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Abstract. In the present paper, we address a physically-meaningful extension of the linearised Prandtl equations around a
shear flow. Without any structural assumption, it is well-known that the optimal regularity of Prandtl is given by the class
Gevrey 2 along the horizontal direction. The goal of this paper is to overcome this barrier, by dealing with the linearisation
of the so-called hyperbolic Prandtl equations in a strip domain. We prove that the local well-posedness around a general
shear flow Ush ∈ W 3,∞(0, 1) holds true, with solutions that are Gevrey class 3 in the horizontal direction.

1. Introduction

The main concern of this paper is to set up a rigorous well-posedness theory for the following extension
of the linearised and reduced Prandtl equations on a thin strip:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(∂t + 1)
(
∂tu + Ush∂xu + v U ′

sh

) − ∂2
yu = 0, (t, x, y) ∈ (0, T ) × T × (0, 1),

∂xu + ∂yv = 0 (0, T ) × T × (0, 1),

(u, ut)|t=0 = (uin, ut,in) T × (0, 1),

u|y=0 = 0, v|y=0 = 0 (0, T ) × T.

(1.1)

In this system, the unknown is the horizontal component u = u(t, x, y) of the velocity field (u, v)T :
(0, T ) ×T× (0, 1) → R

2, while the vertical component v = v(t, x, y) is determined by the divergence-free
condition ∂xu + ∂yv = 0 and by the Dirichlet relation v|y=0 = 0, which formally imply

v(t, x, y) = −∂x

∫ y

0

u(t, x, z)dz, (t, x, y) ∈ (0, T ) × T × (0, 1).

The function Ush = Ush(y) depends uniquely upon the vertical variable y ∈ (0, 1) and describes a shear
flow (Ush(y), 0)T , around which the original equations have been linearised. System (1.1) arises indeed
from a meaningful extension of the classical Prandtl equations, known as hyperbolic Prandtl equations
[26]. With our analysis, we aim to show how System (1.1) might be particularly desirable, in order to
overcome certain analytic barriers that are typical of the classical Prandtl theory. More precisely, System
(1.1) is amenable in terms of solutions that have regularity Gevrey-class 3 along the vertical variable
x ∈ T, overcoming therefore the well-known barrier of Gevrey-class 2 of the Prandtl theory. Details about
this statement and our main result are presented starting from Sect. 1.4. First, we shall provide some
background on the origin of this model.

1.1. The Prandtl Equations and the Barrier of Gevrey-Class 2

In order to understand the major characteristics of (1.1), we shall briefly overview the original model of
Prandtl, that was introduced during a 10 min presentation of the 1904 Third International Mathematics
Congress in Heidelberg [32]. Such short presentation has scientifically impacted many disciplines, so much
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that nowadays the field of aerodynamics is still shaped by his fundamental idea: in order to describe the
inviscid limit of an incompressible fluid in a region close to a solid surface (where dissipative forces are
predominant), one would rather consider the velocity of the fluid in terms of rescaled variables, which
concentrate the dissipative effects in a thin region close to the boundary. This procedure provides a “split”
in the behaviour of the flow:

• within the bulk, the hydrodynamics is dominated by the incompressible Euler equations with no-
penetration boundary conditions,

• on a neighbourhood of the boundary, a corrective term (the so-called boundary layer) provided by
the Prandtl equations restores the natural no-slip boundary conditions for viscous flows.

One of the simplest forms of the (non-linear) Prandtl equations in two dimensions is given by
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tu + u∂xu + v∂yu − ∂2
yu = ∂tu

E + uE∂xuE , (t, x, y) ∈ (0, T ) × X × (0,+∞),

∂xu + ∂yv = 0 (0, T ) × X × (0,+∞),

(u, v)|y=0 = 0 lim
y→+∞ u = uE (0, T ) × X,

ut|=0 = uin X × (0,+∞),

(1.2)

where x ∈ X describes the (local) arc-length parametrisation of the solid surface (usually in the math-
ematical community X = T or X = R), while uE = uE(t, x) is determined by the solution of the Euler
equation in the bulk of the flow, when approaching the boundary.

The analysis of (1.2) has received from the mathematical community numerous investigations during
the past decades. Although the Prandtl equations are classical, their applications are rather narrowed
because of the particular unstable nature of the underlying solutions. These instabilities are nowadays
moderately well understood and relate mainly to separation phenomena (appearance of reversed flow in
the boundary layers).

The first rigorous mathematical study addressing the well-posedness of the Prandtl equations (1.2)
was performed in the book of Oleinik and Samokhin [23] in the case of so-called monotonic initial data
(namely initial velocity uin in (1.2), satisfying ∂yuin > 0). Roughly speaking, the Olenik’s monotonicity
prevents the mentioned flow separation, at least locally in time. This allows to recast the velocity field
through a meaningful transformation (known as Crocco transformation), providing a solid ground to the
local-in-time well posedness of (1.2) within function spaces typical of hydrodynamics, such as Sobolev
ones. For more details on the Olenik’s monotonicity, we refer the reader to the more recent result [2], in
which the authors construct local-in-time solutions via a Nash-Moser argument. See also [21] for a proof
performed purely by energy methods.

For initial data lacking monotonicity, the well-posedness becomes much more involved and one has
to consider function spaces that control infinite derivatives of the solutions. This was addressed in the
celebrated result [31] of Caflisch and Sammartino, where the authors dealt with non-monotonic initial
data uin that are analytic in the variable x ∈ X = R. In the framework of a periodic variable x ∈ X = T,
analytic initial data can be easily understood through their Fourier series, under a strong localisation of
the frequencies:

uin(x, y) =
∑

k∈Z

uin,k(y)eikx,

where the modes uin,k(y) decays exponentially as uin,k(y) ∼ e−a|k|, for some radius of analyticity a > 0.
This type of initial data are however extremely regular and with reduced applications to real phenomena.
For this reason, an increasing number of works were devoted to relax this framework.

The first breakthrough was provided in [14] by Gérard-Varet and Masmoudi, where the authors showed
that the Prandtl system is actually locally well-posed for data that are Gevrey-class 7/4 in the x-variable.
Roughly speaking, an initial data uin is Gevrey-class m along x ∈ T, with m > 1, if the modes uin,k(y)
decay exponentially as uin,k(y) ∼ e−a|k|1/m

, for a suitable radius a > 0. Already in [14], however, the
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authors remarked that the Gevrey-class 7/4 was unlikely to be optimal and that further insights from
numerics suggested rather a threshold of Gevrey-class 2 (i.e. uin,k(y) ∼ e−a|k|1/2

).
Eventually, this remark was mathematically formalised and a first result in this direction was attained

in [20], assuming that the velocity (u, v)T in (1.2) is a small perturbation of a suitable shear flow, which
satisfies a non-degenerate condition (for details cf. Assumption 1.1 in [20]).

The breakthrough of Gevrey 2 was however achieved by Gerard-Varet and Dietert in [11], where the
authors developed a robust local well-posedness theory without any structural assumption on the flow
(such as monotonicity or critical points). Their result was based on a meaningful change of state variable,
from which the present work takes substantial inspiration.

From the work of Gerard-Varet and Dietert followed a variety of questions, in particular to determine
whether the Gevrey-class 2 was optimal for the well-posedness of System (1.2) or if further insights
would have led to weaker regularities. Surprisingly, Gerard-Varet and Dormy overturned any possibility
of improvement, providing indeed a negative answer to this open problem. In their seminal result [13],
the authors showed that already at the level of the linearised equations around a shear flow (Ush(y), 0),
namely replacing the first equation of (1.2) with

∂tu + Ush∂xu + v U ′
sh − ∂2

yu = 0, (t, x, y) ∈ (0, T ) × T × (0,+∞), (1.3)

the linear propagator of regularity is unbounded in Gevrey-class higher than 2. Roughly speaking, the
authors showed the existence of solutions, whose modes in the frequencies k ∈ Z experience an exponential
growth with rate |k|1/2, at least shortly in time. In general, this growth could be counteracted only by
Gevrey-2 initial data, suggesting an arrangement that seemingly precludes any room for improvement.
In other words, this was the first encounter with the barrier of Gevrey 2, which implied in particular that
the linearised Prandtl equations are ill-posed within Sobolev spaces.

We refer the reader to the works [10,12,17,18], as well, which concern further instabilities of the
Prandtl equations.

1.2. The Hydrostatic Approximation

When the vertical variable y is bounded, for instance with y ∈ (0, 1) (as in our System (1.1)), a different
type of equations has adequately found a mathematical relevance, namely the so-called hydrostatic ap-
proximation of Navier–Stokes/Prandtl. In two dimensions, these equations are a reminiscent of Prandtl
and take the form

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tu + u∂xu + v∂yu − ∂2
yu + ∂xp = 0, (t, x, y) ∈ (0, T ) × X × (0, 1),

∂yp = 0, (0, T ) × X × (0, 1),

∂xu + ∂yv = 0 (0, T ) × X × (0, 1),

(u, v)|y=0,1 = 0 (0, T ) × X,

ut|=0 = uin X × (0, 1).

(1.4)

This model is significant in several phenomena of atmospheric science and can be derived from the so-
called primitive equations. Beside the vertical domain, System (1.4) inherently differs from (1.2) in the
boundary conditions of v. In (1.4) v is null in both y = 0, 1, whereas in (1.2) v has homogeneous condition
only in y = 0 (without any assumption for y → +∞). Because of this, the pressure p in the hydrostatic
approximation (1.4) is non-trivial and can be interpreted as a Lagrangian multiplier associated to the
constraint v|y=1 = 0. We refer the reader to the works [3,4,15,16,21,22,27,34] and the interesting result in
[30], in which the author proves that, contrarily to what happens for the Prandtl equations, the presence
of an inflexion point may trigger high-frequencies instabilities in the linearization of eq. (1.4) around a
shear flow, i.e. eq. (1.4) in which the first equation is substituted by eq. (1.3). We want to highlight that,
to the best of our knowledge, the best regularity result for eq. (1.4) is provided in [15,33] for 9/8–Gevrey
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data under an additional convexity assumption. Hence the optimal stability vs. instability question is still
an open question for the system (1.4), contrarily to what is known for the Prandtl system (1.2).

Remark 1.1. This paper addresses the well-posedness of (1.1) within y ∈ (0, 1), nevertheless our intent is
to provide insights about an extension of the Prandtl equations (1.2) (for which we know that the barrier is
Gevrey 2) rather than the hydrostatic ones in (1.4). Dealing with the pressure and homogeneous Dirichlet
conditions on v is beyond our interest (certainly, with the pressure, the problem would be much more
involved). We address a bounded vertical domain y ∈ (0, 1) uniquely for the sake of a clear presentation
of our analysis. To the best of our knowledge, our work is indeed the first to overcome the barrier of
Gevrey 2 for a meaningful extension of Prandtl. We infer that a similar result can be achieved in the
classical domain (t, x, y) ∈ (0, T ) × T × (0,∞), making use of a related ansatz on function spaces with
weighted norms in the vertical direction.

1.3. The Cattaneo’s Law on the Hydrostatic Approximation

Besides the barrier of Gevrey 2, a more physical drawback of Systems (1.2) and (1.4) can be found at
the level of the Navier–Stokes equations (from which (1.2) and (1.4) are indeed asymptotically derived),
because of the so-called infinite propagation speed of the velocity field (any local variation of the velocity
field perturbs immediately the flow in all the domain). To avoid this scenario (which may be occasionally
unsatisfactory, especially in the hydrodynamics of fluids at large scale), a suitable hyperbolic extension of
Navier–Stokes has found growth in popularity in the mathematical community (cf. [1,5,9,24,26,28,29]).
At a first glance, this extension seems to introduce obstacles, for instance it enlarges the hydrostatic
equations (1.4) into

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
τ∂t + 1

)(
∂tu + u∂xu + v∂yu

) − ∂2
yu + ∂xp = 0, (0, T ) × X × (0, 1),

∂yp = 0 (0, T ) × X × (0, 1),

∂xu + ∂yv = 0 (0, T ) × X × (0, 1),

(u, v)|y=0,1 = 0 (0, T ) × X,

(u, ut)|t=0 = (uin, ut,in) X × (0, 1),

, (1.5)

where τ > 0 is a meaningful parameter, konwn as relaxation time. Once more, the pressure p in (1.5) is
uniquely due to v|y=1 = 0 and would vanish when relaxing this constraint (as in our model (1.1)).

System (1.5) arises (at least formally) from the inviscid limit of the Navier–Stokes equations, whose
Cauchy stress tensor is “delayed” through a first-order Taylor expansion:

S(t + τ, ·) ≈ S(t, ·) + τ∂tS(t, ·) = ν
∇u(t, ·) + ∇u(t, ·)T

2
(we refer to [5] for more details). This relation was introduced in fluid-dynamics by Carrassi and Morro
[6], inspired by the celebrated work of Cattaneo [7,8] on heat diffusion.

Despite its relevance, the well-posedness theory of System (1.5) is unfortunately much less understood.
In [26], the authors considered τ = 1 and neglected the term ∂t(u∂xu + v∂yu) in the first equation. By
exploiting a similar technique as the one used in [25], they showed that small initial data in Gevrey 2
generate global-in-time solutions. Moreover, in this framework, they justified the asymptotic limit of the
Navier–Stokes under Cattaneo’s law towards the solutions of (1.5), when the viscosity is vanishing.

The main goal of this paper is to show that one can potentially overcome the barrier of Gevrey 2,
when dealing with the relevant extensions (1.5) of the classical Prandtl equation. We indicate accurately
this principle on the linearised equation (1.1) of System (1.5) around a shear flow (Ush(y), 0), when the
constraint v|y=1 = 0 is relaxed (hence no pressure is involded, as for Prandtl). We establish that this
model is indeed well-posed locally-in-time, when the initial data are Gevrey-class 3 in x (thus less regular
than Gevrey 2) and Sobolev in y. We provide also some remarks about the non-linear system in Sect. 3.
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1.4. Preliminaries and Statement of the Main Result

To formalise our statement, we shall briefly recall the formal definition of Gevrey functions, that we will
use throughout our analysis.

Definition 1.2. Let σ > 0 and m ≥ 1. We define the Banach space Gm
σ,xL2

y = Gm
σ (T, L2(0, 1)) (resp. Gm

σ,x

H1
0,y = Gm

σ (T,H1
0 (0, 1))) as all integrable functions f ∈ L1(T × (0, 1)) satisfying:

• Each coefficient fk : (0, 1) → R of the Fourier transform in the x-variable

fk(y) =
1
2π

∫

T

f(x, y)e−ikxdx, y ∈ (0, 1),

belongs to L2(0, 1) (resp. H1
0 (0, 1)).

• The sequences of norms (‖fk‖L2)k∈Z (resp. (‖∂yfk‖L2)k∈Z) decays exponentially as e−σ|k|1/m

at high
frequencies.

More precisely, f ∈ L1(T × (0, 1)) belongs to Gm
σ,xL2

y (resp. Gm
σ,xH1

0,y), if the following norm is indeed
finite:

‖f‖Gm
σ,xL2

y
:=

∥
∥
∥eσ|k| 1

m ‖fk‖L2(0,1)

∥
∥
∥

�∞(Z)
= sup

k∈Z

{

eσ|k| 1
m

( ∫ 1

0

|fk(y)|2dy

) 1
2
}

< +∞, (1.6)

(resp. ‖f‖Gm
σ,xH1

0,y
:= ‖∂yf‖Gm

σ,xL2
y

< +∞).

Function spaces with Gevrey regularity are rather standard, especially in the mathematical treatment
of the Prandtl equations. Indeed, by strongly localising the frequencies, one copes with the major insta-
bilities of the underlying solutions. When f = f(x) depends uniquely upon x ∈ T, however, the definition
of the Gevrey norm in (1.6) may vary in terms of the preferred analytical tools. Among the most relevant
norms, we mention for instance

(
∑

k∈Z

e2σ|k| 1
m |fk|2

) 1
2

, sup
n∈N

{
σn

(n!)m
‖∂n

x f‖L∞(T)

}

,

which are somehow equivalent to (1.6), for positive radii close to σ.

Definition 1.3. Let T denote a lifespan in (0,+∞] and η : (0, T ) → (0,+∞) be a positive continuous
non-increasing function, representing the time-evolution of the Gevrey radius of regularity. We say that
a function f belongs to Lp(0, T ;Gm

η(t),xL2
y) (resp. Lp(0, T ;Gm

η(t),xH1
0,y)), for a fixed 1 ≤ p ≤ ∞, if

• f belongs to Lp(0, T ;L1(T × (0, 1))),
• f(t) belongs to Gm

η(t),xL2
y (resp. Gm

η(t),xH1
0,y), for almost any t ∈ (0, T ),

• the function t ∈ (0, T ) → ‖f(t)‖Gm
η(t),xL2

y
(resp. t ∈ (0, T ) → ‖f(t)‖Gm

η(t),xH1
0,y

) belongs to Lp(0, T ).

The function space being set up, the main goal of this paper is to establish the local-in-time existence
of solutions for the linearised equation (1.1), whose initial data uin and ut,in are indeed Gevrey-class 3 in
the horizontal variable, as described by Definition 1.2.

Theorem 1.4. Assume that the shear flow y ∈ (0, 1) �→ Ush(y) is in W 3,∞(0, 1), while the initial data
uin, ut,in : T × (0, 1) → R are in G3

σ,xH1
0,y and G3

σ,xL2
y, respectively, for a positive σ > 0. Denoting by

Tσ > 0 the lifespan

Tσ := sup
{

t > 0 such that
σ

8
− 2

5
6

(
‖U ′′′

sh‖L∞ + 2‖U ′′
sh‖L∞

) 1
3
e

t
3 t > 0

}

∈ (0,+∞] (1.7)

and by β, γ : [0, Tσ) → (0,+∞) the following time-dependent radii of Gevrey-class regularity

β(t) :=
σ

4
− 2

5
6

(
‖U ′′′

sh‖L∞ + 2‖U ′′
sh‖L∞

) 1
3
e

t
3 t > 0, γ(t) := β(t) − σ

8
> 0, (1.8)
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then the linearised system (1.1) admits a unique weak solution u : [0, Tσ)×T× (0, 1) → R in the function
space

u ∈ L∞(0, Tσ;G3
β(t),xH1

0,y) with ∂tu ∈ L∞(0, Tσ;G3
γ(t),xL2

y). (1.9)

Furthermore, the following estimate holds true at any time t ∈ [0, Tσ):

‖u(t)‖G3
β(t),xH1

0,y
+ ‖∂tu(t)‖G3

γ(t),xL2
y

≤ Dσ(Ush)(1 + t)5et
(
‖uin‖G3

σ,xH1
0,y

+ ‖ut,in‖G3
σ,xL2

y

)
, (1.10)

for a suitable constant Dσ(Ush) > 0, which depends uniquely upon σ > 0 and the W 3,∞-norm of Ush.

Before presenting the major novelties and implications of this result, some remarks on the statement
are here in order.

The solutions of Theorem 1.4 are weak because of the regularity of the initial data along the vertical
direction y ∈ (0, 1). This regularity comes from the underlying a-priori energy of the System (1.1)

1
2

d

dt

[
‖(∂t + 1)u‖2

L2 + ‖∂yu‖2
L2

]
+ ‖∂yu‖2

L2 = 0.

Although the solution u and its derivative ∂tu are in L∞ with respect to the time variable, we write the
estimate (1.10) at any t ∈ [0, Tσ) (instead of “for a.e. t ∈ (0, Tσ)”). This is due to the fact that both u
and ∂tu admit a continuous representative in the following space: for any finite T ∈ (0, Tσ) and for any
fixed radius μ ∈ (0, β(T )) (resp. μ ∈ (0, γ(T ))), t ∈ [0, T ] → u(t) belongs to C([0, T ],G3

μ,xH1
0,y) (resp. ∂tu

belongs to C([0, T ],G3
μ,xH1

0,y)). Writing directly the expression u ∈ C([0, Tσ),G3
β(t),xH1

0,y) in (1.9) would
be somehow incomplete without a proper clarification, since the norm of G3

β(t),xH1
0,y does progress in

time. Certainly one may define this continuity in terms of topology, however this would just complicate
the readability of the paper. We maintain therefore the function space of (1.9) and the estimate (1.10)
at any time t ∈ [0, Tσ).

The solutions provided by Theorem 1.4 are (in general) only local-in-time, although system (1.1) is
linear in its state variables. Indeed, as for the classical Prandtl equations, the high regularity of the initial
data uin, ut,in is persistently eroded by the term vU ′

sh in (1.1) (and in our extension of Prandtl with
Cattaneo also by ∂tvU ′

sh), together with the viscous operator −∂2
yu in y ∈ (0, 1) (cf. [13]). This aspect is

here reflected by the decaying of the Gevrey radii β and γ in (1.8), as time t > 0 approaches the lifespan
Tσ.

The radii β(0) and γ(0) in (1.8) at initial time t = 0 correspond to σ/4 and σ/8, respectively. One
would rather expect them to coincide with the radius σ > 0 of the initial data. This gap is merely an
artifact of our analysis, since we also aim to determine an explicit (and readable) form of the constant
Ds(Ush) > 0 in (1.10). To this end, we make use of a given amount of the exponential decay in e−σ|k|1/3

(for
instance the missing e−3σ|k|1/3/4 between e−γ(0)|k|1/3

and e−σ|k|1/3
), in order to absorb the contribution of

certain terms, which arise from vU ′
sh and ∂tvU ′

sh (cf. for instance (2.38)). Accordingly, we may explicitely
set Dσ(Ush) > 0 in (1.10) as

Dσ(Ush) := 104 max{1, 12/σ}15(1 + ‖Ush‖L∞ + ‖U ′
sh‖L∞ + ‖U ′′

sh‖L∞ + ‖U ′′′
sh‖L∞)3. (1.11)

This arrangement is certainly far from being sharp. We may for instance build our Gevrey-class-3 solution
with radii of regularity

βε(t) = γε(t) := σ − ε − 2
5
6

(
‖U ′′′

sh‖L∞ + 2‖U ′′
sh‖L∞

) 1
3
e

t
3 t,

for any small ε > 0. This definition would nevertheless complicate the constant Dσ(Ush) (behaving now
also like 1/ε). For the sake of simple presentation, we do not pursue this direction and we simply remark
that as long as uin, ut,in are in Gm

σ,xL2
y and Gm

σ,xH1
0,y, respectively, then they are also in Gm

σ/4,xL2
y and

Gm
σ/8,xH1

0,y.
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1.5. Novelty and Implications

Let us highlight the novelties and consequences of Theorem 1.4 and the discussion in this work. Indeed,
the improved Gevrey-3 well-posedness of Theorem 1.4 of System (1.1) is far from being trivial. Standard
considerations of the (linearized as well as non-linear) hyperbolic Prandtl system yield to a well-posedness
within Gevrey-class 2, at best (see e.g. [19]). We show that a suitable cancellation mechanism is inherent
to (1.1), which is similar to the one presented in [11]. Contrary to the classical Prandtl equations, however,
the hyperbolic behaviour of (1.1) unlocks more refined estimates, that endow the mentioned improvements
of Gevrey-class 3.

In Section 2 of [11], Dietert and Gerard-Varet provided a rather clear intuition on why the well-
posedness result of Gevrey 2 holds true for the linearised Prandtl equations (later on, their result further
address the non-linear system). In order to successfully simplify the comprehension of their idea, they
made use of calculations involving the Laplace transform on the time variable. Then, potentially, some
algebraic calculations relating the Laplace variable (in time) with the Fourier variable (in space, along the
horizontal direction) allowed to deduce the correct regularity of solutions, since they showed a possible
behaviour of the associated semigroup on the linearised system. The downside of this approach consists,
however, in the fact that the argument seems to lack some final implementation. The authors indeed
derived certain a-priori estimates in the Laplace variable, however the inverse Laplace transform does
not commute with norms,1 thus this estimates could not be transferred formally to the original solution.
Our approach differ with the one related to the Laplace transform in [11]. In particular, Lemma 2.1
provides a simple, yet very useful tool (an improved Gronwall estimate) to infer Gevrey-estimates by
energy estimates (we refer to Sect. 2 for more details).

Furthermore, we give detailed bounds on regularity, life span and explicit quantitative dependence on
the shear flow Ush (cf. (1.8)). For example, if U ′′

sh = 0, Theorem 1.4 shows the global well-posedness of
(1.1), being in correspondence with the results for the classical Prandtl equations with monotonic data
(cf. [23]).

Additionally, we give a detailed discussion on possible improved well-posedness results for the non-
linear hyperbolic Prandtl system (1.5). In particular, our work shows that one cannot rely on further
simplifications of (1.5) in order to achieve existence results beyond the expected Gevrey 2 class (see,
e.g., [19] and [26]). We refer to Sect. 3 for a consideration of three possible nonlinear variants with their
advantages and drawbacks in terms of regularity propagation.

Finally, a short summary of the remaining parts. The beginning of Sect. 2 contains an extended
overview of the proof of Theorem 1.4 which is split into six parts. In the aforementioned Sect. 3, the
discussion of possible extensions of the arguments to the nonlinear system is provided.

2. Proof of Theorem 1.4

We state first the general principles that we set as the basis of our analysis, and we postpone the details
of our proof to the remaining paragraphs.

Our approach is grounded in a similar ansatz as the one developed by Dietert and Gérard-Varet for
the linearised system of the classical Prandtl equations (cf. Section 2 of [11], outline of the strategy).

In Sect. 2.2, we indeed use the Fourier transform along the variable x ∈ T, in order to address the
behaviour of each mode uk : (0, T ) × (0, 1) → R of the velocity field

u(t, x) =
∑

k∈Z

uk(t, y)eikx,

1Of course, the actual argument in [11] for the nonlinear system is consistent and rigorous. The aim of the authors in Section
2 was to provide a clear understanding.
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at any frequency k ∈ Z. Regrettably, the equation of uk (cf. (2.8)) is incapable to derive alone a better
stability than analytic (initial data far more regular then Gevrey 3). A further development is therefore
necessary, in order to overcome this first barrier.

On this account, following [11], we introduce a new state variable ψk : (0, T ) × (0, 1) → R in Sect. 2.2,
which depends on uk (or rather upon the corresponding stream function Φk, uk = ∂yΦk, cf. (2.17)). Our
main objective is indeed to asses ψk, in order to remove the (problematic) terms due to vU ′

sh and ∂tvU ′
sh.

These terms preclude indeed an analysis beyond analytic, thus, by eliminating them, we determine a new
form of the main equation (written now in terms of ψk, cf. (2.20))

(
(∂t + 1)(∂t + ikUsh) − ∂2

y

)2
∂yψk = ik[U ′

sh, ∂2
y ]

(
(∂t + 1)ψk

)
, (2.1)

which shall eventually facilitate our analysis in Gevrey-class 3.
Following (2.1), our approach begins to inherently diverge with respect to the one of Dietert and

Gérard-Varet in [11]. We avoid entirely their ansatz on the Laplace transform in time, since (despite
its clearness) it would lead to the difficulties mentioned in Sect. 1.5. Contrarily, we develop our analysis
around a specific “weighted” version of the Gronwall’s lemma, which plays somehow the role of cornerstone
for our entire proof. Its statement is thus the first that we present in Sect. 2.1 (cf. Lemma 2.1).

To be more specific, we take advantage of (2.1), in order to determine a certain meaningful estimate
on the derivatives ∂2

yψk and (∂t + 1)ψk, as described in details in Proposition 2.3. This estimate can be
expressed essentially as

‖ψk(t)‖ ≤ gk(t) + C(t)|k|
∫ t

0

(t − s)2‖ψk(s)‖ds, (2.2)

where t ∈ (0, T ) → ‖ψk(t)‖ represents the L2-norms (in y ∈ (0, 1)) of ∂2
yψk and (∂t + 1)ψk (for the

complete version, we refer to Proposition 2.3). The function gk and C in (2.2) are non-decreasing, while
the integral is expressed also in terms of a “weight” in time: the kernel (t − s)2.

The kernel (t−s)2 in (2.2) unlocks the regularity Gevrey-class 3, for the derivatives ∂2
yψk and (∂t+1)ψk.

To grasp this principle, we shall first remark that, in its absence (thus within a standard Gronwall
inequality), we may at best derive an estimate of the form ‖ψk(t)‖ ≤ gk(0) exp(tC(t)|k|), where the
modes ψk growth exponentially as |k| (the setting of analytic solutions). The presence of the kernel
provides us however better information: because of the weighted Gronwall inequality in Lemma 2.1, the
norm ‖ψk(t)‖ can at worst growth as gk(0) exp( 3

√
tC(t)|k|), i.e. exponentially as |k|1/3, the framework of

Gevrey-class 3.
The remaining sections are devoted to transfer the aforementioned estimate of ∂2

yψk and (∂t + 1)ψk

first to ψk (cf. Lemma 2.4) and secondly to uk (cf Proposition 2.5). Proposition 2.5 is moreover essential to
determine the final solution u of (1.1), which is Gevrey-class 3 in x ∈ T. Furthermore, this result provides
the final estimate (1.10) on the Gevrey-norm of u at any time t ∈ [0, Tσ), with also the corresponding
constant Dσ(Ush) in (1.11).

Summarising, the forthcoming sections are structured as follows:

• Section 2.1 and Lemma 2.1 are devoted to the proof of the “weighted” Gronwall’s inequality.
• In Sect. 2.2 we introduce the new state variable ψk and derive the corresponding equation (2.1).
• In Sect. 2.3, we first state the main inequality (2.2) in Proposition 2.3 (whose proof is postponed to

Sects. 2.5 and 2.6). We furthermore transfer the Gevrey estimates of ∂2
yψk and (∂t + 1)ψk to ψk in

Lemma 2.4.
• In Sect. 2.4, with Proposition 2.5, we transfer the Gevrey estimates to uk and build our final solution

u of System (1.1). To conclude the proof of the main Theorem 1.4, we determine moreover the
estimate (1.10) on the Gevrey norm of the solution.

• Finally, Sects. 2.5 and 2.6 are devoted to the proof of Proposition 2.3 and the main inequality (2.2).
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2.1. A Weighted Gronwall Inequality

One of the main ingredient used to prove Theorem 1.4 is the following Gronwall-type Lemma. It asserts
that any non-negative function, which satisfies a “weighted” Gronwall’s inequality proportional to a
suitable time-dependent function λ(t)3, can not grow up exponentially faster than λ(t)t.

Lemma 2.1. Let T > 0 and f : [0, T ) → [0,∞) be a non-negative continuous function, satisfying

f(t) ≤ g(t) +
λ(t)3

2

∫ t

0

(t − s)2f(s)ds, (2.3)

for two continuous functions λ, g : [0, T ) → [0,∞), that are non-negative and non-decreasing. Then the
following inequality holds true at any time t ∈ [0, T ):

f(t) ≤ g(t)
(
1 +

(λ(t)t)3

6

)
eλ(t)t. (2.4)

Proof. We begin with by defining ω in C3([0, T )) as the following integral: (2.3) as

ω(t) :=
1
2

∫ t

0

(t − s)2f(s)ds =
∫ t

0

f(s)
∫ t

s

∫ t

τ

drdτds =
∫ t

0

∫ r

0

∫ τ

0

f(s)dsdτdr.

The function ω is everywhere non-negative in [0, T ). Furthermore, at t = 0, ω(0) and its derivatives
ω′(0), ω′′(0) are all identically null. We next write inequality (2.3) in terms of ω:

ω′′′(t) ≤ g(t) + λ(t)3ω(t), for all t ∈ [0, T ). (2.5)

Hence, we fix a general time t̃ ∈ (0, T ) and we momentarily consider only values of t within [0, t̃]. We
multiply equation (2.5) with e−λ(t̃)t (where λ(t̃) is fixed and plays momentarily the role of a constant).
By means of standard calculations on the derivatives, we gather that

ω′′′(t)e−λ(t̃)t =
d3

dt3

(
ω(t)e−λ(t̃)t

)
+3

d2

dt2

(
λ(t̃)(ω(t)e−λ(t̃)t

)
+3

d

dt

(
λ(t̃)2ω(t)e−λ(t̃)t

)
+λ(t̃)3ω(t)e−λ(t̃)t

≤ (
g(t) + λ(t)3ω(t)

)
e−λ(t̃)t ≤ g(t)e−λ(t̃)t + λ(t̃)3ω(t)e−λ(t̃)t.

(2.6)

In the last inequality, we have used that λ is non-decreasing and non-negative, ω ≥ 0 and that t < t̃. We
shall now remark that the term λ(t̃)3ω(t)e−λ(t̃)t cancel out and the left-hand side of (2.6) is hence left
with only time derivatives. We are hence in the condition to integrate (2.6) along [0, t], to gather that

d2

dt2

(
ω(t)e−λ(t̃)t

)
+ 3λ(t̃)

d

dt

(
ω(t)e−λ(t̃)t

)
+ 3λ(t̃)2ω(t)e−λ(t̃)t ≤

∫ t

0

g(s)e−λ(t̃)sds ≤
∫ t

0

g(s)ds.

We can drop the term 3λ(t̃)2ω(t)e−λ(t̃)t at the left-hand side (since it is positive) and integrate once more
along the interval [0, t], for a general t ∈ [0, t̃]:

d

dt

(
ω(t)e−λ(t̃)t

)
+ 3λ(t̃)ω(t)e−λ(t̃)t ≤

∫ t

0

∫ s

0

g(z)dz =
∫ t

0

(t − z)g(z)dz.

Since both λ(t̃) and ω(t) are positive, we can drop 3λ(t̃)ω(t)e−λ(t̃)t and integrate a final time along (0, t):

ω(t)e−λ(t̃)t ≤
∫ t

0

∫ s

0

(s − z)g(z)dzds =
∫ t

0

g(z)
(t − z)2

2
dz ⇒ ω(t) ≤ eλ(t̃)t

∫ t

0

g(z)
(t − z)2

2
dz.

We are now in the condition to combine the last relation in t = t̃ together with (2.3), which ensures that

f(t̃) ≤ g(t̃) + eλ(t̃)t̃λ(t̃)3
∫ t̃

0

g(s)
(t̃ − s)2

2
ds

≤ g(t̃) + eλ(t̃)t̃λ(t̃)3g(t̃)
∫ t̃

0

(t̃ − s)2

2
ds ≤ g(t̃)

(
1 +

λ(t̃)3t̃3

6

)
eλ(t̃)t̃.
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Re-denoting t̃ = t and from its arbitrariness in (0, T ), we finally achieve inequality (2.4) (also remarking
that (2.4) is trivially satisfied in t = 0). This concludes the proof of the lemma. �

2.2. The Stream Function Formulation

In this section, we begin developing our analysis of System (1.1) and we first decompose the corresponding
equations in terms of several Fourier coefficients uk : (t, y) ∈ (0, Tσ) × (0, 1) → R of the velocity field u,
at any frequency k ∈ Z. The lifespan Tσ > 0 (denoted by T in (1.1)) shall be considered from now on as
in (1.7) of Theorem 1.4, nevertheless its form will play a major role only starting from Sect. 2.3.

Eventually, we will build the final solution (u, v) of (1.1), by invoking the Fourier Series with respect
to the variable x ∈ T and the divergence-free condition ∂xu + ∂yv = 0 (which at any frequency is
ikuk + ∂yvk = 0)

u(t, x, y) =
∑

k∈Z

uk(t, y)eikx, uk(t, y) :=
1
2π

∫

T

u(t, x, y)e−ixkdx,

v(t, x, y) =
∑

k∈Z

vk(t, y)eikx, vk(t, y) := −ik

∫ y

0

uk(t, z)dz,

(2.7)

however we shall first determine some uniform estimates on (uk)k∈Z, in order to provide a sense of the
series above. Hence, we begin with by considering System (1.1) rather as a family of PDEs in the variables
(t, y) ∈ (0, Tσ) × (0, 1), which depend upon each frequency k ∈ Z:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂2
t uk + ikUsh∂tuk + U ′

sh∂tvk + ∂tuk + ikUshuk + vkU ′
sh − ∂2

yuk = 0 (0, Tσ) × (0, 1),

ikuk + ∂yvk = 0 (0, Tσ) × (0, 1),

(uk, ∂tuk)|t=0 = (uin,k, ut,in,k) (0, 1),

(uk, vk)|y=0,1 = (0, 0) (0, Tσ).

(2.8)

The second equation ikuk + ∂yvk = 0 and the boundary conditions vk|y=0 = 0 allow to interpret System
(2.8) only on the state variable uk, since the vertical component vk is explicitly determined by (2.7). The
initial data uin,k and ut,in,k are in H1

0 (0, 1) and L2(0, 1), respectively, since uin and ut,in are in G3
σ,xH1

0,y

and G3
σ,xL2

0,y, as described by Definition 1.2.
We hence state the following result about the existence and uniqueness of solutions for System (2.8).

Proposition 2.2. For any fixed frequency k ∈ Z and any initial data (uin,k, ut,in,k) in H1
0 (0, 1) × L2(0, 1)

there exists a unique solution uk : [0, T ) × (0, 1) → R of (2.8), which belongs to

(uk, ∂yuk) ∈ C([0, T ],H1
0 ), ∂tuk ∈ L2(0, T ;L2), (2.9)

for any real time T > 0.

We shall here remark that the real T > 0 may not correpond to Tσ, since the lifespan in (1.7) may be
Tσ = +∞ (for shear flow with U ′′

sh ≡ U ′′′
sh ≡ 0). In this case, we shall always treat uk as in (2.9), for any

0 < T < Tσ = +∞. Contrarily, if Tσ < +∞ (which is satisfied for more general Ush), then we replace T
in (2.9) directly with Tσ.

Proof. For the sake of simplicity, we provide here only a sketch, since the result can be shown through
standard arguments on linear PDEs. We remark indeed that Equation (2.8) can be written as a 1D
damped wave equation with Dirichelet boundary conditions

(� + ∂t) uk = Fk, � = ∂2
t − ∂2

y , uk|y=0,1 = 0, (2.10)

and forcing term Fk, which depends linearly on uk and is given by

Fk = −
(
ikUsh∂tuk − ikU ′

sh∂t

∫ y

0

uk(t, z)dz + ikUshuk − ikU ′
sh

∫ y

0

uk(t, z)dz
)
.
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Making use of a standard computation combined with the Poincaré inequality, we infer that Fk satisfies

‖Fk‖H1
0

≤ C|k| ‖Ush‖W 3,∞

(
‖∂tuk‖H1

0
+ ‖∂yuk‖H1

0

)
, (2.11)

for a suitable positive constant C > 0. We can hence apply a standard Galerkin method to deduce the
existence of a unique solution within the function space of (2.9). �

We come back now to System (2.8). Since uk(t, ·) is divergent free, it can be written in terms of
a stream function Φk = Φk(t, y), which is in C([0, T ],H2) with ∂tΦk ∈ L2(0, T ;H1(0, 1)), for any real
T ≤ Tσ. Furthermore, because ikΦk = vk, the function Φk is identically null in y = 0 (in the sense of
trace), therefore

uk(t, y) = ∂yΦk(t, y)
(
i.e. Φk(t, y) :=

∫ y

0

uk(t, z)dz
)

⇒ vk(t, y) = −ikΦk(t, y). (2.12)

The initial data of Φk at any y ∈ (0, 1) are given by

Φin,k(y) :=
∫ y

0

uin,k(z)dz, Φt,in,k(y) :=
∫ y

0

ut,in,k(z)dz,

which ensures Φin,k ∈ H2(0, 1) ∩ H1
0 (0, 1) and Φt,in,k ∈ H1(0, 1)(remark that Φin,k(1) = 0, since uin,k is

average free).
From (2.8), we deduce that Φk is solution in (0, Tσ) × (0, 1) of the following system:
⎧
⎪⎨

⎪⎩

∂2
t ∂yΦk+ikUsh(y)∂t∂yΦk−ikU ′

sh(y)∂tΦk+∂t∂yΦk+Ush(y)ik∂yΦk−ikΦkU ′
sh(y) − ∂3

yΦk = 0,

(Φk, ∂tΦk)|t=0 = (Φin,k,Φt,in,k)

(∂yΦk)|y=0,1 = 0, Φk|y=0 = 0.

(2.13)

We next provide some heuristics on the L2-estimates satisfied by Φk and show that, unfortunately, System
(2.13) (as it is written) may not prevent the stream function Φk to exponentially growth as exp(a|k|), for
some positive a > 0. To this end, we first isolate the linear operator in equation (2.13) that affects only
the derivative ∂yΦk and transfer the remaining terms in Φk on the right-hand side of the identity:

((∂t + 1)(∂t + ikUsh) − ∂2
y)∂yΦk = (∂t + 1)ikU ′

shΦk. (2.14)

We will shortly see that the operator on the left-hand side of (2.14) is crucial for our next analysis (in
particular, to define a new state variable ψk in (2.17)). We first outline, however, that, in the current form,
equation (2.14) is still ineffective and does not predict the crucial Gevrey-3 regularity of our solutions.
Indeed, we infer that a standard energy approach would provide (at best) an L2-estimate of ∂yΦk = uk

of the form
1
2

d

dt

(
‖(∂t + 1)∂yΦk‖2

L2 + ‖∂t∂yΦk‖2
L2 + 2‖∂2

yΦk‖2
L2

)
≤ C|k|

(
‖(∂t + 1)∂yΦk‖2

L2 + ‖∂t∂yΦk‖2
L2

)
,

(2.15)

for a suitable positive constant C, which is also calibrated with the following Poincaré-type inequality of
Φk in the domain y ∈ (0, 1):

‖Φk(t)‖L2 =
( ∫ 1

0

|Φk(t, y)|2dy

) 1
2

=
(∫ 1

0

∣
∣
∣

∫ y

0

∂yΦk(t, z)dz
∣
∣
∣
2

dy

) 1
2

≤
( ∫ 1

0

y

∫ y

0

∣
∣
∣∂yΦk(t, z)

∣
∣
∣
2

dzdy

) 1
2

≤ 1
2

(∫ 1

0

∣
∣
∣∂yΦk(t, z)

∣
∣
∣
2

dz

) 1
2

≤ ‖∂yΦk(t)‖L2 .

(2.16)

Hence, roughly speaking, in this regime the L2-norms of ∂yΦk and ∂t∂yΦk would growth exponentially
as ec|k|(‖∂yΦin,k‖L2 + ‖∂t∂yΦin,k‖L2), a setting which is typical of analytic solutions (which are of course
much more regular than any Gevrey-class m, m > 1). To achieve the Gevrey regularity, we shall therefore
perform a further development. To this end, we introduce a new state variable ψk : [0, Tσ) × (0, 1) → R.
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Following the approach used in [11] for the classical Prandtl equation, ψk = ψk(t, y) is chosen in a
form that gets rid of the terms ikU ′

sh∂tΦk and ikU ′
shΦk at the left-hand side of (2.13). More precisely, we

define ψk as the unique solution in L∞(0, T ;H2) ∩ L2(0, T ;H2) of the following PDE:
⎧
⎪⎨

⎪⎩

((∂t + 1)(∂t + ikUsh) − ∂2
y)ψk = Φk (0, T ) × (0, 1),

(ψk, ∂tψk)|t=0 = (0, 0) (0, 1),

ψk|y=0,1 = 0 (0, T ).
(2.17)

The most compelling reason for this definition is a meaningful cancellation that occurs when coupling
(2.17) together with (2.14). More precisely, equation (2.14) implies that ψk satisfies

((∂t + 1)(∂t + ikUsh) − ∂2
y)∂y((∂t + 1)(∂t + ikUsh) − ∂2

y)ψk = ikU ′
sh(∂t + 1)Φk,

which is
(
(∂t + 1)(∂t + ikUsh) − ∂2

y

)2
∂yψk +

(
(∂t + 1)(∂t + ikUsh) − ∂2

y

)(
ikU ′

sh(∂t + 1)ψk

)
= ikU ′

sh(∂t + 1)Φk.

(2.18)

The second term at left-hand side of (2.18) almost coincides with ikU ′
sh(∂t+1)Φk at the right-hand side. To

complete the aforementioned cancellation, we first invoke the commutator ik[U ′
sh, ∂2

y ]ψk = ikU ′
sh∂2

y(ψk)−
ik∂2

y(U ′
shψk), in order to write the second term in (2.18) as

(
(∂t + 1)(∂t + ikUsh) − ∂2

y

)(
ikU ′

sh(∂t + 1)ψk

)

= ikU ′
sh

(
(∂t + 1)(∂t + ikUsh) − ∂2

y

)(
(∂t + 1)ψk

) − ik[U ′
sh, ∂2

y ]ψk.

Finally, we plug this identity into (2.18), to gather

(
(∂t + 1)(∂t + ikUsh) − ∂2

y

)2
∂yψk + ikU ′

sh(∂t + 1)
( (

(∂t + 1)(∂t + ikUsh) − ∂2
y

)
ψk

︸ ︷︷ ︸
=Φk

)
+

−[ikU ′
sh(y), ∂2

y ]
(
(∂t + 1)ψk

)
= ikU ′

sh(∂t + 1)Φk.

(2.19)

Recalling that ψk satisfies (2.17), we remark that ikU ′
sh(∂t+1)Φk appears both on the left- and right-hand

sides of (2.19). We thus obtain the following final form of the ψk-equation:
(
(∂t + 1)(∂t + ikUsh) − ∂2

y

)2
∂yψk = ik[U ′

sh, ∂2
y ]

(
(∂t + 1)ψk

)
, (2.20)

which was indeed claimed at the beginning in (2.1). We shall remark that (2.20) still presents a forcing
term ik[U ′

sh, ∂2
y ]

(
(∂t + 1)ψk

)
, which growths linearly like |k| at high frequencies |k| � 1 (similarly as

ikU ′
sh(∂t + 1)Φk in (2.14)). Nonetheless, the operator ((∂t + 1)(∂t + ikUsh) − ∂2

y)2 on ∂yψk has now
doubled in order (in comparison with just ((∂t + 1)(∂t + ikUsh) − ∂2

y) in (2.14)). This will unlock more-
refined estimates on ∂yψk (and its derivatives) than the ones in (2.15) for ∂yΦk. We formalise these
heuristics in the next sections.

2.3. Reaching Gevrey-Class 3

In the forthcoming analysis, we illustrate how the derived equation (2.20) succeeds in enabling an L2-
estimate of Gevrey-3 type to the new state variable ∂yψk, as well its time derivative ∂t∂yψk. This estimate
is a consequence of the following statement, that we set as the basis of our development. It guarantees
that the functions (∂t + 1)∂yψk and ∂2

yψk satisfy an improved Gronwall-type inequality, as described by
Lemma 2.1.



JMFM Gevrey-Class-3 Regularity Page 13 of 28 80

Proposition 2.3. The following estimate on the functions (∂t + 1)∂yψk and ∂2
yψk holds true, for any

frequency k ∈ Z and at any time t ∈ (0, Tσ):

sup
s∈[0,t]

{∥
∥(∂t + 1)∂yψk(s)

∥
∥

L2 +
∥
∥∂2

yψk(s)
∥
∥

L2

}

≤ gk(t) +
λk(t)3

2

∫ t

0

(t − s)2 sup
τ∈[0,s]

{∥
∥(∂t + 1)∂yψk(τ)

∥
∥

L2 +
∥
∥∂2

yψk(τ)
∥
∥

L2

}
ds.

(2.21)

The functions gk, λk are increasing in time and depend uniquely on k ∈ Z, the shear flow Ush and the
initial data (uin,k, ut,in,k,Φin,k). More precisely, gk, λk are defined by

gk(t) := 4t
{

|k|
(
‖U ′

sh‖L∞‖Φin,k‖L2 + ‖Ush‖L∞‖uin,k‖L2

)
+ ‖ut,in,k‖L2 + (3 +

√
2)‖uin,k‖L2

}

λk(t) := 2
5
6 |k| 1

3

(
‖U ′′′

sh‖L∞ + 2‖U ′′
sh‖L∞

) 1
3
e

t
3 .

(2.22)

for k ∈ Z and t ∈ (0, Tσ).

Since the proof of this Proposition is rather technical, we postpone it to Sect. 2.5 and we focus the
next paragraphs on the remaining steps to prove Theorem 1.4.

Let us observe that inequality (2.21) encompasses the form (2.3) of Lemma 2.1. This ensures therefore
that the following improved Gronwall’s inequality holds true for any t ∈ [0, Tσ):

∥
∥(∂t + 1)∂yψk(t)

∥
∥

L2 +
∥
∥∂2

yψk(t)
∥
∥

L2 ≤ sup
s∈[0,t]

∥
∥(∂t + 1)∂yψk(s)

∥
∥

L2 ≤ gk(t)
(

1 +
(λk(t)t)3

6

)

eλk(t)t.

We have essentially achieved the claimed regularity of Gevrey 3, at least for (∂t +1)∂yψk and ∂2
yψk, since

the definitions of gk and λk in (2.22) imply that

sup
s∈[0,t]

{∥
∥(∂t+1)∂yψk(s)

∥
∥

L2 +
∥
∥∂2

yψk(s)
∥
∥

L2

}
≤4t

{

|k|
(
‖U ′

sh‖L∞‖Φin,k‖L2 + ‖Ush‖L∞‖uin,k‖L2

)
+‖ut,in,k‖L2

+(3+
√

2)‖uin,k‖L2

}(

1+
2
√

2|k|
(
‖U ′′′

sh‖L∞ + 2‖U ′′
sh‖L∞

)
ett3

3

)

exp

{

|k| 1
3 2

5
6

(
‖U ′′′

sh‖L∞ +2‖U ′′
sh‖L∞

) 1
3
e

t
3 t

}

.

(2.23)

In particular, the L2-norm increases exponentially at worst as |k|1/3, which we can counteract (at least
locally in time), by imposing that the initial data exponentially decay with the same order. To formalise
this principle, we shall however first transfer all frequencies |k| of (2.23) to the exponential function, as
well as transfer these Gevrey-3 estimates also to ψk, ∂yψk and ∂t∂yψk (instead of just (∂t + 1)∂yψk and
∂2

yψk). We cope with this issue in the following lemma.

Lemma 2.4. Assume that the sequence of initial data (uin,k, ut,in,k,Φin,k)k∈Z satisfies

sup
k∈Z

{
eσ|k| 13

(
‖uin,k‖L2 + ‖ut,in,k‖L2 + ‖Φin,k‖L2

)}
< +∞, (2.24)

for a given radius σ > 0. Let α : [0, Tσ) → R+ be defined by

α(t) :=
σ

2
− 2

5
6

(
‖U ′′′

sh‖L∞ + 2‖U ′′
sh‖L∞

) 1
3
e

t
3 t ≥ 0. (2.25)

Then the sequence (ψk)k∈N generates a function ψ : [0, Tσ) × T × (0, 1) → R through the Fourier series

ψ(t, x, y) =
∑

k∈Z

ψk(t, y)eikx, (t, x, y) ∈ [0, Tσ) × T × (0, 1) (2.26)
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such that ψ, ∂yψ and ∂tψ are all in L∞(0, Tδ;G3
α(t),xH1

0,y). In particular, the following estimate on the
norms holds true at any time t ∈ [0, Tσ):

‖ψ(t)‖G3
α(t),xH1

0,y
+‖∂yψ(t)‖G3

α(t),xH1
0,y

+‖∂2
tyψ(t)‖G3

α(t),xH1
0,y

+‖∂2
yψ(t)‖G3

α(t),xH1
0,y

=

sup
k∈Z

{
eα(t)|k| 13∥∥ψk(t)

∥
∥

L2

}
+sup

k∈Z

{
eα(t)|k| 13∥∥∂yψk(t)

∥
∥

L2

}
+sup

k∈Z

{
eα(t)|k| 13∥∥∂2

tyψk(t)
∥
∥

L2

}

+sup
k∈Z

{
eα(t)|k| 13∥∥∂2

yψk(t)
∥
∥

L2

}

≤ Cσ(t)
(
1+‖Ush‖L∞ +‖U ′

sh‖L∞ +‖U ′′
sh‖L∞ +‖U ′′′

sh‖L∞
)2

sup
k∈Z

{
eσ|k| 13

(
‖Φin,k‖L2 +‖uin,k‖L2 +‖ut,in,k‖L2

)}
,

(2.27)

where Cσ(t) = 170 · max{1, 12/σ}6t(1 + t)3et.

Proof. If the sequence (ψk)k∈Z and its derivatives satisfy the corresponding inequality (2.27), then it
generates trivially a function ψ : [0, Tδ) ×T× (0, 1) → R as described in (2.26), since the series converges
strongly in L∞(0, Tσ;L2(T × (0, 1)) and the limit has explicit Fourier coefficients given by (ψk)k∈Z. Our
main objective is therefore to prove uniquely the inequality (2.27) in the coefficient (ψk)k∈Z.

We first show that the function (∂t + 1)∂yψk and ∂2
yψk satisfies a similar inequality, namely

eα(t)|k| 13
(∥
∥(∂t + 1)∂yψk(t)

∥
∥

L2 +
∥
∥∂2

yψk(t)
∥
∥

L2

)
≤ Cσ(t)

5

(
1 + ‖Ush‖L∞+

+ ‖U ′
sh‖L∞ + ‖U ′′

sh‖L∞ + ‖U ′′′
sh‖L∞

)2

sup
k̃∈Z

{
eσ|k̃| 13

(
‖Φin,k̃‖L2 +‖uin,k̃‖L2 +‖ut,in,k̃‖L2

)}
,

(2.28)

for any k ∈ Z and t ∈ [0, Tσ). When k = 0, then (2.28) is essentially a direct consequence of (2.23), which
implies in particular

∥
∥(∂t + 1)∂yψ0(t)

∥
∥

L2 +
∥
∥∂2

yψ0(t)
∥
∥

L2 ≤ 4t
{

‖uin,0‖L2 + ‖ut,in,0‖L2

}
.

We turn our attention therefore to |k| ≥ 1, so that (2.23) yields

sup
s∈[0,t]

{∥
∥(∂t+1)∂yψk(s)

∥
∥

L2 +
∥
∥∂2

yψk(s)
∥
∥

L2

}
≤ 4t(3 +

√
2)

(
1+‖U ′

sh‖L∞ +‖Ush‖L∞
)(

‖Φin,k‖L2 +‖uin,k‖L2+

+ ‖ut,in,k‖L2

)4
√

2

3
et(1 + t)3

(
1 + ‖U ′′′

sh‖L∞ + ‖U ′′
sh‖L∞

)
|k|2 exp

{

2
5
6 |k| 1

3

(
‖U ′′′

sh‖L∞ + 2‖U ′′
sh‖L∞

) 1
3
e

t
3 t

}

.

Hence, we collect all terms of the shear flow Ush within a single parenthesis, we extrapolate eσ|k|1/3
in

front of the initial data and we choose s = t on the supremum at the left-hand side
∥
∥(∂t + 1)∂yψk(t)

∥
∥

L2 +
∥
∥∂2

yψk(t)
∥
∥

L2 ≤ 34t(1 + t)3et
(
1 + ‖Ush‖L∞ + ‖U ′

sh‖L∞+

+ ‖U ′′
sh‖L∞ + ‖U ′′′

sh‖L∞
)2

(

sup
k̃∈Z

{
eσ|k̃| 13

(
‖Φin,k̃‖L2 +‖uin,k̃‖L2 + ‖ut,in,k̃‖L2

)})

×

× |k|2 exp
{
− σ|k| 1

3 +2
1
3 |k| 1

3

(
‖U ′′′

sh‖L∞ +2‖U ′′
sh‖L∞

) 1
3
e

t
3 t

}
.

Since one has a ≤ ea, for any positive real number a > 0, we can bound the term |k|2, by means of

|k|2 =
(|k| 1

3
)6 =

(12
σ

)6( σ

12
|k| 1

3

)6

≤
(12

σ

)6(
e

σ
12 |k| 13

)6

=
(12

σ

)6

e
σ
2 |k| 13 .

Hence, remarking that 34(12/σ)6t(1 + t)3et ≤ Cσ(t)/5, we deduce that
∥
∥(∂t + 1)∂yψk(t)

∥
∥

L2 +
∥
∥∂2

yψk(t)
∥
∥

L2 ≤ Cσ(t)

4

(
1 + ‖Ush‖L∞ + ‖U ′

sh‖L∞ + ‖U ′′
sh‖L∞ + ‖U ′′′

sh‖L∞
)2×
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×
(

sup
k̃∈Z

{
eσ|k̃| 1

3
(
‖Φin,k̃‖L2 + ‖uin,k̃‖L2 + ‖ut,in,k̃‖L2

)})

exp
{

−
(σ

2
−2

1
3

(
‖U ′′′

sh‖L∞ +2‖U ′′
sh‖L∞

) 1
3
e

t
3 t

)

︸ ︷︷ ︸
=α(t)

|k| 1
3

}
,

which coincides with (2.28). We now transfer the estimate (2.28) directly to the functions ψk, ∂yψk and
∂t∂yψk in (2.27). We begin with by developing ∂yψk through

∂yψk(t, y) = e−tet∂yψk(t, y) = e−t

∫ t

0

∂s(es∂yψk(s, y))ds =
∫ t

0

es−t
[
(∂t + 1)∂yψk

]
(s, y)ds,

for any (t, y) ∈ (0, Tσ) × (0, 1). Hence, by taking the L2-norm on both left and right-hand sides and
keeping in mind that α is decreasing in time, we remark that

eα(t)|k| 1
3 ‖∂yψk(t)‖L2 ≤ eα(t)|k| 1

3

∫ t

0

es−t‖(∂t + 1)∂yψk(s)‖L2ds ≤
∫ t

0

es−teα(s)|k| 1
3 ‖(∂t + 1)∂yψk(s)‖L2ds

≤ Cσ(t)

5

(
1+‖Ush‖L∞ +‖U ′

sh‖L∞ +‖U ′′
sh‖L∞ +‖U ′′′

sh‖L∞
)2

sup
k̃∈Z

{
eσ|k̃| 1

3
(
‖Φin,k̃‖L2 +‖uin,k̃‖L2 +‖ut,in,k̃‖L2

)}
,

(2.29)

where we have used
∫ t

0
es−tds = 1 − e−t < 1. Invoking the Poincaré inequality ‖ψk‖L2 ≤ ‖∂yψk‖L2 , it is

easy at this stage to check that

sup
k∈Z

{
eα(t)|k| 1

3
∥
∥ψk(t)

∥
∥

L2

}
+sup

k∈Z

{
eα(t)|k| 1

3
∥
∥∂yψk(t)

∥
∥

L2

}
+sup

k∈Z

{
eα(t)|k| 1

3
∥
∥∂2

tyψk(t)
∥
∥

L2

}
+sup

k∈Z

{
eα(t)|k| 1

3
∥
∥∂2

yψk(t)
∥
∥

L2

}

≤ 2 sup
k∈Z

{
eα(t)|k| 1

3
∥
∥∂yψk(t)

∥
∥

L2

}
+ sup

k∈Z

{
eα(t)|k| 1

3
∥
∥∂2

tyψk(t)
∥
∥

L2

}
+ sup

k∈Z

{
eα(t)|k| 1

3
∥
∥∂2

yψk(t)
∥
∥

L2

}

≤ 3 sup
k∈Z

{
eα(t)|k| 1

3
∥
∥∂yψk(t)

∥
∥

L2

}
+ sup

k∈Z

{
eα(t)|k| 1

3
∥
∥(∂t + 1)∂yψk(t)

∥
∥

L2

}
+ sup

k∈Z

{
eα(t)|k| 1

3
∥
∥∂2

yψk(t)
∥
∥

L2

}
.

We finally couple the last inequality together with (2.28) and (2.29), which finally implies the estimate
(2.27). This concludes the proof of the lemma. �

2.4. Transferring Gevrey 3 to the Velocity Field

We shall now transfer the Gevrey regularity from the function ψ of Lemma 2.4 to a solution u of the
original hyperbolic Prandtl equation (1.5).

Proposition 2.5. Assume that uin is in G3
σ,xH1

0,y, while ut,in is in G3
x,σL2

y, for a given σ > 0. Let Tσ > 0
and β, γ : [0, Tσ) → R be as in Theorem 1.4.

Then the sequence (uk)k∈N generates a function u : [0, Tσ)×T×(0, 1) → R through the inverse Fourier
transform

u(t, x, y) =
∑

k∈Z

uk(t, y)eikx, (t, x, y) ∈ [0, Tσ) × T × (0, 1), (2.30)

such that u ∈ L∞(0, Tσ;Gβ(t),xH1
0,y) and ∂tu ∈ L∞(0, Tσ;Gγ(t),xL2

y). In particular, the following estimate
holds true at any time t ∈ [0, Tσ):

‖u(t)‖G3
β(t),xL2

y
+ ‖∂yu(t)‖G3

β(t),xL2
y

+ ‖∂tu(t)‖G3
γ(t),xL2

y

= sup
k∈Z

{
eβ(t)|k| 13 ∥

∥uk(t)
∥
∥

L2

}
+ sup

k∈Z

{
eβ(t)|k| 13 ∥

∥∂yuk(t)
∥
∥

L2

}
+ sup

k∈Z

{
eγ(t)|k| 13 ∥

∥∂tuk(t)
∥
∥

L2

}

≤ C̃σ(t)
(
1 + ‖Ush‖L∞ + ‖U ′

sh‖L∞ + ‖U ′′
sh‖L∞ + ‖U ′′′

sh‖L∞
)3(

‖uin‖G3
σ,xH1

0,y
+ ‖ut,in‖G3

σ,xL2
y

)
,

(2.31)

where C̃σ(t) = 104 max{1, 12/σ}15(1 + t)5et.
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Proof. Similarly as in Lemma 2.4, we focus this entire proof to show the estimate (2.31) on the sequence
(uk)k∈Z. The solution u is then automatically determined by the Fourier series (2.30).

We fix momentarily the frequency k ∈ Z. If the initial data (uin,k, uin,k,t) are identically null, then the
solution uk of (2.8) is identically null (since the equation in (2.8) for a fixed k ∈ Z is linear, hyperbolic
and damped) and the inequality (2.31) is automatically satisfied. We shall thus focus this proof to the
case (uin,k, uin,k,t) �= (0, 0).

We begin with by setting the function fk :=
(
(∂t + 1)(∂t + ikUsh) − ∂2

y

)
∂yψk. Thanks to (2.17), fk

satisfies

fk(t, y) = ikU ′
sh(y)(∂t + 1)ψk(t, y) + ∂yΦk(t, y) = ikU ′

sh(y)(∂t + 1)ψk(t, y) + uk(t, y), (2.32)

for any (t, y) ∈ [0, Tσ) × (0, 1). Because of the boundary conditions on ψk and uk, the function fk fulfills
homogeneous Dirichlet conditions fk|y=0,1 = 0. Furthermore its initial data are determined by

fk(0, y) = uin,k(y) ∂tfk(0, y) = ikU ′
sh(y)∂2

t ψk(0, y) + ut,in,k(y) = ikU ′
sh(y)Φin,k(y) + ut,in,k(y)(2.33)

for any y ∈ (0, 1). Thanks to identity (2.20), we remark moreover that fk is also solution of
(
(∂t + 1)(∂t + ikUsh) − ∂2

y

)
fk = [ikU ′

sh, ∂2
y ]

(
(∂t + 1)ψk

)
. (2.34)

Starting from (2.34), we aim to develop some suitable estimates on the L2-norm of (∂t + 1)fk and ∂yfk,
which we will eventually transfer to uk, ∂yuk and ∂tuk, making use of (2.32). We shall observe that we
have now a complete control on the right-hand side of (2.34), because of the uniform estimates given by
Lemma 2.4.

We multiply (2.34) with the conjugate (∂t + 1)fk, then we integrate along (0, t) × (0, 1) for a time
t ∈ [0, Tσ) and finally we calculate the real part Re of the result. This leads in particular to

1
2

∥
∥(∂t + 1)fk(t)

∥
∥2

L2 +
1
2

∥
∥∂yfk(t)

∥
∥2

L2 +
∫ t

0

∥
∥∂yfk(s)

∥
∥2

L2ds =
1
2

∥
∥uin,k + ikU ′

shΦin,k + ut,in,k

∥
∥2

L2+

+
1
2

∥
∥∂yuin,k

∥
∥2

L2 + Re

(

ik

∫ t

0

∫ 1

0

[ikU ′
sh, ∂2

y ]
(
(∂t + 1)ψk

)
(∂t + 1)fkdyds

)

,

(2.35)

where we have used the initial conditions in (2.33), as well as

Re

(

ik

∫ t

0

∫ 1

0

Ush(y)|(∂t + 1)fk(s, y)|2dyds

)

= 0.

Multiplying (2.35) by 2 and applying the Cauchy-Schwarz inequality on the last integral, we obtain

∥
∥(∂t + 1)fk(t)

∥
∥2

L2 +
∥
∥∂yfk(t)

∥
∥2

L2 + 2
∫ t

0

∥
∥∂yfk(s)

∥
∥2

L2ds ≤ ∥
∥uin,k + ikU ′

shΦin,k + ut,in,k

∥
∥2

L2+

+ ‖∂yuin,k‖2
L2 + 2|k|

∫ t

0

∥
∥[U ′

sh, ∂2
y ]

(
(∂t + 1)ψk(s)

)∥
∥

L2‖(∂t + 1)fk(s)‖L2ds.

(2.36)

We next address the last integral in (2.35) with the commutator [U ′
sh, ∂2

y ]((∂t + 1)ψk). First, we remark
∥
∥[U ′

sh, ∂2
y ]

(
(∂t + 1)ψk(s)

)∥
∥

L2 =
∥
∥U ′

sh∂2
y

(
(∂t + 1)ψk(s)

) − ∂2
y

(
U ′

sh(∂t + 1)ψk(s)
)∥
∥

L2

=
∥
∥U ′′′

sh(∂t + 1)ψk(s) + 2U ′′
sh(∂t + 1)∂yψk(s)

∥
∥

L2

≤ ‖U ′′′
sh‖L∞‖(∂t + 1)ψk(s)‖L2 + 2‖U ′′

sh‖L∞‖(∂t + 1)∂yψk(s)‖L2

≤ (‖U ′′′
sh‖L∞ + 2‖U ′′

sh‖L∞
)‖(∂t + 1)∂yψk(s)‖L2

Hence, we plug this last inequality into (2.36), we take the Supermum within the time interval [0, t] and
finally we divide the result by sups∈[0,t](‖(∂t +1)fk(s)‖2

L2 +‖(∂t +1)fk(s)‖2
L2)1/2 (which is not null, since

the initial data are not all zero). This leads to

sup
s∈[0,t]

(
‖(∂t + 1)fk(s)‖L2 + ‖∂yfk(s)‖L2

)
≤

√
2 sup

s∈[0,t]

(
‖(∂t + 1)fk(s)‖2

L2 + ‖∂yfk(s)‖2
L2

) 1
2
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≤
√

2
sups∈[0,t]

(
‖(∂t + 1)fk(s)‖2

L2 + ‖∂yfk(s)‖2
L2

)

sups∈[0,t]

(
‖(∂t + 1)fk(s)‖2

L2 + ‖∂yfk(s)‖2
L2

) 1
2

≤
√

2

∥
∥uin,k + ikU ′

shΦin,k + ut,in,k

∥
∥2

L2 + ‖∂yuin,k‖2
L2

sups∈[0,t]

(‖(∂t + 1)fk(s)‖2
L2 + ‖∂yfk(s)‖2

L2

) 1
2

+

+ 2
√

2
(‖U ′′′

sh‖L∞ + 2‖U ′′
sh‖L∞

)|k|
∫ t

0

‖(∂t + 1)∂yψk(s)‖L2

‖(∂t + 1)fk(s)‖L2

sups∈[0,t]

(‖(∂t + 1)fk(s)‖2
L2 + ‖∂yfk(s)‖2

L2

) 1
2
ds.

At s = 0, the functions (∂t + 1)fk(s) and ∂yfk(s) coincide with uin,k + ikU ′
shΦin,k + ut,in,k and ∂yuin,k,

respectively. We deduce hence that

sup
s∈[0,t]

(
‖(∂t + 1)fk(s)‖L2 + ‖∂yfk(s)‖L2

)
≤

√
2
(∥
∥uin,k + ikU ′

shΦin,k + ut,in,k

∥
∥2

L2 + ‖∂yuin,k‖2
L2

) 1
2
+

+ 2
√

2
(‖U ′′′

sh‖L∞ +2‖U ′′
sh‖L∞

)|k|
∫ t

0

‖(∂t+1)∂yψk(s)‖L2ds ≤
√

2
(
‖uin,k‖L2 +|k|‖U ′

sh‖L∞‖Φin,k‖L2+

+ ‖ut,in,k‖L2 + ‖∂yuin,k‖L2

)
+ 2

√
2
(‖U ′′′

sh‖L∞ + 2‖U ′′
sh‖L∞

)|k|
∫ t

0

‖(∂t + 1)∂yψk(s)‖L2ds.

(2.37)

We are now in the condition to reveal the uniform estimates of the Gevrey-three regularity on the
sequences ((∂t + 1)fk)k∈Z and (∂yfk)k∈Z, by establishing the corresponding exponential growth on the
modes |k|. To this end, we take advantage of Lemma 2.4, so that the last integral in (2.37) enables

∫ t

0

‖(∂t + 1)∂yψk(s)‖L2ds ≤
(∫ t

0

Cσ(s)e−α(s)|k| 13 ds

)(
1 + ‖Ush‖L∞ + ‖U ′

sh‖L∞ + ‖U ′′
sh‖L∞+

+‖U ′′′
sh‖L∞

)2

sup
k̃∈Z

{
eσ|k̃| 13

(
‖Φin,k̃‖L2 +‖uin,k̃‖L2 +‖ut,in,k̃‖L2 +‖∂yuin,k̃‖L2

)}
,

where we recall that Cσ in Lemma 2.4 is defined as Cσ(t) = 170max{1, 12/σ}6t(1+t)3et, while the radius
α(t) = σ/2 − 2

5
6 (‖U ′′′

sh‖L∞ + 2‖U ′′
sh‖L∞)

1
3 et/3t (which satisfies α(t) ≥ 7σ/8 > 0, for any t ∈ [0, Tσ)). Since

s ∈ [0, t] → Cσ(s)e−α(s)|k| 13 is a non-decreasing function, it can be bound by its value at s = t, so that
∫ t

0

‖(∂t + 1)∂yψk(s)‖L2ds ≤ tCσ(t)e−α(t)|k| 13
(
1 + ‖Ush‖L∞ + ‖U ′

sh‖L∞ + ‖U ′′
sh‖L∞+

+ ‖U ′′′
sh‖L∞

)2

sup
k̃∈Z

{
eσ|k̃| 13

(
‖Φin,k̃‖L2 +‖uin,k̃‖L2 +‖ut,in,k̃‖L2 +‖∂yuin,k̃‖L2

)}
.

We thus couple this last inequality together with (2.37), which guarantees

‖(∂t + 1)fk(t)‖L2 + ‖∂yfk(t)‖L2 ≤
√

2
(
‖uin,k‖L2 + |k|‖U ′

sh‖L∞‖Φin,k‖L2 + ‖ut,in,k‖L2 + ‖∂yuin,k‖L2

)
+

+4
√

2
(‖U ′′′

sh‖L∞ + ‖U ′′
sh‖L∞

)|k|tCσ(t)e−α(t)|k| 13
(
1 + ‖Ush‖L∞ + ‖U ′

sh‖L∞+

+‖U ′′
sh‖L∞ + ‖U ′′′

sh‖L∞
)2

sup
k̃∈Z

{
eσ|k̃| 13

(
‖Φin,k̃‖L2 +‖uin,k̃‖L2 +‖ut,in,k̃‖L2 +‖∂yuin,k‖L2

)}
.
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Finally, to obtain our uniform estimates, we multiply both left and right-hand sides with eβ(t)|k|1/3
(where

β(t) = α(t) − σ/4 is defined in (1.8)), to obtain

eβ(t)|k| 13
(
‖(∂t + 1)fk(t)‖L2 + ‖∂yfk(t)‖L2

)
≤

√
2eβ(t)|k| 13

(
‖uin,k‖L2 + |k|‖U ′

sh‖L∞‖Φin,k‖L2 + ‖ut,in,k‖L2+

+‖∂yuin,k‖L2

)
+ 4

√
2e− σ

4 |k| 13 (‖U ′′′
sh‖L∞ + ‖U ′′

sh‖L∞
)|k|tCσ(t)

(
1 + ‖Ush‖L∞ + ‖U ′

sh‖L∞+

+‖U ′′
sh‖L∞ + ‖U ′′′

sh‖L∞
)2

sup
k̃∈Z

{
eσ|k̃| 13

(
‖Φin,k̃‖L2 +‖uin,k̃‖L2 +‖ut,in,k̃‖L2 +‖∂yuin,k‖L2

)}
.

The left-hand side already reveals the Gevrey-three norm on ((∂t + 1)fk)k∈Z and (∂yfk)k∈Z. We shall
however provide a uniform estimate of the right-hand side, with respect to the frequencies k ∈ Z. To this
end, we first observe that

|k| =
(

4
σ

)3(σ

4
|k| 1

3

)3

≤
(

4
σ

)3

e
3σ
4 |k| 13 , |k| =

(
12
σ

)3( σ

12
|k| 1

3

)3

≤
(

12
σ

)3

e
σ
4 |k| 13 . (2.38)

Therefore, since 1 ≤ max{1, 4/σ}3e3σ|k|1/3/4, we gather that

eβ(t)|k| 13
(
‖(∂t+1)fk(t)‖L2 +‖∂yfk(t)‖L2

)
≤

√
2e

(
β(t)+ 3σ

4

)
|k| 13 max

{
1,

4
σ

}3(
‖uin,k‖L2 +‖U ′

sh‖L∞‖Φin,k‖L2+

+‖ut,in,k‖L2 + ‖∂yuin,k‖L2

)
+ 4

√
2e− σ

4 |k| 13 (‖U ′′′
sh‖L∞ + ‖U ′′

sh‖L∞
)
(

12
σ

)3

e
σ
4 |k| 13 tCσ(t)

(
1 + ‖Ush‖L∞+

+‖U ′
sh‖L∞ + ‖U ′′

sh‖L∞ + ‖U ′′′
sh‖L∞

)2

sup
k̃∈Z

{
eσ|k̃| 13

(
‖Φin,k̃‖L2 +‖uin,k̃‖L2 +‖ut,in,k̃‖L2 +‖∂yuin,k̃‖L2

)}
.

This provides the required uniform estimate in k ∈ Z, since 3σ/4 + β(t) = α(t) + σ/2 ≤ σ for any
t ∈ [0, Tσ), hence

eβ(t)|k| 13
(
‖(∂t + 1)fk(t)‖L2 + ‖∂yfk(t)‖L2

)
≤ C2,σ(t)

(
1 + ‖Ush‖L∞ + ‖U ′

sh‖L∞ + ‖U ′′
sh‖L∞+

+‖U ′′′
sh‖L∞

)3

sup
k̃∈Z

{
eσ|k̃| 13

(
‖Φin,k̃‖L2 + ‖uin,k̃‖L2 + ‖ut,in,k̃‖L2 + ‖∂yuin,k̃‖L2

)}
,

(2.39)

where the function t ∈ (0, Tσ) → C2,σ(t) is now defined by

C2,σ(t) :=
√

2 max
{

1,
4
σ

}3

+ 4
√

2
(

12
σ

)3

tCσ(t)

=
√

2 max
{

1,
4
σ

}3

+ 4
√

2
(

12
σ

)3

170 · max
{

1,
12
σ

}6

t2(1 + t)3et.

(2.40)

We now take advantage of (2.39), in order to transfer the corresponding Gevrey-three estimates to the
sequences (uk)k∈Z, (∂yuk)k∈Z and (∂tuk)k∈Z. We begin with ∂yuk and we invoke identity (2.32), which
ensures that ∂yuk = ∂yfk − ikU ′′

sh(∂t + 1)ψk − ikU ′
sh(∂t + 1)∂yψk. Hence

eβ(t)|k| 13 ‖∂yuk(t)‖L2 ≤ eβ(t)|k| 13
(
‖∂yfk‖L2 + |k|‖U ′

sh‖L∞‖(∂t + 1)∂yψk‖L2 + |k|‖U ′′
sh‖L∞‖(∂t + 1)ψk‖L2

)
,

which we couple together with (2.38), the Poincaré inequality ‖(∂t + 1)ψk‖L2 ≤ ‖(∂t + 1)∂yψk‖L2 and
the relation α(t) = β(t) + σ/4, to obtain

eβ(t)|k| 13 ‖∂yuk(t)‖L2 ≤ eβ(t)|k| 13
(

‖∂yfk‖L2 +
(12

σ

)3

e
σ
4 |k| 13 (‖U ′

sh‖L∞ + ‖U ′′
sh‖L∞

)‖(∂t + 1)∂yψk‖L2

)

≤ eβ(t)|k| 13 ‖∂yfk‖L2 +
(12

σ

)3

eα(t)|k| 13 (‖U ′
sh‖L∞ + ‖U ′′

sh‖L∞
)‖(∂t + 1)∂yψk‖L2 .
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Thanks to (2.39) and the Poincaré inequality ‖uk‖L2 ≤ ‖∂yuk‖L2 , we establish therefore the uniform
estimate

eβ(t)|k| 13
(
‖uk(t)‖L2 + ‖∂yuk(t)‖L2

)
≤

(
C2,σ(t) +

(12
σ

)3

Cσ(t)
)(

1 + ‖Ush‖L∞ + ‖U ′
sh‖L∞+

+‖U ′′
sh‖L∞ + ‖U ′′′

sh‖L∞
)3

sup
k̃∈Z

{
eσ|k̃| 13

(
‖Φin,k̃‖L2 + ‖uin,k̃‖L2 + ‖ut,in,k̃‖L2 + ‖∂yuin,k̃‖L2

)}
.

(2.41)

Next, we aim to address the sequence of the time derivative (∂tuk)k∈Z. We invoke once more the relation
uk = fk − ikU ′

sh(∂t + 1)ψk in (2.32) and we decompose ∂tuk as follows:

∂tuk = ∂tfk − ikU ′
sh(∂t + 1)∂tψk

= (∂t + 1)fk − fk − ikU ′
sh

(
(∂t + ikUsh)(∂t + 1) − ∂2

y

)
ψk − k2U ′

shUsh(∂t + 1)ψk − ikU ′
sh∂2

yψk.

Recalling that ((∂t + ikUsh)(∂t + 1) − ∂2
y)ψk = Φk from (2.17), we gather that

∂tuk = (∂t + 1)fk − fk − ikU ′
shΦk − k2U ′

shUsh(∂t + 1)ψk − ikU ′
sh∂2

yψk.

A straightforward calculation leads hence to the estimate

eγ(t)|k| 13 ‖∂tuk(t)‖L2 ≤ eγ(t)|k| 13
{

‖(∂t + 1)fk(t)‖L2 + ‖fk(t)‖L2 + |k|‖U ′
sh‖L∞‖Φk(t)‖L2+

+ k2‖U ′
sh‖L∞‖Ush‖L∞‖(∂t + 1)ψk(t)‖L2 + |k|‖U ′

sh‖L∞‖∂2
yψk(t)‖L2

}

.

We now remark that γ(t) ≤ β(t), for any t ∈ R. Thus, making use of the Poincaré inequalities given
by ‖fk(t)‖L2 ≤ ‖∂yfk(t)‖L2 and ‖Φk(t)‖L2 ≤ ‖∂yΦk(t)‖L2 = ‖uk‖L2 , as well as recalling (2.38) together
with

k2 =
(

24
σ

)6(
σ

24
|k| 1

3

)6

≤
(

24
σ

)6(
e

σ
24 |k| 13

)6

= 64
(

12
σ

)6

e
σ
4 |k| 13 ,

we finally obtain

eγ(t)|k| 13 ‖∂tuk(t)‖L2 ≤ eβ(t)|k| 13
(
‖(∂t + 1)fk(t)‖L2 + ‖∂yfk(t)‖L2

)
+

(12
σ

)3

‖U ′
sh‖L∞eβ(t)|k| 13 ‖uk(t)‖L2+

+ 64
(

12
σ

)6

‖U ′
sh‖L∞‖Ush‖L∞eα(t)|k| 13 ‖(∂t + 1)∂yψk(t)‖L2 +

(12
σ

)3

‖U ′
sh‖L∞eα(t)|k| 13 ‖∂2

yψk(t)‖L2 .

We hence plug (2.28), (2.39) and (2.41) into this last relation, to gather

eγ(t)|k| 13 ‖∂tuk(t)‖L2 ≤
{

C2,σ(t)
︸ ︷︷ ︸

from all fk

+
(12

σ

)3 (
C2,σ(t) +

(12
σ

)3

Cσ(t)
)

︸ ︷︷ ︸
from uk

+64
(

12
σ

)6
Cσ(t)

5︸ ︷︷ ︸
from (∂t+1)∂yψk

+
(12

σ

)3 Cσ(t)
5︸ ︷︷ ︸

from ∂2
yψk

}(
1+

+ ‖Ush‖L∞ + ‖U ′
sh‖L∞ + ‖U ′′

sh‖L∞ + ‖U ′′′
sh‖L∞

)4

sup
k̃∈Z

{
eσ|k̃| 13

(
‖uin,k̃‖L2 + ‖ut,in,k̃‖L2 + ‖∂yuin,k̃‖L2

)}
.

To simplify the summation of the terms depending on Cσ and C2,σ, we make use of their definitions in
Lemma 2.4 and (2.40), so that

C2,σ(t) +
(12

σ

)3(
C2,σ(t) +

(12
σ

)3

Cσ(t)
)

+ 64
(

12
σ

)6
Cσ(t)

5
+

(12
σ

)3 Cσ(t)
5

≤ max
{

1,
12
σ

}6{

2C2,σ(t) + 14Cσ(t)
}

≤ 5000max
{

1,
12
σ

}15

(1 + t)5et =
C̃σ(t)

2
.
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This provides indeed the following estimate on ∂tuk

eγ(t)|k| 13 ‖∂tuk(t)‖L2 ≤ C̃σ(t)
2

(
1 + ‖Ush‖L∞ + ‖U ′

sh‖L∞+

+ ‖U ′′
sh‖L∞ + ‖U ′′′

sh‖L∞
)4

sup
k̃∈Z

{
eσ|k̃| 13

(
‖uin,k̃‖L2 + ‖ut,in,k̃‖L2 + ‖∂yuin,k̃‖L2

)}
,

(2.42)

which together with (2.41) (and the fact that C2,σ(t)+ (12/σ)3Cσ(t) ≤ C̃(t)/2) imply finally the claimed
inequality (2.31). This concludes the proof of Proposition 2.5. �

2.5. A Suitable Test Function

In order to conclude the proof of Theorem 1.4, we need to establish Proposition 2.3 about the uniform
estimate (2.21) on (∂t + 1)∂yψk and ∂2

yψk. In the present section we establish a suitable test function
ωτ,k for equation (2.20), that reveals some advantageous estimates, when analysing the L2-inner product
between ωτ,k and equation (2.20). For a given positive time τ ∈ (0, Tσ), we consider ωτ,k as the unique
solution of the following backward-in-time linear problem:

⎧
⎪⎨

⎪⎩

((∂t − 1)(∂t + ikUsh) − ∂2
y)ωτ,k = (∂t + 1)∂yψk (0, τ) × (0, 1),

(ωτ,k, ∂tωτ,k)|t=τ = (0, 0) (0, 1),

ωτ,k|y=0,1 = 0 (0, τ).
(2.43)

With the next lemma, we determine the relations between certain meaningful norms of ωτ,k and the ones
of (∂t + 1)∂yψk.

Lemma 2.6. The solution ωτ,k of (2.43) satisfies at any time t ∈ [0, τ ]

sup
s∈(t,τ)

‖(∂t − 1)ωτ,k(s)‖L2 ≤ 2
∫ τ

t

‖(∂t + 1)∂yψk(s)‖L2ds,

sup
s∈(t,τ)

‖∂yωτ,k(s)‖L2 ≤
√

2
∫ τ

t

‖(∂t + 1)∂yψk(s)‖L2ds,

sup
s∈(t,τ)

‖ωτ,k(s)‖L2 ≤ 2eτ−t

∫ τ

t

(s − t)‖(∂t + 1)∂yψk(s)‖L2ds.

(2.44)

Proof. We multiply the first equation in (2.43) with the complex conjugate (∂t − 1)ωτ,k. Hence, for a given
time t̃ ∈ (0, τ), we integrate the achieved identity within the domain (t̃, τ) × (0, 1) and we extrapolate
the corresponding real part:

− 1
2
‖(∂t − 1)ωτ,k(t̃)‖2

L2 − 1
2
‖∂yωτ,k(t̃)‖2

L2 −
∫ τ

t̃

‖∂yωτ,k(s)‖2
L2ds

=
∫ τ

t̃

∫ 1

0

Re
[
(∂t + 1)∂yψk · (∂t − 1)ωτ,k

]
(s, y)dyds.

(2.45)

We multiply (2.45) by −1 and we take the Supremum of within t̃ ∈ (t, T ), for a fixed t ∈ (0, τ). Thanks
to Cauchy-Schwarz, we hence establish that

sup
t̃∈(t,τ)

‖(∂t − 1)ωτ,k(t̃)‖2
L2 ≤ 2

∫ τ

t

‖(∂t + 1)∂yψk(s)‖L2‖(∂t − 1)ωτ,k(s)‖L2ds

≤ 2
∫ τ

t

‖(∂t + 1)∂yψk(s)‖L2ds sup
s∈(t,τ)

‖(∂t − 1)ωτ,k(s)‖L2 .
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This corresponds to the first inequality of (2.44). Next, we deal with the norm ‖∂yωτ,k‖L2 in (2.44). By
invoking (2.45), we have first

sup
s∈(t,T )

‖∂yωτ,k(s)‖L2 ≤
( ∫ τ

t

‖(∂t + 1)∂yψk(s)‖L2ds sup
s∈(t,T )

‖(∂t − 1)ωτ,k(s)‖L2

) 1
2

.

The result is thus obtained by invoking the first inequality of (2.44). To conclude the proof, we deal now
with the last inequality of (2.44). Since ωτ,k is null at t = τ , we have

‖ωτ,k(t)‖L2 =
∥
∥
∥ −

∫ τ

t

∂tωτ,k(s)ds
∥
∥
∥

L2
≤

∫ τ

t

‖∂tωτ,k(s)‖L2ds

≤
∫ τ

t

‖(∂t − 1)ωτ,k(s)‖L2ds +
∫ τ

t

‖ωτ,k(s)‖L2ds.

Furthermore, the first estimate in (2.44) guarantees that

‖ωτ,k(t)‖L2 ≤ 2
∫ τ

t

∫ τ

s

‖(∂t + 1)∂yψk(z)‖L2dzds +
∫ τ

t

‖ωτ,k(s)‖L2ds.

The result is then achieved by applying the Gronwall’s lemma:

‖ωτ,k(t)‖L2 ≤ 2eτ−t

∫ τ

t

∫ τ

s

‖(∂t + 1)∂yψk(z)‖L2ds.

This concludes the proof of Lemma 2.6. �

2.6. Proof of Proposition 2.3

This section is devoted to the proof of Proposition 2.3, which is based on the specific test function ωτ,k,
introduced in Sect. 2.5. We begin with, by recalling system (2.20) for the evolution of ∂yψk:

(
(∂t + 1)(∂t + ikUsh) − ∂2

y

)2
∂yψk = [ikU ′

sh, ∂2
y ]

(
(∂t + 1)ψk

)
, (2.46)

with initial data ∂tψk|t=0 = ψk|t=0 = 0 and boundary conditions ψk|y=0,1 = 0. Next, we fix a general
time τ ∈ (0, Tσ) and we multiply the equation (2.46) with the conjugate ωτ,k of the test function defined
in (2.43). By integrating the result along (0, τ) × (0, 1), we obtain the following identity:

∫ τ

0

∫ 1

0

[(
(∂t + 1)(∂t + ikUsh(y)) − ∂2

y

)2
∂yψk

]
(t, y)ωτ,k(t, y)dydt

=
∫ τ

0

∫ 1

0

[ikU ′
sh(y), ∂2

y ]
(
(∂t + 1)ψk(t, y)

)
ωτ,k(t, y)dydt.

(2.47)

We aim therefore to integrate by parts the integral at the left-hand side. To this end, we first develop the
operator (∂t + 1)(∂t + ikUsh(y)) − ∂2

y into ∂2
t + (1 + ikUsh(y))∂t + ikUsh(y) − ∂2

y , which localises the order
of each derivative. Hence, by considering momentarily the derivative ∂2

t of second order, we gather
∫ τ

0

∫ 1

0

[
∂2

t

(
(∂t + 1)(∂t + ikUsh(y)) − ∂2

y

)
∂yψk

]
(t, y)ωτ,k(t, y)dydt

=
∫ τ

0

∫ 1

0

[(
(∂t + 1)(∂t + ikUsh(y)) − ∂2

y

)
∂yψk

]
(t, y)∂2

t ωτ,k(t, y)dydt+

+
∫ 1

0

[
∂t

(
(∂t + 1)(∂t + ikUsh(y)) − ∂2

y

)
∂yψk

]
(0, y)ωτ,k(0, y)dy+

−
∫ 1

0

[(
(∂t + 1)(∂t + ikUsh(y)) − ∂2

y

)
∂yψk

]
(0, y)∂tωτ,k(0, y)dy.

(2.48)
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The last two integrals of (2.48) are set at t = 0 and can hence be recasted in terms of the initial data of
the velocity field uin,k, ∂tuin,k and of the stream function Φin,k. Indeed, recalling that ψk is also solution
of (2.17), we remark that the second integrand at the right-hand side of (2.48) satisfies

[
∂t((∂t + 1)(∂t + ikUsh) − ∂2

y)∂yψk

]
(0, y) = ikU ′

sh(y)
(
∂2

t ψk(0, y) + ∂tψk(0, y)
)

+ ∂t∂yΦk(0, y),

for any y ∈ (0, 1). This can be simplified further, since ∂t∂yΦk(0, y) = ∂yΦt,in,k = ut,in,k, ∂tψk|t=0 = 0
and equation (2.17) implies that ∂2

t ψk|t=0 = Φin,k. Thus
[
∂t((∂t + 1)(∂t + ikUsh) − ∂2

y)∂yψk

]
(0, y) = ikU ′

sh(y)Φin,k(y) + ut,in,k(y), (2.49)

for any y ∈ (0, 1). An analogous approach leads moreover to the following identity for the third integrand
at the right-hand side of (2.48):

[
((∂t + 1)(∂t + ikUsh) − ∂2

y)∂yψk

]
(0, y) = ∂yΦk(0, y) = uin,k(y), y ∈ (0, 1). (2.50)

Therefore, thanks to the relations (2.49) and (2.50), we can reformulate (2.48) as follows:
∫ τ

0

∫ 1

0

[
∂2

t

(
(∂t + 1)(∂t + ikUsh(y)) − ∂2

y

)
∂yψk

]
(t, y)ωτ,k(t, y)dydt

=
∫ τ

0

∫ 1

0

[(
(∂t + 1)(∂t + ikUsh(y)) − ∂2

y

)
∂yψk

]
(t, y)∂2

t ωτ,k(t, y)dydt+

+
∫ 1

0

(
ikU ′

sh(y)Φin,k(y) + ut,in,k(y)
)
ωτ,k(0, y)dy −

∫ 1

0

uin,k(y)∂tωτ,k(0, y)dy.

(2.51)

We now come back to our original identity (2.47) and we shall now integrate by parts the operator
(1 + ikUsh)∂t, with a a first order derivative. As for (2.51), our aim is once more to recast the resulting
integrals at t = 0 in terms of the initial data. A direct calculation guarantees that

∫ τ

0

∫ 1

0

[
(1 + ikUsh)∂t

(
(∂t + 1)(∂t + ikUsh) − ∂2

y

)
∂yψk

]
(t, y)ωτ,k(t, y)dydt

=
∫ τ

0

∫ 1

0

[(
(∂t + 1)(∂t + ikUsh) − ∂2

y

)
∂yψk

]
(t, y)(1 − ikUsh(y))∂tωτ,k(t, y)dydt+

+
∫ 1

0

[
(1 + ikUsh)

(
(∂t + 1)(∂t + ikUsh) − ∂2

y

)
∂yψk

]
(0, y)ωτ,k(0, y)dy.

(2.52)

Hence, recalling from (2.50) that [((1+ ikUsh)((∂t +1)(∂t + ikUsh)−∂2
y)∂yψk](0, y) = uin,k(y), we obtain

∫ τ

0

∫ 1

0

[
(1 + ikUsh)∂t

(
(∂t + 1)(∂t + ikUsh)−∂2

y

)
∂yψk

]
(t, y)ωτ,k(t, y)dydt

=
∫ τ

0

∫ 1

0

[(
(∂t + 1)(∂t + ikUsh(y)) − ∂2

y

)
∂yψk

]
(t, y)(1 − ikUsh(y))∂tωτ,k(t, y)dydt+

+
∫ 1

0

(1 + ikUsh(y))uin,k(y)ωτ,k(0, y)dy.

(2.53)

To conclude the integration by parts related to the operator ((∂t + 1)(∂t + ikUsh(y)) − ∂2
y) in (2.47), we

shall now treat −∂2
y . Making use of the homogeneous conditions ωk|y=0,1 = 0 on the test function, we

have that

−
∫ τ

0

∫ 1

0

[
∂2

y

(
(∂t + 1)(∂t + ikUsh(y)) − ∂2

y

)
∂yψk

]
(t, y)ωτ,k(t, y)dydt

=
∫ τ

0

∫ 1

0

[
∂y

(
(∂t + 1)(∂t + ikUsh(y)) − ∂2

y

)
∂yψk

]
(t, y)∂yωτ,k(t, y)dydt.
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Now, recalling from (2.32) that ((∂t + 1)(∂t + ikUsh(y)) − ∂2
y)∂yψk = fk = ikU ′

sh(y)(∂t + 1)ψk + uk is null
in y = 0, 1, we obtain

−
∫ τ

0

∫ 1

0

[
∂2

y

(
(∂t + 1)(∂t + ikUsh(y)) − ∂2

y

)
∂yψk

]
(t, y)ωτ,k(t, y)dydt

= −
∫ τ

0

∫ 1

0

[(
(∂t + 1)(∂t + ikUsh(y)) − ∂2

y

)
∂yψk

]
(t, y)∂2

yωτ,k(t, y)dydt.

(2.54)

As final result, we couple the identities (2.51),(2.53) and (2.54), so that (2.47) can be recasted as

∫ τ

0

∫ 1

0

(
(∂t + 1)(∂t + ikUsh(y)) − ∂2

y

)
∂yψk(t, y)

(
(∂t − 1)(∂t + ikUsh(y)) − ∂2

y

)
ωτ,k(t, y)dydt+

+
∫ 1

0

(
ikU ′

sh(y)Φin,k(y) + ut,in,k(y) + (1 + ikUsh(y))uin,k(y)
)
ωτ,k(0, y)dy−

−
∫ 1

0

uin,k(y)∂tωτ,k(0, y)dy =
∫ τ

0

∫ 1

0

[ikU ′
sh(y), ∂2

y ]
(
(∂t + 1)ψk(t, y)

)
ωτ,k(t, y)dydt.

(2.55)

Next, we make use of (2.55), in order to derive suitable estimates on the L2-norms of (∂t + 1)∂yψk and
∂2

yψk. These estimates shall not depend upon ωτ,k, hence we aim to get rid of this test function making
use of Lemma 2.6 and system (2.43). By extrapolating the real part of (2.55), the first integral becomes

Re

∫ τ

0

∫ 1

0

(
(∂t + 1)(∂t + ikUsh(y)) − ∂2

y

)
∂yψk(t, y)(∂t + 1)∂yψk(t, y)dydt

=
∫ τ

0

∫ 1

0

Re
[
∂t(∂t + 1)∂yψk(t, y)(∂t + 1)∂yψk(t, y)

]
dydt+

+
∫ τ

0

∫ 1

0

Re
[
ikUsh(y)‖(∂t + 1)∂yψk(t, y)‖2

L2

]

︸ ︷︷ ︸
=0

dydt +
∫ τ

0

∥
∥∂2

yψk(s)
∥
∥2

L2ds

=
1
2

∥
∥(∂t + 1)∂yψk(τ)

∥
∥2

L2 +
1
2

∥
∥∂yψk(τ)

∥
∥2

L2 +
∫ τ

0

∥
∥∂2

yψk(s)
∥
∥2

L2ds,

where we have used in the last identity the fact that ∂yψk and ∂t∂yψk are identically null at t = 0.
Furthermore, when dealing with the real part of the second and third integrals in (2.55), we obtain

∣
∣
∣
∣Re

∫ 1

0

(
ikU ′

sh(y)Φin,k(y) + ut,in,k(y) + (1 + ikUsh(y))uin,k(y)
)
ωτ,k(0, y)dy

∣
∣
∣
∣

≤
(
|k|‖U ′

sh‖L∞‖Φin,k‖L2 + ‖ut,in,k‖L2 +
(
1 + |k|‖Ush‖L∞

)‖uin,k‖L2

)
‖ωτ,k(0)‖L2 ,

(2.56)

as well as

∣
∣
∣
∣Re

∫ 1

0

uin,k(y)∂tωτ,k(0, y)dy

∣
∣
∣
∣ ≤ ‖uin,k‖L2‖∂tωτ,k(0)‖L2 . (2.57)
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Finally, the real part of the right-hand side in (2.55) fulfills
∣
∣
∣
∣Re

∫ τ

0

∫ 1

0

[ikU ′
sh(y), ∂2

y ]
(
(∂t + 1)ψk(t, y)

)
ωτ,k(t, y)dydt

∣
∣
∣
∣

≤ |k|
∫ τ

0

‖[U ′
sh, ∂2

y ](∂t + 1)ψk(t)‖L2‖ωτ,k(t)‖L2dt

≤ |k|
∫ τ

0

‖[U ′
sh, ∂2

y ](∂t + 1)ψk(t)‖L2‖ωτ,k(t)‖L2dt

≤ |k|
∫ τ

0

‖U ′′′
sh(∂t + 1)ψk(t) + 2U ′′

sh(∂t + 1)∂yψk(t)‖L2‖ωτ,k(t)‖L2dt

≤ |k|
∫ τ

0

(
‖U ′′′

sh‖L∞ + 2‖U ′′
sh‖L∞

)
‖(∂t + 1)∂yψk(t)‖L2‖ωτ,k(t)‖L2dt,

(2.58)

where we have also made use of the Poincaré inequality in y ∈ (0, 1): ‖(∂t+1)ψk‖L2 ≤ ‖(∂t+1)∂yψk‖L2 .
We can summarise hence our last estimates, by coupling (2.55) together with (2.56), (2.57) and (2.58).
This guarantees that for any τ ∈ (0, Tσ)

1
2

∥
∥(∂t + 1)∂yψk(τ)

∥
∥2

L2 +
1
2

∥
∥∂2

yψk(τ)
∥
∥2

L2 +
∫ τ

0

∥
∥∂2

yψk(t)
∥
∥2

L2dt

≤
(
|k|‖U ′

sh‖L∞‖Φin,k‖L2 + ‖ut,in,k‖L2 +
(
1 + |k|‖Ush‖L∞

)‖uin,k‖L2

)
‖ωτ,k(0)‖L2

+ ‖uin,k‖L2‖∂tωτ,k(0)‖L2 + |k|
(
‖U ′′′

sh‖L∞ + 2‖U ′′
sh‖L∞

) ∫ τ

0

‖(∂t + 1)∂yψk(t)‖L2‖ωτ,k(t)‖L2dt.

(2.59)

The right-hand side still depends upon the test function ωk,τ . We are however in the condition to get rid
of that, by applying Lemma 2.6. This implies in particular (together with Poincaré) that

‖ωk,τ (0)‖L2 ≤ ‖∂yωk,τ (0)‖L2 ≤
√

2
∫ τ

0

‖(∂t + 1)∂yψk(s)‖L2ds

≤
√

2 τ sup
s∈[0,τ ]

‖(∂t + 1)∂yψk(s)‖L2 ,

‖∂tωk,τ (0)‖L2 ≤ ‖(∂t − 1)ωk,τ (0)‖L2 + ‖ωk,τ (0)‖L2 ≤ (2 +
√

2)
∫ τ

0

‖(∂t + 1)∂yψk(s)‖L2ds

≤
√

2(1 +
√

2)τ sup
s∈[0,τ ]

‖(∂t + 1)∂yψk(s)‖L2 ,

‖ωk(t)‖L2 ≤ eτ−t

∫ τ

t

(s − t)‖(∂t + 1)∂yψk(s)‖L2ds

≤ eτ

∫ τ

t

(s − t)ds sup
s∈[0,τ ]

‖(∂t + 1)∂yψk(s)‖L2 =
eτ (τ − t)2

2
sup

s∈[0,τ ]

‖(∂t + 1)∂yψk(s)‖L2 .

Thus, by taking now the supremum in τ ∈ (0, t) for a general t ∈ (0, Tσ) (and re-denoting the variables
of integration), we can recast (2.59) uniquely in terms of the stream function ψk as follows:

1
2

sup
s∈(0,t)

{
∥
∥(∂t + 1)∂yψk(s)

∥
∥2

L2 +
∥
∥∂2

yψk(s)
∥
∥2

L2

}

+
∫ t

0

∥
∥∂2

yψk(s)
∥
∥2

L2ds ≤

sup
s∈(0,t)

‖(∂t+1)∂yψk(s)‖L2

{√
2
(
|k|‖U ′

sh‖L∞‖Φin,k‖L2 + ‖ut,in,k‖L2 +
(
1 + |k|‖Ush‖L∞

)‖uin,k‖L2

)
t+

+ 2(1 +
√

2)‖uin‖L2τ + |k|
(
‖U ′′′

sh‖L∞ + 2‖U ′′
sh‖L∞

)
et

∫ t

0

‖(∂t + 1)∂yψk(s)‖L2(t − s)2ds

}

.
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If sups∈(0,t) ‖(∂t+1)∂yψk(s)‖L2 = 0, then the main estimate (2.21) is automatically satisfied. On the other
hand, in case this term is not identically null, we have that

sup
s∈(0,t)

{
∥
∥(∂t + 1)∂yψk(s)

∥
∥

L2 +
∥
∥∂2

yψk(s)
∥
∥

L2

}

≤
√

2
(

sup
s∈(0,t)

{
∥
∥(∂t + 1)∂yψk(s)

∥
∥2

L2 +
∥
∥∂2

yψk(s)
∥
∥2

L2

}) 1
2

≤ 2
√

2
sups∈(0,t) ‖(∂t+1)∂yψk(s)‖L2

1
2

sup
s∈(0,t)

{
∥
∥(∂t + 1)∂yψk(s)

∥
∥2

L2 +
∥
∥∂2

yψk(s)
∥
∥2

L2

}

≤ 2
√

2
{√

2
(
|k|‖U ′

sh‖L∞‖Φin,k‖L2 + ‖ut,in,k‖L2 +
(
1 + |k|‖Ush‖L∞

)‖uin,k‖L2

)
t+

+ 2(1 +
√

2)‖uin,k‖L2t + |k|
(
‖U ′′′

sh‖L∞ + 2‖U ′′
sh‖L∞

)
et

∫ t

0

‖(∂t + 1)∂yψk(s)‖L2(t − s)2ds

}

.

We hence reorganise the last inequality into the following compact form:

sup
s∈[0,t]

{
∥
∥(∂t + 1)∂yψk(s)

∥
∥

L2 +
∥
∥∂2

yψk(s)
∥
∥

L2

}

≤ gk(t) +
λk(t)3

2

∫ t

0

(t − s)2 sup
τ∈[0,s]

‖(∂t + 1)∂yψk(τ)‖L2ds

where the functions gk(t) and λk(t) are defined by means of

gk(t) := 4t
{

|k|
(
‖U ′

sh‖L∞‖Φin,k‖L2 + ‖Ush‖L∞‖uin,k‖L2

)
+ ‖ut,in,k‖L2 + (3 +

√
2)‖uin,k‖L2

}

λk(t) := 2
5
6 |k| 1

3

(
‖U ′′′

sh‖L∞ + 2‖U ′′
sh‖L∞

) 1
3
e

t
3 .

This last inequality corresponds to our claimed estimate (2.21). This concludes therefore the proof of
Proposition 2.3.

3. Conclusion and Remarks on the Non-linear System

In this section, we investigate why Theorem 1.4 cannot be proven for the nonlinear counterparts of
(1.1) without further ado. Clearly, this is a consequence of the nonlinear structure but furthermore, the
hyperbolic regime interferes with the known cancellation properties of the classical Prandtl/Navier–Stokes
equations in an aggravating way.

To begin with, we observe that several candidates exist for which Theorem 1.4 might hold true. Some
of the represent simplifications of other formulations but, nevertheless, they contain drawbacks which
cannot be dealt with easily. The simplest form of the nonlinear hyperbolic Prandtl equation consists of

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

τ∂ttu + ∂tu + u∂xu + v∂yu − ∂2
yu =

(
τ∂t + 1

)(
∂tu

E + uE∂xuE
)
, (0, T ) × X × (0,+∞),

∂xu + ∂yv = 0 (0, T ) × X × (0,+∞),

(u, v)|y=0 = 0 lim
y→+∞ u = uE (0, T ) × X,

(u, ut)|t=0 = (uin, ut,in) X × (0,+∞),

, (3.1)

This system looks promising when trying to implement the strategy of [11]. However, besides the fact
that the second time derivative produces difficulties (see below), a quick look at the linearization

∂2
t u + ∂tu + Ush(y)∂xu + v U ′

sh(y) − ∂yyu = 0, on (0, T ) × T × (0, 1)

suffices to realize the eigenvalues contain a positive real part in general. More precisely, solutions corre-
sponding to a frequency k in x will behave like e

√
|k|t which restricts well-posedness theory to the Gevrey

2 case. For a hyperbolic equation, this is expected and actually proven for (3.1) in [19] (see also [26]).
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In conclusion, it is essential to maintain the convective structure of the hyperbolic Prandtl equations
(as shown in Sect. 2). By Cattaneo’s law, it reads

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
τ∂t + 1

)(
∂tu + u∂xu + v∂yu

) − ∂2
yu =

(
τ∂t + 1

)(
∂tu

E + uE∂xuE
)
, (0, T ) × X × (0,+∞),

∂xu + ∂yv = 0 (0, T ) × X × (0,+∞),

(u, v)|y=0 = 0 lim
y→+∞ u = uE (0, T ) × X,

(u, ut)|t=0 = (uin, ut,in) X × (0,+∞),

.

(3.2)

Unfortunately, the time derivative on the convective term brings several other difficulties with it. At first,
note that one of the terms, ∂tu∂xu, competes with the damping mechanism for large values. Even for the
hyperbolic Navier–Stokes equations, this circumstance poses a fundamental issue (see e.g. [29]).

Secondly and much more inherent to the strategy followed in [11] and Sect. 2, the additional (second)
time-derivatives produce corresponding terms terms on the right-hand side of the equation. Following
Sect. 2.2, we realize that two commutators need to be evaluated in (2.18) and (2.20). In the classical
Prandtl regime, the solenoidality of (u, v) and cancellation of curl-related terms enters the analysis, e.g.

[∂y, ∂t + u∂x + v∂y − ∂yy]u = 0.

None of these instances persist in the hyperbolic version. Instead, new terms arise like ∂xtv ∼ ∂xxtu.
Confronted with a 4-order time derivative on the left-hand side, this does not present an improvement
over the standard Gevrey 2 regularity result. A new, different (perhaps related) cancellation mechanism
seems to be necessary but it is not clear how the system can be closed.

At this point, we remark that the independence of the shear flow Ush on (t, x) is exploited heavily in
Section 4. A third variant of (3.1), substituting the first equation by

(τ∂tt + τu∂x∂t + ηv∂y∂t + ∂t + u∂x + v∂y − ∂yy)u = 0,

bears similar problems, although the competing damping term ∂xu∂tu is not present here. However,
the potential improvement of the above equation might lie in the transport structure related to the
time-derivatives of u.

In sum, we conjecture that Theorem 1.4 hints stability results around shear flows for the nonlinear
hyperbolic equations in Gevrey 3 class. On the other hand, a general well-posedness theory for arbitrary
initial data in G3 does not seem to be achievable without major novelties or improvements on the strategy
followed in [11] and this work.
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