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Introduction

Transthyretin amyloid cardiomyopathy (ATTR-CM) is an 
underdiagnosed progressive cardiac disorder caused by the 
misfolding of transthyretin amyloid protein, leading to the 
deposition of amyloid fibrils in the extracellular space of 
cardiac tissues [1]. The amyloid accumulation can result in 
abnormalities in atrioventricular conduction and stiffening 
of the myocardial tissue, which ultimately impairs cardiac 
function, leading to heart failure and impaired prognosis 
[1, 2]. In addition to the myocardium, amyloid fibrils can 
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Abstract
Purpose Transthyretin amyloid cardiomyopathy (ATTR-CM) is a frequent concomitant condition in patients with severe 
aortic stenosis (AS), yet it often remains undetected. This study aims to comprehensively evaluate artificial intelligence-
based models developed based on preprocedural and routinely collected data to detect ATTR-CM in patients with severe AS 
planned for transcatheter aortic valve implantation (TAVI).
Methods In this prospective, single-center study, consecutive patients with AS were screened with [99mTc]-3,3-diphos-
phono-1,2-propanodicarboxylic acid ([99mTc]-DPD) for the presence of ATTR-CM. Clinical, laboratory, electrocardiogram, 
echocardiography, invasive measurements, 4-dimensional cardiac CT (4D-CCT) strain data, and CT-radiomic features were 
used for machine learning modeling of ATTR-CM detection and for outcome prediction. Feature selection and classifier 
algorithms were applied in single- and multi-modality classification scenarios. We split the dataset into training (70%) and 
testing (30%) samples. Performance was assessed using various metrics across 100 random seeds.
Results Out of 263 patients with severe AS (57% males, age 83 ± 4.6years) enrolled, ATTR-CM was confirmed in 27 
(10.3%). The lowest performances for detection of concomitant ATTR-CM were observed in invasive measurements and 
ECG data with area under the curve (AUC) < 0.68. Individual clinical, laboratory, interventional imaging, and CT-radiomics-
based features showed moderate performances (AUC 0.70–0.76, sensitivity 0.79–0.82, specificity 0.63–0.72), echocardiog-
raphy demonstrated good performance (AUC 0.79, sensitivity 0.80, specificity 0.78), and 4D-CT-strain showed the highest 
performance (AUC 0.85, sensitivity 0.90, specificity 0.74). The multi-modality model (AUC 0.84, sensitivity 0.87, specific-
ity 0.76) did not outperform the model performance based on 4D-CT-strain only data (p-value > 0.05). The multi-modality 
model adequately discriminated low and high-risk individuals for all-cause mortality at a mean follow-up of 13 months.
Conclusion Artificial intelligence-based models using collected pre-TAVI evaluation data can effectively detect ATTR-CM 
in patients with severe AS, offering an alternative diagnostic strategy to scintigraphy and myocardial biopsy.
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affect valve tissue, damaging endothelial cells and eventu-
ally causing calcification, particularly of the aortic valves, 
facilitating the development of aortic stenosis (AS) [1–3]. 
Recent studies have suggested that the coexistence of 
severe AS and ATTR-CM is more frequent than previously 
anticipated and associated with an increased risk of adverse 
events after transcatheter aortic valve implantation (TAVI) 
[4–7]. Although TAVI has been shown effective in this high-
risk patient population, it is unlikely to achieve sustained 
improvement in symptoms and prognosis without address-
ing the underlying cardiomyopathy, for which reason timely 
diagnosis and subsequent treatment of ATTR-CM are cen-
tral to the optimal patient management in this specific popu-
lation [7].

Current ESC [8] and ACC/AHA [9, 10] guidelines pro-
pose different algorithms for ATTR-CM diagnosis [1]. Initial 
assessments typically involve clinical examinations, electro-
cardiogram (ECG), echocardiography (Echo), and cardio-
vascular magnetic resonance imaging (CMR) to include or 
exclude potential patients based on specific symptoms [1]. 
For example, bilateral carpal tunnel syndrome and periph-
eral neuropathy as clinical features, low QRS voltage and 
pseudo-infarct patterns in ECG, apical sparing, or increased 
atrial/RV wall thickness in echocardiography could serve as 
red flags for ATTR-CM [1, 11–14]. While these modalities 
are useful in the preliminary evaluation, they are not spe-
cific to ATTR-CM; thus, a final diagnosis often cannot be 
based entirely on these results [1, 15, 16].

A definitive diagnosis of ATTR-CM may hinge on the 
histopathological confirmation or proof of a TTR mutation 
whilst always requiring confirmation of cardiac involve-
ment, e.g., by significant cardiac uptake in scintigraphy 
[1, 17, 18]. Pathology and genetic testing are invasive 
and costly, while scintigraphy adds a significant financial 
and procedural burden, especially for severe AS patients 
undergoing TAVI who have already undergone extensive 
examinations [1–3]. Therefore, developing a non-invasive, 
financially viable method based on available data from pre-
procedural and routine data would be highly beneficial for 
detecting ATTR-CM.

Different studies have applied artificial intelligence (AI) 
to detect and screen for ATTR-CM across different data 
modalities [1, 19, 20]. AI-driven algorithms employing 
both deep learning (DL) and machine learning (ML) across 
clinical, echocardiography, ECG, scintigraphy, and CMR 
imaging have shown enhanced diagnostic accuracy [1]. Our 
study’s main aim is to develop and comprehensively evalu-
ate ML models using a pre-procedural and routinely col-
lected TAVI multimodality dataset for detecting ATTR-CM. 
By evaluating ML algorithms within and across modali-
ties in the same patient cohort, we offer insights into the 

strengths and limitations of each approach for ML-based 
ATTR-CM detection using different modalities.

Materials and methods

Figure 1 presents the study overview, including data col-
lection, preprocessing, model training, validation, testing, 
and reporting phases utilized in the current study. The study 
follows the Transparent Reporting of a multivariable predic-
tion model for Individual Prognosis Or Diagnosis + Artifi-
cial Intelligence (TRIPOD + AI) statement [21].

Study design and population

The data for this study were collected from multiple modali-
ties to enable a comprehensive analysis of ATTR-CM detec-
tion in patients with severe AS planned for TAVI [22, 23]. 
Consecutive patients (between August 2019 and 2021) with 
symptomatic severe AS in the absence of known cardiac or 
extra-cardiac amyloidosis were referred for TAVI at Bern 
University Hospital and recruited in the ATTR-AS (Amy-
loid Transthyretin in Aortic Stenosis, NCT04061213) study 
(ClinicalTrials.gov: NCT04061213) were considered eli-
gible [22, 23]. The study design was approved by the Bern 
ethics committee, conducted in accordance with the Dec-
laration of Helsinki, and study participants provided writ-
ten informed consent before any data collection [22, 23]. 
Baseline and follow-up clinical data were prospectively 
recorded in a dedicated database held at the clinical trials 
unit of Bern University Hospital [22, 23]. These included 
clinical assessments, laboratory tests, ECG, and echocar-
diography (transthoracic echocardiography (TTE)). Addi-
tionally, left and right heart catheterization and various 
forms of interventional imaging (integrated transesophageal 
echocardiography (TEE) and invasive measurements were 
utilized. The patients underwent diagnostic evaluation with 
the following advanced cardiac imaging modalities: SPECT 
and 4D-CT. Clinical characterization of patients is provided 
in Table 1, and more details are provided in Supplemental 
Table S1, which has already been published in our previ-
ous studies [22, 23]. Clinical follow-up involved standard-
ized interviews, documentation from referring physicians, 
and hospital discharge summaries. A dedicated clinical 
event committee collected and adjudicated adverse events 
based on Valve Academic Research Consortium-2 criteria 
[22–24].

ATTR-CM diagnosis

As part of the ATTR-AS (NCT04061213) study, all patients 
underwent [99mTc]-3,3-diphosphono-1,2-propanodicar- 
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boxylic acid ([99mTc]-DPD) scintigraphy for ATTR-CM 
screening [22, 23]. Approximately 3 h post intravenous 
injection of 700 ± 70 MBq [99mTc]-DPD, whole-body pla-
nar images were acquired (15 cm/min) using a dual-head 
hybrid SPECT/CT system (Intevo; Siemens Healthineers) 
equipped with low-energy high-resolution (LEHR) collima-
tors [22, 23]. The images were reconstructed using a high-
order low-pass Butterworth filter (order of 5) and a zoom 
of 1.0, using a 256 × 256 matrix size [22, 23]. Following 
planar imaging, a SPECT/CT scan of the thorax was car-
ried out using a step-and-shoot method adjusted for body 

contour (32 steps each 30 s, zoom of 1.0, 256 matrix size) 
[22, 23]. Then, SPECT images were reconstructed using an 
iterative algorithm (OSEM, 4 subsets, 8 iterations), supple-
mented by a 12-mm Gaussian filter [22, 23]. Additionally, 
a low-dose CT scan was conducted for attenuation correc-
tion, using 130 kV with CareDose, a pitch of 1.2, a rotation 
time of 0.6 s, and a collimation of 16 × 0.6 [22, 23]. The 
[99mTc]-DPD scintigraphy results were interpreted as posi-
tive for participants exhibiting moderate to high myocardial 
tracer uptake (Perugini grade 2 or 3) and negative for those 
with no or low uptake (Perugini grade 0 or 1), as assessed by 

Fig. 1 The flowchart of the current study represents the design of the study, starting the phases of data collection, preprocessing, model training, 
validation, and reporting phases utilized in the current study
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provided by an automatic approach and subsequently evalu-
ated and modified as needed for different images. Various 
radiomics features, including intensity, shape, and second 
and higher-order features, were extracted using the Image 
Biomarker Standardization Initiative (IBSI) [25, 26] con-
sensus Python library [27] with bin discretization set to 64 
and an isotropic voxel size of 1 mm³.

We extracted the following number of features from each 
modality: 101 features from clinical, 13 from laboratory, 
18 from ECG, 34 from echocardiography, 34 from invasive 
measurements, 6 from interventional imaging, 76 from CT 
strain, and 420 from radiomics (end-systolic, end-diastolic, 
non-contrast, and delta phases). The dataset was initially 
split into a training (70%) and a hold-out test set (30%) with 
stratification regarding the ATTR-CM status. Missing data 
within the dataset was imputed using an iterative imputation 
technique (applying a round-robin approach).

nuclear medicine physicians and cardiac imaging cardiolo-
gist (F.C., A.R., and C.G.) all with > 10 years of experience 
in nuclear cardiology [22, 23]. More information on data 
was provided in [22, 23].

Data preparation and image processing

Advanced image processing techniques were utilized to 
extract CT strain and LV mass and function information 
from 4D contrast-enhanced CT (CCT) images; more details 
on the acquisition and processing of 4D CCT were previ-
ously published [22, 23]. Radiomics features were extracted 
from the left ventricle (LV) myocardium using CT images, 
including non-contrast images and images from the dia-
stolic and systolic phases of contrast-enhanced 3D-CT. 
Delta radiomics were calculated using the diastolic and sys-
tolic phases of CCT. Segmentation of the LV was initially 

Table 1 Clinical characterization of the current study patient population. More detailed parameters are presented in Supplemental tables S2 and 
reference [23]
Clinical characteristics All Participants 

(n = 263)
ATTR-CM Negative 
(n = 236)

ATTR-CM Positive 
(n = 27)

P-Value

Clinical
Sex M: 56.7%

F: 43.3%
M: 84.6%
F: 96.5%

M: 15.4%
F: 3.5%

0.002

Age (y) 82.7 ± 4.6 82.4 ± 4.5 85.3 ± 4.6 0.002
BMI 26.6 ± 5.2 26.7 ± 5.2 26.0 ± 4.5 0.53
BSA (m^2) 1.85 ± 0.22 1.8 ± 0.2 1.9 ± 0.2 0.52
CAD 41.4% 40.7% 48.1% 0.46
Intervention imaging
Aortic valve stenosis AVA echocardiography (cm^2) 0.7 ± 0.29 0.68 ± 0.26 0.89 ± 0.43 < 0.001
Laboratory
Biomarker NT-proBNP (ng/L) Median: 2834 

(564–3490)
Median: 1140 
(514–2947)

Median: 4462 
(1925–6301)

< 0.001

Creatinine level (mmol/L) 95.3 ± 34.2 94.1 ± 33.3 105.6 ± 40.7 0.10
CT
Cardiac CT calcium score aortic valve Median: 2481 

(1642–3750)
Median: 2545 
(1675–3757)

Median: 2213 
(1285–3659)

0.86

Cardiac CT Time gap to scintigraphy Median: 1 (0–1) Median: 1 (0–1) Median: 1 (0–1) 0.37
Dose-length product (mG · cm) 973 ± 415.6 959.3 ± 422.6 1088.1 ± 336.4 0.13
Contrast agent dose (mL) 86.7 ± 12.7 86.8 ± 12.7 86.3 ± 13.3 0.85
Echocardiography
LVEF (%) 53.7 ± 12.0 54.3 ± 12.1 50.2 ± 11.2 0.36
LV mass (g) 223 ± 70.2 217 ± 70.3 267 ± 55.2 0.06
LV mass index (g/m^2) 120 ± 36.9 117 ± 37.6 141 ± 24.9 0.049
LV septal thickness (mm) 13.6 ± 2.8 13.4 ± 2.8 14.5 ± 2.8 0.38
LV posterior wall thickness (mm) 11.6 ± 2.2 11.4 ± 2.2 13.1 ± 1.8 0.046
CT Global Strain (%)
LV GLS -14.3 ± 4.7 -14.7 ± 4.8 -11.2 ± 3.2 < 0.001
LV GRS 49.5 ± 25.4 50.2 ± 25.8 42.9 ± 21.0 0.16
LV GCS -17.6 ± 6.3 -17.9 ± 6.4 -15.3 ± 5.2 0.04
RV GLS -18.4 ± 7.2 -18.7 ± 7.2 -16.2 ± 6.9 0.09
LA GLS 14.2 ± 9.9 14.9 ± 10 8.3 ± 7.2 0.001
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programming language [28], and all models and code are 
publicly available in the GitHub repository (https://github.
com/AI-in-Cardiovascular-Imaging/ML_pipeline_tabular).

Results

Study population

Out of 489 patients initially assessed, 91 were ineligible, and 
83 did not consent [22, 23]. Thus, 315 patients consented and 
were enrolled [22, 23]. From this cohort, 51 were excluded 
due to the absence of 4D-CCT, and one was excluded due to 
lack of correct image phases [22, 23]. Finally, 263 patients 
(83 ± 4.6years, 114 females) who underwent [99mTc]-DPD 
scintigraphy and had available data from multiple modali-
ties, including 4D-CCT, were included in the analysis [22, 
23]. ATTR-CM was confirmed in 27 (10.3%) of these 
patients [22, 23]. Among those diagnosed with ATTR-CM, 
22 underwent genetic testing, which revealed that 21 (95%) 
had wild-type ATTR, and 1 (5%) exhibited a transthyretin 
mutation (Val40Met) [22, 23]. The mean (standard devia-
tion) follow-up for all causes of mortality and cardiovascu-
lar mortality was 13 (5) months, and it was available for 218 
patients (23 ATTR-CM).

Diagnostic performance

Figure 2 summarizes the performance of the diagnos-
tic modalities (the best-performing ML algorithm in each 
modality) evaluated through different metrics as detailed in 
supplemental Table S2. Supplemental Figs. S1–S4 provide 
the p-values for comparing these modalities across different 
metrics.

Diagnostic performance of conventional first-line 
diagnostic tests

ECG data showed a low performance with a mean (stan-
dard deviation) ROC-AUC of 0.67 (0.08) (sensitivity of 
0.45 (0.16), and specificity of 0.89 (0.04)). Clinical data 
demonstrated a moderate discriminatory performance 
with ROC-AUC of 0.70 (0.09) (sensitivity of 0.81 (0.18) 
and specificity of 0.63 (0.18)). The laboratory data showed 
moderate results, with a ROC-AUC value of 0.76 (0.07) 
(sensitivity of 0.82 (0.13) and specificity of 0.72 (0.11)). 
Echocardiography resulted in acceptable performance with 
ROC-AUC of 0.79 (0.09) (sensitivity of 0.80 (0.15) and 
specificity of 0.78 (0.11)).

Machine-learning algorithm

Z-score normalization was applied to the features to ensure 
uniformity in scale. Features exhibiting low variance (below 
a threshold of 0.99) were discarded. Subsequently, fea-
tures with high correlation (Pearson correlation coefficient 
higher than 0.95) were grouped, and only the most predic-
tive feature from each group was retained. Following this 
initial preprocessing, various feature selection algorithms, 
including Recursive Feature Elimination (RFE), Univariate 
Ranking (UniVa), and Minimum Redundancy Maximum 
Relevance (MRMR), were employed on the feature set to 
select informative features. Using the selected features, a 
variety of classifier models were trained, including logistic 
regression (LR), support vector machine (SVM), random 
forest (RF), AdaBoost, and XGBoost.

Parameters and hyperparameters optimization

All ML model development steps, including preprocess-
ing and feature selection, were performed exclusively on 
the training set and validation (70%) to process and select 
important features. Using these selected features, classi-
fier parameters and hyperparameters were optimized using 
grid search on the training set to build the optimized model. 
Subsequently, the developed models were evaluated on the 
hold-out test set. This approach ensured that there was no 
possibility of information leakage between the training and 
test sets. The entire process (from data splitting to model 
evaluation) was repeated 100 times with a random seed to 
assess the robustness of the models.

Evaluation and statistics

The SHAP (SHapley Additive exPlanations) model is uti-
lized to interpret the outputs of ML models, providing 
insights into the contribution of each feature to the ATTR-
CM prediction. The performance of these models was 
assessed using different metrics, including balanced accu-
racy (sensitivity + specificity)/2), receiver operating char-
acteristic area under the curve (ROC-AUC), sensitivity, 
and specificity. The Mann–Whitney U test was employed 
to evaluate differences in performance metrics for statisti-
cal comparison across different models and modalities. 
Additionally, Kaplan-Meier survival curves were plot-
ted for the diagnostic model output and their features to 
visualize the impact on patient outcomes over time, with 
p-values calculated from the log-rank (LR) test to deter-
mine the statistical significance of observed differences. 
All ML was implemented by Scikit-learn in the Python 
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Diagnostic performance of the CT radiomics

In the CT radiomics, CT non-contrast radiomics showed the 
lowest performance with a mean (standard deviation) ROC-
AUC of 0.68 (0.11) (sensitivity of 0.76 (0.19), specificity of 
0.66 (0.21)). The performances of CT diastolic, CT systolic, 
and CT delta radiomics were similar, with no statistically 
significant differences between the metrics of diagnos-
tic performance (p-value > 0.05). Although the combined 
evaluation of all CT radiomics features resulted in a mean 
(standard deviation) of ROC-AUC of 0.74 (0.07) (sensi-
tivity of 0.81 (0.14), specificity of 0.68 (0.13)), it did not 
outperform the individual systolic and diastolic radiomics 
(p-value > 0.05).

Diagnostic performance of the CT strain

The highest discriminatory performances were observed for 
CT strain, yielding the highest diagnostic accuracy com-
pared to other modalities. CT strain achieved the highest 
ROC-AUC of 0.85 (0.05) (sensitivity of 0.90 (0.11), speci-
ficity of 0.74 (0.11)).

Diagnostic performance of invasive modalities

The lowest performances were observed for Invasive Cath 
(ROC-AUC of 0.61 (0.09), sensitivity of 0.64 (0.25), and 
specificity of 0.67 (0.28)). Interventional Imaging showed 
a ROC-AUC of 0.70 (0.08), sensitivity of 0.79 (0.18), and 
specificity of 0.63 (0.19).

Diagnostic performance of the multi-modality

The multi-modality approach in which features from differ-
ent diagnostic modalities were jointly considered, yielded a 
high mean (standard deviation) ROC-AUC of 0.84 (0.06) 
(sensitivity of 0.87 (0.13), specificity of 0.76 (0.12)). This 
is comparable to CT strain, indicating that while combining 
features can achieve high diagnostic performance, it does 
not statistically significantly outperform CT strain.

The best model and modality for identifying ATTR-
CM in patients with severe AS

Between different modalities, four models from CT 
strain (Manual + LR, RFE + LR, UniVa + AdaBo, and 
MRMR + SVM) and one model from multi-modality 
(RFE + LR) showed the highest performances, with no sta-
tistically significant differences between these models.

Fig. 2 Comparative analysis of different metrics, including Accu-
racy, AUC, Sensitivity, and Specificity for the best-performing 
models in each modality, evaluated across 100 iterations. Clinical: 
RFE + LR, Laboratory: UniVa + LR, ECG: RFE + AdaBoost, Echo: 
UniVa + SVM, Invasive Cath: MRMR + LR, Interventional Imaging: 
UniVa + LR, CT Non-Contrast Radiomics: RFE + LR, CT Diastolic 
Radiomics: UniVa + LR, CT Systolic Radiomics: UniVa + LR, CT 
Delta Radiomics: UniVa + LR, CT All Radiomics: UniVa + LR, CT 
Strain: RFE + LR, Multi-Modality: RFE + LR. Classifiers include 
Logistic Regression (LR), Support Vector Machine (SVM), Ran-
dom Forest (RF), AdaBoost (AdaBo), and eXtreme Gradient Boost-
ing (XGB). Feature selection methods featured are Recursive Fea-
ture Elimination (RFE), Univariate Analysis (UniVa), and Minimum 
Redundancy Maximum Relevance (MRMR)
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as illustrated in the Kaplan-Meier plots of these features in 
Supplemental Figs. S39–S40.

Discussion

In the current study, we comprehensively evaluated the 
performance of ML approaches based on preprocedural 
and routinely collected data from different contemporary 
diagnostic modalities to predict ATTR-CM in patients with 
severe AS planned for TAVI. These modalities included 
clinical assessment, ECG and echocardiography, as well 
as more advanced imaging processing techniques such as 
CT strain and CT radiomics. We employed a wide range 
of standardized ML algorithms to predict ATTR-CM using 
single and multi-modality data. While echocardiography 
demonstrated good performance, CT strain exceeded it in 
accuracy. The multi-modality model did not outperform the 
CT strain-only data. Specific features from different modali-
ties provided prognostic information in severe AS patients 
for all-cause and cardiac-specific mortality. The presence of 
ATTR-CM was not shown to be an outcome predictor.

Current diagnostic standards for establishing an ATTR-
CM diagnosis, such as biopsy or bone scintigraphy [8–10], 
introduce additional costs and burdens, and are not included 
in the standard clinical practice for patients with severe AS 
undergoing TAVI procedures [1–3]. Although scintigraphy 
is becoming the gold standard for ATTR-CM detection and 
provides prognostic information [29–31], it presents other 
challenges, such as radiation exposure and delays in diagno-
sis due to the low deployment of nuclear medicine centers. 
Moreover, scintigraphy imaging can yield negative results 
if amyloid deposition is minimal at the time of examina-
tion [1–3]. Therefore, ATTR-CM is likely underdiagnosed 
in this cohort [1–3], highlighting the need for non-invasive 
and cost-effective diagnostic tools [1]. Our study presents 
new evidence that utilizing ML to integrate preprocedural 
and routinely collected data aids in detecting concomitant 
ATTR-CM in patients with severe AS. Using the existing 
data for ATTR-CM detection could also enhance prognosti-
cation in this patient group.

Several studies have been employed to detect ATTR-
CM using AI in different modalities [1, 32–34]. Previous 
studies using the echocardiographic images and DL model 
[32] and handcrafted echocardiographic parameters and ML 
[34] reported an average AUC of 0.87 (5-fold- cross-valida-
tion (CV)) and 0.82 (0.95, 0.76, 0.78, and 0.80 on the four 
external tests) in detecting cardiac amyloidosis and wild-
type ATTR-CM, respectively. Another study [33] employed 
automated tools using ECG and echocardiography to detect 
wild-type ATTR-CM. The DL was externally tested at four 
centers, with 441 (AUC: 0.91), 369(AUC: 0.89), 229(AUC: 

ROC and heatmap plots in different models and 
modalities

Figures 3 and 4 present the ROC curves of the top three 
models across different modalities. Supplemental Figs. S5–
S17 provide ROC curves for each model for 100-time rep-
etition. Supplemental Figs. S18–S25 present heatmaps that 
compare these models in terms of p-values for different 
metrics across each modality. Figure 5 shows heatmaps of 
different feature selection and classifier combinations for 
different metrics within the echocardiography, CT strain, 
and multi-modality model. The corresponding heatmaps for 
the rest of the modalities examined are shown in supple-
mental Figs. S26–S35.

Interpretability in top models

Figure 6 presents the SHAP summary of the top three 
models, including echocardiography, CT strain, and multi-
modality, andsupplemental Figs. S36–S38 present the other 
top models in each modality. The SHAP plots illustrate the 
relative importance of each feature in each model, providing 
insights into the decision-making processes underlying the 
feature-outcome relationships in each modality toward ML 
model interpretability. For instance, in the echocardiogra-
phy model, features such as the mean gradient of the aortic 
valve and maximum septal wall thickness had the highest 
impact. Decreasing the mean gradient of the aortic valve 
and increasing the maximum septal wall thickness posi-
tively influenced the ML model’s output toward ATTR-CM 
positive diagnosis. In the CT strain model, increasing fea-
ture values like LV global longitudinal strain apical /base 
and mid (GLS apical/base-mid), LV global longitudinal 
strain (LV-GLS, %), end-diastolic LV mass index (LVMi, 
g/m2) and decreasing in left atrial global longitudinal strain 
(LA-GLS, %) has a positive influence on model output. In 
the multi-modality model, in addition to the CT strain and 
echocardiographic features, other variables such as age, 
radiomics features, and laboratory data contributed to the 
model’s outcomes.

Prognostication information of diagnostic features

Prognostication based on ATTR-CM status did not show 
significant prognostic information (indicated by an LR 
p-value > 0.05). Among the different diagnostic ML mod-
els, only the multi-modality model provided prognostic 
information (p-value = 0.007) for distinguishing between 
low- and high-risk groups for all-cause mortality (Fig. 7). 
Selected features from different modalities provided valu-
able prognostic information to differentiate between low and 
high-risk groups in all causes and cardiac-specific mortality, 
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focusing on patients with severe AS and overlapping symp-
toms made constructing high-performance models chal-
lenging. Thus, this should be considered when comparing 
study results, as model performance is influenced by the 

1.0), and 239(AUC: 0.96) patients [33]. In our study, using 
only the ECG modality did not yield good performance, 
whereas the echocardiographic modality provided results 
comparable to previous studies. Despite our limited dataset, 

Fig. 3 ROC curve of best-performing models in each modal-
ity. Clinical: Strat. 1 (RFE + LR), Strat. 2 (UniVa + LR), Strat. 
3 (MRMR + LR); Laboratory: Strat. 1 (RFE + LR), Strat. 2 
(UniVa + LR), Strat. 3 (MRMR + LR); ECG: Strat. 1 (RFE + AdaBo), 
Strat. 2 (UniVa + AdaBo), Strat. 3 (MRMR + AdaBo); Echo: Strat. 1 
(RFE + LR), Strat. 2 (UniVa + SVM), Strat. 3 (MRMR + LR); Inva-
sive Cath: Strat. 1 (RFE + AdaBo), Strat. 2 (UniVa + LR), Strat. 3 
(MRMR + LR); Interventional Imaging: Strat. 1 (RFE + LR), Strat. 2 
(UniVa + LR), Strat. 3 (MRMR + LR); CT Non-Contrast Radiomics: 

Strat. 1 (RFE + LR), Strat. 2 (UniVa + LR), Strat. 3 (MRMR + LR); CT 
Diastolic Radiomics: Strat. 1 (RFE + LR), Strat. 2 (UniVa + LR), Strat. 
3 (MRMR + LR); CT Systolic Radiomics: Strat. 1 (RFE + LR), Strat. 
2 (UniVa + LR), Strat. 3 (MRMR + LR). Classifiers include Logistic 
Regression (LR), Support Vector Machine (SVM), Random Forest 
(RF), AdaBoost (AdaBo), and eXtreme Gradient Boosting (XGB). 
Feature selection methods featured are Recursive Feature Elimina-
tion (RFE), Univariate Analysis (UniVa), and Minimum Redundancy 
Maximum Relevance (MRMR)
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models. They [36] reported an AUC of 0.87 for multiclass 
classification, 0.94 for the binary comparison of grade < 2 
vs. grade ≥ 2, and 0.89 for grade < 3 vs. grade 3 using a 
5-fold CV. Another study [37] developed a DL model using 
scintigraphy images ([99mTc]-DPD/[99mTc]-HMDP) to 

specific cohort used for development and evaluation, not 
just the metrics [35].

In a previous study [36], [99mTc]-HMDP scintigraphy 
was utilized to detect ATTR-CM. They [36] focused on 
classifying ATTR-CM based on Perugini grades using DL 

Fig. 4 CT Delta Radiomics: Strat. 1 (RFE + LR), Strat. 2 (UniVa + LR), 
Strat. 3 (MRMR + AdaBo); CT All Radiomics: Strat. 1 (RFE + LR), 
Strat. 2 (UniVa + LR), Strat. 3 (MRMR + LR); CT Strain: Strat. 1 
(Manual + LR), Strat. 2 (RFE + LR), Strat. 3 (UniVa + AdaBo) Strat. 
4 (MRMR + SVM); Multi-Modality: Strat. 1 (RFE + LR), Strat. 2 
(UniVa + LR), Strat. 3 (MRMR + LR). Classifiers include Logistic 

Regression (LR), Support Vector Machine (SVM), Random Forest 
(RF), AdaBoost (AdaBo), and eXtreme Gradient Boosting (XGB). 
Feature selection methods featured are Recursive Feature Elimina-
tion (RFE), Univariate Analysis (UniVa), and Minimum Redundancy 
Maximum Relevance (MRMR)
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practice among patients with severe AS undergoing TAVI 
due to additional cost, our study demonstrates the feasibility 
of detecting ATTR-CM in this cohort using preprocedural 
and routinely collected data with good performance. This 
model could be used for initial screening with available data 
for this cohort, allowing suspected cases to undergo scintig-
raphy for confirmation.

detect a Perugini grade of ≥ 2 in ATTR-CM patients. They 
reported an AUC of 0.99 in both the development and exter-
nal test phases, demonstrating high diagnostic accuracy. In 
our study, we did not use scintigraphy as an input for detect-
ing ATTR-CM but rather as the ground truth, with most 
positive cases confirmed by pathology and genetic tests. 
As scintigraphy is not routinely implemented in clinical 

Fig. 5 Heat maps displaying various metrics for echocardiography 
(Echo), CT strain, and Multi-Modal data. Classifiers include Logis-
tic Regression (LR), Support Vector Machine (SVM), Random For-
est (RF), AdaBoost (AdaBo), and eXtreme Gradient Boosting (XGB). 

Feature selection methods featured are Recursive Feature Elimination 
(RFE), Univariate Analysis (UniVa), and Minimum Redundancy Max-
imum Relevance (MRMR)
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sensitivity, and specificity of 0.93. In another study [41] CT 
radiomics features evaluated for detecting cardiac amyloi-
dosis in AS patients who underwent TAVI. Using a 7-fold 
CV, they reported an AUC of 0.92 for radiomics and 0.96 
when combining radiomics with clinical information. Our 
study evaluated the performance of various CT radiomics 
features, achieving a moderate AUC of 0.75. Compared to 
previous radiomics studies, our dataset was larger, and we 
enhanced the reliability of our results by repeating the entire 
process 100 times with random seeds to avoid any bias in 
the chosen test set. This approach is essential in ML stud-
ies with small to medium-sized datasets because achieving 
high performance in a single repetition could be potentially 
due to a random split that favors easier cases in the test set, 
which may not realistically reflect real-world scenarios.

In each ML model, we used SHAP analysis to understand 
the top model’s decision-making. We observed that these 

The diagnosis performance of ML and DL was investi-
gated [38] using CMR images, and they reported an AUC of 
0.98 for DL and 0.95 for ML for ATTR-CM detection. Other 
[39] conducted a study using CMR sequences to diagnose 
cardiac amyloidosis automatically. They [39] employed 
binary classification approaches to analyze single 2D slices 
using DL and used averaged voting across all slices for 
comprehensive patient-wise analysis. They reported AUC 
scores of 0.96 for LGE, 0.93 for MOLLI, and 0.91 for 
CINE. In our study, we did not use the CMR dataset due to 
its limited availability for TAVI patients. However, future 
studies could integrate this modality to evaluate new model 
performance.

In a recent study [40] contrast-enhanced CT radiomics 
features of 30 patients were used to differentiate cardiac 
amyloidosis from severe AS. Due to the small data size, 
they used a leave-one-out CV and reported accuracy, 

Fig. 6 SHAP (SHapley Additive exPlanations) summary plot display-
ing the impact of various features across Echo, CT Strain, and Multi-
Modality models. This visualization highlights the contribution of 
individual features to each model’s predictive performance for ATTR-
CM detection. LVMi: Left ventricular mass (end-diastolic) index to gr/
m2, GLS apical/base-mid: Left ventricular global longitudinal strain 
apical /base and mid, LV-GLS: Left ventricular global longitudinal 
strain (%), LA-GLS: Left atrial Global longitudinal strain (%), Mean 
gradient aortic valve: Mean gradient aortic valve [mmHg], Maximum 

Septal Wall Thickness: maximum septal wall thickness of the left ven-
tricle [mm], Peak Gradient: peak pressure gradient of the aortic valve 
[mmHg], Mean Gradient: mean pressure gradient of the aortic valve 
[mmHg], Biplanar Left Atrial ES volume: Biplanar LAESVi [ml / 
BSA in m2], LV mass index: left ventricular mass index LVMi [g/m2], 
LVEDP: estimated left ventricular end-diastolic pressure [mmHg], 
Maximum lateral wall thickness: maximum lateral wall thickness of 
the left ventricle [mm], NT-proBNP: N-terminal pro B-type natriuretic 
peptide [pg/ml]
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with clinical symptoms in ATTR-CM patients, as the amy-
loid fibrils lead to an increased myocardial thickness, con-
sequently decreasing the LV stroke volume [1, 6, 42]. While 
these features alone cannot fully represent ATTR-CM, their 
combined effects and the varying weights assigned to them 
could form a robust diagnostic model. While wall thickness, 

features and decisions align with previous clinical findings, 
which makes the model more rational and reliable [1]. In 
the Echo, the ML model showed that decisions for detect-
ing ATTR-CM are based on a combination of decreasing 
gradient, increasing wall thickness, and increasing LV mass 
and volume. The selected features and their behavior align 

Fig. 7 Kaplan-Meier curves for all-cause 
mortality and cardiovascular mortal-
ity, stratified based on the median value 
of the outputs of the diagnostic model 
for ATTR-CM and the ground truth of 
ATTR-CM. The stratification categories 
are above and below the median ML 
output values, illustrating survival prob-
abilities over time for each group with 
the x-axis in months
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Although the multi-modality model did not outperform 
the CT strain-only models, it incorporates additional fea-
tures such as the radiomics of the LV myocardium, where 
an increase in value tends to indicate a diagnosis of ATTR-
CM. Moreover, other features like age/troponin and cre-
atine kinase (CK) were found to have positive and negative 
impacts on the model’s output, respectively. Additionally, 
selected features from various modalities were useful in dif-
ferentiating between low and high-risk groups for all-cause 
and cardiac-related mortality. Although overall prognostic 
assessments based on ATTR-CM did not show significant 
performance, the multi-modality model output was effective 
in distinguishing between different mortality risk groups. 
This shows the potential benefits of integrating multiple 
diagnostic modalities to enhance the accuracy of prognos-
tic assessments and provide new biomarkers. A DL model 
developed [46] for ATTR-CM detection in scintigraphy, 
demonstrated that the outputs of the diagnostic models could 
serve as markers for prognosis and discriminate between 
high and low-risk groups for overall mortality. Another study 
[2] showed that a diagnostic model using ECG in severe 
AS patients undergoing TAVI indicated that the diagnostic 
DL model’s output could predict all-cause mortality, major 
adverse cardiac events, and hospitalization due to heart fail-
ure. Our results align with these earlier studies, demonstrat-
ing the potential of diagnostic models to prognosticate and 
offer new biomarkers. The Kaplan-Meier curves are plotted 
based on the output of the models, stratified by the median 
value of the diagnostic model for ATTR-CM detection. We 
hypothesize that false positive cases, which may include 
patients with severe conditions resembling ATTR-CM, lead 
to worse outcomes due to impaired cardiac function. This 
suggests that our model may capture additional prognostic 
information not accounted for in the binary classification 
of ATTR-CM from different features of various modalities. 
Future studies should evaluate the prognostication perfor-
mance of this model on TAVI patient cohorts.

In this study, we implemented multiple ML algorithms 
that yielded different performance results, which may arise 
from the specific characteristics of each model. The LR often 
outperformed other models in different modalities, making 
it advantageous for clinical use due to its simplicity and 
greater interpretability. However, in some cases, such as with 
CT strain, which is the best modality for ATTR-CM detec-
tion, models like AdaBoost, SVM, and RF performed simi-
larly well. The lower performance of complex models like 
XGBoost could be due to overfitting in the training set, given 
their high number of parameters. By using an untouched test 
set for evaluation, we ensured an unbiased comparison and 
selected the most reliable performing model.

Gathering a comprehensive dataset encompassing mul-
tiple modalities for assessing ATTR-CM in AS is highly 

especially maximum septal wall thickness, was a key feature 
in the echocardiography model, it did not contribute signifi-
cantly in the multimodality model, where other features were 
more influential. A recent study suggested [43] that wall 
thickness is not correlated with ATTR-CM, which aligns 
with our finding that in the presence of other features, such 
as CT strain, the importance of wall thickness decreases.

In the CT strain modality ML modeling, we used auto-
mated and manual feature selection based on our previous 
study [23]. However, there was no statistically significant 
difference between the manually selected and the automated 
ones, and we achieved the highest performance using CT 
strain analysis for different modalities. Previously [23], we 
employed conventional standard statistical methods to eval-
uate models, reporting different cutoffs in AUC of 0.89 with 
internal bootstrapping (sensitivity of 0.96 and 0.77, and 
specificity of 0.58 and 0.85). However, in the current study 
using standardized ML approaches, we achieved an ROC-
AUC of 0.85 ± 0.05 with a sensitivity of 0.90 ± 0.11 and 
a specificity of 0.74 ± 0.11. Although the AUC is slightly 
lower than the previous study [23], the ML model improved 
the performance of ATTR-CM detection by considering 
both sensitivity and specificity. High sensitivity and low 
specificity could be impractical in clinical settings due to 
the high number of false positives; thus, a model simultane-
ously minimizes false positives and false negatives is prefer-
able. Additionally, conventional statistical models often risk 
information leakage through internal bootstrapping and data 
splitting, potentially inflating performance metrics. In con-
trast, our standardized ML development approach avoided 
any information leakage, leading to more realistic and supe-
rior performance (considering both sensitivity and specific-
ity simultaneously) with CT strain compared to our previous 
studies [23]. Our CT strain models demonstrated that com-
bining features indicative of myocardial contractility and 
wall motion abnormalities could create a high-performance 
predictive model for detecting ATTR-CM. Although CT 
strain may not be routinely collected, our analysis indi-
cates that the top contributing features in the multimodality 
model are derived from CT strain. Attempts to build a model 
using only routinely collected data did not yield satisfactory 
performance, showing the importance of CT strain in accu-
rate diagnosis of ATTR-CM. Considering advancements in 
CT scanner technology, which significantly reduce acquisi-
tion time and radiation dose [44], as well as the necessity 
of pre-TAVI CT images and previous guideline [45] recom-
mendation, 4D-CT could potentially be acquired routinely 
in the future. This model could seamlessly be integrated into 
clinical routine, providing an additional tool that uses avail-
able information to identify and alert clinicians to high-risk 
patients for ATTR-CM as it might change the clinical deci-
sion for TAVI versus surgical therapy.
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challenging, as the concordance of ATTR-CM is not rou-
tinely evaluated in clinical practice. Although our dataset may 
be considered medium-sized compared to previous clinical 
ML studies in ATTR-CM [32, 38–41], the methodology we 
applied ensures that the generated results are robust and repeat-
able. Furthermore, the clinical objective of our study is not to 
replace scintigraphy with our ML model but to use the model 
to detect potential cases, which can then be confirmed through 
scintigraphy. This approach has the potential to enhance clini-
cal workflow for AS patients undergoing TAVI procedures. 
One of the main limitations of this study is its reliance on a 
single-center and unbalanced dataset. However, we employed 
various approaches, including stratified splitting, avoiding any 
information leakage between the training and testing sets, and 
repeating the experiment with a random seed to provide more 
realistic and robust results. Although we tried data augmenta-
tion techniques such as SMOTE in the training set, it did not 
improve the model’s performance, and we continued with the 
original data. Moreover, we have made our code and model 
publicly available to support open-source practices and the 
reproducibility of the study. Domain shift in ML studies can 
occur due to variations in data acquisition methods (i.e. chang-
ing in the scanner), population characteristics, and changes 
over time. These shifts can impact model performance and 
should be carefully monitored, even in single-centre studies. 
Future studies should evaluate and validate our models’ per-
formance in larger, prospective, and external datasets.

Conclusion

In the current study, we implemented ML to evaluate the 
efficacy of various modalities for predicting ATTR-CM in 
patients with severe AS undergoing TAVI. While echocar-
diography, CT strains, and multi-modality demonstrated 
high diagnostic performance, with CT strain being the high-
est-performing modality, the multi-modality model did not 
outperform CT strain alone. Other modalities, including LV 
radiometric features on CT scans, showed moderate perfor-
mance for detecting ATTR-CM. Moreover, some diagnostic 
features could provide more insights for prognostication 
in severe AS. Our study demonstrates that applying ML to 
routine pre-TAVI data can effectively detect concomitant 
ATTR-CM in patients with severe AS, presenting a potential 
alternative to scintigraphy or invasive biopsies.
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