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Abstract
Induced Pluripotent Stem Cells (iPSCs) are nowadays a common starting point for wide-ranging applications including 3D 
disease modeling (i.e. organoids) and in future regenerative medicine. Physiological processes like homeostasis, cell dif-
ferentiation, development and reproduction are tightly regulated by hormones through binding to their transmembrane or 
nuclear receptors of target cells. Considering their pleiotropic effect, take into account also their expression in an iPSCs-based 
disease modeling would better recapitulate the molecular events leading to 3D organoid development and disease study. 
Here we reported the expression pattern of estrogen receptor (ERα) and progesterone receptor (PR) in four different iPSCs, 
obtained from CD34 + progenitor cells and skin fibroblasts with four different methods. Expression of ERα and PR mRNA 
were significantly downregulated in iPSCs as well as fibroblasts compared to MCF7 positive control. Immunofluorescence 
(IF) staining detected only the expression of PR protein in all the different iPSCs cell lines, while ERα was not detectable. 
By flow cytometry analysis we observed that the ~ 65% of the total population of iPSCs cells expressed only PR, with 100% 
fold increase compared to HSPCs and fibroblasts, while ERα was not expressed. Our results collectively demonstrated for 
the first time that the reprogramming of somatic cells into iPSCs leads to the expression of PR receptor.

Keywords CD34 · Fibroblasts · Induced pluripotent stem cells (iPSCs) · Progesterone receptor · Estrogen receptor · 
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Introduction

Induced Pluripotent Stem Cells (iPSCs) can differentiate 
in vitro and in vivo into various cell types, enabling the 
development of an unlimited source of almost any type of 
human cells.

Since 2006, when Yamanaka and colleagues first gener-
ated iPSCs, reprogramming technologies have significantly 
progressed [1]. In addition to lenti- or retroviral mediated 
integrative transgene delivery strategies, many different 
methods to introduce exogenous reprogramming factors 
(Oct4, Sox2, Klf4, c-Myc) into the cells have been estab-
lished to improve reprogramming efficiency and to generate 
transgene-free iPSCs for potential iPSCs-based cell technol-
ogy. These reprogramming methods included the delivery of 
transgenes by using non-integrating viral approaches as the 
Sendai virus, or non-viral methods such as episomal vectors, 

mini-circle DNA vectors, piggy-Bac transposons, synthetic 
mRNAs, or recombinant cell-penetrating proteins [2, 3].

Moreover, the maintenance of genomic integrity of iPSCs 
would promote the development of a useful platform and a 
powerful tool for a wide range of biomedical applications 
including, but not limited to, drug development, disease 
modeling, tissue engineering and regenerative medicine [4, 
5]. Among the different fields of iPSCs applications, one 
of the last frontiers is the development of organoids, 3D 
structures that spontaneously self-organize into adequately 
differentiated cell types, aimed to recapitulate the functions 
of the target organ. Indeed, the application of iPSCs in intes-
tinal [6], liver [7], brain [8], kidney [9] and breast organoids 
[10] has been extensively reported.

Currently, blood cells and skin fibroblasts are the most 
used cell types for reprogramming because they are easy 
to obtain (skin biopsy, blood sample), conditions for their 
culture are well established, and reprogramming meth-
ods for iPSCs are successfully standardized. Accordingly, 
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when non-mobilized peripheral blood (PB) samples are 
used, many protocols include cultivation steps with vari-
ous combinations of cytokines to preserve the viability of 
CD34 + hematopoietic stem/ progenitors cells (HSPCs) cells 
and thus the reprogramming efficiency [11–15].

Steroid hormones, as estrogen and progesterone, regu-
late a wide range of physiological processes including cell 
differentiation and development, cellular homeostasis and 
reproduction [16, 17]. Estrogens are mainly produced from 
androgens precursors in ovarian granulosa cells and pla-
centa in females, testis in males and non-glandular tissue 
(fat and bone) in both sexes [18]. Progesterone is produced 
by ovarian granulosa cells, adrenal glands, corpus luteum 
during the menstrual cycle and placenta in females and by 
adrenal glands in both males and females [19]. They exert 
their function by binding to intracellular receptors (ERα/-β 
and PR), members of the nuclear receptor superfamily of 
transcriptional co-activators [20]. Estrogen and progesterone 
play different functions during embryonic development [21]. 
After birth, they also control the maturation of immune cells, 
exerting significant effects on the bone marrow (BM), on 
hematopoietic stem (HSCs) and progenitor cells in particu-
lar, for the development and maturation of the hematopoietic 
lineages [22–27]. Considering their pleiotropic effects, it is 
important to understand their role also during cell differ-
entiation, in particular for those in vitro disease modeling 
which include steroid hormone cellular response such as 
reproductive organs (i.e. ovaries, breast).

Here we reported the expression patterns of estrogen 
receptor-α (ERα) and progesterone receptor (PR) in four 
iPSCs cell lines obtained with four different reprogramming 
methods to better define the possible role of steroid-hormone 
receptors in iPSCs-based cell differentiation modeling.

Materials and Methods

Cell Culture Human neonatal foreskin fibroblasts (BJ strain, 
purchased from ATCC), MCF7 (ERα + /ERβ-/PR +) and 
MDA-MB-231 (ERα-/ERβ + /PR-) were grown in DMEM 
(Euroclone S.p.a., Pero, Italy) supplemented with 10% fetal 
bovine serum (FBS, Euroclone S.p.a.), 1% L-Glutamine, 
and 1% Penicillin/Streptomycin (Euroclone S.p.a.). In this 

study we used four different iPSCs cell lines (Table 1), one 
of them purchased from ThermoFisher Scientific, Inc. (cat. 
n. A18945, ThermoFisher Scientific, Inc., Waltham, MA, 
USA) obtained from cord-blood CD34 + progenitors’ cells, 
and three of them from skin fibroblasts.

Each iPSCs cell line was generated performing four dif-
ferent independent reprogramming methods, as previously 
reported [28–33]. iPSCs were fed daily with NutriStem® 
hPSC XF Medium (Sartorius AG, Göttingen, Germany) with 
the addition of 10 ng/ml of bFGF (Basic fibroblast growth 
factor; Miltenyi Biotec GmbH., Bergisch Gladbach, Ger-
many), manually picked every 4–5 days on new Matrigel-
coated well plate (Corning Inc., Corning, NY, USA) and 
cultured at 37° C in 5%  CO2.

RNA Extraction and qPCR Total RNA was extracted using 
NucleoSpin® RNA II kit (Macherey–Nagel, Düren, Ger-
many), treated for TURBO™-DNase digestion (Invitrogen; 
ThermoFisher Scientific, Inc.) and quantified by a spectro-
photometer (Tecan Group Ltd., Männedorf, Switzerland). 
One µg of total RNA was retro-transcribed by ImPromII™ 
Reverse Transcription System (Promega Corporation, Madi-
son, Wisconsin, USA), following the manufacturer’s proto-
col. qPCR gene expression analysis was performed using 
SYBR Green (Bio-Rad Laboratories, Inc., Hercules, CA, 
USA). Primer pairs (IDT, Inc., Coralville, IA, USA) used in 
this study are listed in Table2.

The thermocycler conditions were 98 °C for 30 s, 39 cycles 
of 95 °C for 5 s and 60 °C for 30 s, followed by 65 °C for 
5 s. Assays were performed on CFX96 C1000 Touch™ 
Real-Time PCR Detection System and analyzed with CFX 
manager software v.3.1 (Bio-Rad Laboratories, Inc.). Gene 
expression was quantified as fold change, wherein the ΔCt 
values were calculated by subtracting the average Ct value 
of the target gene from the average Ct value of β-actin (Hs.
PT.56a.19461448.g; IDT, Inc.) used as reference gene. Data 
were generated from at least three independent experiments.

Immunofluorescence (IF) iPSCs were fixed and permeabi-
lized using Fix&Perm-Reagent kit (Nordic-MUbio, Susteren, 
The Netherlands) according to the manufacturer’s instruc-
tions. Then, blocking solution iBind™ Buffer (Invitrogen; 

Table 1  List of iPSCs cell lines 
used in this study

iPSCs cell line Parental cell Reprogramming method Ref

Episomal
(cat. n. A18945)

cord blood-derived CD34 + pro-
genitors

Episomal Vector [28]

BJ human foreskin fibroblasts CytoTune-iPS 2.0 Sendai Repro-
gramming Kit

[29, 30]

253-G1 human fibroblasts Retroviral trasduction [31]
F3 human fibroblasts Lentiviral trasduction [32, 33]
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ThermoFisher Scientific, Inc.) was applied for 30 min. Pri-
mary antibodies for ER (clone SP1-rabbit, ready to use, Ven-
tana, Roche, Basel, Switzerland), PR (clone 1E2-rabbit, ready 
to use, Ventana, Roche), CD44 (1:50, clone DF1485-mouse, 
Dako, Glostrup, Denmark), and Alexa Fluor-488-phalloidin 
(1:500; Merck KGaA, Darmstadt, Germany), and second-
ary antibodies (1:250; goat anti-mouse and anti-rabbit IgG 
(H + L) Alexa Fluor-568; ThermoFisher Scientific, Inc.) were 
added and incubated for 2 h, at room temperature (RT). Cel-
lular nuclei were counterstained with DAPI for 5 min. Cells 
were observed with an inverted fluorescence microscope 
(Olympus IX70, Olympus Optical Co., GmbH, Hamburg, 
Germany), and images were analyzed with the Image-Pro 
Plus software v7.0 (Media Cybernetics, Inc., Rockville, MD, 
USA).

Flow Cytometry Analysis Five mobilized-PB samples with 
G-CSF (Granulocyte colony-stimulating factor) for trans-
plant at ASST Spedali Civili of Brescia were collected as 
control group. Informed consent was obtained from all 
the subjects enrolled in this study. The PB was collected 
in EDTA tubes for CD34 + cells- evaluation. Briefly, 
1 ml of blood was treated with BD Pharm Lyse™ Lys-
ing Buffer (Becton, Dickinson and Company, Franklin 
Lakes, NJ, USA), according to the manufacturer’s instruc-
tions. After red blood cells lysis, cells were centrifuged at 
1600 rpm for 4 min and labeled for flow cytometry analy-
sis. iPSCs cells were detached with TrypLE™ Express 
Enzyme (ThermoFisher Scientific, Inc.) to obtain a single 
cell suspension and subsequently labelled for flow cytom-
etry. Cells were fixed and permeabilized using Fix&Perm-
Reagent kit(Nordic-MUbio), following the manufacturer’s 

instructions. Then, blocking solution BSA 5% in PBS was 
applied for 30 min at RT. Primary antibodies for CD34 
(1:50, clone 8G12, Becton, Dickinson and Company), ER 
(clone SP1-rabbit, ready to use, Ventana, Roche), PR (clone 
1E2-rabbit, ready to use, Ventana, Roche) and secondary 
antibody [1:500; Goat anti-rabbit IgG (H + L) Alexa Fluor-
488; ThermoFisher Scientific, Inc.] were added and incu-
bated for 30 min at + 4 °C. Cells were resuspended in PBS 
and flow cytometry analysis was performed with BD FAC-
SCanto™ II (Becton, Dickinson and Company). Data were 
collected from at least 1 ×  104 cells/sample and elaborated 
with FlowJo™ v10.8 Software (Tree Star, Inc., Ashland, 
OR, USA). Data were expressed as signal median fluores-
cence intensity (ΔMFI) =  MFIstained cells—MFIunstained control.

Generation of Mammary‑like Organoids Mammary-like 
organoids were generated following a two-step protocol from 
iPSCs as previously described by Qu et al. [10]. iPSCs were 
lifted using TrypLE™ Express Enzyme (ThermoFisher Sci-
entific, Inc.) to obtain a single cell suspension. iPSCs were 
seeded into AggreWell™ Microwell Plates (StemCell Tech-
nologies Inc, CA) following the manufacturer's instructions 
in order to generate MammoCult-derived embryoid bodies 
(mEBs) of 2 ×  103 cells. The day after generation, mEBs 
were transferred in ultra-low adherent 6-well plates (Corn-
ing Inc, USA) for floating culture in the complete Mam-
moCult medium (StemCell Technologies), supplemented 
with heparin (4 μg/mL; StemCell Technologies, CA), and 
hydrocortisone (0.48 μg/mL; StemCell Technologies, CA). 
3D culture was performed by embedding 10-days (d) mEBs 
in mixed Matrigel (2.5 mg/mL; SIAL srl, Italy)/Collagen 
I (1 mg/ml; Sigma-Aldrich, USA) domes in 6-well-plates 
(Sarstedt AG & Co. KG, Nümbrecht, Germany). To induce 
mammary commitment, domes were cultured in complete 
EpiCult B medium supplemented with parathyroid hormone 
(pTHrP, 100 ng/ml; Sigma-Aldrich, USA) for 5 days. To 
induce branch and alveolar differentiation, the domes were 
cultured in complete EpiCult B medium supplemented with 
hydrocortisone (1 μg/ml; StemCell Technologies, CA), insu-
lin (10 μg/ml; Sigma-Aldrich, USA), FGF10 (50 ng/ml; Pep-
rotech; ThermoFisher Scientific, Inc.), and HGF (50 ng/ml; 
Peprotech; ThermoFisher Scientific, Inc.) for the following 
20 days.

Immunohistochemistry (IHC) mEBs were fixed in 10% for-
malin for 24 h and were centrifuged at 500 rpm for 5 min. A 
solution (1:2) of plasma and HemosIL8 RecombiPlasTin 2G 
(Instrumentation Laboratory, Bedford MA, USA) was added 
to pellets, mixed until the formation of a clot, and placed into 
a labelled cassette by paraffin inclusion. The suitability of 
the paraffin-embedded (FFPE) specimen was evaluated by 
haematoxylin and eosin (H&E) staining on 2 µm -thick tis-
sue sections. Four micron-thick tissue sections were obtained 

Table 2  List of primers used in this study

Primer name Primer Sequence (5′3’)

CK5_F CAT GGA CAA CAA CCG CAA CC
CK5_R ACT GCT ACC TCC GGC AAG AC
CK7_F AGG AGA GCG AGC AGA TCA AG
CK7_R CAG AGA TAT TCA CGG CTC CC
CK18_F TGG CAA TCT GGG CTT GTA GG
CK18_R AGA ACG ACA TCC ATG GGC TC
GATA3_F TCA TTA AGC CCA AGC GAA GG
GATA3_R GTC CCC ATT GGC ATT CCT C
TP63_F CTT GCC CAG GAA GAG ACA GG
TP63_R CAT AAG TCT CAC GGC CCC TC
ERα_F CCA CCA ACC AGT GCA CCA TT
ERα_R GGT CTT TTC GTA TCC CAC CTTTC 
ERβ_F AGA GTC CCT GGT GTG AAG CAA 
ERβ_R GAC AGC GCA GAA GTG AGC ATC 
PR_F CGC GCT CTA CCC TGC ACT C
PR_R TGA ATC CGG CCT CAG GTA GTT 
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from formalin-fixed, FFPE blocks. For IHC staining, endog-
enous peroxidase was blocked by incubation with methanol 
and hydrogen peroxide 0.03% for 20 min during rehydra-
tion. Immunostaining was performed using, CK-PAN (1:200 
clone MNF116, Dako, Glostrup, Denmark), CK5 (ready to 
use, clone D5/16B4, Ventana, Roche, Basel, Switzerland), 
CK7 (ready to use, clone OV-TL 12/30, Dako, Glostrup, 
Denmark), CK18 (1:250, clone DC-10, CA, USA), GATA3 
(ready to use, clone L50-823, Roche, Basel, Switzerland), 
TP63 (1:50, clone 4A4 + Y4A3, Cell Marque, Roche, Basel, 
Switzerland), CD34 (1:50, Leica Biosystems Newcastle Ltd, 
Newcastle, UK), ER (ready to use, clone SP1-rabbit, ready 
to use, Ventana, Roche, Basel, Switzerland), PR (ready to 
use, clone 1E2-rabbit, ready to use, Ventana, Roche, Basel, 
Switzerland) after pre-treatment with microwave or water 
bath in or EDTA (ethylenediaminetetraacetic acid) buffer 
at pH 8. In particular, ER antibody directly binds to ERα 
isoform, while PR antibody recognizes both isoforms A 
(PR-A) and B (PR-B) of the progesterone receptor (PR). 
The reaction was revealed using Novolink Polymer (Leica 
Microsystems, Wetzlar, Germany) followed by diaminoben-
zidine (DAB, Dako, Glostrup, Denmark). Finally, the slides 
were counterstained with Meyer’s Haematoxylin.

Statistical analysis Statistical analysis was carried out using 
GraphPad Prism v8.0 (GraphPad Software, Inc., San Diego, 
CA, USA) software. One-way ANOVA followed by Tukey’s 
post-hoc test was used to test the significance among groups. 
Unpaired to tailed Student’s t-test was used to test the signifi-
cance between controls. Data were considered statistically 
significant when p-value ≤ 0.05.

Results

Expression of ERα/β and PR mRNA in iPSCs

We examined the expression of ERα/β and PR mRNA in 
four different iPSCs cell lines (Fig. 1) compared to MCF7 
(ERα + /ERβ-/PR +) and MDA-MB-231 (ERα-/ERβ + /
PR-) human breast cancer cell lines[34]. As shown in 
Fig.  1A-C, there were no significant differences in the 
expression of ERα and PR mRNA among the several iPSCs 
(ERαCt mean = 34,48 and  PRCt mean = 34,51). Accordingly, 
the mRNA levels were significantly reduced (p < 0.0001) 
in iPSCs compared to MCF7 positive control cell line 
(ERαCt mean = 22,43 and  PRCt mean = 26,33). Interestingly, as 
shown in Fig. 1B, iPSCs episomal, BJ and 253-G1 showed a 
trend of upregulation of ERβ (ERβCt mean = 32,28) expression 
at the mRNA level compared to MCF7 (ERβCt mean = 35,50). 
Moreover, iPSCs F3 expressed levels of ERβ mRNA similar 
to that of MDA-MB-231 (ERβCt mean = 31,31), showing a 
significant upregulation compared to MCF7. These results 
indicated that iPSCs do not actively transcribe ERα, while 
express low levels of PR mRNA and active transcription 
occurs for ERβ.

Localization of ERα and PR in iPSCs

As mRNA levels not always predict protein expres-
sion levels, we further performed IF analysis (Figs. 2 
and 3) on the different iPSCs cells. We used specific 
antibodies routinely used in the diagnostic microscopy 

Fig. 1  Expression profile of ERα/β and PR receptors in iPSCs com-
pared to MCF7 and MDA-MB-231. A ERα mRNA in iPSCs cell 
lines compared to MCF7 positive and MDA-MB-231 negative con-
trol. B ERβ mRNA in iPSCs cell lines compared to MCF7 negative 
and MDA-MB-231 positive control. C PR mRNA in iPSCs cell lines 

compared to MCF7 positive and MDA-MB-231 negative control. 
Histograms represent fold-change in the gene expression of three 
independent experiments, while error bars represent ± SEM. One-way 
ANOVA followed by Tukey’s post-hoc test. **** p < 0.0001
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practice (Suppl. Fig.  1). In particular, as reported in 
Materials&Methods, ER antibody directly binds to ERα 
isoform, while PR antibody recognizes both isoforms A 

(PR-A) and B (PR-B) of the progesterone receptor (PR). 
As shown in Fig. 2, ERα protein was not detectable in 
iPSCs colonies.

Fig. 2  Detection of ERα in 
iPSCs cell lines. Immuno-
fluorescent (IF) staining for the 
detection of ERα among the dif-
ferent iPSCs cell lines. Nuclei 
were counterstained in blue 
(DAPI), while cytoskeleton in 
green (phalloidin-488) and ERα 
in red (Alexa-568). Magnifica-
tion 10X

Fig. 3  Detection of PR in iPSCs cell lines. Immunofluorescent (IF) 
staining for the detection of PR among the different iPSCs cell lines. 
Nuclei were counterstained in blue (DAPI), while cytoskeleton in 
green (phalloidin-488) and PR in red (Alexa-568). Pictures were 

acquired at 10X (background) and 60X (foreground) magnification 
respectively. Representative images of at least 4 independent fields of 
two independent experiments
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Surprisingly, as shown in Fig. 3, we detected the expres-
sion of PR protein in the nucleus of all the iPSCs cell lines 
generated from different parental cells with several repro-
gramming methods (Table 1). These results suggested that 
active translation occurred.

Expression of ERα/β and PR in parental cells

In order to determine the moment in which the PR protein 
expression arose in iPSCs, we extended the analysis of the 
expression pattern to the precursor cells. In particular, as 
three out of four iPSCs cell lines where generated from 
fibroblasts (Table 1), we performed IF analysis of ERα and 
PR proteins on foreskin BJ parental fibroblasts. As shown 
in Fig. 4A, BJ fibroblasts, expressing CD44 cell surface 
adhesion glycoprotein marker, lack the expression of ERα 
and PR proteins. These results were also confirmed by gene 
expression analysis. As show in Fig. 4B-D, ERα and PR 
were not expressed in BJ fibroblasts compared to MCF7 
positive and MDA-MB-231 negative controls respectively, 
while ERβ gene expression was significantly downregulated 
(Fig. 4C) compared to MCF7 (p < 0.05*) and MDA-MB-231 
(p < 0.0001****).

Furthermore, as previously reported (Table 1; Suppl. 
Fig. 2), iPSCs episomal cell line was generated with a 
viral-integration-free method from cord blood-derived 
CD34 + progenitor cells. Blood cells are the most used 
cell types for reprogramming. In order to explore whether 
HSPCs would express ERα and PR, we further performed 
flow cytometry analysis on a G-CSF mobilized-PB con-
trol group. As shown in Fig. 5A (left panel), ERα was not 
detectable in CD34 + HSPCs. Lack of expression of ERα 
in episomal iPSCs as well as in all iPSCs and BJ fibro-
blasts was also confirmed (Fig. 5B-H, left panel) compared 
to MCF7 positive and MDA-MB-231 negative controls 
(Fig. 5 I-K). Strikingly, we did not detect the expression of 
PR (Fig. 5A, right panel) in CD34 + HSPCs cells (0.18%) 
and BJ fibroblasts (2.08%), while we observed that an 
average of ~ 65% of iPSCs expressed PR protein (Fig. 5J-
L). Interestingly, a direct observation of PR upregulation 
came from iPSCs generated from BJ fibroblasts (Figs. 4 
and 5D-J-L).

Taken together these results suggested that PR protein is 
not detectable in HSPCs and fibroblasts, while its expression 
arose once somatic cells are reprogrammed to iPSCs.

Longitudinal modulation of PR receptor 
during iPSCs mammary‑like organoids 
generation

To understand whether PR expression may have functional 
implications during iPSCs differentiation, we generated 
mammary-like organoids from iPSCs Episomal and BJ, as 
representative CD34 + progenitors and fibroblasts derived-
iPSCs, respectively. As shown in Fig. 6, iPSCs (Fig. 6A) 
were addressed to form mEBs (Fig. 6B). Branching-mor-
phogenesis and alveolar mammary-like structures developed 
from 10-days mEBs embedded in mixed gel (Fig. 6C), and 
the morphology got more pronunced during the following 
20-days of differentiation (Fig. 6D).

As shown in Fig. 7, IHC showed positive staining for 
luminal (CK5/7 + and GATA3 +) and basal markers 
(CK18 + and TP63 +), collectively highlighting that mam-
mary-like organoids were generated. In particular, PR stain-
ing for mammary-like organoids showed positive protein 
expression. We did not detect ERα protein expression as 
cells in active proliferation down-modulate expression of 
ERα during mammary gland development [35–40].

These results were also supported by gene expression 
analysis. The expression of stemness-pluripotency marker 
genes (NANOG, OCT4) was significantly reduced (Suppl. 
Fig. 3). On the other hand, as shown in Fig. 8, the expression 
of luminal (CK5/7 and GATA3) and basal markers (TP63) 
was upregulated during iPSCs differentiation to mammary-
like organoids generation. CK18 expression was unchanged. 

Fig. 4  CD44, ERα/β and PR in BJ human foreskin fibroblasts. A 
Immunofluorescent (IF) staining. Nuclei were counterstained in blue 
(DAPI) and cytoskeleton in green (phalloidin-488), while CD44, ERα 
and PR in red (Alexa-568). Magnification 10X. B-C Gene expres-
sion analysis of ERα/β in MCF7, MDA-MB-231 and BJ fibroblasts. 
D Gene expression analysis of PR in MCF7, MDA-MB-231 and BJ 
fibroblasts. Histograms represent fold-change in the gene expression 
of three independent experiments, while error bars represent ± SEM
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These results indicated the co-existance of several cellular 
phenotypes (luminal and basal cells).

In particular, we observed that the gene expression of PR 
was significantly reduced in the early stage of differentiation 
from iPSCs to 10-d mEBs. Accordingly, a similar reduc-
tion was observed in ERα expression; ERβ was not affected, 
on the contrary it showed a trend of upregulation during 
mEBs maturation into mammary-like organoids. Moreo-
ver, considering PR downstream target genes, CK5 in the 
early stage was significantly low expressed in iPSCs and 
10-d mEBs compared to mammary-like organoids, where its 
expression was remakably upregulated during the late stage 
of differentiation. Regarding GATA3, undifferentiated iPSCs 
expressing elevated levels of PR, showed a low expression 
of GATA3. On the other hand, during the early stage of 
10d-mEBs differentiation, PR and GATA3 showed opposite 
trend: the expression of PR was reduced while the expres-
sion of GATA3 showed a trend of upregulation, reaching a 
significant expression during mammary-like organoids dif-
ferentiation in late stage of 20-d maturation. Subsequently, 
PR expression was restored in 20-d mammary-like organoids 
to levels similar to that of iPSCs. The concomitant expres-
sion of PR and GATA3 in 20-d mammary-like organoids 
could be explained due to their functional role during devel-
opment similar to that of the human mammary gland.

Discussion

Ex vivo culture of embryonic pluripotent stem cell (ESCs) 
that can produce all cell types in the adult body was 
established 40 years ago and has provided an important 
understanding of developmental biology [41]. Repro-
gramming technologies enable cells to enter an ESCs-
like state, resulting in the generation of iPSCs. Studies so 
far highlighted that reprogramming is a complex process 
characterized by unique gene expression patterns dealing 
with chromatin remodeling and epigenetic modifications, 
proliferation and cellular senescence resulting in complex 
morphological and functional changes meant to a specific 
cellular phenotype [42–48]. Several analysis indicated 
that iPSCs share many key properties with ESCs as pluri-
potency, self-renewal, EBs formation and similar gene 
expression profile [49].

Steroid hormones, as estrogen and progesterone, play 
different roles in particular during embryonic develop-
ment. Accordingly, steroids hormone-related proteins as 
estrogen receptors (ERα/β) and progesterone receptor (PR) 
were reported to be expressed in ESCs [50] and during early 
development in mice through the blastocyst stage [51]. In 
particular, ERβ importance in self-renewal and pluripo-
tency has been further elucidated[52, 53]. Progesterone has 
been reported to be essential for the differentiation of ESCs 

during human embryonic development [54], the action of 
which is mediated by PR-A expressed in ESCs [55–57]. In 
addition progesterone also induces [58] or inhibits [59] the 
differentiation of ESCs into specific lineages, as well as the 
development and physiology of steroid-hormones responsive 
organs [60–64].

PR consists of two main isoforms, PR-A and PR-B and 
their transcription is controlled by distinct estrogen-induci-
ble promoters with alternative AUG initiation codons; hence 
PRs are thought to be direct targets of ERs [65]. A functional 
difference between PR-A and PR-B is that PR-A can act as a 
dominant repressor of both PR-B and ER in a promoter and 
cell-type specific manner [66, 67]. Interestingly, the DNA-
repair tumor suppressor protein BRCA1 (BReast CAncer 
gene 1) has been shown to interact with and to regulate ERα 
and PR transcriptional activation [68–70].

In this context, the comprehension of the molecular 
events leading to iPSCs reprogramming would improve the 
development of iPSCs-based disease cellular models in par-
ticular for those related to steroid hormone cellular response 
such as reproductive organs (i.e. ovaries, breast). Cellular 
reprogramming is a complex event involving the activation 
and repression of several specific genes and therefore the 
regulation of the related proteins. The identity of the cell of 
origin that undergoes reprogramming into an iPSC as well 
as the technology performed are also important for iPSCs-
based applications. Episomal-vectors are a non-integrating 
reprogramming system introduced into the cell by elec-
troporation [71]. The vectors replicate only once per cell 
cycle, with activation of replication by binding of multiple 
EBNA-1 homodimers to oriP within the nucleus [72]. The 
Episomal iPSC reprogramming vectors are a well-described 
system for producing transgene-free, virus-free, iPSCs from 
a number of different somatic cell types [72]. Sendai-virus 
is a single stranded, negative sense RNA virus (ssRNA-), 
member of the Paramyxoviridae family of viruses, which 
vertebrates serve as natural hosts. Sendai replicates in the 
cytoplasm independently of the cell cycle and transduces a 
wide range of somatic cell types [73]. Retrovirus and len-
tivirus are DNA host-integrated vectors, prone to incom-
plete silencing of reprogramming transgenes, which leads to 
incomplete reprogramming. Additionally, lingering expres-
sion or re-expression of viral transgenes as well as inser-
tional mutagenesis and random integration could interfere 
with iPSC-derived cells differentiation potential [74].

Blood cells and skin fibroblasts are commonly used cell 
types for reprogramming. Although assumed to be solely 
a hematopoietic stem cell (HSCs) marker, the detection of 
CD34 in BM or PB samples represents a hematopoietic stem/
progenitor mix, of which the majority of cells are progeni-
tors. Indeed, CD34 is a single-pass transmembrane sialomu-
cin  protein [75–81], widely used as a marker of HSCs 
[82–84], vascular endothelial cells [85, 86] and progenitor 
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cells (progenitors for mast cells (pMC) and eosinophils 
(pEo), in particular, can exit the BM as CD34 + precursors) 
[87]. In the BM, the early endothelial progenitor cells (EPC) 
are also characterized by the expression of CD34, CD133 
and the VEGFR-2 [88]. In the PB of adults, more mature 
EPC are found that have lost CD133, but are still positive 
for CD34 and VEGFR-2 [89]. Human HSCs could be further 
separated from CD34 + progenitor cells by low expression of 
CD90 and a lack of expression of CD38, human leukocyte 
antigen-DR (HLA-DR), and a panel of mature hematopoietic 
lineage markers (Lin −) [90]. HSPCs may maintain greater 
genomic stability than terminally differentiated somatic cells 
[12], moreover they lack V(D)J rearrangements of commit-
ted T and B cells [11, 13], representing a suitable cell to be 
reprogrammed. Contrary from skin fibroblast, easy to obtain 
by skin biopsy, CD34 + HSPCs, despite being highly prolif-
erative and ready for efficient reprogramming after 2–5 days 
culture, are rare in adult PB (< 0.01%), unless the donors 
have been treated with a stem cell mobilization regimen as 
G-CSF [91, 92].

Nakada et  al. [93] reported that although males and 
females mice have similar basal numbers of HSCs and their 
multipotent progenitor cells (MPPs), females exhibited 
increased frequency of proliferation of these cells without 

depletion of the stem cell pool. This indicated that female 
HSCs underwent more frequent self-renewing divisions. 
The enhanced proliferation of HSCs in females’ mice was 
driven by endogenous estrogens and mediated mainly by 
intrinsic ERα, which was highly expressed in HSCs. During 
pregnancy, more HSCs were detected in the BM and spleen 
relative to non-pregnant female mice. Significant increases 
in spleen cellularity, erythropoiesis, and myelopoiesis were 
also observed during pregnancy with elevated estrogen lev-
els, highlighting the importance of sex hormones in HSCs 
activity to respond to increased oxygen consumption and 
produce more erythrocytes. Nakada et al. detected little 
or no ER, PR or androgen receptor expression in HSCs 
(CD150 + CD48-Lin-Sca-1 + c-kit +) and MPPs [93]. How-
ever, in a murine BM–derived HSPCs subset (Sca-1 + Lin-
CD45 +) [56] and a CD34 + Lin-CD45 + population isolated 
from human umbilical cord blood [57], expressions of recep-
tors for estrogens, androgen, and PR, as well as FSH, LH, 
and prolactin, were detected [56, 57].

In the present study, we did not observe the expression 
of ERα and PR in CD34 + HSPCs, as well as in skin fibro-
blasts. We did not detect a consistent amount of ERα and 
PR mRNAs. On the contrary, ERβ mRNA was upregulated 
in the different iPSCs. Accordingly, ERβ has been reported 
to be also required and sufficient to activate formative 
genes[94]. Besides localization, the PR upregulation was 
strongly supported also by flow cytometry analysis. More-
over, we showed PR expression is dynamic. Indeed, lon-
gitudinal expression of PR expression was also consistent 
with the concomitant regulation of PR-downstream effector 
genes CK5[95] and GATA3[96] during iPSCs-mammary-
like organoids development. GATA3 expression is critical 
for the luminal differentiation of mammary epithelial cells 
and in the morphogenesis of the mammary gland. Indeed, 
PR activation downregulates GATA3 by transcriptional 
repression [96–98]. The absence of expression of ER and 
PR in HSPCs and skin fibroblasts could be explained as they 
are differentiated cells, while a subpopulation of stem cells 

Fig. 5  Flow cytometry analysis for the detection of ERα and PR in 
mobilized-PB, fibroblasts, and iPSCs. A-H: representative images of 
ERα (left) and PR (right) expression in G-CSF mobilized-PB (gated 
on CD34 + HSPCs, A, Episomal iPSCs (B), BJ fibroblasts (C), BJ 
iPSCs (D), 253-G1 iPSCs (E), F3 iPSCs (F), and in MDA-MB231 
negative control (G) and MCF7 positive control (H); red = aspecific 
fluorescence, blue = FITC-labeled target. I-L: Histograms represent-
ing either ΔMFI = median fluorescence intensity (I,J) or percentage 
(K,L) of ERα (I,K) and PR expression (J,L) in G-CSF mobilized-PB 
(gated on CD34 + HSPCs), Episomal iPSCs, BJ fibroblasts, BJ iPSCs, 
253-G1 iPSCs, F3 iPSCs, and in MDA-MB231 negative control and 
MCF7 positive control. Bars represent the mean ± SEM from at least 
three independent experiments.*, # p < 0.05, **, ##, §§ p < 0.01, 
***, ###, §§§ p < 0.001, ****, ####, §§§§ p < 0.0001; * vs MDA-
MB231; # vs MCF7; § MDA-MB231 vs MCF7

◂

Fig. 6  Representative images of morphological changes during mam-
mary-like organoids generation from iPSCs. A iPSCs colony; B 1-d 
mEBs differentiation; C 10-d mEBs differentiation; D Mammary-like 

organoids. Pictures were acquired at 4X (background) and 20X (fore-
ground) magnification respectively
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amongst them migrating primordial germ cells expand as 
iPCSs cells[99, 100]. PR expression, therefore, might arise 
in the early stages during reprogramming into iPSCs, where 
cells acquire features similar to that of ESCs. Collectively 
these data would indicate that independently from the cell 
of origin (CD34 + or skin fibroblasts) to be reprogrammed 
as well as the technology used (episomal-vectors, Sendai 
virus, retrovirus, or lentivirus transduction) PR may play a 
role during cell reprogramming into iPSCs. Furthermore, 

as PR is already expressed in iPSCs, it could not be used 
as a specific marker of iPSCs-cell based differentiation. 
Indeed, these observations are useful for wider considera-
tions in iPSCs-based disease models, especially for those 
involving PR-responsive organs (i.e. mammary-like/ovaries). 
Nevertheless, PR expression is regulated during iPSCs dif-
ferentiation. Finally, this study could be a starting point to 
better comprehend the molecular mechanisms involved in 
cell development and cellular response to treatments.

Fig. 7  H&E and IHC staining. A) H&E stain; B) PAN-CK; C-D-
F) Luminal (CK5/7 + and GATA3 +) and E–G) basal cells markers 
(CK18 + and TP63 +); H) PR and I) ERα. Representative images of 

mEBs obtained from iPSCs Episomal (I); mEBs obtained from iPSCs 
BJ (II); mammary-like organoids (III) differentiation

Fig. 8  Gene expression analysis of luminal (CK5/7 + and GATA3 +) 
and basal markers (CK18 + and TP63 +) markers, PR, ERα and ERβ 
in iPSCs, 10d-mEBs and 20-d mammary-like organoids. Histograms 

represent fold-change in the gene expression, while error bars repre-
sent ± SEM. *p < 0.05, **p < 0.01
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Conclusions

In conclusion, with the present study we demonstrated for 
the first time the presence of progesterone receptor after 
reprogramming in iPSCs, underling their close relation to 
ESCs, and opening a new scenario on iPSCs and their appli-
cations. Further studies will be addressed to determine the 
proper resolution of PR-isoform (PR-A or –B), as well as 
the functional role of PR in iPSCs cells and the signaling 
pathways involved.
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