), 124.31 (1C), 123.89 (1C, C-3', *trans*), 123.11 (1C, C-3', *cis*), 83.36 (1C), 83.04 (1C), 57.7 (1C, *trans*), 56.42 (1C, *trans*), 56.25 (1C, *cis*), 55.96 (1C, *cis*), 27.98 (3C, CH(*C*H₃)₃, *trans*), 27.75 (3C, CH(*C*H₃)₃, *cis*).³ MS (ESI, 5600eV): Calcd.: [M+H⁺]: 266.26; Found: [M+H⁺]: 266.04. R/: 0.29 (18/2 Cyclohexane/EtOAc).

Chiral HPLC: Chiralpak IA (25×0.46 cm), 5 µm, *n*-hexane/EtOH = 70/30, 1 ml/min, 220 nm.

Analytical and spectroscopic data for 3ae

(78% yield, cis/trans = 1/0.7, white solid):

Trans ¹H NMR (400 M MHz, CDCl₃): δ 7.71–7.63 (m, 2H, H-3'), 7.42 (d, *J* = 8.0 Hz, 2H, H-2'), 4.09 (d, *J* = 1.3 Hz, 1H, H-3), 3.37 (d, *J* = 1.5 Hz, 1H, H-2), 1.56 (s, 9H).²

Cis ¹H NMR (400 M MHz, CDCl₃): δ 7.71–7.63 (m, 2H, H-3'), 7.56 (d, *J* = 8.0 Hz, 2H, H-2'), 4.25 (d, *J* = 4.8 Hz, 1H, H-3), 3.78 (d, *J* = 4.8 Hz, 1H, H-2), 1.21 (s, 9H).²

¹³C NMR (100 MHz, CDCl₃): δ 166.38 (1C, C=O), 165.00 (1C, C=O), 140.74 (1C), 138.58 (1C), 132.43 (2C), 131.69 (2C), 127.65 (2C, C-2', *cis*), 126.53 (2C, C-2', *trans*), 118.52 (1C), 118.36 (1C), 112.71 (1C), 112.19 (1C), 83.28 (1C), 82.96 (1C), 57.65 (1C, C-3, *trans*), 56.61 (1C, C-2, *trans*), 56.34 (1C, C-3, *cis*), 55.93 (1C, C-2, *cis*), 27.98 (3C, CH(CH₃)₃, *trans*), 27.71 (3C, CH(CH₃)₃, *cis*).

MS (ESI, 5600eV): Calcd.: [M+H⁺]: 246.27; Found: [M+H⁺]: 245.99

 R_f : 0.35 (18/2 Cyclohexane/EtOAc).

Chiral HPLC: Chiralpak IA (25×0.46 cm), 5 µm, *n*-hexane/EtOH = 85/15, 1 ml/min, 220 nm.

Analytical and spectroscopic data for 3af

(41% yield, cis/trans = 1/0.6, white solid):

Trans ¹H NMR (400 MHz, CDCl₃): δ 7.65-7.32 (m, 7H, Ar), 4.2 (d, *J* = 1.3 Hz, 1H), 3.54 (d, *J* = 1.3 Hz, 1H), 1.54 (s, 9H). *Cis* ¹H NMR (400 MHz, CDCl₃): δ 7.65-7.32 (m, 7H, Ar), 4.39 (d, *J* = 4.5 Hz, 1H), 3.8 (d, *J* = 4.8 Hz, 1H), 1.12 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 167.23 (1C, C=O, trans), 165.84 (1C, C=O, cis), 133.57 (1C), 133.2 (1C), 133.04 (1C), 132.73 (1C), 130.72 (1C), 128.57 (1C), 127.96 (1C), 127.85 (1C), 127.8 (1C), 127.73 (1C), 127.64 (1C), 126.56 (1C), 126.47 (1C), 126.28 (1C), 126.17 (1C), 126.08 (1C), 125.96 (1C), 124.24 (1C), 122.59 (1C), 82.77 (1C, *C*H(CH₃)₃, *trans*), 82.43 (1C, CH(CH₃)₃, *cis*), 57.92 (1C, *trans*), 57.51 (1C, *trans*), 57.31 (1C, *cis*), 56.24 (1C, *cis*), 28.03 (1C, CH(CH₃)₃, *trans*), 27.64 1C, (CH(*C*H₃)₃, *cis*). MS (ESI, 5600eV): Calcd.: [M+H⁺]: 271.32; Found: [M+H⁺]: 271.04.

 R_f : 0.25 (18/2 Cyclohexane/EtOAc).

Chiral HPLC: Chiralpak AD-H (25 x 0.46 cm) 5 μ m, *n*-hexane/EtOH = 80/20, 1 ml/min, 220 nm.

Analytical and spectroscopic data for 3ce

(32% yield, cis/trans = 1/0.9, white solid):

Trans ¹H NMR (400 MHz, DMSO-*d6*): 7.87 (d, J = 8.3 Hz, 2H), 7.51 (d, J = 8.3 Hz, 2H), 4.47 (d, J = 4.8 Hz, 1H), 4.24 (d, J = 4.8 Hz, 1H), 3.67-2.68 (m, 8H). *Cis* ¹H NMR (400 MHz, DMSO-*d6*): 7.84 (d, J = 8.5 Hz, 2H), 7.57 (d, J = 8.3 Hz, 2H), 4.21 (d, J = 1.8 Hz, 1H), 4.17 (d, J = 1.8 Hz, 1 H), 3.67-2.68 (m, 8H).

¹³C NMR (100 MHz, DMSO-*d6*): δ 164.85 (1C, C=O), 163.16 (1C, C=O), 142.02 (1C), 140.62 (1C), 132.89 (2C), 132.5 (2C), 127.71 (2C), 127.65 (2C), 119.1 (1C), 119.08 (1C), 111.7 (1C), 111.42 (1C), 66.53 (1C), 66.5 (1C), 66.39 (1C), 66.37 (1C), 58.32 (1C, *cis*), 56.8 (1C, *trans*), 56.58 (1C, *cis*), 56.31 (1C, *trans*), 45.4 (1C), 44.88 (1C), 42.44 (1C), 41.62 (1C). MS (ESI, 5600eV): Calcd.: [M+H⁺]: 259.27; Found:[M+H⁺]: 259.08. Pr: 0.15 (18/2 Cyclobeyeapa/EtOA.e)

Rf: 0.15 (18/2 Cyclohexane/EtOAc).

Chiral HPLC: Chiralcel OJ-H (25 x 0.46 cm) 5 μ m *n*-hexane/ethanol 60/40, 1 ml/min, 220 nm.

Analytical and spectroscopic data for 3de

(86% yield, cis/trans = 1/0.75, white solid):

Trans ¹H NMR (400 MHz, DMSO-*d6*): δ 7.87 (d, *J* = 8.3 Hz, 2H), 7.6 (d, *J* = 8.3 Hz, 2H), 4.22 (d, *J* = 1.3 Hz, 1H), 4.11 (d, *J* = 1.5 Hz, 1H), 3.69 (s, 3H, Me), 3.18 (s, 3H, Me). *Cis* ¹H NMR (400 MHz, DMSO-*d6*): δ 7.81 (d, *J* = 8.3 Hz, 2H), 7.55 (d, *J* = 8.3 Hz, 2H), 4.52 (d, *J* = 5 Hz, 1H), 4.35 (bs, 1H), 3.57 (bs, 3H, Me), 2.91 (bs, 3H, Me). ¹³C NMR (100 MHz, DMSO-*d6*): δ 166.53 (1C, C=O), 165.83 (1C, C=O), 141.91 (1C), 140.34 (1C), 132.97 (2C, *trans*), 132.39 (2C, *cis*), 128.11 (2C, *cis*), 127.59 (2C, *trans*), 119.08 (1C), 119.06 (1C), 111.8 (1C), 111.37 (1C), 62.36 (1C), 62.11 (1C), 57.72 (1C, *cis*), 56.47 (1C, *cis*), 56.27 (1C, *trans*), 56.13 (1C, *trans*), 32.58 (1C), 32.35 (1C). MS (ESI, 5600eV): Calcd.: [M+H⁺]: 233.23; Found: [M+H⁺]: 232.96. R_f: 0.23 (18/2 Cyclohexane/EtOAc).

Rt (minutes)	Area (%)
0.67	37
0.73	35

Chiral HPLC: Chiralpak AS-H (25 x 0.46 cm) 5 μ m, *n*-hexane/ethanol 70/30, 1 ml/min, 220 nm.

¹H NMR and ¹³C NMR Spectra

References

¹ Sharifi, A.; Abaee, M. S.; Mirzaei, M.; Salimi, R. Ionic Liquid-Mediated Darzens Condensation: An Environmentally-Friendly Procedure for the Room-Temperature Synthesis of α,β-Epoxy Ketones. *J. Iran. Chem. Soc.* **2008**, *5*, 135-139 (doi.org/10.1007/BF03245826).
² Kowalkowska, A.; Jończyk, A. Effect of Phase-Transfer Catalyst on Stereochemistry of tert-Butyl-3-aryl(alkyl)-Substituted Glycidates. *Org. Process Res. Dev.* **2010**, *14*, 728-731. (doi.org/10.1021/op1000379)

³ Arai, S.; Suzuki, Y.; Tokumaru, K.; Shioiri, T. Diastereoselective Darzens reactions of αchloroesters, amides and nitriles with aromatic aldehydes under phase-transfer catalyzed conditions. *Tetrahedron Lett.* **2002**, *43*, 833-836.