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Abstract

Venomous organisms have independently evolved the ability to produce toxins 101 times during their evolutionary history, resulting
in over 200 000 venomous species. Collectively, these species produce millions of toxins, making them a valuable resource for
bioprospecting and understanding the evolutionary mechanisms underlying genetic diversification. RNA-seq is the preferred method
for characterizing toxin repertoires, but the analysis of the resulting data remains challenging. While early approaches relied on
similarity-based mapping to known toxin databases, recent studies have highlighted the importance of structural features for toxin
detection. The few existing pipelines lack an integration between these complementary approaches, and tend to be difficult to run
for non-experienced users. To address these issues, we developed DeTox, a comprehensive and user-friendly tool for toxin research.
It combines fast execution, parallelization and customization of parameters. DeTox was tested on published transcriptomes from
gastropod mollusks, cnidarians and snakes, retrieving most putative toxins from the original articles and identifying additional peptides
as potential toxins to be confirmed through manual annotation and eventually proteomic analysis. By integrating a structure-based
search with similarity-based approaches, DeTox allows the comprehensive characterization of toxin repertoire in poorly-known taxa.
The effect of the taxonomic bias in existing databases is minimized in DeTox, as mirrored in the detection of unique and divergent
toxins that would have been overlooked by similarity-based methods. DeTox streamlines toxin annotation, providing a valuable tool
for efficient identification of venom components that will enhance venom research in neglected taxa.
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INTRODUCTION
The ability to produce a venom, a mix of molecules used to disrupt
the normal physiological processes in another organism [1], is a
trait that evolved independently over 101 times across the animal
kingdom [2], leading to a total of more than 200 000 described
venomous species on Earth [2]. Since each species is able to
produce from a few tens to a few hundreds of unique toxins [3–5],
venomous organisms represent a fantastic reservoir of millions of
toxins. Some of these organisms also represent a serious threat
for human health: snakes only are responsible for more than
100 000 casualties per year [6], and developing effective and spe-
cific antivenoms is thus a critical task in venom research. At the
same time, some of the toxins isolated from venomous animals
have proved efficient in human therapeutics, and 12 toxins from
snakes, lizards, leeches, bees and cone snails are now approved for
clinical use in humans [7]. In addition to their potential practical

value, toxin peptides constitute a relevant model to understand
the molecular processes through which animals have evolved new
adaptations to interact with their environments and successfully
diversify.

The key step of venom research is the detection of toxins
and the characterization of their peptide sequences. With the
development of Next-Generation Sequencing techniques, RNA-
seq of venom-producing tissues is now the favored and most
efficient approach to quickly access the toxin repertoire of a
venomous animal [8]. Compared with previously used methods
(Sanger sequencing of Expressed Sequence Tags or proteomics),
RNA-seq techniques, thanks to their higher throughput and
dynamic range, cover more exhaustively the transcript diversity
and allow an estimation of the relative quantity of each transcript.
On the other hand, a single RNA-seq run can provide millions of
reads, leading to tens of thousands of transcripts after assembly
and navigating through the data to quickly and efficiently
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target the contigs that potentially correspond to toxins remains
challenging.

When the first transcriptomes from venom-producing tissues
were obtained, researchers relied on available toxin databases
to detect significant sequence similarity between the assem-
bled transcripts and a reference database, based on arbitrarily
defined similarity threshold [9–12]. Later on, methods based on
probabilistic approaches and machine learning were introduced
to enhance the detection process in transcriptomic data: unlike
similarity methods, these approaches can even detect toxins that
significantly diverge from previously described ones [13–16]. Nev-
ertheless, all these reference-based approaches are limited to the
detection of toxins that are similar to the ones already charac-
terized in the toxin database or included in the training data
set [17].

More recently, several studies demonstrated the utility of using
structural features in addition to primary sequence similarity
to detect potential toxins in transcriptomes. For example, Fassio
et al. [18] and Fedosov et al. [17] relied on the detection of char-
acteristic structural features of the secreted toxins to guide de
novo annotation of the potential toxin transcripts. These features
are (i) the presence of an N-terminal signal peptide sequence,
which directs processing of the secretory peptide precursor, (ii)
the absence of transmembrane domain(s) and (iii) the presence
of a cysteine framework—a conservative arrangement of cysteine
residues in the mature peptide that define its spatial conforma-
tion through disulfide bridges [19, 20]. This strategy has proven
efficient, allowing identification of those toxins that remained
undetected with similarity approaches [17]. However, if similarity-
based approaches are formalized in several pipelines, such as
ToxCodAn or Venomix [21–24], they rarely implement a struc-
tural approach. Furthermore, the available tools are not always
maintained, often lacking updates, or, in case of web-hosted tools,
losing accessibility. Another common issue is the lack of a user-
friendly interface that makes the use of these tools not always
straightforward for non-experienced users. In addition, none of
these pipelines integrate the whole process, from the transcrip-
tome assembly to the annotation, nor a gene expression quantifi-
cation step, implying that these bioinformatic analyses should be
carried out separately using different tools.

Here, we present DeTox, a new tool for the Detection of pep-
tide Toxins in venomous organisms. DeTox integrates both the
similarity- and structure-based approaches, relying on a toxin
database for the former and on the presence of structural features
commonly reported in toxins for the latter. DeTox was primarily
developed for the detection of toxins in neogastropod mollusks,
but it can be used for any group of venomous organisms. The
main goal of developing DeTox is to assist researchers in a rational
selection of toxin candidates based on a set of customizable crite-
ria. It provides a user the opportunity to emphasize some criteria
over others, depending on the species of interest and quality of
input data, to efficiently identify toxin candidates. DeTox is built
as a user-friendly tool, overcoming the limitation of the previously
available pipelines. To illustrate its use, we applied DeTox to a
range of published transcriptomic data sets from neogastropods,
cnidarians and snakes.

MATERIAL AND METHODS
Overview of the pipeline
DeTox is conceived as a pipeline for de novo toxin detection in
transcriptomes (Figure 1). The approach is based on a three-
step methodology that allows the identification of similar toxins

and potential assignation of functional annotations. First, DeTox
identifies all transcripts that encode peptides showing typical
structural characteristics of toxins. Second, a similarity search
is performed between the predicted proteins and a database of
known toxins specific to the taxonomic group of interest, provided
by the user in fasta format (thereafter referred to as the ‘toxin
database’). Third, it optionally provides gene expression levels as
a critical information for toxin/non-toxin discrimination (when
toxin-producing tissues are specifically targeted). Importantly,
only predicted proteins that lack the expected structural fea-
tures or without any hit on the toxin database are excluded: all
the others are retained for further investigation. Although the
pipeline is designed to work on preassembled transcriptomes, it
also provides users the option to run the de novo assembly step, by
accepting raw RNA-seq data generated with Illumina platforms
as an input. The pipeline is developed using snakemake [25]. If
the assembled transcriptome is not provided, the pipeline will
automatically run the de novo assembly step using the paired-
end (‘r1’ and ‘r2’ options) or single-end (‘r1’ only) file(s) provided
by the user. The toxin database is provided by the user in the
‘toxin_db’ option. The pipeline generates a table summarizing all
the information for each putative toxin detected, including its
functional annotation (Table 1).

Reads quality cleaning and assembly
This part of the pipeline provides a simple and straightforward
approach for Illumina reads cleaning and assembly. The raw
reads are filtered based on quality and the adapters are
removed using Trimmomatic [26] v0.39 (default parameter:
‘ILLUMINACLIP:Adapters.fa:2:40:15 LEADING:15 TRAILING:15
MINLEN:36 SLIDINGWINDOW:4:15’). The reads are then assem-
bled using Trinity [27] v2.15.0 (with default parameters). Since
the implemented transcriptome assembly option is not tailored
for RNA-seq data generated with other platforms (e.g. ONT,
PacBio, etc.), we advise the users to adopt gold-standard
methods for reads trimming and assembly, specific to their
technology of choice. Regardless of the origin of the transcriptome
assembly, we strongly advise the users to filter the contigs
from possible contamination by providing a contaminant
database. This functionality can be accessed through the
‘contaminants’ parameter in the DeTox configuration file.
We recommend including sequences of bacteria, protists and
fungi from GenBank [28], as well as ribosomal RNAs from,
e.g. Silva database [29] (Supplementary Material 1 available
online at http://bib.oxfordjournals.org/.). Putative contaminant
sequences are removed based on the detection of significant
sequence homology with BLASTn v2.14.1 [30] (with the option
‘contamination_evalue’) against the reference database specified
by the user. Then, DeTox identifies the open reading frames
(ORF) in all contigs using orfipy v0.0.4 [31]. The user can set
the ‘minlen’ option defining the minimum length of the reading
frame (33 amino acids by default), ‘maxlen’ option defining the
maximum length of the reading frame (not defined by default)
with the addition of ‘partial-3’ and ‘partial-5’ to retrieve ORFs
without the N-terminal Methionine and/or stop codon. Because
of possible redundancy in the resulting translated transcripts,
sequences are clustered using CD-HIT v4.8.1 [32] with an identity
threshold (‘clustering_threshold’ option, 0.99 by default), and
retaining the longest sequence used as a basis for alignment
in each cluster. Please note that this threshold may need to
be adjusted depending on the quality of raw RNA-seq input
data, assembly strategy and genetic background of the target
species.
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Figure 1. Detox pipeline outline. Diagram of all the steps of the pipeline with the corresponding tools used, including the necessary input files and
databases. Dotted rectangles represent optional features of the pipeline.

Secretome and toxin peptides detection
The identified peptide sequences are analyzed based on their
structural features. The presence of a signal peptide in the
sequence indicates that the newly synthesized protein is targeted

to the classical secretory pathway, thereby being either secreted
outside the cell, resident in the endoplasmic reticulum, Golgi
or endosomes or (if transmembrane regions are also present)
inserted in cell membranes. To detect signal peptides, Signalp

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/2/bbae094/7630479 by U

niversita degli Studi di Trieste user on 22 July 2024



4 | Ringeval et al.

Table 1: General summary of DeTox outputs for the 11 analyzed transcriptomes, with comparison with the results from the original
articles

Species P. vaubani P. neocaledonicus C. ebraeus C. reticulata A. elegantissima C. andreae C. cantherigerus T. variabilis

Toxins identified in the
original publication

159 86 298 136 128 35 4 11

Among them, toxins
identified by DeTox

141 (89%) 81 (94%) 286 (96%) 124 (91%) 112 (88%) 34 (97%) 4 (100%) 10 (91%)

Total number of peptides
detected by DeTox

22 101 12 795 8040 11 654 35 069 6261 4185 7663

Number of DeTox peptides
with a TPM >1000

38 (11) 30 (4) 36 (23) 53 (3) 104 (8) 15 (0) 7 (0) 8 (0)

Number of DeTox peptides
with a hit against the Toxin
database (PID > 95)

3 (2) 3 (1) 112 (76) 78 (48) 5 (2) 4 (0) 1 (0) 3 (0)

Number of transcriptomes 2 2 1 1 2 1 1 1
Read count 129 629 574 78 096 694 58 508 016 329 576 088 272 940 126 54 593 038 50 762 546 56 115 370
Transcripts count 274 068 134 537 68 809 144 380 380 109 59 031 26 751 57 467
DeTox runtime 2 h 24 min 2 h 5 min 45 min 2 h 4 min 2 h 38 min 49 min 46 min 42 min

Note: Percentages into parenthesis correspond to the proportion of toxins recovered by DeTox among the toxins identified in the original publication. Numbers
into parenthesis correspond to the number of secreted peptides detected by DeTox but not found in the original articles. PID: percentage of identity. The last
line corresponds to the execution time of DeTox on 16 cores/32Gb RAM, without performing the assembly step.

v5.0b [33] is used with the arguments ‘-org euk -format short
-verbose -batch 5000’. Since this program is increasingly time-
consuming with large input files, only the first 50aa of each
translated transcript are distributed into multiple files, each
containing 5000 peptide sequences to serve as an input for Signalp
in individual runs. Then, the output files are merged into one file
and only sequences with a signal peptide having a D-value higher
than a user-specific threshold (‘signalp_dvalue’ option, 0.8 by
default) are kept. Please note that a small number of eukaryote
peptides, subject to leaderless secretion and lacking canonical
signal peptides, might be discarded by DeTox; if the users suspect
that a few toxins in the target organism may fall within this
category, they are advised to recover additional matches using,
e.g. SecretomeP [34]. The ORFs encoding peptides having one or
more transmembrane domains and therefore associated with cell
or organelle membranes are detected using Phobius v1.01 [35] and
discarded.

All the peptides (whether they display toxin structural fea-
tures or not) are aligned against the toxin database to ensure
the detection of already known or low divergence toxins, even
if they lack a signal peptide or if they possess a transmembrane
domain. This ensures the identification of toxins recovered in par-
tially assembled contigs lacking their N-terminal region, deriving
from the translation of incomplete or misassembled transcripts.
The diamond program v2.1.8 [36] aligns the peptides against the
toxin database provided by the user (‘toxin_db’ option), which is
required. Only hits, with an E-value below the threshold provided
by the ‘toxin_evalue’ option (1E−10 by default), are kept for each
predicted protein. Then, the best hit for each sequence is reported
in the final output table. At this step, the peptides are retained
only if they have a signal peptide and lack a transmembrane
domain, or have a hit against the provided toxin database.

Some predicted proteins may contain repeats of one or sev-
eral amino acids which may indicate a sequencing or assembly
artifact. We included an in-house code to automatically detect
repeats of one, two or three amino-acids, reporting them in the
final output file. The minimum number of repeated units can be
changed with the ‘repeat_length’ option (default is 5).

The remaining peptides are then analyzed against the Hidden
Markov Models database to detect functional domains. DeTox
employs HMMER v3.3.2 [37] with the ‘—cut_ga’ argument (set by

default) against the Pfam database [38]. If the user did not provide
the database path using the options ‘pfam_database_path’ and/or
‘swissprot_database_path’, DeTox automatically downloads the
latest version. For each predicted protein, all domain predictions
are reported according to the E-value (the HMMER output file can
also be found in the working directory).

The analysis of the putative toxin repertoire is completed
by four additional steps that are integrated as optional in the
pipeline. (1) With the ‘swissprot’ option set to ‘True’, an alignment
is carried out using diamond program v2.1.8 [36] on SwissProt
database [39] to provide information on the inferred function.
The E-value threshold can be changed (‘swissprot_evalue’ option,
1E−10 by default). The SwissProt database is automatically down-
loaded if its path is missing in the options. This step can prove
valuable when a putative secreted peptide lacks a match in the
toxin database. Indeed, a match in SwissProt might reveal a
toxin-related function, even in the absence of a match in the
toxin database, or, on the contrary, suggest that the peptide is
not related to a toxin function if it matches another function
in SwissProt. (2) A prediction of the cell location of the peptide
using the WolfPSort program [40] (‘wolfpsort’ option to ‘True’) is
used to estimate the probability for a sequence to be secreted.
(3) The detection of cysteine patterns by counting the number of
cysteine residues and their relative position, determining whether
they are vicinal or not in the protein sequence, is carried out when
the ‘cys_pattern’ parameter is set to ‘True’. Cysteine patterns are
indicators of the spatial conformation of the protein as defined
by disulfide bridges, a common feature in toxins from gastropods
and other venomous organisms. (4) The computation of gene
expression levels, reported as Transcript Per Million (TPM) metric
for each transcript, is performed using Salmon v1.10.2 [41] with
the ‘quant’ parameter set to ‘True’ and required the provision of
RNA-seq Illumina reads (‘r1’ and ‘r2’). The TPM metric efficiently
compares transcript expression levels within and between sam-
ples, correcing for transcript length and sequencing depth [42,
43]. Although TPM can be estimated using different approaches,
DeTox uses the k-mer-based counting strategy implemented by
Salmon to minimize computation time, using raw (or trimmed)
RNA-seq data as an input. Salmon can be used with all type of
input data, regardless of the sequencing platform used to generate
the reads.
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Output file
At the end of a successful run, all the results are summarized
in a tsv formatted table provided in the current directory unless
the user sets the absolute path of the directory by setting the
option ‘output_dir’. In this table, each row corresponds to a
peptide identified by DeTox, with the following information
reported: an identifier marked as ‘ID’ (a concatenation of the
transcript identifier and the ORF number), the complete amino
acid sequence marked as ‘Sequence’, the peptide signal sequence
marked as ‘signal_prediction’ with the information about the
probability of the signal (‘prob_signal’), the position of the signal
(‘cutsite’), the predicted localization of the peptide in the cell
(‘wolfpsort_prediction’), all Pfam domains separated by ‘;’ marked
as ‘pfam domains’, three columns including the best match
against the toxin database with the identifier, name and function
(‘toxinDB_sseqid’), the identity percent (‘toxinDB_pident’) and
the evalue (‘toxin_DB_evalue’), three columns including the
best match against the SwissProt database with the identifier
(‘uniprot_sseqid’), the identity percent (‘uniprot_pident’) and the
evalue (‘uniprot_evalue’), two columns for the repeats of one, two
or three amino acids with the type of repeat (‘RepeatsTypes’) and it
sequence length (‘RepeatsLengths’), the mature peptide if present
(‘mature_peptide’), the cysteine pattern if present (‘Cys_pattern’),
the identifier of the transcript from which the protein originates,
its length and effective length (‘Length’), the expression level of
the associated gene (‘TPM’) and the Rating system (‘Rating’). Only
the best match, according to the score, is reported in the final
table for the alignments of the peptides against the different
databases, but the original output files of the intermediate steps
can be found in the working directories if further information is
needed.

It should be noted that not all the peptides retrieved by DeTox
correspond to toxins, as our focus is on minimizing filtering steps
to reduce false negatives. Results are likely to include a cer-
tain number of false positives, requiring users to further explore
them at their discretion. To help determining the peptides’ puta-
tive function, DeTox provides a flag system. Flags such as ‘S’
denote the presence of a signal peptide without transmembrane
domains, ‘∗’ indicates the absence of a peptide signal, ‘B’ signifies
a positive hit in the toxin database, ‘C’ denotes a cysteine pattern,
‘T’ indicates a TPM metric above 1000, ‘D’ represents a predicted
domain and ‘!’ signifies a hit in the UniProt database but not in the
toxin database. Consequently, a peptide with the ‘SBCT’ flag can
be considered as a strong toxin candidate, whereas ‘SD!’ suggests
a secreted protein with no toxic function. Peptides flagged ‘S’ are
likely false positive lacking additional evidence besides secretion.
Despite this, they are retained in results to provide users with
valuable information for informed decision-making and applica-
tion of personalized filtering criteria.

Test on empirical data sets
A set of 11 transcriptomes was selected to test the effective-
ness of the DeTox pipeline. These transcriptomes are derived
from different major animal lineages, comprising species known
to produce toxins, including Profundiconus spp. (Neogastropoda,
Conidae; [18]), Conus ebraeus (Neogastropoda, Conidae; [44]), Cumia
reticulata (Neogastropoda, Colubrariidae; [45]), Anthopleura elegan-
tissima (Anthozoa, Actiniidae; [46]) and Caraiba andreae, Cubophis
cantherigerus and Tretanorhinus variabilis (Serpentes, Dipsadidae;
[47]).

De novo transcriptome assembly was omitted as assemblies
were obtained from original articles or provided by authors.

Likewise, contamination removal was not performed because
of potential bias in benchmarking, as toxins were inadvertently
removed in preliminary DeTox tests. A. elegantissima’s transcrip-
tome was sourced from NCBI. For the two Profundiconus, C. ebraeus
and A. elegantissima, transcriptomes, DeTox was run with the
databases and parameters used in the original studies to enable
comparison. The C. reticulata transcriptome was analyzed with an
in-house database, created using Conoserver [48], supplemented
by all the SwissProt entries containing the words ‘conopeptide’
and ‘conotoxin’, the entries of SwissProt for Neogastropoda
(taxonomy_id:6479) with the keyword ‘toxin’, the Tox-prot
database entries as well as published sequences of neogastropod
toxins not available in Conoserver nor Uniprot [39]. For C. andreae,
C. cantherigerus and T. variabilis, Venomzone database (https://
venomzone.expasy.org/) was used, focusing on toxins related to
Serpentes.

To compare the list of peptides detected by DeTox and the
putative toxins published in the original articles, an alignment
of the two lists was performed using BLASTp, with an E-value
threshold of 1E−5 and max_target_seq = 1. For C. reticulata, the
toxin sequences were not provided in the original study, and we
used the contig identifiers to compare the list of toxins candidates
provided by DeTox and the list of toxins from the original article.
When a contig from the original study was clustered with a
peptide detected by DeTox, the toxin from the original study was
considered as detected by DeTox.

To follow the methodology used in the original article, DeTox
was run separately on the two transcriptomes of A. elegantis-
sima which represent two distinct tissues in the same specimen
(aggressive and nonaggressive polyps) and the results were then
merged into a single final output file.

RESULTS
DeTox benchmark
DeTox’s performance was assessed by comparing its detected
peptide lists with putative toxins in five original articles [18, 44–
47] across different taxonomic classes (Gastropoda, Reptilia and
Anthozoa). To ensure consistency, toxin databases were sourced
directly from publications or reconstructed following their meth-
ods. DeTox, with all optional steps, recovered 88–100% of the tox-
ins found in each original article. Additionally, it identified extra
putative toxins, including highly expressed secreted peptides in
toxin-producing tissues or those with homology to toxin database
entries (Table 1). Detailed results for each data set are provided
below.

Profundiconus spp.
Fassio et al. [18] identified 245 putative toxins in both transcrip-
tomes of Profundiconus vaubani and Profundiconus neocaledonicus.
DeTox identified 34 896 putative secreted peptides, including 53
peptides encoded by highly expressed transcripts (TPM > 1000)
in the venom gland not detected in the original study. Addition-
ally, three newly identified peptides matched the toxin database.
DeTox missed 23 toxins; seven had a transmembrane domain,
seven others had a different ORF probably longer than the one
selected in the original paper and nine lacked peptide signals, even
though the right ORF was identified (Table 1 and Figure 2).

Most of the sequences detected by DeTox had only a signal pep-
tide detected (29 033). A set based on structural features retained
4396 sequences (signal peptide and a cysteine pattern). Then,
additional sequences were detected either with the similarity-
based criterion only (26) or with a combination of structural and
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Figure 2. UpsetR diagram for Profundiconus. Distribution (barplot on the upper part) of all the sequences detected by DeTox with the various (combinations
of) criteria (dots). Highly expressed putative toxins have a TPM > 1000. Top numbers above each bar represent the sequences also found in the original
article.

similarity-based criteria. In this context, the potential toxins of
particular interest are those that demonstrate a combination of
high expression levels in the venom gland, structural indications
and a match in the toxin database, with no corresponding entry
in the SwissProt database and absence of functional domains
except those related to toxins. If we consider the flag SCBT, for
example, four sequences fulfill all four criteria, whereas only one
was annotated as a toxin in the original study.

Conus ebraeus
DeTox identified 96% (286) of the 298 toxins in the original study
[44]. Among the 12 undetected toxins, three had a transmembrane
domain, four lacked signal peptide (probably because of a differ-
ence in the use of SignalP) and five had different ORFs. More-
over, 23 venom gland-expressed peptides and 76 matching toxin
database entries were newly discovered. Similar to Profundiconus,
most DeTox-detected sequences had only a signal peptide (6344),
whereas 946 were based on structural features only. Peptides
with only a signal peptide or a combination of a signal peptide
and a cysteine pattern are more likely to be false positives, as
well as peptides with the ‘!’ f lag. Notably, nine SCBT-flagged,
including one new discovery and six TB-flagged peptides not pre-
viously detected emerged as potential toxin candidates. Further
investigation, including toxin database curation and expression
pattern analysis, is warranted to validate these promising findings
(Table 1 and Figure 3).

Cumia reticulata
The transcriptome of .C reticulata is the only one analyzed using
DeTox with an in-house toxin database optimized for neogas-
tropods. The pipeline was able to find 124 of the 136 originally
reported toxins. Among the 12 undetected toxins, seven did not
return the same ORF when analyzed with orfipy, including one
removed because of the sequence length falling below the min-
imum size threshold. Also, one sequence contains a transmem-
brane domain. For the four remaining ones, neither signal peptide
nor match in the toxin database were detected by DeTox maybe
because of differences in the toxin database and parameters of

signal that are different from the original study. But DeTox was
able to identify additional 47 highly expressed transcripts, poten-
tially related to toxins functions (Flag T). Further 566 transcripts,
not detected in the original study, were annotated with the toxin
database (Flag B), and may correspond to toxins as well (Table 1
and Figure 4).

Anthopleura elegantissima
DeTox, applied to the two original study’s transcriptomes [46],
successfully identified 88% of initially detected toxins (112 of
128). Among the 16 undetected, three had different ORF and
13 lacked both a peptide signal and a toxin database match.
Challenges in reconstructing the reference database contributed
to retrieval issues, as some GenBank identifiers used in toxin
database construction were untraceable. Discrepancies in SignalP
versions (4.0 in the original study, 5.0 in DeTox) impacted signal
region probabilities estimates. Additionally, 104 secreted peptides
with high expression levels, and five with toxin database annota-
tions, were revealed. Most sequences (25 208) were detected only
with a signal sequence, and thus are likely to be false positives.
However, peptides flagged SCBT (two new sequences), SB (five new
sequences) and B (16 new sequences), present promising toxin
candidates, assuming that the toxin database is reliable (Table 1
and Figure 5).

Caraiba andreae, Cubophis cantherigerus and
Tretanorhinus variabilis
The transcriptomes of C. andreae, C. cantherigerus and T. variabilis
were analyzed using DeTox separately recovering 18 109 peptides,
including 48 of the 50 original toxins (96%) [47]. DeTox excluded
a sequence of T. variabilis with a transmembrane domain. The
exclusion of another sequence in C. andreae is likely attributed
to the utilization of the Venomzone database instead of a blast
approach on the non-redundant NCBI and Uniref100 nucleotide
database in the original study. Some flagged peptides, like SD!T,
might not be toxins, possibly representing highly expressed, non-
toxic secreted peptides. However, three newly detected peptides,
absent in the original study, exhibit high expression and a signal
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Figure 3. UpsetR diagram for C. ebraeus. Distribution (barplot on the upper part) of all the sequences detected by DeTox with the various (combinations
of) criteria (dots). Highly expressed putative toxins have a TPM > 1000. Top numbers above each bar represent the number of sequences also found in
the original article. The number in parenthesis indicates that multiple original sequences are included in one of the putative toxins identified by DeTox.

Figure 4. UpsetR diagram for C. reticulata. Distribution (barplot on the upper part) of all the sequences detected by DeTox with the various (combinations
of) criteria (dots). Highly expressed putative toxins have a TPM > 1000. Top numbers above each bar represent the sequences also found in the original
article.

peptide, suggesting they may be toxins. Additionally, 10 peptides
with both a signal peptide and cysteine pattern, coupled with
either a toxin database match (five peptides) or high expression in
the venom gland (five peptides), represent further potential toxin
candidates (Table 1 and Figure 6).

DISCUSSION
Over the past 15 years, RNA-seq has replaced Sanger sequenc-
ing of EST libraries, enabling comprehensive characterization of
toxin repertoires in several venomous organisms [4, 10, 49–52].
However, with increasing accessibility to transcriptomic data,
the bottleneck has shifted from sequencing to data analysis.
Toxins are encoded by relatively short coding sequences (CDSs),

and while animal genomes typically contain no more than 40–
50 000 ORFs, transcriptomes predict far more ORFs, making it
challenging to distinguish real ORFs from bioinformatics artifacts.
Existing tools like Conodictor 2 [14], Venomix [23] or ToxCodAn
[22] are unsuitable for handling large data sets, face issues with
maintenance and software compatibility, and lack integration
across all steps, from assembly to toxin identification, requiring
manual execution of multiple programs. For instance, Venomix
necessitates three input files, including alignment against a toxin
database, an assembled transcriptome and a gene expression
quantification file, complicating the process. The time required
for cleaning the data and integrating the assembly runs into an
analysis pipeline is significant when searching for toxins in mul-
tiple transcriptomes, ranging from tens to hundreds. To address
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Figure 5. UpsetR diagram for A. elegantissima. Distribution (barplot on the upper part) of all the sequences detected by DeTox with the various
(combinations of) criteria (dots). Highly expressed putative toxins have a TPM > 1000. Top numbers above each bar represent the sequences also found
in the original article.

Figure 6. UpsetR diagram for C. andreae, C. cantherigerus and T. variabilis. Distribution (barplot on the upper part) of all the sequences detected by DeTox
with the various (combinations of) criteria (dots). Highly expressed putative toxins have a TPM > 1000. Top numbers above each bar represent the
sequences also found in the original article.

these limitations, we present DeTox as an integrated tool designed
to streamline toxin research. DeTox is user-friendly, requiring
minimal bioinformatics skills, and integrates fast methods for
de novo toxin research, employing the latest versions of each
tool. It addresses the time-consuming aspects by parallelizing
numerous steps through the use of snakemake [25]. DeTox is
modular, allowing customization of parameters to meet specific
toxin search requirements. It is accessible (freely distributed),

portable (snakemake), easy to install (Anaconda) and executes
quickly. While the pipeline runs without user intervention, the
output furnishes a list of toxin candidates based on customizable
parameters and detailed information for further exploration. A
flag system facilitates result interpretation, helping users gage the
strength of evidence supporting a detected putative toxin.

DeTox stands out from its predecessors also by introducing
a structure-based search alongside the conventional similarity
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search. This approach incorporates filtering steps to concentrate
on potential toxins without known counterparts in existing
databases. In its current implementation, DeTox filters translated
CDSs based on the presence of a signal sequence and the
absence of transmembrane domains—the features prevalent
in most known toxins. Additional information, such as the
cysteine pattern often found in gastropod toxins, is provided.
By combining structure-based and similarity-based approaches,
along with optional consideration of gene expression levels, DeTox
enhances the likelihood of detecting both toxins with sequences
similar to known ones and putative toxins structurally congruent
with known toxins but overlooked by similarity-based methods.
Moreover, by relying on structural features rather than solely
on database similarities, DeTox mitigates biases associated with
the over-representation of certain taxa in toxin databases. For
example, in the ATDB toxin database, neogastropod toxins are
predominantly those from the genus Conus [53]. Similarly, the
VenomZone database mainly provides toxins from cone snail,
represented by 137 species out of the 156 included neogastropod
species (http://venomzone.expasy.org/). While similarity-based
approaches easily detect toxins similar to known cone snail
toxins, divergent toxins may go unnoticed. For the same reason,
we also refrained from providing automatically created databases.
We thus leave it to the user to create their own database, even
if it can be quite challenging, ensuring that it contains all the
available toxins (from public databases and the literature) for the
targeted taxa, and the entries are properly curated—the two steps
that are difficult to automatize.

DeTox was tested on previously published transcriptomes from
four species of neogastropods, one cnidarian and three snakes.
The primary objectives included assessing DeTox’s capability to
detect toxins reported in the original studies (e.g. a quality control)
and identifying new putative toxins not initially found in the
original research. In all cases, DeTox successfully detected most
of the originally reported toxins. However, some challenges arose
because of methodological differences, such as the inability to use
the same toxin database or variations in software versions, partic-
ularly SignalP. Indeed, discordant results between SignalP versions
4 and 5 have been documented [54]. Notably, the original pipeline
for C. ebraeus [44] aligned transcripts against the toxin database
before identifying ORFs, potentially missing toxins distant from
the species under consideration. In contrast, DeTox starts by
detecting the longest ORF and then aligns the predicted peptide
to the toxin database. Moreover, orfipy is designed to identify
the largest ORF within a nucleotide sequence [31], occasionally
leading to deduced amino acid sequences with N-terminal regions
longer than the encoded protein sequences. This may significantly
impact the detection of signal regions, as SignalP is designed to
start searching for signal regions at the beginning of a provided
sequence. Similar to other tools in previous pipelines, DeTox
employs thresholds to determine the presence of structures or
infer similarity to toxins in the database. Consequently, the mark-
ing of a peptide as a toxin depends on such threshold values,
making them a key factor in the entire analysis. DeTox allows
users to customize many of these settings, offering flexibility to
detect toxins potentially overlooked in the original publications.

Remarkably, DeTox was able to detect a higher number of
putative toxins than originally described in all the cases here
tested. This result can be explained by the design of DeTox, which
minimizes false negatives reducing the probability of missing
putative highly divergent toxins. The other face of the coin is
that DeTox is prone to report false positives, i.e. peptides that
passed all the filters but are not toxins. For Conus, Profundiconus,

Anthopleura and the snakes (Figures 2, 3 and 5), most of the
detected peptides possess a signal sequence, a feature of
secreted proteins. However, many of these are likely not toxins.
Nevertheless, among them, some show high TPM values in
venom-producing tissues, suggesting (together with other lines of
evidence) that they might indeed be relevant venom components.

The number of new putative toxins detected thanks to the
presence of a signal sequence is also high for Cumia, but in this
case most of the previously unidentified putative toxins were
detected by their similarity with the toxin database (Figures 4
and 6). The use of a more complete toxin database than the
original article may also explain the higher number of detected
putative toxins. At this step, users should consider the various
criteria provided by DeTox’s final output. These include putative
annotations, gene expression levels and the presence of a cys-
teine pattern. Additionally, specific information available to the
users, such as the tissue type from which the transcriptome was
derived, can aid in the identification of true toxins. Indeed, in
all cases, DeTox was able to detect putative toxins, not reported
in the original articles, matching most—if not all—the available
criteria to consider them as toxins (Supplementary Material 2
available online at http://bib.oxfordjournals.org/.). For example, in
C. ebraeus, DeTox found a putative toxin with a signal sequence, a
VI/VII cys-pattern, a hit (E-value = 3E−10) with a I1-superfamily
conotoxin (Vc11) from Conus victoriae and a TPM value of 2155.2.
Similarly, in A. elegantissima, DeTox detected a new putative toxin
with a signal sequence, a match (E-value = 1.09E−44) with a U-
actitoxin (SwissProt ID: P0DMZ3) from Anemonia viridis and a TPM
of 3289.57. Our results highlight DeTox as a valuable tool to detect
novel putative toxins. However, it is always necessary to verify
their actual function by confirming the presence of matching pro-
teins in the proteomes of the venom gland or the injected venom
[55], and by performing in vitro/in vivo experiments to identify the
molecular target and the exact function of the toxin [8, 56, 57].

Key Points

• DeTox is a fully integrated pipeline to identify putative
toxins in transcriptomic data.

• DeTox is proved efficient in detecting toxins and in iden-
tifying secreted peptides displaying the characteristics
expected for a toxin candidate for any venomous organ-
ism by providing the suitable toxin database.

• DeTox summarizes into a single output file all the infor-
mation available for each detected putative peptide.

• Its modular nature allows integration of additional cri-
teria of toxin detection in future versions, as well as
tools that would facilitate transcriptome comparisons,
such as the possibility to cluster similar toxins found in
different transcriptomes.

SUPPLEMENTARY DATA
Supplementary data are available online at https://academic.oup.
com/bib.
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