
StochNetV2: A Tool for Automated Deep
Abstractions for Stochastic Reaction

Networks

Denis Repin, Nhat-Huy Phung, and Tatjana Petrov(B)

Department of Computer and Information Sciences, University of Konstanz,
Konstanz, Germany

den.ne.repin@gmail.com, tatjana.petrov@uni-konstanz.de

Abstract. We present a toolbox for stochastic simulations with CRN
models and their (automated) deep abstractions: a mixture density deep
neural network trained on time-series data produced by the CRN. The
optimal neural network architecture is learnt along with learning the
transition kernel of the abstract process. Automated search of the archi-
tecture makes the method applicable directly to any given CRN, which is
time-saving for deep learning experts and crucial for non-specialists. The
tool was primarily designed to efficiently reproduce simulation traces of
given complex stochastic reaction networks arising in systems biology
research, possibly with multi-modal emergent phenotypes. It is at the
same time applicable to any other application domain, where time-series
measurements of a Markovian stochastic process are available by experi-
ment or synthesised with simulation (e.g. are obtained from a rule-based
description of the CRN).

1 Introduction

Predicting stochastic cellular dynamics as emerging from the mechanistic models
of molecular interactions is a long-standing challenge in systems biology: low-
level chemical reaction network (CRN) models give rise to a highly-dimensional
continuous-time Markov chain (CTMC) which is computationally demanding
and often prohibitive to analyse in practice. Deep abstractions of CRN mod-
els, proposed in [2], use deep learning to replace this CTMC with a discrete-
time continuous state-space process, by training a mixture density deep neural
network with traces sampled at regular time intervals (which can be obtained
either by simulating a given CRN or as time-series data from experiment).
Deep abstractions are dramatically cheaper to execute, while preserving the

TP’s research is supported by the Ministry of Science, Research and the Arts of the
state of Baden-Württemberg, and the DFG Centre of Excellence 2117 ‘Centre for the
Advanced Study of Collective Behaviour’ (ID: 422037984), DR’s research is supported
by Young Scholar Fund (YSF), project no. P83943018FP430 /18 and by the ‘Centre
for the Advanced Study of Collective Behaviour’. The authors would like to thank to
Luca Bortolussi for inspiring discussions on the topic.

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59854-9_4&domain=pdf
http://orcid.org/0000-0002-9041-0905
https://doi.org/10.1007/978-3-030-59854-9_4

statistical features of the training data. The abstraction accuracy improves with
the amount of training data. However, the overall quality of the method will also
depend on the choice of neural network architecture. In practice, the modeller
has to find the suitable architecture manually, through a trial-and-error cycle.
In [8], we proposed to learn the optimal neural network architecture along with
learning the transition kernel of the abstract process [3,7]. A similar idea has
been recently employed for emulating epidemiological spread [4]; However, this
work has focused on a single, uni-modal model of epidemics and only stationary
regime, while our method is generic - applicable to any given CRN.

In this paper, we present StochNetV2Toolbox1- a tool for MDN-based deep
abstractions of CRNs. Deep abstractions provide time-series trajectories which
abstract the trajectories of the original CRN. Abstract models are implemented
with neural networks, which predict a distribution for sampling the next system
state. Moreover, StochNetV2Toolbox allows to, in addition to the initial state,
parametrise the neural network with the kinetic rates (as a part of the input).
The method is described in [8]. For illustration purposes, the tool includes a
functionality for simulating multiple CRN instances on a spatial grid, where
CRNs communicate via a subset of shared species which are diffused across
neighbouring grid nodes.

2 Tool Architecture and Functionality

StochNetV2is implemented with four entities: CRN model, Dataset, StochNet,
and Trainer (see Fig. 1 for an overview). Two latter classes each have two
different implementations: (i) a static implementation, used for standard deep
abstractions as suggested in [2], and (ii) a dynamic implementation, used for
automated deep abstractions, where the architecture of the neural network is
learn along with the kernel of the process [8].

The general workflow proceeds in the following steps: (1) define a CRN model,
(2) produce trajectories, (3) create dataset from trajectories, (4) configure
StochNet, (5) train it with Trainer, (6) produce trajectories. Finally, the user
has the option to simulate multiple CRN instances on a spatial grid with class
Grid runner.

2.1 CRN Models

The module contains base and example classes defining CRN models. These
models can be simulated with Gillespie algorithm provided by gillespy2 pack-
age. CRN models are used as a source of synthetic data to train and evaluate
abstract models. An instance of CRN model class can

– generate randomized initial concentrations (populations),
– generate randomized reaction rates,
1 The tool name makes it transparent that the tool was inspired by [2] called

‘StochNet’.

2

StochNetV2 29

– set initial concentrations and reaction rates,
– produce trajectories.

A new CRN model should be inherited from BaseCRNModel class and imple-
ment all abstract methods. Several example models are provided (e.g. SIR,
Bees, Gene, X16). In general, SBML models (Systems Biology Markup Lan-
guage) can be imported, but it should be noted that the variability of the
SBML format makes automated imports practically tedious, and for most mod-
els some pre-processing is required, e.g. editing reaction rates formulas, rewriting
reversible reactions as two separate reactions, etc. see BaseSBMLModel and EGFR
classes for examples.

2.2 Dataset

The dataset module implements functions and classes for creation and oper-
ations over trajectories data. It supports shuffling and applying pre-processing
functions (such as adding noise) on-the-fly.

2.3 StochNet (Static)

StochNet class implements an interface for an abstract model. It is wrapped
around a neural network (Mixture Density Network) which can be trained
on simulation datasets and then used to produce trajectories. MDN con-
sists of two parts: body (neural network extracting features of input state)
and mixture (probability distribution with parameters depending on the
extracted features). StochNet is initialized with body and mixture con-
figuration files (config-file examples in stochnet v2/examples/configs). A
set of pre-defined building blocks for the body-part can be found in
stochnet v2/static classes/nn bodies file, which provides flexibility in the
sense that custom building blocks can be added by the user. The supported
distributions (the ‘components’ we use) for the mixture part can be found in
stochnet v2/static classes/top layers.

2.4 Training (Static)

Once StochNet is initialized, it can be trained with Trainer. When training is
finished, all necessary files are saved to the model folder. A saved model can be
loaded to produce trajectories at any time.

2.5 NASStochNet (Dynamic)

NASStochnet is an extension of the StochNet class. Instead of designing the
body-part of MDN, it takes only a few hyper-parameters, such as an overall
depth (number of layers) and width (number of neurons in layers). It starts with
an over-parameterized probabilistic meta-model, which (by sampling so-called
architecture parameters) represents many architectures at once. During train-
ing, the set of preferred layers, their order, and inter-connections are optimized
automatically for given data.

3

30 D. Repin et al.

2.6 Training (Architecture Search)

For the Architecture Search, training consists of two stages: (I) search for opti-
mal configuration. This stage is a two-level optimisation, i.e. we run two sepa-
rate optimisation procedures in altering manner for several epochs each: (main)
update network parameters - weights in layers, (arch) update architecture param-
eters - weights of candidate operations in mix-layer, (II) fine-tuning of the found
architecture after all redundancies are pruned.

After the search and fine-tuning stages, all necessary files are saved to the
model folder, and the model can be loaded for simulations. Either StochNet or
NASStochNet can be used to load trained model and run simulations.

2.7 Grid Runner

GridRunner implements a simulation of multiple CRN instances on a (spatial)
grid with communication via spreading a subset of species across neighboring
grid nodes. GridRunner is initialized with a model and GridSpec, which specifies
a grid. Then, GridRunner stores state values for every model instance which
can be updated by either in-node (one forward step of the model in every node)
reactions, or on-grid interactions (diffusion of shared species across the grid).

2.8 Luigi Workflow Manager

The workflow is wrapped with the luigi library designed for running complex
pipelines of inter-dependent tasks. Alternatively to manually run the above com-
mands, one can fill a luigi configuration file, and it will run the whole sequence
of tasks taking care of the right order and pre-requisites for every task.

3 Implementation

StochNetV2is written in Python 3 and uses Python libraries, mainly
tensorflow, gillespy2, luigi and dependencies thereof. Source code of the
tool with previously published Jupyter notebooks can be downloaded from
GitHub - https://github.com/dennerepin/StochNetV2.

4 Evaluation and Applications

To evaluate the quality of abstract models, we compare distributions (his-
tograms) of species of interest (e.g. Fig. 2a). For this, we simulate many trajec-
tories of the original model starting from a set of random initial settings. Then
an evaluation script runs from the same initial settings (example runtime com-
parison given in Fig. 2b). The evaluation script saves: (1) overall average value
of histogram distance, (2) plots of species histograms after different number of
steps, (3) plots of average (over different settings) distance between histograms
produced by original and abstract model after different number of time-steps.

4

https://github.com/dennerepin/StochNetV2

StochNetV2 31

The case studies in the toolbox include applications in systems biology and
collective behavior, such as the model of signaling pathway (EGFR [5], challeng-
ing multi-modal gene regulatory models (e.g. from [9]), and a reaction-based
model of collective defence in honeybees (see [6] and GitHub page for details -
https://github.com/dennerepin/StochNetV22).

5 Related Tools

The original idea of using Mixture Density Networks was proposed in [2], which
is followed by a theoretical work [1]. We are not aware of other tools using deep
learning to abstract stochastic CRNs.

Trainer

GridRunner

StochNet
(static)

DataSetCRNModel
(gillespy2 Model)

StochNet
(trained)

trajectories
(original model)

trajectories
(abstract model)

collective trajectories
(abstract model)

produces training examples
(state transitions)

user-defined architecture

NAS TrainerStochNet
(NAS)

optimizes MDN weights

optimizes MDN weights
and architecture

dynamic architecture

B: Architecture Search (NAS)

runs model instances on
spatial grid with diffusion-like

interactions

A: static training

Fig. 1. Main components and workflow.

0.1

600

- Gillespie
- NN

[# proteins]

normalised histogram after one time step
NN SSA

time
[s]

14

settings
traj. per setting

200
200

settings
traj. per setting

200
200

Fig. 2. (left) X40 case study from [9]: histograms of protein P2 concentration after 1
time step and (right) the comparison of simulation run-time with NN and SSA, wrt.
the number of initial settings and trajectories per setting.

References

1. Bortolussi, L., Cairoli, F.: Bayesian abstraction of Markov population models. In:
Parker, D., Wolf, V. (eds.) QEST 2019. LNCS, vol. 11785, pp. 259–276. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-30281-8 15

2 While we performed specific performance evaluation, e.g. in Fig. 2 and [8], a system-
atic scalability analysis is beyond the scope of this tool presentation.

5

https://github.com/dennerepin/StochNetV2
https://doi.org/10.1007/978-3-030-30281-8_15

32 D. Repin et al.

2. Bortolussi, L., Palmieri, L.: Deep abstractions of chemical reaction networks. In:
Češka, M., Šafránek, D. (eds.) CMSB 2018. LNCS, vol. 11095, pp. 21–38. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-99429-1 2

3. Cai, H., Zhu, L., Han, S.: ProxylessNAS: direct neural architecture search on target
task and hardware. CoRR abs/1812.00332 (2018). http://arxiv.org/abs/1812.00332

4. Davis, C.N., Hollingsworth, T.D., Caudron, Q., Irvine, M.A.: The use of mixture
density networks in the emulation of complex epidemiological individual-based mod-
els. PLoS Comput. Biol. 16(3), 1–16 (2020). https://doi.org/10.1371/journal.pcbi.
1006869

5. Feret, J., Henzinger, T., Koeppl, H., Petrov, T.: Lumpability abstractions of rule-
based systems. Theoret. Comput. Sci. 431, 137–164 (2012)

6. Hajnal, M., Nouvian, M., Šafránek, D., Petrov, T.: Data-informed parameter syn-
thesis for population Markov chains. In: Češka, M., Paoletti, N. (eds.) HSB 2019.
LNCS, vol. 11705, pp. 147–164. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-28042-0 10

7. Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. In:
International Conference on Learning Representations (2019). https://openreview.
net/forum?id=S1eYHoC5FX

8. Petrov, T., Repin, D.: Automated deep abstractions for stochastic chemical reaction
networks. arXiv preprint arXiv:2002.01889 (2020)

9. Plesa, T., Erban, R., Othmer, H.G.: Noise-induced mixing and multimodality in
reaction networks. Eur. J. Appl. Math. 30(5), 887–911 (2019)

6

https://doi.org/10.1007/978-3-319-99429-1_2
http://arxiv.org/abs/1812.00332
https://doi.org/10.1371/journal.pcbi.1006869
https://doi.org/10.1371/journal.pcbi.1006869
https://doi.org/10.1007/978-3-030-28042-0_10
https://doi.org/10.1007/978-3-030-28042-0_10
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX
http://arxiv.org/abs/2002.01889

	StochNetV2: A Tool for Automated Deep Abstractions for Stochastic Reaction Networks
	1 Introduction
	2 Tool Architecture and Functionality
	2.1 CRN Models
	2.2 Dataset
	2.3 StochNet (Static)
	2.4 Training (Static)
	2.5 NASStochNet (Dynamic)
	2.6 Training (Architecture Search)
	2.7 Grid Runner
	2.8 Luigi Workflow Manager

	3 Implementation
	4 Evaluation and Applications
	5 Related Tools
	References

