| Author | Title | Publicati
on year | State | Study
design | N° of patien ts | Age | Disease | Group of patients | Cochlear
Implant | Objective | OTOPLAN
analysis | Outcome
analyzed | Results | |-----------------------------|---|----------------------|-------------------|-----------------|-----------------|-----------|--------------------------------------|--|---------------------|--|---|---|---| | Lovato et al.[40] | OTOPLAN in
Cochlear
Implantatio
n for
Far-
advanced
Otosclerosis | 2020 | Europ
e, Italy | Retrospect | 13 | mean 59.6 | Far-
advanced
otosclerosi
s | OTOPLAN
group: 5 pz
Historical
group (only
CT pre-op):
8 pz | Unilatera | To preliminary evaluate the potential role of OTOPLAN for electrode length choice, or to predict surgical difficuties in FAO | Cochlear duct length: mean 32,4 mm Ossification/fib rosis of the cochlear duct: 2/5 Round window (RW) ossification: 2/5 | Surgical difficulties: RW ossification; incomplete array insertion Adverse effects: facial palsy/stimula tion; vertigo Speech recognition threshold (SRT) Words recognition score (WRS) | The audiological outcome of the OTOPLAN group was slightly superior compared with historical group. CT was not able to predict surgical difficulties; OTOPLAN was able to identify preoperativ ely RW niche ossification. No incomplete array insertion in OTOPLAN group; 25% in CT group | | Ricci <i>et al.</i>
[41] | OTOPLAN, Cochlear Implant, and Far- Advanced Otosclerosis : Could the Use of Software | 2022 | Europ
e, Italy | Case
report | 1 | 73 | Far-
advanced
otosclerosi
s | / | Unilatera
I | Case of FAO with destruction of cochlear turns: OTOPLAN used to plan the surgery, identify the | Diameter, Height, Width, CDL of the cochlea Ossification/fib rosis of the CD Ossification of the RW | Verification
of successful
insertion of
electrode:
intraoperativ
e radioscopy
and post-
operative CT | Successfully implanted a severe case of FAOwith several perforation of the cochlea. | | | Improve the
Surgical
Final
Indication? | | | | | | | | | best electrode annd check the correct position of the CI in the cochlear duct | Osteolytic
areas | Intraoperativ
e telemetry | | |--------------------|--|------|-------------------|----------------|----|------|--|---|---------------|--|---|---|--| | Lovato et al. [39] | Utility of
OTOPLAN
Reconstruct
ed Images
for Surgical
Planning of
Cochlear
Implantatio
n in a Case
of Post-
meningitis
Ossification | 2019 | Europ
e, Italy | Case
report | 1 | 46 | Post-
meningidit
is HL e
cochlear
ossificatio
n | | Bilateral | To demonstrat e the use of OTOPLAN for pre-operative surgical planning in a case where as according to CT surgery was contraindica ted | Ossification of
the RW
Ossification of
the CD
CDL | Completed
array
insertion
Intraoperativ
e telemetry | Successfully implanted. OTOPLAN may be useful in difficult CI case as cochlear ossification and anatomic abnormaliti es | | Hajr et
al.[42] | Cochlear
Implantatio
n: The use
of OTOPLAN
Reconstruct
ed Images in
Trajectory
Identificatio
n | 2023 | Saudi
Arabia | Retrospect | 25 | 1-50 | | / | Unilatera
 | To define the best electrode trajectory line in cochlear implant surgery by using OTOPLAN. To investigate the feasibility of the retrofacial approach as a direct access to the RW and | Cochlear view and other ear structures. Facial recess size | Ideal
trajectory
line
Size of the
retrofacial
approach | The retro- facial approach represented the best trajectory line. OTOPLAN- reconstruct ed imaging provided a useful analysis of the retro- facial approach and helped in planning the surgical trajectory | | | | | | | | | | | | to classify the size of the retro- facial approach in relation to the size of the facial recess. | | | line toward
the RW.
Additionally
can help the
surgeon to
compare
the retro-
facial
approach to
the
standard
facial
recess. | |------------------------|--|------|-------------------|-----------------------------------|--------------------|--|-------------------------|---|-------------------|---|--|--|---| | Di Maro
et al.[52] | Frequency
reallocation
based
on cochlear
place
frequencies
in cochlear
implants:
a pilot study | 2022 | Europ
e, Italy | Retrospect
ive/ Pilot
study | 10 | >14
(range
14.3–
78.7
years) | Postlingual
deafness | Pre e post
frequency
reallocatio
n | Unilatera
I | to demonstrat e that an anatomicall y nased frequency reallocation can provide immediate benefit to the patient | Array insertion
depht
Cochlear place
of stimulation | Subjective
sensations
PTA, SAT and
SRT
thresholds
Correlation
between
depth of
insertion and
audiological
thresholds | The mean values of SRT and SAT were significantly lower. No significant differences in PTA. OTOPLAN may be used in anatomic mapping for subsequent frequency reallocation | | Khurayzi
et al.[19] | Direct measureme nt of cochlear parameters for automatic calculation of the cochlear duct length | 2020 | Saudi
Arabia | Retrospect | 88
cochle
as | <7 | Prelingual
deafness | CT
measurem
nets
OTOPLAN
measurem
ents | Uni/Bilat
eral | Validation
of OTOPLAN
and CDL
estimation | Cochlear diameter (A- value) Width of the cochlear base (B-value) Height of the cochlea (H- value) CDL | A-value, B-
value, H-
value and
CDL | No
difference
in A-value
between CT
and
OTOPLAN
Both A- and
B- values
showed a
high
positive
correlation
to the CDL, | | | | | | | | | | | | | | | stornger
between B-
value anCDL
than A-
value and
CDL. | |------------------------------|--|------|----------------------------|---------------------|-----|----------|---|---|-------------------|---|---|---|---| | Dahanasin
g et
al.[44] | The rationale for FLEX (cochlear implant) electrode with varying array lengths | 2021 | Europ
e,
Austria | Narrative
review | / | / | / | / | / | Rationale of
FLEX
electronde
array and
the uso of
otological
pre.plannin
g software
tool like
OTOPLAN | / | / | OTOPLAN offers the possibility in measuring the the cochlear size, choosing the best fitting electrode | | Spiegel et al.[23] | Variation of
the cochlear
anatomy
and cochlea
duct length:
analysis
with a new
tablet-based
software | 2022 | Europ
e,
Germa
ny | Retrospect | 108 | 6,5-90,3 | | / | Uni/Bilat
eral | To evaluate the range of CDL, find differences in different patient groups and to assess the angular insertion depht (AID) for cochlear coverage. | Cochlear diameter (A- value) Width of the cochlear base (B-value) Height of the cochlea (H- value) CDL AID Cochlear place frequency | Cochlear diameter (A- value) Width of the cochlear base (B-value) Height of the cochlea (H- value) CDL AID Cochlear place frequency | array . Significant difference of mean CDL with regards to sex, but not to age, side or patients having received different types of CI-electrodes. Significant differences in AID and cochlear coverage. | | Alahmadi et al.[33] | Cochlear Implantatio n: The Volumetric Measureme nt of Vestibular Aqueduct and Gusher Prediction | 2023 | Saudi
Arabia | Retrospect ive chart review | 21 | mean
13,81 (+-
5,10) | Mondini
dysplasia
and
enlarged
vestibulare
aqueduct | CDL using | Uni/Bilat eral | To validate the role of 3D segmentati on in measuring the volume of the vestibula aqueduct, and the inner ear and to study the correlation between VAD volume and VAD linear measureme nts at the midpoint and opercolum | Cochlear diameter (A- value) Width of the cochlear base (B-value) Height of the cochlea (H- value) CDL VAD widths | Cochlear diameter (A-value) Width of the cochlear base (B-value) Height of the cochlea (H-value) CDL VAD widths | Age, H- value, VAD at the midpoint and VAD at the operculum were significant predictors for CT VAD volume. Sex, age, Avalue, and VAD at the operculum ca be used as significant predictors for Ctinner ear volume using data from both ears. Patients gusher outcomes were significantly differentiat ed by sex and VAD lenght at the midpoint. | |---------------------|--|------|-----------------------------|-----------------------------|--------------|----------------------------|--|------------------------|----------------|--|---|---|---| | Jones et
al.[24] | Cochlear Duct Lengths Between CT and MR Images | | States
of
Americ
a | ive | cochle
as | (unspecif
ied age) | deafness | CT and CDL
using MR | eral | the intra-
and
interoserver
variability in
measunring
the CDL | - | | difference
between
MRI and CT:
MRI images
can be used
in OTOPLAN | | | Using an Otological Surgical Planning Software | | | | | | | | from MRI
images vs
CT images
using the
OTOPLAN | | | as CT
images. | |------------------------------|---|------|---------------------------------------|------------|-------------------------------|--------------------------------|--|-------------------|--|--|---|--| | Canfarott
a et
al.[22] | Validating a new tablet-based tool in the determinati on of cochlear implant angular insertion depth | 2019 | United
States
of
Americ
a | Retrospect | 36
cochle
as
(20 pz) | adult
(unspecif
ied age) | Postlingual
deafness | Uni/Bilat
eral | To evaluate the intra- and inter- retar reliability of this tool in determining AID and CDL. To assess the resultant variability in estimates of the cochlear place frequency for the most apical electrode. | AID
CDL
Estimate
cochlear place
frequency for
each electrode | AID CDL Estimate cochlear place frequency for each electrode | Excellent inter- and inter rater reliability of both AID and CDL: OTOPLAN can be used to reliably determine electrode location to inform image- guided mapping strategies for CI recipients. | | Bahavana
et al.[53] | OTOPLAN-B
ased Study
of
Intracochlea
r Electrode
Position
Through
Cochleosto
my and
Round
Window in
Transcanal
Veria
Technique | 2022 | India | Retrospect | 26 | 2-15 | Prelingual
deafness;
severe
bilateral
HL | Uni/Bilat
eral | To study the postoperati ve visualisation of the electrode array insertion angle through transcanal Veria approach in both round window and cochleosto my tech- niques | Cochlear diameter (A- value) Height of the cochlea (H- value) Width of the cochlear base (B-value) CDL | Cochlear
diameter (A-
value)
Height of the
cochlea (H-
value)
Width of the
cochlear base
(B-value)
CDL | No significant difference in average angle of insertion depth between subjects with cochleosto my and round window insertion. No difference between round | | | | | | | | | | | | | | window insertion or cochleosto my insertion when it comes to electrode array position and placement in the scala tympani. | |-----------------------------|---|------|---------------------------------------|---------------|-------------------------------|------------|--|-------------------|--|---|--|--| | Cooperma
n et
al.[14] | Assessment of Inter- and Intra-Rater Reliability of Tablet-Based Software to Measure Cochlear Duct Length | 2021 | United
States
of
Americ
a | Retrospective | 166
cochle
a (83
pz) | mean 65.63 | | Uni/Bilat
eral | To examine whether increased CT slice thickness was associated with increased variability of CDL measureme nts. To assessed the strong inter- and intra-rater reliability. | Cochlear
diameter (A-
value)
Width of the
cochlear base
(B-value)
CDL | Cochlear diameter (A-value) Width of the cochlear base (B-value) CDL | No significant relationship between slice thickness and CDL measureme nt. There is inter- and intra-rater reliability for cochlear diameter, width, and duct length measured with OTOPLAN. The software may have clinical utility for selecting appropriate electrode array lengths. | | Dutrieux
et al.[38] | Correlation Between Cochlear Length, Insertion Angle, and Tonotopic Mismatch for MED-EL FLEX28 Electrode Arrays | 2022 | Europ
e,
France | Retrospect | 106
cochle
ae (99
pz) | mean 63 | Severe to profound HL | Size of CDL: Small <33.3mm Medium 33.3- 36.2mm Large > 36.2mm | Uni/Bilat
eral | To investigate the relationship between cochlear length, insertion angle, and tonotopic mismatch and to compare the tonotopic mismatches with respect to the spiral ganglion and the organ of Corti. | Cochlear
diameter (A-
value)
CDL
AID | Cochlear
diameter (A-
value)
CDL
AID | Small cochlea size correspond ed to higher insertion angle. Tonotopic mismatch could be minimized preoperativ ely by choosing electrode arrays according to the individual cochlear morphology and postoperati vely by appropriate frequency fitting. | |------------------------|--|------|-----------------------|------------|--------------------------------|----------|-----------------------|---|-------------------|--|---|--|---| | Chen et al.[32] | Cochlear Duct Length Calculation: Comparison Between Using Otoplan and Curved Multiplanar Reconstructi on in Non malformed Cochlea | 2021 | China | Retrospect | 68
cochle
ae
(34 pz) | 0,6-63,3 | / | / | / | To describe a new method to measure the cochlear parameters using Otoplan software, and to compare it with the traditional method using curved multiplanar | Cochlear diameter (A- value) Height of the cochlea (H- value) Width of the cochlear base (B-value) CDL Depth of insertion Frequency corresponding electrode | Cochlear diameter (A-value) Height of the cochlea (H-value) Width of the cochlear base (B-value) CDL Depth of insertion Frequency correspondin g electrode | Length, width, height, and CDL measured by Otoplan, showed no significant differences compared with measureme nts made by cMPR. CDL presented statistically significant | | Lee et al.[49] | Modiolar Proximity of Slim Modiolar Electrodes and Cochlear Duct Length: Correlation for Potential Basis of Customized Cochlear Implantatio n With Perimodiola r Electrode | 2021 | South
Corea | Retrospect | 51
cochle
a
(38 pz) | 7-91 | Congenital
deafness
Postlingual
deafness | Congenital vs deafness Modiolar proximity: less vs tight | Unilatera I | To evaluate individual CDL to determine if there is any significant correlation of CDL with degree of modiolar proximity | Cochlear diameter (A- value) Height of the cochlea (H- value) Width of the cochlear base (B-value) CDL | Relationships
between
cochlear
parameters
and spiral
diameters | differences between male and female patients. Measureme nts using Otoplan presented better repeatabilit y and are much rapid. A prepondera nce of less modiolar proximity of the electrode exclusively among congenital deafness cases. Shorter CDL is associated with a less tight spiral configuratio n of slim modiolar electrodes postoperati vely. The | |----------------|--|--------|----------------|------------|------------------------------|---|---|---|-------------|--|--|---|---| | et al.[12] | based
frequency
allocation in
cochlear
implantatio
n: the | - 2-2- | Arabia | ive | cochle
a (102
pz) | (+-10)
range:10
month-
74years | , | frequency
setting avs
anatomy
based
frequency | eral | aimed to
compare
the
predicted
anatomy-
based | diameter (A-
value)
Height of the
cochlea (H-
value)
Width of the | to-place
mismatch | anatomy-
based
frequency
allocation of
each
electrode is | | | importance
of cochlear
coverage | | | | | | | reallocatio
n | | frequency
allocation of
cochlear
implant
electrodes
with the
default
standard
frequencies. | cochlear base
(B-value)
CDL | | significantly different from the default frequency setting. This frequency- to-place mismatch was affected mainly by the cochlear coverage. | |----------------------|--|------|---------------------------------------|-----------------|-------------------------------|-----------------|---|--|----------------|--|---|---|---| | Paouris et al.[36] | Validation of
Automatic
Cochlear
Measureme
nt using
OTOPLAN
software | 2023 | Slovaki | Retrospect | 109
cochle
a
(56 pz) | 7,3 (+-
3,7) | / | Measured
manually
vs.
measure
with AUTO | / | To evaluate the new automatic measureme nt method | Cochlear
diameter (A-
value)
Height of the
cochlea (H-
value)
Width of the
cochlear base
(B-value)
CDL | Difference in CDL measuremen t and in measuremen t time | There wasn't a significant difference in measureme nt of Choclear parameters; Time neeed to perform the measureme nts was reduced from 7 min to 1min. | | Dillon et
al.[55] | Effect of Place-Based Versus Default mapping Procedures on Masked Speech Recognition: simulation of Cochlear Implant | 2021 | United
States
of
Americ
a | Prospectiv
e | 25 pz | 18-25 | / | Default
filter
frequencie
s vs. place-
based filter
frequencie
s | Unilatera
I | Compare performanc e with default maps vs. experiment al place-based map, in partecipans with normal earing | AID Estimate cochlear place frequency for each electrode | Sentence
recognition | Better performanc e with the placed- based maps than for the default maps for both the CI- alone and EAS simulation. | | | Alone and
Electric-
Acoustic
Stimulatio. | | | | | | | | | | | Adding acoustic low- frequency information resulted in a similar benefit for both maps. | |---------------------|--|------|--------|------------|-------|-------|----------------------|-----------|---|--|---|---| | Mertens et al. [54] | The smaller the frequency-to-place mismatch the better the hearing outcomes ini cochlear implant recipiens | 2022 | Belgiu | Retrospect | 39 pz | 17-81 | Postlingual deafness | Unilatera | To investigate the effect of frequency-to-place mismatch; investigatin g if there is any correlation between Aid and CDL, and which is the mean deviation of the default frequency map. | AID CDL Estimate cochlear place frequency for each electrode | Speech perception Correlation between frequency-to- place mismatch and speech perception AID Correlation between AID and CDL Mean frequency shift | Significant linear correlation between the frequency-to-place mismatch and speech perception in noise 6 month after CI. The smaller the frequency-to-place mismatch, the better the initial speech perception in noise. The significant effect disappeared after 12 months. AID from 458° to 642°. mean of CDL 32,96. Correlation: 0,47; mean | | | | | | | | | | | | | | | frequancy
shift: from
1,03 to
1,44. | |------------------------------|--|------|---------------------------------------|------------|-------|-------------------|---|---|----------------|---|--|---|--| | Mertens
et al.[34] | Prediction of the Cochlear Implant Electrode Insertion Depth: Clinical Applicability of two Analytical Cochlear Models (2020) | 2020 | Belgiu
m | Retrospect | 46 pz | mean 56
(6-81) | / | pre- operative AID vs post- operative AID | unilateral | To compare the clinical applicability of the Escudè and ECA formula using OTOPLAN to predict the AID; to compare the AID calculated with OTOPLAN to the prediction based upon a two-dimensional CT image. | Cochlear
diameter (A-
value)
Width of the
cochlear base
(B-value)
CDL
AID | Intra- and
Inter-
observer
agreement
Validation of
AID
prediction | The use of a new planning software taht allows three-dimensional handling, integrating the diameter and width of the basal turn (ECA formula), resulted in the most accurate predictions of the AID. | | Canfarott
a et
al.[50] | Incidence of
Complete
Insertion in
Cochlear
Implant
Recipients
of Long
Lateral Wall
Arrays | 2020 | United
States
of
Americ
a | Retrospect | 51 pz | 23-87 | / | complete
insertion vs
partial
inserion | Unilatera
I | To investigate the incidence of complete insertions among patients implanted with 31,5 mm flexible arrays and whether complete insertion is | Cochlear
diameter (A-
value)
Width of the
cochlear base
(B-value)
CDL | Partial
insertion rate
AID
CDL | Complete insertion of a 31.5 mm flexible array is feasible in most cases and does not appear to be limited by the range of CDL. | | | | | | | | | | | | limited by cochlear duct lenght. | | | | |--------------------------------|--|------|---------------------------------------|-------------------|-------|------------------|------------------------|--|----------------|--|--|---|---| | Müller-Gr
aff et
al.[29] | Implementa tion of the secondary reconstructi ons of flat-panel volume cmputed tomography (fpVCT) and otological planning software for anatomically based cochlear implantatio n | 2022 | Germa | Retrospect | 30 pz | 57-64 | | MSCT in non-implanted ear vs. MSCT in implanted ears | Unilatera I | To investigate the combination of fpVCT and otological planning software to improve the implementation of anatomicall y based cochlear implantation. | Cochlear diameter (A-value) Width of the cochlear base (B-value) CDL | Comparison of CDL measuremen ts | The combinatio n of fpVCT(seco) and OTOPLAN permits a simplified and more reliable analysis of the cochlea in the pre and postoperati ve setting. The combinatio n of both systems will enable further progress in the developmen t of an anatomicall y based CI. | | Canfarott
a et
al.[46] | Influence of
Age at
Cochlear
Implantatio
n and
Frequency-
to-place
Mismatch
on Early
Speech | 2019 | United
States
of
Americ
a | Retrospect
ive | 48 pz | 67,4 (42-
95) | Postligual
deafness | / | Unilatera
I | To investigate the influence of mismatch and age at implantatio n on speech recognition within the initial 6 | AID
Spiral ganglion
place
frequency | AID
Frequancy-
to-place
mismatch
Postoperative
Speech
Recognition | Younger adult CI recipients experienced more rapid growth in speech recognition during the initial 6 months | | | Recognition
in Adults | | | | | | | | months of
CI use. | | | post- activation. Greater degrees of frequency- to-place mismatch were assiciated with poorer performanc e, yet older listeners were not particularly susceptible to this effect. | |---------------------------------|--|------|-------|-----------------|-------|--|--|----------------|---|--|-----|---| | Breitsprec
her et
al.[15] | CT imaging-based approaches to cochlear duct length estimation - a human temporal bone study | 2021 | Germa | Prospectiv
e | 20 pz | | CDL using 3D reconstruct ion with a 3D software CDL using the A-value method CDL using OTOPLAN | Unilatera
I | To detrmine the most reliable radiological imaging method and imaging processing software for measuring CDL from clinical routine imagnig and to predict the AID. | Cochlear diameter (A- value) Height of the cochlea (H- value) Width of the cochlear base (B-value) CDL | CDL | Alla approaches would have led to an electrode choice of rather too short electrodes. Concerning treatment decisions based on CDL measureme nts, the OTOPLAN-based method has to be recommend ed. | | Almuhaw
as et
al.[35] | Age as a factor of growth in mastoid thickness and skull width | 2020 | Saudi
Arabia | Retrospect | 92 | <20years
and >20
years
(range
6months
-79
years) | Normal;
Inner ear
malformat
ion:
hypoplasia
,
incomplet
e partition
type I, II
and III,
enlarged
vestibular
aqueduct
syndrome,
ossified
cochlea | normal
cohclea vs
malformed | | To understand the growth rate of mastoid thickness and skull width associated with the age for both normal and malformed inner-ear anatomy groups. Also, to determine if there is any mathematic al relation between cochlear size as measured by the "A" value against the | Mastoid
thickness
Cochlear
diameter (A-
value)
Skull width | Mastoid
thickness
Skull width | Mastoid thickness and skull width increased with age, while the cochlear size was independen t of age, mastoid thickness, and the size of the skull | |-----------------------------|--|------|---------------------------------------|-------------------|-----|--|--|---|---|---|--|--|---| | Andersen
et al.[37] | Segmentatio
n of
Temporal
Bone
Anatomy for
Patient-
Specific
Virtual
Reality
Simulation | 2020 | United
States
of
Americ
a | Retrospect
ive | 9pz | 3 months
- 12
years | / | OTOPLAN
vs. manual
segmentati
on | / | value | Cochlear diameter (A- value) Height of the cochlea (H- value) Width of the cochlear base (B-value) | Segmented
volumes
Segmentatio
ns time | The automated segmentatio n algorithm currently offers the most flexible and feasible approach. | | | | | | | | | | patient-
specific VR
simulation. | | | | |------------------------|---|------|-----------------|---------------|----------|-------------------------------|--|--|--|--|---| | Dhanasing h et al.[30] | A novel three-step process for the identificatio n of inner ear malformatio n types | 2022 | Saudi
Arabia | Retrospective | 112 ears | Inner ear
malformat
ion | | Visualizing inner-ear systematical ly in both cochlear view (oblique coronal plane) and in midmodiolar section (axial plane) and following three sequential steps simplifies, identification of innerear malformation types. | Cochlear diameter (A-value) Width of the cochlear base (B-value) Angular turn of the LW Mid-modiolar section | Cochlear diameter (A-value) Width of the cochlear base (B-value) Angular turn of the LW Mid-modiolar section | The systematic application of the three-step process proposed in this study is a novel method in the identificatio n of IEM types. The visualizing inner ear in both cochlear view and the midmodiolar section enables to capture every key anatomical structure of the inner ear in the identificatio n of anatomical types. | | Canfarott
a et
al.[48] | Insertion Depth and Cochlear Implant Speech Recognition Outcomes: A Comparativ e Study of 28- and 31.5-mm Lateral Wall Arrays | 2022 | United
States
of
Americ
a | Retrospect | 75 pz | 65,0
(28mm) -
63,6
(31,5mm) | Unknown
Meniere's
Noise
induced
Usher's
syndrome
Temporal
bone
fracture | Array
lenght:
28mm vs.
31.5mm | Unilatera | To compare speech recognition outcomes between cochlear implant (CI) recipients of 28- and 31.5-mm lateral wall electrode arrays, and to characterize the relationship between angular insertion depth (AID) and speech recognition. | AID | Consonant-
nucleus-
consonant
(CNC) word
recognition | Cochlear implant recipients implanted with a 31.5-mm array experienced better speech recognition than those with a 28-mm array at 12 months post-activation. Deeper insertion of a lateral wall array appears to confer speech recognition benefit up to ~600°, with a plateau in performance observed thereafter | |------------------------------|---|------|---------------------------------------|-------------------|-------------|--------------------------------------|---|--|-----------|--|--|--|---| | Li et al.
[31] | Analysis of Cochlear Parameters in Paediatric Inner Ears with Enlarged Vestibular Aqueduct and Patent Cochlea | 2022 | China | Retrospect
ive | 247
ears | 0.0-12.8 | | patent cochlea VS enlarged vestibular aqueduct VS enlarged vestibular aqueduct with incomplete | | (a) assess the cochlear dimensions in Chinese paediatric CI candidates with fully developed patent cochleae and with | The A-value (diameter), B-value (width), and H-value (height) were measured using OTOPLAN (version 1.2). | different cochlear anatomies using CT images and 3D images in both axial and coronal view. Data were analysed as per side of | A significant difference was found for the A value and B value between the patent cochleae and EVA-only and between | | Zhu et al.
[45] | The effect of cochlear size | 2023 | China | Retrospect
ive | 75 pz | 0.67-18 | severe or profound | partition
type II | first CI | EVA using the OTOPLAN software (b) analyse the differences between side of the ear, sex, and type of malformati on. | Basal cochlear
diameter, | the ear (left/right), sex, and type of malformation Correlations between | the patent cochleae and EVA with IP II The basal turn of the cochlea may be smaller in EVA cases than in the patent cochleae. Electrode selection should be adjusted accordingly The EABR thresholds | |--------------------|-----------------------------|------|-------|-------------------|-------|---------|----------------------|--------------------------|----------|---|-----------------------------|---|--| | [43] | on
electrically | | | IVC | | | bilateral sensorineu | malformati
ons (IEMs) | | the relationship | cochlear
width, | EABRs and cochlear sizes | and/or
latencies | | | evoked | | | | | | ral hearing | VS Mondini | | between | cochlear | were | were | | | auditory | | | | | | loss (SNHL) | malformati | | cochlear | height and | analyzed. | negatively | | | brainstem | | | | | | | on | | size and | CDL, | | correlated | | | responses in deaf | | | | | | | | | auditory | | | with the
basal | | | children | | | | | | | | | conduction function in | | | cochlear | | | Ciliuren | | | | | | | | | deaf | | | diameter, | | | | | | | | | | | | children | | | cochlear | | | | | | | | | | | | with | | | width | | | | | | | | | | | | no IEMs and | | | and/or | | | | | | | | | | | | those with | | | cochlear | | | | | | | | | | | | Mondini | | | duct length | | | | | | | | | | | | malformati | | | in both | | | | | | | | | | | | on. | | | patients | | | | | | | | | | | | | | | without | | | | | | | | | | | | | | | IEMs and | | | | | | | | | | | | | | | those with | | | | | | | | | | | | | | | Mondini
malformatio | | | | | | | | | | | | | | | n. | | | | | | | | | | | | | | | A larger | | | | | | | | | | | | | | | cochlear | | | | | | | | size appears | |--|--|--|--|--|--|--------------| | | | | | | | to be | | | | | | | | associated | | | | | | | | with better | | | | | | | | auditory | | | | | | | | conduction | | | | | | | | function. |